
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0344413 A1

US 2016.0344413A1

Wideman et al. (43) Pub. Date: Nov. 24, 2016

(54) DATA DEDUPLICATION WITH ADAPTIVE (52) U.S. Cl.
ERASURE CODE REDUNDANCY CPC H03M 13/154 (2013.01); G06F II/I076

(2013.01); G06F 3/0619 (2013.01); G06F
(71) Applicant: Quantum Corporation, San Jose, CA 3/064 (2013.01); G06F 3/0641 (2013.01);

(US) G06F 3/0673 (2013.01); H03M 13/3707
(2013.01); H03M 13/373 (2013.01)

(72) Inventors: Roderick B. Wideman, Shakopee, MN
(US); Suayb Sefik Arslan, Irvine, CA
(US); Jaewook Lee, Aliso VIejo, CA (57) ABSTRACT
(US); Turguy Goker, Irvine, CA (US)

Example apparatus and methods combine erasure coding
(21) Appl. No.: 15/227.285 with data deduplication to simultaneously reduce the overall

redundancy in data while increasing the redundancy of
(22) Filed: Aug. 3, 2016 unique data. In one embodiment, an efficient representation

O O of a data set is produced by deduplication. The efficient
Related U.S. Application Data representation reduces duplicate data in the data set. Redun

(63) Continuation of application No. 14/326,774, filed on dancy is then added back into the data set using erasure
Jul. 9, 2014. coding. The redundancy that is added back in adds protec

tion to the unique data associated with the efficient repre
Publication Classification sentation. How much redundancy is added back in and what

type of redundancy is added back in may be controlled based
(51) Int. Cl. on an attribute (e.g., value, reference count, symbol size,

H03M, 3/5 (2006.01) number of symbols) of the unique data. Decisions concern
G06F 3/06 (2006.01) ing how much and what type of redundancy to add back in
H03M I3/37 (2006.01) may be adapted over time based, for example, on observa
G06F II/I) (2006.01) tions of the efficiency of the overall system.

O

Erasure Casic Circraft AO

8 8 psa

Patent Application Publication Nov. 24, 2016 Sheet 1 of 11 US 2016/0344413 A1

Ya ---
Data ()

8 8 8 Ub

-------- -

Erasure Code Distributor 50

Figure

Patent Application Publication Nov. 24, 2016 Sheet 2 of 11 US 2016/0344413 A1

Figure 2

Patent Application Publication Nov. 24, 2016 Sheet 3 of 11 US 2016/0344413 A1

-
f
i Segment H

r Segment2

-
File
300
- X

Segment4.

Segment 5

Segmentó
-

Figure 3

Patent Application Publication Nov. 24, 2016 Sheet 4 of 11 US 2016/0344413 A1

segment kn

a o Sri ksar a ruxxx-xxxx

Segment? N 7 Chunk par
X) Chunk2 par2

s

Iseement - Chunk3 par
&7 wer-warratrixxxxxxxxxxxxxx

N2 s Segment5 Chunk4 part

Figure 4

Patent Application Publication Nov. 24, 2016 Sheet 5 of 11 US 2016/0344413 A1

Segment4 Chunk3 -

Segments Chuik4

6 Segment.6

chunk chunk chunks
|

! Ec EC EC3 2 ECk EC+ ECk--2 EC -
- 4.

{3x2 lab {}xeeff Oxaabi ... Oxfelfe (Xelaa {}X OK 234

F. S. 5

Patent Application Publication Nov. 24, 2016 Sheet 6 of 11 US 2016/0344413 A1

-x rw 1. Generate Erasure Codes -

D

Figure 6

Patent Application Publication Nov. 24, 2016 Sheet 7 of 11 US 2016/0344413 A1

Patent Application Publication Nov. 24, 2016 Sheet 8 of 11 US 2016/0344413 A1

Processor
8 ()

interface
840

Figure 8

Patent Application Publication Nov. 24, 2016 Sheet 9 of 11 US 2016/0344413 A1

Apparatus
800

Processor Memory
80

First logic
8.32

Second Logic
834

Figure 9

Patent Application Publication Nov. 24, 2016 Sheet 10 of 11 US 2016/0344413 A1

N
S S2 S3 S4 S5, S6, S7 S8 S9 S () S S 2 S3 S4 S15 S6
o r i g i in a S S a g k: 6

-
Erasure Encoder

{} {}
33 ()

EC EC2 EC3 EC ECk -- ECk--2 ... ECn
S S2 S3 c. c. S is PA PA2 ... PAn-in
C r i C Oxa Oxef ... }x22

k= 6
n > k
n = k + m

Prior Art Figure 10

Patent Application Publication Nov. 24, 2016 Sheet 11 of 11 US 2016/0344413 A1

S S2 S3 S4 S5, S6, S7 SS S9 SO S S 2 S3 S 4 S S S 6
o i g i in a m e S S a g e k=16

Erasure Encoder

EC EC EC3 w ECk Ck-- FCK.--2 ... FC
{}x2 at Oxecff Oxaabb ... {}xfief Oxe aa {}x . . . UX 234

kiri 6
n > k
n = k -i- m

Prior Art Figure li

US 2016/0344413 A1

DATA DEDUPLICATION WITH ADAPTIVE
ERASURE CODE REDUNDANCY

REFERENCE TO RELATED APPLICATION

0001. This application is a Continuation of U.S. applica
tion Ser. No. 14/326,774 filed on Jul. 9, 2014, the contents
of which is hereby incorporated by reference in its entirety.

