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DATA DEDUPLICATION WITH ADAPTIVE 
ERASURE CODE REDUNDANCY 

REFERENCE TO RELATED APPLICATION 

0001. This application is a Continuation of U.S. applica 
tion Ser. No. 14/326,774 filed on Jul. 9, 2014, the contents 
of which is hereby incorporated by reference in its entirety. 

BACKGROUND 

0002 Data deduplication removes redundancy while era 
Sure coding adds redundancy. Data deduplication represents 
an original set of symbols in a smaller set of code symbols 
while erasure coding represents an original set of symbols in 
a larger set of code symbols. Thus, conventionally there has 
been no reason to use deduplication and erasure coding 
together. 
0003 Data that is stored or transmitted may be protected 
against storage media failures or other loss by storing extra 
copies or by storing additional redundant information. One 
type of redundancy-based protection involves using erasure 
coding. Erasure coding creates additional redundant data to 
produce code symbols that protect against erasures where 
data portions that are lost can be reconstructed from the 
Surviving data. Adding redundancy introduces overhead that 
consumes more storage capacity or transmission bandwidth, 
which in turn adds cost. The overhead added by erasure code 
processing tends to increase as the protection level provided 
increases. 
0004 While erasure codes increase data storage require 
ments by introducing additional redundancy, data dedupli 
cation seeks to reduce data storage requirements by remov 
ing redundancy. Data deduplication seeks to remove 
redundancy within a data set by representing an original set 
of symbols in a smaller set of code symbols. By representing 
data with a reduced number of code symbols, data storage 
space and communication capacity use are improved, which 
may in turn reduce cost. 
0005. The lack of redundancy in deduplicated data causes 
Some unique data identified during deduplication to be less 
protected than others with respect to storage media failure or 
other loss. Over time, Some unique data may become more 
or less valuable than other unique data. For example, one 
piece of unique data may be used to recreate hundreds of 
documents while another piece of unique data may only be 
used to recreate a single document. While loss of the unique 
data that is used for one document would be bad, the loss of 
the unique data that is used in the hundreds of documents 
may be worse. In some cases, the loss of the unique data 
used to recreate even a single document may be catastrophic 
when the data concerns, for example, user authentication or 
system security. 
0006 To enhance data protection, different approaches 
for storing redundant copies of items have been employed. 
Erasure codes are one such approach. An erasure code is a 
forward error correction (FEC) code for erasure channels. 
The FEC facilitates transforming a message of k symbols 
into a longer message with n symbols so that the original 
message can be recovered from a Subset of the n symbols, 
k and n being integers, n>k. The symbols may be individual 
items (e.g., characters, bytes) or groups of items. The 
original message may be, for example, a file. The fraction 
r=k/n is called the code rate, and the fraction k'/k, where k" 
denotes the number of symbols required for recovery, is 
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called the reception efficiency or coding overhead. Optimal 
erasure codes have the property that any k out of the n code 
word symbols are sufficient to recover the original message 
(e.g., coding overhead of unity). Optimal codes may require 
extensive memory usage, CPU time, or other resources 
when n is large. Erasure coding approaches may seek to 
create the greatest level of protection with the least amount 
of overhead via optimal or near optimal coding. Different 
types of erasure codes have different efficiencies and 
tradeoffs in terms of complexity, resources, and perfor 
aCC. 

0007 Erasure codes are described in coding theory. Cod 
ing theory is the study of the properties of codes and their 
fitness for a certain purpose (e.g., backing up files). Codes 
may be used for applications including, for example, data 
compression, cryptography, error-correction, and network 
coding. Coding theory involves data compression, which 
may also be referred to as source coding, and error correc 
tion, which may also be referred to as channel coding. 
Fountain codes are one type of erasure codes. 
0008 Fountain codes have the property that a potentially 
limitless sequence of code symbols may be generated from 
a given set of Source symbols in a manner that Supports 
ideally recovering the original source symbols from any 
Subset of the code symbols having a size equal to or larger 
than the number of Source symbols. A fountain code may be 
optimal if the original ksource symbols can be recovered 
from any k encoding symbols, k being an integer. Fountain 
codes may have efficient encoding and decoding algorithms 
that Support recovering the original ksource symbols from 
any k" of the encoding symbols with high probability, where 
k' is just slightly larger than k (e.g., an overhead close to 
unity). A rateless erasure code is distinguished from an 
erasure code that exhibits a fixed code rate. 
0009 Storage systems may employ rateless erasure code 
technology (e.g., fountain codes) to provide a flexible level 
of data redundancy. The appropriate or even optimal level of 
data redundancy produced using a rateless erasure code 
system may depend, for example, on the number and type of 
devices available to the storage system. The actual level of 
redundancy achieved using a rateless erasure code (EC) 
system may depend, for example, on the difference between 
the number of readable redundancy blocks (e.g., erasure 
code symbols) written by the system and the number of 
redundancy blocks needed to reconstruct the original data. 
For example, if twenty redundancy blocks are written and 
only eleven redundancy blocks are needed to reconstruct the 
original data that was protected by generating and writing 
the redundancy blocks, then the original data may be recon 
structed even if nine of the redundancy blocks are damaged 
or otherwise unavailable. 