BACKGROUND

0002 Data deduplication removes redundancy while era
Sure coding adds redundancy. Data deduplication represents
an original set of symbols in a smaller set of code symbols
while erasure coding represents an original set of symbols in
a larger set of code symbols. Thus, conventionally there has
been no reason to use deduplication and erasure coding
together.
0003 Data that is stored or transmitted may be protected
against storage media failures or other loss by storing extra
copies or by storing additional redundant information. One
type of redundancy-based protection involves using erasure
coding. Erasure coding creates additional redundant data to
produce code symbols that protect against erasures where
data portions that are lost can be reconstructed from the
Surviving data. Adding redundancy introduces overhead that
consumes more storage capacity or transmission bandwidth,
which in turn adds cost. The overhead added by erasure code
processing tends to increase as the protection level provided
increases.
0004 While erasure codes increase data storage require
ments by introducing additional redundancy, data dedupli
cation seeks to reduce data storage requirements by remov
ing redundancy. Data deduplication seeks to remove
redundancy within a data set by representing an original set
of symbols in a smaller set of code symbols. By representing
data with a reduced number of code symbols, data storage
space and communication capacity use are improved, which
may in turn reduce cost.
0005. The lack of redundancy in deduplicated data causes
Some unique data identified during deduplication to be less
protected than others with respect to storage media failure or
other loss. Over time, Some unique data may become more
or less valuable than other unique data. For example, one
piece of unique data may be used to recreate hundreds of
documents while another piece of unique data may only be
used to recreate a single document. While loss of the unique
data that is used for one document would be bad, the loss of
the unique data that is used in the hundreds of documents
may be worse. In some cases, the loss of the unique data
used to recreate even a single document may be catastrophic
when the data concerns, for example, user authentication or
system security.
0006 To enhance data protection, different approaches
for storing redundant copies of items have been employed.
Erasure codes are one such approach. An erasure code is a
forward error correction (FEC) code for erasure channels.
The FEC facilitates transforming a message of k symbols
into a longer message with n symbols so that the original
message can be recovered from a Subset of the n symbols,
k and n being integers, n>k. The symbols may be individual
items (e.g., characters, bytes) or groups of items. The
original message may be, for example, a file. The fraction
r=k/n is called the code rate, and the fraction k'/k, where k"
denotes the number of symbols required for recovery, is

Nov. 24, 2016

called the reception efficiency or coding overhead. Optimal
erasure codes have the property that any k out of the n code
word symbols are sufficient to recover the original message
(e.g., coding overhead of unity). Optimal codes may require
extensive memory usage, CPU time, or other resources
when n is large. Erasure coding approaches may seek to
create the greatest level of protection with the least amount
of overhead via optimal or near optimal coding. Different
types of erasure codes have different efficiencies and
tradeoffs in terms of complexity, resources, and perfor
aCC.

0007 Erasure codes are described in coding theory. Cod
ing theory is the study of the properties of codes and their
fitness for a certain purpose (e.g., backing up files). Codes
may be used for applications including, for example, data
compression, cryptography, error-correction, and network
coding. Coding theory involves data compression, which
may also be referred to as source coding, and error correc
tion, which may also be referred to as channel coding.
Fountain codes are one type of erasure codes.
0008 Fountain codes have the property that a potentially
limitless sequence of code symbols may be generated from
a given set of Source symbols in a manner that Supports
ideally recovering the original source symbols from any
Subset of the code symbols having a size equal to or larger
than the number of Source symbols. A fountain code may be
optimal if the original ksource symbols can be recovered
from any k encoding symbols, k being an integer. Fountain
codes may have efficient encoding and decoding algorithms
that Support recovering the original ksource symbols from
any k" of the encoding symbols with high probability, where
k' is just slightly larger than k (e.g., an overhead close to
unity). A rateless erasure code is distinguished from an
erasure code that exhibits a fixed code rate.
0009 Storage systems may employ rateless erasure code
technology (e.g., fountain codes) to provide a flexible level
of data redundancy. The appropriate or even optimal level of
data redundancy produced using a rateless erasure code
system may depend, for example, on the number and type of
devices available to the storage system. The actual level of
redundancy achieved using a rateless erasure code (EC)
system may depend, for example, on the difference between
the number of readable redundancy blocks (e.g., erasure
code symbols) written by the system and the number of
redundancy blocks needed to reconstruct the original data.
For example, if twenty redundancy blocks are written and
only eleven redundancy blocks are needed to reconstruct the
original data that was protected by generating and writing
the redundancy blocks, then the original data may be recon
structed even if nine of the redundancy blocks are damaged
or otherwise unavailable.

0010. An EC system may be described using an A/B
notation, where B describes the total number of encoded
symbols that can be produced for an input message and A
describes the minimum number of the B encoded symbols
that are required to recreate the message for which the
encoded symbols were produced. By way of illustration, in
a 10 of 16 configuration, or EC 10/16, sixteen encoded
symbols could be produced. The 16 encoded symbols could
be spread across a number of drives, nodes, or geographic
locations. The 16 encoded symbols could even be spread
across 16 different locations. In the EC 10/16 example, the
original message could be reconstructed from 10 verified
encoded symbols.

US 2016/0344413 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0.011 The accompanying drawings, which are incorpo
rated in and constitute a part of the specification, illustrate
various example systems, methods, and other example
embodiments of various aspects of the invention. It will be
appreciated that the illustrated element boundaries (e.g.,
boxes, groups of boxes, or other shapes) in the figures
represent one example of the boundaries. One of ordinary
skill in the art will appreciate that in some examples one
element may be designed as multiple elements or that
multiple elements may be designed as one element. In some
examples, an element shown as an internal component of
another element may be implemented as an external com
ponent and vice versa. Furthermore, elements may not be
drawn to scale.
0012 FIG. 1 illustrates an example of protecting unique
chunks produced by a data deduplication system using
erasure code redundancy.
0013 FIG. 2 illustrates another example of protecting
unique chunks produced by a data deduplication system
using erasure code redundancy, where unique chunks are
grouped together before being provided to an erasure coding
system.
0014 FIG. 3 illustrates a file segmented into parts and
deduplicated before erasure coding.
0015 FIG. 4 illustrates a file segmented into parts that
have been deduplicated and had erasure correction parities
added.
0016 FIG. 5 illustrates grouping chunks before erasure
coding.
0017 FIG. 6 illustrates an example method associated
with protecting a data deduplication system using erasure
code redundancy.
0018 FIG. 7 illustrates an example method associated
with manipulating a generator matrix used by an erasure
encoder to protect data produced by a data deduplication
system.
0019 FIG. 8 illustrates an example apparatus for protect
ing a data deduplication system using erasure code redun
dancy.
0020 FIG. 9 illustrates an example apparatus for protect
ing a data deduplication system using erasure code redun
dancy.
0021 Prior Art FIG. 10 illustrates an example set of
systematic erasure codes.
0022. Prior Art FIG. 11 illustrates an example set of
non-systematic erasure codes.