0010. An EC system may be described using an A/B 
notation, where B describes the total number of encoded 
symbols that can be produced for an input message and A 
describes the minimum number of the B encoded symbols 
that are required to recreate the message for which the 
encoded symbols were produced. By way of illustration, in 
a 10 of 16 configuration, or EC 10/16, sixteen encoded 
symbols could be produced. The 16 encoded symbols could 
be spread across a number of drives, nodes, or geographic 
locations. The 16 encoded symbols could even be spread 
across 16 different locations. In the EC 10/16 example, the 
original message could be reconstructed from 10 verified 
encoded symbols. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

0.011 The accompanying drawings, which are incorpo 
rated in and constitute a part of the specification, illustrate 
various example systems, methods, and other example 
embodiments of various aspects of the invention. It will be 
appreciated that the illustrated element boundaries (e.g., 
boxes, groups of boxes, or other shapes) in the figures 
represent one example of the boundaries. One of ordinary 
skill in the art will appreciate that in some examples one 
element may be designed as multiple elements or that 
multiple elements may be designed as one element. In some 
examples, an element shown as an internal component of 
another element may be implemented as an external com 
ponent and vice versa. Furthermore, elements may not be 
drawn to scale. 
0012 FIG. 1 illustrates an example of protecting unique 
chunks produced by a data deduplication system using 
erasure code redundancy. 
0013 FIG. 2 illustrates another example of protecting 
unique chunks produced by a data deduplication system 
using erasure code redundancy, where unique chunks are 
grouped together before being provided to an erasure coding 
system. 
0014 FIG. 3 illustrates a file segmented into parts and 
deduplicated before erasure coding. 
0015 FIG. 4 illustrates a file segmented into parts that 
have been deduplicated and had erasure correction parities 
added. 
0016 FIG. 5 illustrates grouping chunks before erasure 
coding. 
0017 FIG. 6 illustrates an example method associated 
with protecting a data deduplication system using erasure 
code redundancy. 
0018 FIG. 7 illustrates an example method associated 
with manipulating a generator matrix used by an erasure 
encoder to protect data produced by a data deduplication 
system. 
0019 FIG. 8 illustrates an example apparatus for protect 
ing a data deduplication system using erasure code redun 
dancy. 
0020 FIG. 9 illustrates an example apparatus for protect 
ing a data deduplication system using erasure code redun 
dancy. 
0021 Prior Art FIG. 10 illustrates an example set of 
systematic erasure codes. 
0022. Prior Art FIG. 11 illustrates an example set of 
non-systematic erasure codes. 

DETAILED DESCRIPTION 

0023 Example apparatus and methods combine data 
deduplication with erasure coding to reduce the amount of 
data that is erasure coded while adding protection for unique 
data produced by data deduplication. Since not all unique 
data may have the same value—whether real or perceived— 
to a deduplication system, example apparatus and methods 
account for varying levels of importance of unique data. 
Varying levels of importance are accounted for by dynami 
cally adapting erasure code generation approaches. 
0024 Example apparatus and methods may identify 
redundancy policies to be employed based on attributes of 
unique data produced by a deduplication system. For 
example, an erasure code approach may provide greater 
protection to unique data that has a higher value. The value 
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may be determined from some attribute of the unique data 
(e.g., reference counts). The redundancy policies may iden 
tify, for example, M/N policies that control the number of 
erasure code symbols generated and the distribution of those 
symbols. In one embodiment, M and N may be manipulated 
based on an attribute of the unique data. In one embodiment, 
the amount of additional information (e.g., parity) that is 
added to create an encoded codeword symbol may be a 
function of an attribute of the unique data. In one embodi 
ment, the size of an erasure code symbol (e.g., number of 
bits, number of bytes) may be a function of an attribute of 
the unique data. In one embodiment, while N erasure code 
symbols may be generated, example apparatus and methods 
may control how many of the N erasure code symbols are 
stored based on an attribute of the unique data. The erasure 
code symbols may be stored on a single device or may be 
distributed between two or more devices. The number of 
devices to which erasure code symbols are distributed may 
also be a function of an attribute of the unique data. 
0025. Example apparatus and methods may vary the 
erasure code approach for certain data over time. For 
example, as certain data becomes more valuable, the number 
of erasure code symbols used to protect that data may be 
increased. Conversely, as other data becomes less valuable, 
the number of erasure code symbols used to protect that data 
may be decreased. Conventional systems, if it were even 
possible to try to modify them to try be adaptive over time, 
would be required to compute entirely new sets of erasure 
codes. Unlike conventional systems, new erasure code sym 
bols may be computed and added to existing codes without 
computing entirely new sets of erasure codes. Additionally, 
unlike conventional systems, some erasure code symbols 
may be deleted, either physically or logically, without hav 
ing to compute new erasure code symbols. 
0026 Rateless erasure codes may be well-suited for this 
application of adaptively varying erasure code protection 
over time based on a property (e.g., value, reference counts) 
of the data being protected. When rateless erasure codes are 
employed, additional rateless erasure code symbols (e.g., 
parities) may be generated and stored as data value increases 
(e.g., number of references goes up). The additional rateless 
erasure code symbols may be generated using the same 
generator matrix that was used to generate the original 
rateless erasure codes. The original rateless erasure codes do 
not need to be deleted or overwritten. 

0027. As data value decreases (e.g., number of references 
goes down), some original rateless erasure code symbols 
may be deleted, either logically or physically. An erasure 
code symbol may be logically deleted by, for example, 
erasing a pointer value in memory. Logically erasing an 
erasure code symbol rather than physically erasing the 
erasure code symbol may reduce stress on data storage 
devices (e.g., disk drives) that are used to store erasure 
codes. 