DETAILED DESCRIPTION

0023 Example apparatus and methods combine data
deduplication with erasure coding to reduce the amount of
data that is erasure coded while adding protection for unique
data produced by data deduplication. Since not all unique
data may have the same value—whether real or perceived—
to a deduplication system, example apparatus and methods
account for varying levels of importance of unique data.
Varying levels of importance are accounted for by dynami
cally adapting erasure code generation approaches.
0024 Example apparatus and methods may identify
redundancy policies to be employed based on attributes of
unique data produced by a deduplication system. For
example, an erasure code approach may provide greater
protection to unique data that has a higher value. The value

Nov. 24, 2016

may be determined from some attribute of the unique data
(e.g., reference counts). The redundancy policies may iden
tify, for example, M/N policies that control the number of
erasure code symbols generated and the distribution of those
symbols. In one embodiment, M and N may be manipulated
based on an attribute of the unique data. In one embodiment,
the amount of additional information (e.g., parity) that is
added to create an encoded codeword symbol may be a
function of an attribute of the unique data. In one embodi
ment, the size of an erasure code symbol (e.g., number of
bits, number of bytes) may be a function of an attribute of
the unique data. In one embodiment, while N erasure code
symbols may be generated, example apparatus and methods
may control how many of the N erasure code symbols are
stored based on an attribute of the unique data. The erasure
code symbols may be stored on a single device or may be
distributed between two or more devices. The number of
devices to which erasure code symbols are distributed may
also be a function of an attribute of the unique data.
0025. Example apparatus and methods may vary the
erasure code approach for certain data over time. For
example, as certain data becomes more valuable, the number
of erasure code symbols used to protect that data may be
increased. Conversely, as other data becomes less valuable,
the number of erasure code symbols used to protect that data
may be decreased. Conventional systems, if it were even
possible to try to modify them to try be adaptive over time,
would be required to compute entirely new sets of erasure
codes. Unlike conventional systems, new erasure code sym
bols may be computed and added to existing codes without
computing entirely new sets of erasure codes. Additionally,
unlike conventional systems, some erasure code symbols
may be deleted, either physically or logically, without hav
ing to compute new erasure code symbols.
0026 Rateless erasure codes may be well-suited for this
application of adaptively varying erasure code protection
over time based on a property (e.g., value, reference counts)
of the data being protected. When rateless erasure codes are
employed, additional rateless erasure code symbols (e.g.,
parities) may be generated and stored as data value increases
(e.g., number of references goes up). The additional rateless
erasure code symbols may be generated using the same
generator matrix that was used to generate the original
rateless erasure codes. The original rateless erasure codes do
not need to be deleted or overwritten.

0027. As data value decreases (e.g., number of references
goes down), some original rateless erasure code symbols
may be deleted, either logically or physically. An erasure
code symbol may be logically deleted by, for example,
erasing a pointer value in memory. Logically erasing an
erasure code symbol rather than physically erasing the
erasure code symbol may reduce stress on data storage
devices (e.g., disk drives) that are used to store erasure
codes.

0028. Different types of erasure coding and data dedu
plication may combine in different ways. Systematic erasure
codes do not incur a decode penalty when reading back data
that has not encountered any erasures (e.g., no data has been
corrupted or lost) since some of the encoded symbols are
actually just the plaintext symbols from the original mes
sage. When no data has been lost, decoding can be avoided,
which helps performance. Rateless erasure codes handle
large data objects well, are flexible for adapting to different
levels of protection, and are reliable against random, dis

US 2016/0344413 A1

tributed errors. Thus, example apparatus and methods may
employ systematic erasure codes, rateless erasure codes, or
even systematic rateless erasure codes. Other forms of
erasure codes may also be employed.
0029. Variable-length, block-level data deduplication
exhibits Superior performance in some deduplication appli
cations. For example, variable-length, block-level data
deduplication quickly adapts to a data stream and synchro
nizes to data segments that have occurred elsewhere regard
less of whether data has been inserted or removed. Variable
length, block-level data deduplication can be performed
in-line where all data does not need to be seen first or may
be performed in post-processing. While variable-length,
block-level deduplication is described, other types of dedu
plication may be combined with various forms of erasure
coding.
0030 Prior Art FIG. 10 illustrates an original message
1000 that has sixteen symbols S1, S2, ... S16 (k=16) and
that reads “original message'. While the symbol size is one
character, different symbol sizes may be employed. Message
1000 is provided to erasure encoder 1010. Erasure encoder
1010 uses a generator matrix 1020 to produce erasure code
symbols 1030. In this example, erasure encoder 1010 pro
duces systematic erasure code symbols EC1, EC2, ... ECn
(n-k). The systematic erasure code symbols include EC1 ..
. EC16 (EC1 ... ECk), which correspond directly to S1 . .
. S16 (S1 ... Sk). In this embodiment, at least EC1 ... EC16
may be the same size as S1 . . . S16. For example, if the
symbols S1 ... S16 are one byte each, then the symbols EC1
... EC16 may also be one byte each. The systematic erasure
code symbols also include EC17. . . ECn (ECk+1 ... ECn),
which do not correspond to any of S1 . . . Sk. In one
embodiment, ECk+1 ... ECn may be parity information. In
another embodiment, ECk+1 . . . ECn may be other infor
mation that facilitates recreating the original message.
0031. The original message 1000 can be recreated from
any 16 of the systematic erasure code symbols EC1 ... ECn.
If EC1 . . . ECk are available, then original message 1000
can be recreated without performing erasure code decoding.
If any of EC1 . . . ECk are not available, then original
message 1000 can still be recreated but erasure code decod
ing would be necessary. If original message 1000 became
more important, additional erasure code symbols (e.g.,
ECn+1 . . . ECn+y) may be computed using the same
generator matrix. If original message 1000 became less
important, then some of erasure code symbols EC1 ... ECn
may be logically or physically deleted.
0032. Prior Art FIG. 11 illustrates an original message
1100 that also has sixteen symbols S1, S2, ... S16 (k=16)
and that reads “original message'. While the symbol size is
one character, different (e.g., larger) symbol sizes are likely
to be employed. Message 1100 is provided to erasure
encoder 1110. Erasure encoder 1110 uses a generator matrix
1120 to produce erasure code symbols 1130. In this example,
erasure encoder 1110 produces non-systematic erasure code
symbols EC1, EC2, ... ECn (n>k). EC1, EC2, ... ECn do
not correspond directly to any of S1 ... S16 as was the case
for systematic erasure codes 1030 (FIG. 10). Instead, EC1,
EC2, ... ECn are the result of processing symbols S1 . . .
S16 with the matrix 1120 as controlled by erasure encoder
1110.

0033 FIG. 1 illustrates a system 100 that combines data
deduplication and erasure coding. Data 110 is provided to a
parser 120. Parser 120 produces chunks C1 . . . Ca. There

Nov. 24, 2016

may be duplicate chunks in C1 . . . Ca. The chunks C1 . . .
Ca are provided to a deduplicator 130. Deduplicator 130
may consult and update metadata 132 and an index 134 to
produce unique chunks U1 . . . Ub.
0034 Unique chunks U1 ... Ub are provided to erasure
code generator 140. Erasure code generator 140 produces
erasure code symbols EC1 . . . ECc based, at least in part,
on information stored in generator matrix 142. Unique
chunks U1 . . . Ub are protected by erasure codes and they
are recoverable from erasure code symbols EC1... ECc. In
one embodiment, a rateless erasure code approach is
employed to facilitate a complementary relationship
between erasure coding and variable length data deduplica
tion. The complementary relationship facilitates accounting
for unique chunks having different values to the deduplica
tion system. Rateless erasure codes, systematic erasure
codes, systematic rateless erasure codes, or other erasure
codes may be produced.
0035 Erasure code symbols EC1... ECc are provided to
an erasure code distributor 150. Erasure code distributor 150
may distribute erasure code symbols EC1 . . . ECc to a
number of different storage devices DS1 . . . DSd. While a
storage system is illustrated, different embodiments may
combine data deduplication with erasure coding in a com
munication system or other system. Data 110 may be, for
example, a file, an object, a block, a stream, a binary large
object (BLOB), or other item.
0036 By performing deduplication before erasure cod
ing, only unique data is encoded, which reduces the time
required to perform erasure coding. By performing erasure
coding after deduplication, unique chunks are protected by
Some redundancy, which facilitates mitigating the risk of
removing redundant data. Protecting unique chunks using
erasure coding may have the technical effect of allowing the
use of less expensive (e.g., RAID-5, near line storage)
storage systems instead of more expensive (e.g., RAID-6,
enterprise storage) storage systems.
0037. In one embodiment, using a rateless erasure code
approach facilitates selectively and adaptively varying the
level of data protection (e.g., erasure code approach) for
different pieces of unique data. In one embodiment, the
value of the unique data may be measured by the number of
references to the unique data. For example, a segment of
shared data that is present in several files may have more
references to it and thus may be treated as being more
valuable than a segment of shared data that is used in fewer
files and thus has fewer references. While reference counts
are described, other value measures may be employed (e.g.,
the number of bytes in the original file or unique data). Thus,
the number (c) of erasure code symbols EC1 . . . ECc that
are produced, the characteristics (e.g., size, composition) of
the erasure code symbols EC1 ... ECc that are produced, the
distribution of the erasure code symbols EC1 . . . ECc that
are produced, the type of erasure encoding (e.g., rateless,
systematic), or other erasure code attributes may be manipu
lated based on an attribute (e.g., importance, size, number)
of the unique chunks U1 . . . Ub. Since the attribute (e.g.,
importance, size, age) of the unique chunks may vary over
time, in one embodiment, the number of erasure code
symbols used to protect a unique chunk may be updated
upon determining that the attribute has changed. For
example, as reference counts to a chunk increase, the num
ber of erasure code symbols used to protect the chunk may
be increased.

US 2016/0344413 A1

0038 Although a storage system is illustrated, example
apparatus and methods may also be employed with a com
munication system. For example, metadata that tracks
unique segments may be maintained at both a sender and a
receiver. The metadata may be maintained for different
periods of time to accommodate different history durations.
Unique segments and the metadata (e.g., recipes) associated
with recreating larger data objects (e.g., files) from the
unique segments may be encoded by a transmitter and
provided to a receiver. In one embodiment, the recipes may
be encoded and provided, which prompts a receiver to
identify segments that are desired, which in turn prompts
encoding and providing the erasure code symbols for the
desired segments.
0039 FIG. 2 illustrates another example of system 100
where unique chunks U1 . . . Ub are protected by erasure
code symbols EC1 . . . ECc. In this example, the unique
chunks U1 ... Ubare grouped together by grouper 135 into
group Gp1 before being provided to erasure code generator
140. Having larger inputs to erasure code generator 140 may
facilitate improving certain erasure code properties. For
example, rateless codes incur less overhead penalty with
larger block lengths and only have linear time complexity
operation.
0040 FIG.3 illustrates a file 300 that has been segmented
into segments segment1 . . . segment6. The segments seg
ment1 ... segment6 are provided to a deduplication appa
ratus or method 310. Deduplication apparatus or method 310
produces four unique chunks, chunk1 ... chunk4. There may
be different numbers of reference counts to the different
unique chunks. The chunks may have different chunk-level
probabilities {p, p. . . . p. The segments may have the
same or different user-defined attributes (e.g., value metrics,
size).
0041 FIG. 4 illustrates that the segments segment1 . . .
segment6 may be characterized by different failure prob
abilities P. P. ... P. After deduplication, the reconstruc
tion quality profile for a segment may change based, for
example, on reference counts or other metadata. The refer
ence counts are illustrated using a bipartite graph in which
the graph connections 410 establish which segment contains
which chunk in a storage pool of chunks. The set of
probabilities P. P. . . . P} may induce different chunk
level probabilities {p, p. . . . p. In one embodiment,
chunk-level probabilities may then be constrained to satisfy
an example set of inequalities:

I0042. Note that even if P, are the same, the p, can still be
different. Based on P. P. ... P} and the set of inequalities,
chunk level recovery can be guaranteed by calculating the
appropriate set {p, p. . . . p. An erasure coding mecha
nism can be manipulated to protect these chunks at a level
appropriate to the chunk-level probability requirements.
Different erasure coding approaches can be applied to dif
ferent chunks having different chunk-level probability
requirements. For example, chunk1 has more connections
(e.g., 4) than any other chunk in the pool. In an example
parity based systematic EC approach, more parity may be
allocated for chunk1 in the erasure coding phase. The
amount of parity par1 allocated for chunk1 may be larger
than the amount of parity par2 allocated for chunk2, the
amount of parity par3 allocated for chunk3, or the amount of

Nov. 24, 2016

parity para allocated for chunk4. The amount of parity
allocated for a chunk may be proportional to an attribute
(e.g., number of connections) of the chunk. More generally,
variable size chunks having varying sensitivity to loss may
be protected using different numbers of parity symbols in a
systematic erasure code approach. Even more generally,
chunks having different attributes may be protected differ
ently by controlling attributes of an erasure coding
approach. The attributes of an erasure coding approach (e.g.,
number of parity symbols employed) may vary over time as
the attribute of the chunk (e.g., number of connections)
varies over time.

0043 FIG. 5 illustrates the segments segment1 . . .
segment6 and the unique chunks chunk1 ... chunk4 of FIG.
3. In one example that uses rateless codes, example appa
ratus and methods may keep the rateless codeword length
above a certain threshold by grouping the unique chunks
before erasure coding. Recall that rateless codes incur less
overhead penalty with larger block lengths and only have
linear time complexity operation. Thus, in one embodiment,
deduplicated chunks chunk1 . . . chunk4 may be grouped
together (e.g., concatenated) by grouper 500 to produce a
single data item to be encoded by erasure encoder 510. In
one embodiment, erasure encoder 510 may use a rateless
erasure code process. In one embodiment, when dedupli
cated data exceeds a threshold size, example apparatus and
methods may control erasure encoder 510 to use code words
that are larger than a threshold size to facilitate accounting
for random failures and thus improve performance of the
storage network.
0044) The grouped chunks are encoded by erasure
encoder 510 to generate a desired number of EC symbols.
Erasure encoder 510 builds EC symbols EC1 ... ECn from
the group as processed in light of generator matrix 512. To
meet desired protection guarantees (e.g., probabilities {p,
p... pa) the rateless encoder algorithm applied by erasure
encoder 510 may be controlled. In one embodiment, a graph
defining the properties of the rateless code would make more
connections with the higher valued content in the concat
enation to increase recoverability of that higher valued
content. In one embodiment, node/edge probability distri
butions realized as non-zero entries in the generator matrix
512 representation of an encoding graph may be manipu
lated to allow error probabilities less than or equal to {p, p.
... p.a. More generally, attributes of erasure codes produced
by erasure encoder 510 may be controlled by manipulating
the generator matrix 512 employed by the erasure encoder
510. For example, the composition of an erasure code (e.g.,
number of connections between a portion of the message
and an erasure codeword) can be controlled by the construc
tion of the generator matrix 512, which can be manipulated
by attributes (e.g., desired probabilities p1... p4) of unique
chunks.

0045. Some portions of the detailed descriptions herein
are presented in terms of algorithms and symbolic repre
sentations of operations on data bits within a memory. These
algorithmic descriptions and representations are used by
those skilled in the art to convey the substance of their work
to others. An algorithm, here and generally, is conceived to
be a sequence of operations that produce a result. The
operations may include physical manipulations of physical
quantities. Usually, though not necessarily, the physical
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,

US 2016/0344413 A1

and otherwise manipulated. The physical manipulations
create a concrete, tangible, useful, real-world result.
0046. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, or numbers. It
should be borne in mind, however, that these and similar
terms are to be associated with the appropriate physical
quantities and are merely convenient labels applied to these
quantities. Unless specifically stated otherwise, it is to be
appreciated that throughout the description, terms including
processing, computing, and determining refer to actions and
processes of a computer system, logic, processor, or similar
electronic device that manipulates and transforms data rep
resented as physical (electronic) quantities.
0047. Example methods may be better appreciated with
reference to flow diagrams. For purposes of simplicity of
explanation, the illustrated methodologies are shown and
described as a series of blocks. However, it is to be appre
ciated that the methodologies are not limited by the order of
the blocks, as some blocks can occur in different orders or
concurrently with other blocks from that shown and
described. Moreover, less than all the illustrated blocks may
be required to implement an example methodology. Blocks
may be combined or separated into multiple components.
Furthermore, additional or alternative methodologies can
employ additional, not illustrated blocks.
0048 FIG. 6 illustrates a method 600 associated with
protecting a data deduplication system using erasure code
redundancy. Method 600 may include, at 610, accessing a
message produced by a data deduplication system. The
message may be, for example, a unique chunk, a collection
(e.g., grouping, concatenation) of unique chunks, or other
data. The data deduplication system may be, for example, a
variable-length, block-level system. Other types of dedupli
cation systems (e.g., fixed length) may also be employed.
Accessing the message may include receiving the message
as a parameter in a function call, reading the message from
a memory, receiving a pointer to the message, or other
electronic data processing action.
0049 Method 600 may also include, at 620, identifying a
property of the message. The property may be, for example,
the importance of the message to the data deduplication
system. The importance of the message may be user-as
signed or may be derived from, for example, the number of
items that reference the message. The importance of the
message may vary over time, therefore, in one embodiment,
portions of method 600 may be repeated or values produced
by method 600 may be recalculated.
0050 Method 600 may also include, at 630, generating
W erasure code symbols for the message. The erasure code
symbols are generated according to an X/Y erasure code
policy, where W, X and Y are numbers (e.g., integers). W is
greater than or equal to X, meaning that at least X erasure
code symbols will be produced. W is less than or equal to Y.
meaning that not all Y possible erasure code symbols may be
produced. Unlike conventional systems where W, X, and Y
are fixed, in method 600, W, X or Y depend, at least in part,
on the property (e.g., importance) of the message. In one
embodiment, W, X, or Y are directly proportional to the
property. For example, as the importance of the message
increases, W, X, or Y may also increase. Over time, as the
importance of the message increases or decreases, W, X, or
Y may be increased or decreased and additional erasure code