0028. Different types of erasure coding and data dedu 
plication may combine in different ways. Systematic erasure 
codes do not incur a decode penalty when reading back data 
that has not encountered any erasures (e.g., no data has been 
corrupted or lost) since some of the encoded symbols are 
actually just the plaintext symbols from the original mes 
sage. When no data has been lost, decoding can be avoided, 
which helps performance. Rateless erasure codes handle 
large data objects well, are flexible for adapting to different 
levels of protection, and are reliable against random, dis 
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tributed errors. Thus, example apparatus and methods may 
employ systematic erasure codes, rateless erasure codes, or 
even systematic rateless erasure codes. Other forms of 
erasure codes may also be employed. 
0029. Variable-length, block-level data deduplication 
exhibits Superior performance in some deduplication appli 
cations. For example, variable-length, block-level data 
deduplication quickly adapts to a data stream and synchro 
nizes to data segments that have occurred elsewhere regard 
less of whether data has been inserted or removed. Variable 
length, block-level data deduplication can be performed 
in-line where all data does not need to be seen first or may 
be performed in post-processing. While variable-length, 
block-level deduplication is described, other types of dedu 
plication may be combined with various forms of erasure 
coding. 
0030 Prior Art FIG. 10 illustrates an original message 
1000 that has sixteen symbols S1, S2, ... S16 (k=16) and 
that reads “original message'. While the symbol size is one 
character, different symbol sizes may be employed. Message 
1000 is provided to erasure encoder 1010. Erasure encoder 
1010 uses a generator matrix 1020 to produce erasure code 
symbols 1030. In this example, erasure encoder 1010 pro 
duces systematic erasure code symbols EC1, EC2, ... ECn 
(n-k). The systematic erasure code symbols include EC1 .. 
. EC16 (EC1 ... ECk), which correspond directly to S1 . . 
. S16 (S1 ... Sk). In this embodiment, at least EC1 ... EC16 
may be the same size as S1 . . . S16. For example, if the 
symbols S1 ... S16 are one byte each, then the symbols EC1 
... EC16 may also be one byte each. The systematic erasure 
code symbols also include EC17. . . ECn (ECk+1 ... ECn), 
which do not correspond to any of S1 . . . Sk. In one 
embodiment, ECk+1 ... ECn may be parity information. In 
another embodiment, ECk+1 . . . ECn may be other infor 
mation that facilitates recreating the original message. 
0031. The original message 1000 can be recreated from 
any 16 of the systematic erasure code symbols EC1 ... ECn. 
If EC1 . . . ECk are available, then original message 1000 
can be recreated without performing erasure code decoding. 
If any of EC1 . . . ECk are not available, then original 
message 1000 can still be recreated but erasure code decod 
ing would be necessary. If original message 1000 became 
more important, additional erasure code symbols (e.g., 
ECn+1 . . . ECn+y) may be computed using the same 
generator matrix. If original message 1000 became less 
important, then some of erasure code symbols EC1 ... ECn 
may be logically or physically deleted. 
0032. Prior Art FIG. 11 illustrates an original message 
1100 that also has sixteen symbols S1, S2, ... S16 (k=16) 
and that reads “original message'. While the symbol size is 
one character, different (e.g., larger) symbol sizes are likely 
to be employed. Message 1100 is provided to erasure 
encoder 1110. Erasure encoder 1110 uses a generator matrix 
1120 to produce erasure code symbols 1130. In this example, 
erasure encoder 1110 produces non-systematic erasure code 
symbols EC1, EC2, ... ECn (n>k). EC1, EC2, ... ECn do 
not correspond directly to any of S1 ... S16 as was the case 
for systematic erasure codes 1030 (FIG. 10). Instead, EC1, 
EC2, ... ECn are the result of processing symbols S1 . . . 
S16 with the matrix 1120 as controlled by erasure encoder 
1110. 

0033 FIG. 1 illustrates a system 100 that combines data 
deduplication and erasure coding. Data 110 is provided to a 
parser 120. Parser 120 produces chunks C1 . . . Ca. There 
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may be duplicate chunks in C1 . . . Ca. The chunks C1 . . . 
Ca are provided to a deduplicator 130. Deduplicator 130 
may consult and update metadata 132 and an index 134 to 
produce unique chunks U1 . . . Ub. 
0034 Unique chunks U1 ... Ub are provided to erasure 
code generator 140. Erasure code generator 140 produces 
erasure code symbols EC1 . . . ECc based, at least in part, 
on information stored in generator matrix 142. Unique 
chunks U1 . . . Ub are protected by erasure codes and they 
are recoverable from erasure code symbols EC1... ECc. In 
one embodiment, a rateless erasure code approach is 
employed to facilitate a complementary relationship 
between erasure coding and variable length data deduplica 
tion. The complementary relationship facilitates accounting 
for unique chunks having different values to the deduplica 
tion system. Rateless erasure codes, systematic erasure 
codes, systematic rateless erasure codes, or other erasure 
codes may be produced. 
0035 Erasure code symbols EC1... ECc are provided to 
an erasure code distributor 150. Erasure code distributor 150 
may distribute erasure code symbols EC1 . . . ECc to a 
number of different storage devices DS1 . . . DSd. While a 
storage system is illustrated, different embodiments may 
combine data deduplication with erasure coding in a com 
munication system or other system. Data 110 may be, for 
example, a file, an object, a block, a stream, a binary large 
object (BLOB), or other item. 
0036 By performing deduplication before erasure cod 
ing, only unique data is encoded, which reduces the time 
required to perform erasure coding. By performing erasure 
coding after deduplication, unique chunks are protected by 
Some redundancy, which facilitates mitigating the risk of 
removing redundant data. Protecting unique chunks using 
erasure coding may have the technical effect of allowing the 
use of less expensive (e.g., RAID-5, near line storage) 
storage systems instead of more expensive (e.g., RAID-6, 
enterprise storage) storage systems. 
0037. In one embodiment, using a rateless erasure code 
approach facilitates selectively and adaptively varying the 
level of data protection (e.g., erasure code approach) for 
different pieces of unique data. In one embodiment, the 
value of the unique data may be measured by the number of 
references to the unique data. For example, a segment of 
shared data that is present in several files may have more 
references to it and thus may be treated as being more 
valuable than a segment of shared data that is used in fewer 
files and thus has fewer references. While reference counts 
are described, other value measures may be employed (e.g., 
the number of bytes in the original file or unique data). Thus, 
the number (c) of erasure code symbols EC1 . . . ECc that 
are produced, the characteristics (e.g., size, composition) of 
the erasure code symbols EC1 ... ECc that are produced, the 
distribution of the erasure code symbols EC1 . . . ECc that 
are produced, the type of erasure encoding (e.g., rateless, 
systematic), or other erasure code attributes may be manipu 
lated based on an attribute (e.g., importance, size, number) 
of the unique chunks U1 . . . Ub. Since the attribute (e.g., 
importance, size, age) of the unique chunks may vary over 
time, in one embodiment, the number of erasure code 
symbols used to protect a unique chunk may be updated 
upon determining that the attribute has changed. For 
example, as reference counts to a chunk increase, the num 
ber of erasure code symbols used to protect the chunk may 
be increased. 
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0038 Although a storage system is illustrated, example 
apparatus and methods may also be employed with a com 
munication system. For example, metadata that tracks 
unique segments may be maintained at both a sender and a 
receiver. The metadata may be maintained for different 
periods of time to accommodate different history durations. 
Unique segments and the metadata (e.g., recipes) associated 
with recreating larger data objects (e.g., files) from the 
unique segments may be encoded by a transmitter and 
provided to a receiver. In one embodiment, the recipes may 
be encoded and provided, which prompts a receiver to 
identify segments that are desired, which in turn prompts 
encoding and providing the erasure code symbols for the 
desired segments. 
0039 FIG. 2 illustrates another example of system 100 
where unique chunks U1 . . . Ub are protected by erasure 
code symbols EC1 . . . ECc. In this example, the unique 
chunks U1 ... Ubare grouped together by grouper 135 into 
group Gp1 before being provided to erasure code generator 
140. Having larger inputs to erasure code generator 140 may 
facilitate improving certain erasure code properties. For 
example, rateless codes incur less overhead penalty with 
larger block lengths and only have linear time complexity 
operation. 
0040 FIG.3 illustrates a file 300 that has been segmented 
into segments segment1 . . . segment6. The segments seg 
ment1 ... segment6 are provided to a deduplication appa 
ratus or method 310. Deduplication apparatus or method 310 
produces four unique chunks, chunk1 ... chunk4. There may 
be different numbers of reference counts to the different 
unique chunks. The chunks may have different chunk-level 
probabilities {p, p. . . . p. The segments may have the 
same or different user-defined attributes (e.g., value metrics, 
size). 
0041 FIG. 4 illustrates that the segments segment1 . . . 
segment6 may be characterized by different failure prob 
abilities P. P. ... P. After deduplication, the reconstruc 
tion quality profile for a segment may change based, for 
example, on reference counts or other metadata. The refer 
ence counts are illustrated using a bipartite graph in which 
the graph connections 410 establish which segment contains 
which chunk in a storage pool of chunks. The set of 
probabilities P. P. . . . P} may induce different chunk 
level probabilities {p, p. . . . p. In one embodiment, 
chunk-level probabilities may then be constrained to satisfy 
an example set of inequalities: 

I0042. Note that even if P, are the same, the p, can still be 
different. Based on P. P. ... P} and the set of inequalities, 
chunk level recovery can be guaranteed by calculating the 
appropriate set {p, p. . . . p. An erasure coding mecha 
nism can be manipulated to protect these chunks at a level 
appropriate to the chunk-level probability requirements. 
Different erasure coding approaches can be applied to dif 
ferent chunks having different chunk-level probability 
requirements. For example, chunk1 has more connections 
(e.g., 4) than any other chunk in the pool. In an example 
parity based systematic EC approach, more parity may be 
allocated for chunk1 in the erasure coding phase. The 
amount of parity par1 allocated for chunk1 may be larger 
than the amount of parity par2 allocated for chunk2, the 
amount of parity par3 allocated for chunk3, or the amount of 
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parity para allocated for chunk4. The amount of parity 
allocated for a chunk may be proportional to an attribute 
(e.g., number of connections) of the chunk. More generally, 
variable size chunks having varying sensitivity to loss may 
be protected using different numbers of parity symbols in a 
systematic erasure code approach. Even more generally, 
chunks having different attributes may be protected differ 
ently by controlling attributes of an erasure coding 
approach. The attributes of an erasure coding approach (e.g., 
number of parity symbols employed) may vary over time as 
the attribute of the chunk (e.g., number of connections) 
varies over time. 

0043 FIG. 5 illustrates the segments segment1 . . . 
segment6 and the unique chunks chunk1 ... chunk4 of FIG. 
3. In one example that uses rateless codes, example appa 
ratus and methods may keep the rateless codeword length 
above a certain threshold by grouping the unique chunks 
before erasure coding. Recall that rateless codes incur less 
overhead penalty with larger block lengths and only have 
linear time complexity operation. Thus, in one embodiment, 
deduplicated chunks chunk1 . . . chunk4 may be grouped 
together (e.g., concatenated) by grouper 500 to produce a 
single data item to be encoded by erasure encoder 510. In 
one embodiment, erasure encoder 510 may use a rateless 
erasure code process. In one embodiment, when dedupli 
cated data exceeds a threshold size, example apparatus and 
methods may control erasure encoder 510 to use code words 
that are larger than a threshold size to facilitate accounting 
for random failures and thus improve performance of the 
storage network. 
0044) The grouped chunks are encoded by erasure 
encoder 510 to generate a desired number of EC symbols. 
Erasure encoder 510 builds EC symbols EC1 ... ECn from 
the group as processed in light of generator matrix 512. To 
meet desired protection guarantees (e.g., probabilities {p, 
p... pa) the rateless encoder algorithm applied by erasure 
encoder 510 may be controlled. In one embodiment, a graph 
defining the properties of the rateless code would make more 
connections with the higher valued content in the concat 
enation to increase recoverability of that higher valued 
content. In one embodiment, node/edge probability distri 
butions realized as non-zero entries in the generator matrix 
512 representation of an encoding graph may be manipu 
lated to allow error probabilities less than or equal to {p, p. 
... p.a. More generally, attributes of erasure codes produced 
by erasure encoder 510 may be controlled by manipulating 
the generator matrix 512 employed by the erasure encoder 
510. For example, the composition of an erasure code (e.g., 
number of connections between a portion of the message 
and an erasure codeword) can be controlled by the construc 
tion of the generator matrix 512, which can be manipulated 
by attributes (e.g., desired probabilities p1... p4) of unique 
chunks. 