Nov. 24, 2016

symbols may be generated and stored or some original
erasure code symbols may be deleted.
0051 Conventional methods typically have fixed erasure
code symbol sizes. Method 600 is not so limited. In one
embodiment, the size of an erasure code symbol in the W
erasure code symbols is a function of the size of the
message. For example, as the message size increases, the
size of an erasure code symbol may increase.
0.052 Once the erasure code symbols have been created,
they may be stored to add back the redundancy created by
the erasure code approach to protect the message. Thus,
method 600 may also include distributing members of the W
erasure code symbols to Z different data stores according to
a distribution policy. Z is a number and may be less than or
equal to Y. For example, in a 10/16 policy, the erasure code
symbols that are produced may be distributed to a number Z
of devices, and the number Z may depend, at least in part,
on the property.
0053 Method 600 may use different types of erasure
codes. For example, method 600 may use systematic erasure
codes, rateless erasure codes, or other types of erasure codes.
In one embodiment, the systematic erasure codes may be at
least partially parity based. In this embodiment, the amount
of parity generated by the X/Y erasure code policy depends,
at least in part, on the property. For example, for more
important messages there may be more parity symbols
produced while for less important messages there may be
fewer parity symbols produced.
0054 How X, Y, or Z are chosen may depend on user
configuration. The user may define rules that relate the
property to a configurable attribute (e.g., X, Y, Z). In one
embodiment, a relationship between the property and the
X/Y erasure code policy is controlled, at least in part, by a
user-defined rule. For example, a user may mandate that for
messages with less than three references that a 10/14 policy
be employed while for messages with three or more refer
ences that a 10/16 policy be employed. In another embodi
ment, a relationship between the property and the X/Y
erasure code policy is controlled, at least in part by an
automated rule. For example, the automated rule may cause
Y to be set to a first value if the number of references for the
message is in the bottom half of all reference counts for all
messages encountered and may cause Y to be set to a second
value if the number of references is in the top half of the
reference counts encountered.
0055 FIG. 7 illustrates an example method 700. Method
700 includes, at 710, accessing unique data produced by a
data deduplication system. Accessing the unique data may
include reading from a file, reading from a device, receiving
a network data communication, receiving a pointer to data,
or other actions.
0056 Method 700 also includes, at 720, identifying a
property of the unique data. The property may be, for
example, an importance of the unique data. The importance
may be derived from, for example, a reference count to the
unique data. The property may also be, for example, an
amount that a user is willing to spend to protect the data. In
one embodiment, the property may be an intrinsic value of
the unique data including, for example, the number of
symbols in the unique data, the symbol size in the unique
data, the age of the unique data, or other values.
0057 Method 700 also includes, at 730, manipulating a
generator matrix representation of an encoding graph asso
ciated with an erasure encoder. The manipulating may be

US 2016/0344413 A1

based on the property. Manipulating the generator matrix
may include controlling a number of non-Zero elements in
the generator matrix or controlling the value of one or more
non-Zero elements in the generator matrix. For example, a
generator matrix may be an NxK matrix of values that are
used to produce erasure code symbols from Symbols in an
input message. N or K may be selected based on the
property. For systematic erasure codes, the upper portion of
the matrix may be an identity matrix.
0058. In one embodiment, the property of the unique data

is a probability of failure associated with the unique data. In
this embodiment, the number of non-zero elements as well
as the number of rows N in the generator matrix may be
controlled to cause erasure codewords produced by the
erasure encoder to account for chunk level probability
requirements associated with the unique data. In one
embodiment, the value of one or more non-zero elements in
the generator matrix may be controlled to cause erasure code
symbols produced by the erasure encoder to account for
chunk level probability requirements associated with the
unique data.
0059. The generator matrix may be manipulated to cause
erasure code symbols to have different properties. For
example, manipulating the generator matrix may control, at
least in part, the size or composition of an erasure codeword
produced by the erasure encoder. The composition of an
erasure codeword may in turn control, at least in part, the
relevance of an erasure codeword to a selected portion of the
unique data. For example, in a rateless erasure code
approach, chunks having higher probability requirements
may have more connections to an erasure codeword while
chunks having lower probability requirements may have
fewer connections to an erasure codeword. This enables
adapting the erasure code according to the recoverability
requirements of different chunks.
0060 Method 700 may also include, at 740, generating
erasure codewords from the unique data based, at least in
part, on the generator matrix. Generating erasure codewords
may include mathematically oversampling the unique data
with values in the generator matrix.
0061 The following includes definitions of selected
terms employed herein. The definitions include various
examples and/or forms of components that fall within the
Scope of a term and that may be used for implementation.
The examples are not intended to be limiting. Both singular
and plural forms of terms may be within the definitions.
0062 References to “one embodiment”, “an embodi
ment”, “one example”, “an example, and other similar
terms, indicate that the embodiment(s) or example(s) so
described may include a particular feature, structure, char
acteristic, property, element, or limitation, but that not every
embodiment or example necessarily includes that particular
feature, structure, characteristic, property, element or limi
tation. Furthermore, repeated use of the phrase “in one
embodiment” does not necessarily refer to the same embodi
ment, though it may.
0063 “Computer component', as used herein, refers to a
computer-related entity (e.g., hardware, firmware, Software
in execution, combinations thereof). Computer components
may include, for example, a process running on a processor,
a processor, an object, an executable, a thread of execution,
and a computer. A computer component(s) may reside

Nov. 24, 2016

within a process and/or thread. A computer component may
be localized on one computer and/or may be distributed
between multiple computers.
0064 “Computer-readable storage medium', as used
herein, refers to a non-transitory medium that stores instruc
tions and/or data. A computer-readable medium may take
forms, including, but not limited to, non-volatile media, and
volatile media. Non-volatile media may include, for
example, optical disks, magnetic disks, and other disks.
Volatile media may include, for example, semiconductor
memories, dynamic memory, and other memories. Common
forms of a computer-readable medium may include, but are
not limited to, a floppy disk, a flexible disk, a hard disk, a
magnetic tape, other magnetic medium, an ASIC, a CD,
other optical medium, a RAM, a ROM, a memory chip or
card, a memory stick, and other media from which a
computer, a processor or other electronic device can read.
0065 “Data store', as used herein, refers to a physical
and/or logical entity that can store data. A data store may be,
for example, a database, a table, a file, a data structure (e.g.
a list, a queue, a heap, a tree) a memory, a register, or other
repository. In different examples, a data store may reside in
one logical and/or physical entity and/or may be distributed
between two or more logical and/or physical entities.
0.066 “Logic', as used herein, includes but is not limited
to hardware, firmware, Software in execution on a machine,
and/or combinations of each to perform a function(s) or an
action(s), and/or to cause a function or action from another
logic, method, and/or system. Logic may include, for
example, a Software controlled microprocessor, a discrete
logic (e.g., ASIC), an analog circuit, a digital circuit, a
programmed logic device, or a memory device containing
instructions. Logic may include one or more gates, combi
nations of gates, or other circuit components. Where mul
tiple logical logics are described, it may be possible to
incorporate the multiple logical logics into one physical
logic. Similarly, where a single logical logic is described, it
may be possible to distribute that single logical logic
between multiple physical logics.
0067. "Object', as used herein, refers to the usage of
object in computer Science. From one point of view, an
object may be considered to be a location in a physical
memory having a value and referenced by an identifier.
0068 An "operable connection’, or a connection by
which entities are “operably connected, is one in which
signals, physical communications, or logical communica
tions may be sent or received. An operable connection may
include a physical interface, an electrical interface, or a data
interface. An operable connection may include differing
combinations of interfaces or connections Sufficient to allow
operable control. For example, two entities can be operably
connected to communicate signals to each other directly or
through one or more intermediate entities (e.g., processor,
operating system, logic, software). Logical or physical com
munication channels can be used to create an operable
connection.
0069. “Signal', as used herein, includes but is not limited

to, electrical signals, optical signals, analog signals, digital
signals, data, computer instructions, processor instructions,
messages, a bit, or a bit stream, that can be received,
transmitted and/or detected.

0070 “Software', as used herein, includes but is not
limited to, one or more executable instructions that cause a
computer, processor, or other electronic device to perform

US 2016/0344413 A1

functions, actions and/or behave in a desired manner. “Soft
ware' does not refer to stored instructions being claimed as
stored instructions per se (e.g., a program listing). The
instructions may be embodied in various forms including
routines, algorithms, modules, methods, threads, or pro
grams including separate applications or code from dynami
cally linked libraries.
0071. “User', as used herein, includes but is not limited
to one or more persons, Software, logics, applications,
computers or other devices, or combinations of these.
0072 FIG. 8 illustrates an apparatus 800 that includes a
processor 810, a memory 820, and a set 830 of logics that is
connected to the processor 810 and memory 820 by an
interface 840. In one embodiment, the apparatus 800 may be
a stand-alone device connected to a data communication
network. In another embodiment, apparatus 800 may be
integrated into another device (e.g., deduplication apparatus)
or system (e.g., object storage system).
0073. The set 830 of logics may include a first logic 832
that produces a set of n erasure code symbols for a message
received from a data deduplication system. The message
may be, for example, a unique chunk, a collection (e.g.,
concatenation) of unique chunks, or other data to be pro
tected. The message has k symbols. n and k are numbers and
n>k. Unlike conventional systems, n is a function of a first
attribute of the message.
0074 The first attribute may describe, for example, an
importance of the message to the data deduplication system.
The importance may be determined by the number of
references to the message, by a user-defined value assigned
to the message, by a cost to replace the message, or in other
ways. The first attribute may also describe, for example, the
size of the message, an amount to be spent protecting the
message, an age of the message, or other properties. The
value of the first attribute may vary over time.
0075. The apparatus 800 may also include a second logic
834 that selectively stores members of the n erasure code
symbols on Z different data storage devices. Z is a function
of a second attribute of the message. The second attribute
may also describe, for example, the importance of the
message or another property of the message (e.g., size, age,
cost to replace, user-assigned value). The value of the
second attribute may vary over time.
0076. Different types of erasure codewords may be pro
duced. In one embodiment, the type of erasure codewords
produced is a function of the first attribute. The erasure
codes may be, for example, systematic erasure codes, rate
less erasure codes, or other erasure codes. In one embodi
ment, the size of an erasure code symbol is a function of the
size of the k symbols. For example, message symbols that
are sixteen bytes wide may yield erasure code symbols that
are twenty bytes wide. In different embodiments the size of
the erasure code symbol may be the same as the size of the
k symbols or may be different than the size of the k symbols.
In one embodiment, the composition of an erasure code
symbol is a function of the first attribute or the second
attribute. The composition of the erasure code symbol may
allocate a certain amount of the erasure code symbols to a
certain portion of the message and may allocate another
amount of the erasure code symbols to another portion of the
message.
0077 FIG. 9 illustrates another embodiment of apparatus
800. This embodiment includes a third logic 836. The third
logic 836 may adapt how n is selected as a function of the

Nov. 24, 2016

first attribute. For example, over time, a metric that measures
overall redundancy in a system may report that apparatus
800 is producing redundancy above a threshold level. In this
case, n may be reduced for certain values of the first
attribute. In another example, a metric that measures overall
resource usage for storing data may report that apparatus
800 is only consuming half of the available resources. In this
case, n may be increased for certain values of the first
attribute.
0078. This embodiment also includes a fourth logic 838.
The fourth logic 838 may adapt how Z is selected as a
function of the second attribute. For example, over time, a
failure rate for the Z devices on which erasure code symbols
are being stored may be tracked. If the failure rate is above
a certain threshold, then Z may be increased to decrease the
impact of any single failure.
(0079. In one embodiment, the first logic 832 or the
second logic 834 may be controlled to recalculate in or Z for
a message upon determining that the first attribute or the
second attribute for the message has changed more than a
threshold amount.
0080 While example systems, methods, and other
embodiments have been illustrated by describing examples,
and while the examples have been described in considerable
detail, it is not the intention of the applicants to restrict or in
any way limit the scope of the appended claims to Such
detail. It is, of course, not possible to describe every con
ceivable combination of components or methodologies for
purposes of describing the systems, methods, and other
embodiments described herein. Therefore, the invention is
not limited to the specific details, the representative appa
ratus, and illustrative examples shown and described. Thus,
this application is intended to embrace alterations, modifi
cations, and variations that fall within the scope of the
appended claims.
0081. To the extent that the term “includes or “includ
ing is employed in the detailed description or the claims, it
is intended to be inclusive in a manner similar to the term
“comprising as that term is interpreted when employed as
a transitional word in a claim.
I0082 To the extent that the term “or” is employed in the
detailed description or claims (e.g., A or B) it is intended to
mean “A or B or both’. When the applicants intend to
indicate “only A or B but not both then the term “only A or
B but not both will be employed. Thus, use of the term “or
herein is the inclusive, and not the exclusive use. See, Bryan
A. Garner, A Dictionary of Modern Legal Usage 624 (2d.
Ed. 1995).
What is claimed is:
1. A non-transitory computer-readable storage medium