0045. Some portions of the detailed descriptions herein 
are presented in terms of algorithms and symbolic repre 
sentations of operations on data bits within a memory. These 
algorithmic descriptions and representations are used by 
those skilled in the art to convey the substance of their work 
to others. An algorithm, here and generally, is conceived to 
be a sequence of operations that produce a result. The 
operations may include physical manipulations of physical 
quantities. Usually, though not necessarily, the physical 
quantities take the form of electrical or magnetic signals 
capable of being stored, transferred, combined, compared, 
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and otherwise manipulated. The physical manipulations 
create a concrete, tangible, useful, real-world result. 
0046. It has proven convenient at times, principally for 
reasons of common usage, to refer to these signals as bits, 
values, elements, symbols, characters, terms, or numbers. It 
should be borne in mind, however, that these and similar 
terms are to be associated with the appropriate physical 
quantities and are merely convenient labels applied to these 
quantities. Unless specifically stated otherwise, it is to be 
appreciated that throughout the description, terms including 
processing, computing, and determining refer to actions and 
processes of a computer system, logic, processor, or similar 
electronic device that manipulates and transforms data rep 
resented as physical (electronic) quantities. 
0047. Example methods may be better appreciated with 
reference to flow diagrams. For purposes of simplicity of 
explanation, the illustrated methodologies are shown and 
described as a series of blocks. However, it is to be appre 
ciated that the methodologies are not limited by the order of 
the blocks, as some blocks can occur in different orders or 
concurrently with other blocks from that shown and 
described. Moreover, less than all the illustrated blocks may 
be required to implement an example methodology. Blocks 
may be combined or separated into multiple components. 
Furthermore, additional or alternative methodologies can 
employ additional, not illustrated blocks. 
0048 FIG. 6 illustrates a method 600 associated with 
protecting a data deduplication system using erasure code 
redundancy. Method 600 may include, at 610, accessing a 
message produced by a data deduplication system. The 
message may be, for example, a unique chunk, a collection 
(e.g., grouping, concatenation) of unique chunks, or other 
data. The data deduplication system may be, for example, a 
variable-length, block-level system. Other types of dedupli 
cation systems (e.g., fixed length) may also be employed. 
Accessing the message may include receiving the message 
as a parameter in a function call, reading the message from 
a memory, receiving a pointer to the message, or other 
electronic data processing action. 
0049 Method 600 may also include, at 620, identifying a 
property of the message. The property may be, for example, 
the importance of the message to the data deduplication 
system. The importance of the message may be user-as 
signed or may be derived from, for example, the number of 
items that reference the message. The importance of the 
message may vary over time, therefore, in one embodiment, 
portions of method 600 may be repeated or values produced 
by method 600 may be recalculated. 
0050 Method 600 may also include, at 630, generating 
W erasure code symbols for the message. The erasure code 
symbols are generated according to an X/Y erasure code 
policy, where W, X and Y are numbers (e.g., integers). W is 
greater than or equal to X, meaning that at least X erasure 
code symbols will be produced. W is less than or equal to Y. 
meaning that not all Y possible erasure code symbols may be 
produced. Unlike conventional systems where W, X, and Y 
are fixed, in method 600, W, X or Y depend, at least in part, 
on the property (e.g., importance) of the message. In one 
embodiment, W, X, or Y are directly proportional to the 
property. For example, as the importance of the message 
increases, W, X, or Y may also increase. Over time, as the 
importance of the message increases or decreases, W, X, or 
Y may be increased or decreased and additional erasure code 
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symbols may be generated and stored or some original 
erasure code symbols may be deleted. 
0051 Conventional methods typically have fixed erasure 
code symbol sizes. Method 600 is not so limited. In one 
embodiment, the size of an erasure code symbol in the W 
erasure code symbols is a function of the size of the 
message. For example, as the message size increases, the 
size of an erasure code symbol may increase. 
0.052 Once the erasure code symbols have been created, 
they may be stored to add back the redundancy created by 
the erasure code approach to protect the message. Thus, 
method 600 may also include distributing members of the W 
erasure code symbols to Z different data stores according to 
a distribution policy. Z is a number and may be less than or 
equal to Y. For example, in a 10/16 policy, the erasure code 
symbols that are produced may be distributed to a number Z 
of devices, and the number Z may depend, at least in part, 
on the property. 
0053 Method 600 may use different types of erasure 
codes. For example, method 600 may use systematic erasure 
codes, rateless erasure codes, or other types of erasure codes. 
In one embodiment, the systematic erasure codes may be at 
least partially parity based. In this embodiment, the amount 
of parity generated by the X/Y erasure code policy depends, 
at least in part, on the property. For example, for more 
important messages there may be more parity symbols 
produced while for less important messages there may be 
fewer parity symbols produced. 
0054 How X, Y, or Z are chosen may depend on user 
configuration. The user may define rules that relate the 
property to a configurable attribute (e.g., X, Y, Z). In one 
embodiment, a relationship between the property and the 
X/Y erasure code policy is controlled, at least in part, by a 
user-defined rule. For example, a user may mandate that for 
messages with less than three references that a 10/14 policy 
be employed while for messages with three or more refer 
ences that a 10/16 policy be employed. In another embodi 
ment, a relationship between the property and the X/Y 
erasure code policy is controlled, at least in part by an 
automated rule. For example, the automated rule may cause 
Y to be set to a first value if the number of references for the 
message is in the bottom half of all reference counts for all 
messages encountered and may cause Y to be set to a second 
value if the number of references is in the top half of the 
reference counts encountered. 
0055 FIG. 7 illustrates an example method 700. Method 
700 includes, at 710, accessing unique data produced by a 
data deduplication system. Accessing the unique data may 
include reading from a file, reading from a device, receiving 
a network data communication, receiving a pointer to data, 
or other actions. 
0056 Method 700 also includes, at 720, identifying a 
property of the unique data. The property may be, for 
example, an importance of the unique data. The importance 
may be derived from, for example, a reference count to the 
unique data. The property may also be, for example, an 
amount that a user is willing to spend to protect the data. In 
one embodiment, the property may be an intrinsic value of 
the unique data including, for example, the number of 
symbols in the unique data, the symbol size in the unique 
data, the age of the unique data, or other values. 
0057 Method 700 also includes, at 730, manipulating a 
generator matrix representation of an encoding graph asso 
ciated with an erasure encoder. The manipulating may be 
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based on the property. Manipulating the generator matrix 
may include controlling a number of non-Zero elements in 
the generator matrix or controlling the value of one or more 
non-Zero elements in the generator matrix. For example, a 
generator matrix may be an NxK matrix of values that are 
used to produce erasure code symbols from Symbols in an 
input message. N or K may be selected based on the 
property. For systematic erasure codes, the upper portion of 
the matrix may be an identity matrix. 
0058. In one embodiment, the property of the unique data 