storing computer-executable instructions that when
executed by a computer control the computer to perform a
method, the method comprising:

accessing unique data produced by a data deduplication
system;

identifying a property of the unique data, and
manipulating, based at least in part on the property, a

generator matrix representation of an encoding graph
associated with an erasure encoder.

2. The non-transitory computer-readable storage medium
of claim 1, where manipulating the generator matrix
includes controlling a number of elements in the generator
matrix or controlling the value of one or more elements in
the generator matrix.

US 2016/0344413 A1

3. The non-transitory computer-readable storage medium
of claim 2, where the number of elements or the value of the
one or more elements cause erasure code symbols produced
by the erasure encoder to account for chunk level probability
requirements associated with the unique data.

4. The non-transitory computer-readable storage medium
of claim 1, where the property of the unique data is a
probability of failure associated with the unique data.

5. The non-transitory computer-readable storage medium
of claim 1, where manipulating the generator matrix con
trols, at least in part, the size or composition of an erasure
code produced by the erasure encoder.

6. The non-transitory computer-readable storage medium
of claim 5, where the composition of an erasure code
controls, at least in part, a relevance of the erasure code to
a selected portion of the unique data.

7. The non-transitory computer-readable storage medium
of claim 6, where the composition of the erasure code
includes a number of connections between a portion of the
unique data and the erasure codeword.

8. The non-transitory computer-readable storage medium
of claim 1, the method comprising generating erasure code
symbols from the unique databased, at least in part, on the
generator matrix.

9. The non-transitory computer-readable storage medium
of claim 1, where the erasure encoder employs a systematic
erasure code, a rateless erasure code, or a systematic rateless
erasure code.

10. The non-transitory computer-readable storage
medium of claim 2, where a non-Zero entry in the generator
matrix represents a node/edge probability distribution.

11. The non-transitory computer-readable storage
medium of claim 10, the method further comprising:

generating, using the erasure encoder, a set of W erasure
code symbols for the unique data, where the erasure
code symbols are generated according to an X/Y era
sure code policy, W, X, and Y being integers, W being
greater than or equal to X, W being less than or equal
to Y, and where W, X, or Y depend, at least in part, on
the property of the unique data.

12. The non-transitory computer-readable storage
medium of claim 11, where W, X, or Y are directly propor
tional to the property.

13. The non-transitory computer-readable storage
medium of claim 12, the method further comprising selec
tively storing members of the set of Werasure code symbols
on Z different data storage devices, where Z is a function of
a second property of the unique data, where the second
property includes a size of the unique data, an age of the
unique data, a cost to replace the unique data, or a user
assigned value, where the value of the second property may
vary over time, Z being an integer.

14. The non-transitory computer-readable
medium of claim 1, the method further comprising:

upon determining that the property of the unique data has
changed,

Selectively manipulating the generator matrix based, at
least in part, on the property of the unique data that has
changed.

15. The non-transitory computer-readable storage
medium of claim 1, where the data deduplication system is
a variable-length, block level system.

Storage

Nov. 24, 2016

16. An apparatus, comprising:
a processor;
a memory;
a set of logics; and
an interface that connects the set of logics, the memory,

and the processor, the set of logics comprising:
a first logic that manipulates a generator matrix represen

tation of an encoding graph associated with an erasure
encoder based on a first attribute of a message received
from a data deduplication system, where the first attri
bute describes an importance of the message to the data
deduplication system, a size of the message, an amount
to be spent protecting the message, or an age of the
message;

a second logic that produces, using the erasure encoder, a
set of N erasure code symbols for the message, where
the message has K symbols, where N is a function of
the first attribute, N and K being integers, N being
greater than K, where a member of the set of Nerasure
code symbols is a systematic, rateless erasure code; and

a third logic that selectively stores members of the set of
N erasure code symbols on Z different data storage
devices, where Z is a function of a second attribute of
the message, Z being an integer.

17. The apparatus of claim 16, where the first logic
controls a number of elements in the generator matrix or
controls the value of one or more elements in the generator
matrix, and where a non-zero entry in the generator matrix
represents a node/edge probability distribution.

18. The apparatus of claim 16 further comprising a fourth
logic that controls the first logic to selectively manipulate
the generator matrix upon determining that the first attribute
has changed.

19. The apparatus of claim 16 where the second attribute
includes a size of the message, an age of the message, a cost
to replace the message, or a user-assigned value, where the
value of the second attribute may vary over time.

20. A method for storing de-duplicated data in a data
storage system comprising:

accessing a message produced by a data deduplication
system;

identifying a property of the message;
manipulating, based at least in part on the property, a

generator matrix representation of an encoding graph
associated with an erasure encoder;

generating, using the erasure encoder, a set of erasure
code symbols for the message, where the erasure code
symbols are generated according to a code rate that
defines a minimum number of encoded symbols needed
to recreate the message and a total number of encoded
symbols that can be produced for the message, where
the number of erasure code symbols in the set of
erasure code symbols is greater than the minimum
number of encoded symbols needed to recreate the
message, where the number of erasure code symbols in
the set of erasure code symbols is less than the total
number of encoded symbols that can be produced for
the message, and where the number of erasure code
symbols in the set of erasure code symbols, the mini
mum number of encoded symbols needed to recreate
the message, or the total number of encoded symbols
that can be produced for the message depend, at least
in part, on the property of the message.

k k k k k