is a probability of failure associated with the unique data. In 
this embodiment, the number of non-zero elements as well 
as the number of rows N in the generator matrix may be 
controlled to cause erasure codewords produced by the 
erasure encoder to account for chunk level probability 
requirements associated with the unique data. In one 
embodiment, the value of one or more non-zero elements in 
the generator matrix may be controlled to cause erasure code 
symbols produced by the erasure encoder to account for 
chunk level probability requirements associated with the 
unique data. 
0059. The generator matrix may be manipulated to cause 
erasure code symbols to have different properties. For 
example, manipulating the generator matrix may control, at 
least in part, the size or composition of an erasure codeword 
produced by the erasure encoder. The composition of an 
erasure codeword may in turn control, at least in part, the 
relevance of an erasure codeword to a selected portion of the 
unique data. For example, in a rateless erasure code 
approach, chunks having higher probability requirements 
may have more connections to an erasure codeword while 
chunks having lower probability requirements may have 
fewer connections to an erasure codeword. This enables 
adapting the erasure code according to the recoverability 
requirements of different chunks. 
0060 Method 700 may also include, at 740, generating 
erasure codewords from the unique data based, at least in 
part, on the generator matrix. Generating erasure codewords 
may include mathematically oversampling the unique data 
with values in the generator matrix. 
0061 The following includes definitions of selected 
terms employed herein. The definitions include various 
examples and/or forms of components that fall within the 
Scope of a term and that may be used for implementation. 
The examples are not intended to be limiting. Both singular 
and plural forms of terms may be within the definitions. 
0062 References to “one embodiment”, “an embodi 
ment”, “one example”, “an example, and other similar 
terms, indicate that the embodiment(s) or example(s) so 
described may include a particular feature, structure, char 
acteristic, property, element, or limitation, but that not every 
embodiment or example necessarily includes that particular 
feature, structure, characteristic, property, element or limi 
tation. Furthermore, repeated use of the phrase “in one 
embodiment” does not necessarily refer to the same embodi 
ment, though it may. 
0063 “Computer component', as used herein, refers to a 
computer-related entity (e.g., hardware, firmware, Software 
in execution, combinations thereof). Computer components 
may include, for example, a process running on a processor, 
a processor, an object, an executable, a thread of execution, 
and a computer. A computer component(s) may reside 
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within a process and/or thread. A computer component may 
be localized on one computer and/or may be distributed 
between multiple computers. 
0064 “Computer-readable storage medium', as used 
herein, refers to a non-transitory medium that stores instruc 
tions and/or data. A computer-readable medium may take 
forms, including, but not limited to, non-volatile media, and 
volatile media. Non-volatile media may include, for 
example, optical disks, magnetic disks, and other disks. 
Volatile media may include, for example, semiconductor 
memories, dynamic memory, and other memories. Common 
forms of a computer-readable medium may include, but are 
not limited to, a floppy disk, a flexible disk, a hard disk, a 
magnetic tape, other magnetic medium, an ASIC, a CD, 
other optical medium, a RAM, a ROM, a memory chip or 
card, a memory stick, and other media from which a 
computer, a processor or other electronic device can read. 
0065 “Data store', as used herein, refers to a physical 
and/or logical entity that can store data. A data store may be, 
for example, a database, a table, a file, a data structure (e.g. 
a list, a queue, a heap, a tree) a memory, a register, or other 
repository. In different examples, a data store may reside in 
one logical and/or physical entity and/or may be distributed 
between two or more logical and/or physical entities. 
0.066 “Logic', as used herein, includes but is not limited 
to hardware, firmware, Software in execution on a machine, 
and/or combinations of each to perform a function(s) or an 
action(s), and/or to cause a function or action from another 
logic, method, and/or system. Logic may include, for 
example, a Software controlled microprocessor, a discrete 
logic (e.g., ASIC), an analog circuit, a digital circuit, a 
programmed logic device, or a memory device containing 
instructions. Logic may include one or more gates, combi 
nations of gates, or other circuit components. Where mul 
tiple logical logics are described, it may be possible to 
incorporate the multiple logical logics into one physical 
logic. Similarly, where a single logical logic is described, it 
may be possible to distribute that single logical logic 
between multiple physical logics. 
0067. "Object', as used herein, refers to the usage of 
object in computer Science. From one point of view, an 
object may be considered to be a location in a physical 
memory having a value and referenced by an identifier. 
0068 An "operable connection’, or a connection by 
which entities are “operably connected, is one in which 
signals, physical communications, or logical communica 
tions may be sent or received. An operable connection may 
include a physical interface, an electrical interface, or a data 
interface. An operable connection may include differing 
combinations of interfaces or connections Sufficient to allow 
operable control. For example, two entities can be operably 
connected to communicate signals to each other directly or 
through one or more intermediate entities (e.g., processor, 
operating system, logic, software). Logical or physical com 
munication channels can be used to create an operable 
connection. 
0069. “Signal', as used herein, includes but is not limited 

to, electrical signals, optical signals, analog signals, digital 
signals, data, computer instructions, processor instructions, 
messages, a bit, or a bit stream, that can be received, 
transmitted and/or detected. 

0070 “Software', as used herein, includes but is not 
limited to, one or more executable instructions that cause a 
computer, processor, or other electronic device to perform 
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functions, actions and/or behave in a desired manner. “Soft 
ware' does not refer to stored instructions being claimed as 
stored instructions per se (e.g., a program listing). The 
instructions may be embodied in various forms including 
routines, algorithms, modules, methods, threads, or pro 
grams including separate applications or code from dynami 
cally linked libraries. 
0071. “User', as used herein, includes but is not limited 
to one or more persons, Software, logics, applications, 
computers or other devices, or combinations of these. 
0072 FIG. 8 illustrates an apparatus 800 that includes a 
processor 810, a memory 820, and a set 830 of logics that is 
connected to the processor 810 and memory 820 by an 
interface 840. In one embodiment, the apparatus 800 may be 
a stand-alone device connected to a data communication 
network. In another embodiment, apparatus 800 may be 
integrated into another device (e.g., deduplication apparatus) 
or system (e.g., object storage system). 
0073. The set 830 of logics may include a first logic 832 
that produces a set of n erasure code symbols for a message 
received from a data deduplication system. The message 
may be, for example, a unique chunk, a collection (e.g., 
concatenation) of unique chunks, or other data to be pro 
tected. The message has k symbols. n and k are numbers and 
n>k. Unlike conventional systems, n is a function of a first 
attribute of the message. 
0074 The first attribute may describe, for example, an 
importance of the message to the data deduplication system. 
The importance may be determined by the number of 
references to the message, by a user-defined value assigned 
to the message, by a cost to replace the message, or in other 
ways. The first attribute may also describe, for example, the 
size of the message, an amount to be spent protecting the 
message, an age of the message, or other properties. The 
value of the first attribute may vary over time. 
0075. The apparatus 800 may also include a second logic 
834 that selectively stores members of the n erasure code 
symbols on Z different data storage devices. Z is a function 
of a second attribute of the message. The second attribute 
may also describe, for example, the importance of the 
message or another property of the message (e.g., size, age, 
cost to replace, user-assigned value). The value of the 
second attribute may vary over time. 
0076. Different types of erasure codewords may be pro 
duced. In one embodiment, the type of erasure codewords 
produced is a function of the first attribute. The erasure 
codes may be, for example, systematic erasure codes, rate 
less erasure codes, or other erasure codes. In one embodi 
ment, the size of an erasure code symbol is a function of the 
size of the k symbols. For example, message symbols that 
are sixteen bytes wide may yield erasure code symbols that 
are twenty bytes wide. In different embodiments the size of 
the erasure code symbol may be the same as the size of the 
k symbols or may be different than the size of the k symbols. 
In one embodiment, the composition of an erasure code 
symbol is a function of the first attribute or the second 
attribute. The composition of the erasure code symbol may 
allocate a certain amount of the erasure code symbols to a 
certain portion of the message and may allocate another 
amount of the erasure code symbols to another portion of the 
message. 
0077 FIG. 9 illustrates another embodiment of apparatus 
800. This embodiment includes a third logic 836. The third 
logic 836 may adapt how n is selected as a function of the 
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first attribute. For example, over time, a metric that measures 
overall redundancy in a system may report that apparatus 
800 is producing redundancy above a threshold level. In this 
case, n may be reduced for certain values of the first 
attribute. In another example, a metric that measures overall 
resource usage for storing data may report that apparatus 
800 is only consuming half of the available resources. In this 
case, n may be increased for certain values of the first 
attribute. 
0078. This embodiment also includes a fourth logic 838. 
The fourth logic 838 may adapt how Z is selected as a 
function of the second attribute. For example, over time, a 
failure rate for the Z devices on which erasure code symbols 
are being stored may be tracked. If the failure rate is above 
a certain threshold, then Z may be increased to decrease the 
impact of any single failure. 
(0079. In one embodiment, the first logic 832 or the 
second logic 834 may be controlled to recalculate in or Z for 
a message upon determining that the first attribute or the 
second attribute for the message has changed more than a 
threshold amount. 
0080 While example systems, methods, and other 
embodiments have been illustrated by describing examples, 
and while the examples have been described in considerable 
detail, it is not the intention of the applicants to restrict or in 
any way limit the scope of the appended claims to Such 
detail. It is, of course, not possible to describe every con 
ceivable combination of components or methodologies for 
purposes of describing the systems, methods, and other 
embodiments described herein. Therefore, the invention is 
not limited to the specific details, the representative appa 
ratus, and illustrative examples shown and described. Thus, 
this application is intended to embrace alterations, modifi 
cations, and variations that fall within the scope of the 
appended claims. 
0081. To the extent that the term “includes or “includ 
ing is employed in the detailed description or the claims, it 
is intended to be inclusive in a manner similar to the term 
“comprising as that term is interpreted when employed as 
a transitional word in a claim. 
I0082 To the extent that the term “or” is employed in the 
detailed description or claims (e.g., A or B) it is intended to 
mean “A or B or both’. When the applicants intend to 
indicate “only A or B but not both then the term “only A or 
B but not both will be employed. Thus, use of the term “or 
herein is the inclusive, and not the exclusive use. See, Bryan 
A. Garner, A Dictionary of Modern Legal Usage 624 (2d. 
Ed. 1995). 
What is claimed is: 
1. A non-transitory computer-readable storage medium 

storing computer-executable instructions that when 
executed by a computer control the computer to perform a 
method, the method comprising: 

accessing unique data produced by a data deduplication 
system; 

identifying a property of the unique data, and 
manipulating, based at least in part on the property, a 

generator matrix representation of an encoding graph 
associated with an erasure encoder. 

2. The non-transitory computer-readable storage medium 
of claim 1, where manipulating the generator matrix 
includes controlling a number of elements in the generator 
matrix or controlling the value of one or more elements in 
the generator matrix. 
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3. The non-transitory computer-readable storage medium 
of claim 2, where the number of elements or the value of the 
one or more elements cause erasure code symbols produced 
by the erasure encoder to account for chunk level probability 
requirements associated with the unique data. 

4. The non-transitory computer-readable storage medium 
of claim 1, where the property of the unique data is a 
probability of failure associated with the unique data. 

5. The non-transitory computer-readable storage medium 
of claim 1, where manipulating the generator matrix con 
trols, at least in part, the size or composition of an erasure 
code produced by the erasure encoder. 

6. The non-transitory computer-readable storage medium 
of claim 5, where the composition of an erasure code 
controls, at least in part, a relevance of the erasure code to 
a selected portion of the unique data. 

7. The non-transitory computer-readable storage medium 
of claim 6, where the composition of the erasure code 
includes a number of connections between a portion of the 
unique data and the erasure codeword. 

8. The non-transitory computer-readable storage medium 
of claim 1, the method comprising generating erasure code 
symbols from the unique databased, at least in part, on the 
generator matrix. 

9. The non-transitory computer-readable storage medium 
of claim 1, where the erasure encoder employs a systematic 
erasure code, a rateless erasure code, or a systematic rateless 
erasure code. 

10. The non-transitory computer-readable storage 
medium of claim 2, where a non-Zero entry in the generator 
matrix represents a node/edge probability distribution. 

11. The non-transitory computer-readable storage 
medium of claim 10, the method further comprising: 

generating, using the erasure encoder, a set of W erasure 
code symbols for the unique data, where the erasure 
code symbols are generated according to an X/Y era 
sure code policy, W, X, and Y being integers, W being 
greater than or equal to X, W being less than or equal 
to Y, and where W, X, or Y depend, at least in part, on 
the property of the unique data. 

12. The non-transitory computer-readable storage 
medium of claim 11, where W, X, or Y are directly propor 
tional to the property. 

13. The non-transitory computer-readable storage 
medium of claim 12, the method further comprising selec 
tively storing members of the set of Werasure code symbols 
on Z different data storage devices, where Z is a function of 
a second property of the unique data, where the second 
property includes a size of the unique data, an age of the 
unique data, a cost to replace the unique data, or a user 
assigned value, where the value of the second property may 
vary over time, Z being an integer. 

14. The non-transitory computer-readable 
medium of claim 1, the method further comprising: 

upon determining that the property of the unique data has 
changed, 

Selectively manipulating the generator matrix based, at 
least in part, on the property of the unique data that has 
changed. 

15. The non-transitory computer-readable storage 
medium of claim 1, where the data deduplication system is 
a variable-length, block level system. 

Storage 
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16. An apparatus, comprising: 
a processor; 
a memory; 
a set of logics; and 
an interface that connects the set of logics, the memory, 

and the processor, the set of logics comprising: 
a first logic that manipulates a generator matrix represen 

tation of an encoding graph associated with an erasure 
encoder based on a first attribute of a message received 
from a data deduplication system, where the first attri 
bute describes an importance of the message to the data 
deduplication system, a size of the message, an amount 
to be spent protecting the message, or an age of the 
message; 

a second logic that produces, using the erasure encoder, a 
set of N erasure code symbols for the message, where 
the message has K symbols, where N is a function of 
the first attribute, N and K being integers, N being 
greater than K, where a member of the set of Nerasure 
code symbols is a systematic, rateless erasure code; and 

a third logic that selectively stores members of the set of 
N erasure code symbols on Z different data storage 
devices, where Z is a function of a second attribute of 
the message, Z being an integer. 

17. The apparatus of claim 16, where the first logic 
controls a number of elements in the generator matrix or 
controls the value of one or more elements in the generator 
matrix, and where a non-zero entry in the generator matrix 
represents a node/edge probability distribution. 

18. The apparatus of claim 16 further comprising a fourth 
logic that controls the first logic to selectively manipulate 
the generator matrix upon determining that the first attribute 
has changed. 

19. The apparatus of claim 16 where the second attribute 
includes a size of the message, an age of the message, a cost 
to replace the message, or a user-assigned value, where the 
value of the second attribute may vary over time. 

20. A method for storing de-duplicated data in a data 
storage system comprising: 

accessing a message produced by a data deduplication 
system; 

identifying a property of the message; 
manipulating, based at least in part on the property, a 

generator matrix representation of an encoding graph 
associated with an erasure encoder; 

generating, using the erasure encoder, a set of erasure 
code symbols for the message, where the erasure code 
symbols are generated according to a code rate that 
defines a minimum number of encoded symbols needed 
to recreate the message and a total number of encoded 
symbols that can be produced for the message, where 
the number of erasure code symbols in the set of 
erasure code symbols is greater than the minimum 
number of encoded symbols needed to recreate the 
message, where the number of erasure code symbols in 
the set of erasure code symbols is less than the total 
number of encoded symbols that can be produced for 
the message, and where the number of erasure code 
symbols in the set of erasure code symbols, the mini 
mum number of encoded symbols needed to recreate 
the message, or the total number of encoded symbols 
that can be produced for the message depend, at least 
in part, on the property of the message. 
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