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Abstract 

A model for estimating the displacement of a bubble located at a fluid-viscoelastic medium 

interface in response to acoustic radiation force is presented by extending the model for a 

spherical object embedded in a bulk material. The effects of the stiffness and viscosity of the 

viscoelastic medium and the amplitude and duration of the excitation force on bubble 

displacement were investigated using the proposed model. The results show that bubble 

displacement has a nonlinear relationship with excitation duration and viscosity. The time at 

which the steady state is reached increases with increasing medium viscosity and decreasing 

medium stiffness.  

 

PACS numbers: 43.80.Gx, 43.80.Qf, 43.80.Sh 
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1. Introduction 

Ultrasound has been used to determine tissue properties, such as the elastic modulus (Ophir 

et al., 1991; Fatemi and Greenleaf, 1998; Sarvazyan et al., 2010). More recently, the use of 

microbubbles in a fluid to push against tissue under ultrasound exposure was proposed to 

improve the contrast and spatial resolution of elasticity imaging (Koruk et al., 2015). There are 

several mathematical models that exist for bubbles exposed to sound in a liquid (Prosperetti, 

1987; Church, 1995; Doinikov et al., 2009; Marmottant et al., 2005) or in an elastic and 

viscoelastic medium (Yang and Church, 2005; Zabolotskaya et al., 2005; Barajas and Johnsen, 

2017). Furthermore, there are some models for the displacement of a bubble completely 

embedded in a tissue (Ilinskii et al., 2005; Chen et al., 2002; Aglyamov et al., 2007; Karpiouk et 

al., 2009; Urban et al., 2011; Yoon et al., 2011; Mikula et al., 2014). However, the displacement 

of a bubble located at a fluid-viscoelastic medium interface has not been comprehensively 

explored in the literature.  

In the therapeutic and diagnostic ultrasound applications that use microbubbles, a large 

proportion of bubbles will be located at fluid-tissue interfaces (Erpelding et al., 2005; Doherty et 

al., 2013; Haar, 2007; Acconcia et al., 2013; Pouliopoulos et al., 2018). In a previous study, we 

developed a mathematical model for the displacement of a bubble located at a fluid-elastic 

medium interface in response to acoustic radiation force (Koruk and Choi, 2018). However, 

besides the elasticity, the viscosity of a tissue can significantly affect the dynamic response 

(Kruse et al., 2000; Yoon et al., 2011). Therefore, in the present study, a mathematical model for 

the displacement of a bubble located at a fluid-viscoelastic medium interface, which more 

accurately simulates the practice, was developed.  

The technique for modelling the displacement of a bubble followed in this study is based on 

the approach used for the displacement of a spherical object embedded in a bulk material 

(Ilinskii et al., 2005; Yoon et al., 2011) and the mathematical model proposed for a bubble 
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located at a fluid-elastic medium interface (Koruk and Choi, 2018). However, as in practice, the 

medium was modelled to exhibit both the elastic and viscous characteristics this time. In 

addition, after the validity of the model was briefly evaluated, the effects of the stiffness and 

viscosity of the viscoelastic medium and the amplitude and duration of the excitation force on 

bubble displacement were explored using the proposed model. Since the microbubbles used in 

biomedical ultrasound applications are frequently located at fluid-viscoelastic medium 

interfaces, our model can be exploited in practical applications including the determination of 

the stiffness of tissue microenvironments. 

 

2. Mathematical model 

A bubble at fluid-solid interface (Fig. 1a) displaces the surrounding medium when it is 

exposed to an external force (Fig. 1b). Here, it is assumed that the surrounding environment is 

homogeneous and isotropic (Yoon et al., 2011). The medium is assumed to be incompressible, 

as it is in most tissues (Yoon et al., 2011; Sarvazyan, 1975). The model for the medium material 

includes both elastic and viscous characteristics (i.e., the medium is modeled as a viscoelastic 

material), as in practice (Yoon et al., 2011; Sarvazyan, 1975; Zhou et al., 2017; Maccabi et al., 

2018). It is assumed that the medium does not rupture. The fluid dynamic properties, such as 

fluid inertance are ignored (Field and Drzewiecki, 1998). It should be noted that the acoustic 

impedance mismatch between the bubble and the surrounding fluid or tissue is much greater 

than the mismatch between the fluid and the tissue. Therefore, the contribution of the radiation 

force due to the acoustic impedance mismatch between the fluid and the viscoelastic medium is 

neglected. The problem here is axisymmetric and there is no force dependence in the azimuthal 

direction. Therefore, the deformation of the bubble is symmetrical about the x-axis. The 

equation of motion for incompressible viscoelastic medium in time domain is given by (Yoon et 

al., 2011):  
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−∇𝑝 + 𝐺∇2𝐮 + 𝜂∇2 𝜕𝐮

𝜕𝑡
= 𝜌

𝜕2𝐮

𝜕𝑡2                         (1) 

where 𝑝 is the internal pressure, 𝐮 is the displacement vector, 𝐺, 𝜂 and 𝜌 are the shear modulus, 

viscosity and density of the medium, respectively, and 𝑡 shows the time.  

 

FIG. 1. (Color online) The bubble (with the radius R) located at fluid-solid interface (a) 

displaces the surrounding medium (with the shear modulus G, density 𝜌 and viscosity 𝜂) when it 

is exposed to an external force (b). 

The polar axis of the spherical system of coordinates (𝑟, 𝜃, 𝜙) is along the force vector (i.e., 

there is an angle 𝜃 between the radius vector and displacement) and the vector of displacement 

due to an external force 𝑓𝑒 has radial (𝑢𝑟) and polar (𝑢𝜃) components given by 𝐮 = (𝑢𝑟 , 𝑢𝜃 , 0). 

For the problem illustrated in Fig. 1, the external force applied to a displaced bubble can be 

written as (Koruk and Choi, 2018): 

 𝑓e = −2𝜋𝑅2 ∫ (𝜎𝑟𝑟cos𝜃 − 𝜎𝑟𝜃sin𝜃)sin𝜃d𝜃
𝜃ℎ

0
                    (2) 

where 𝑅 is the radius of the bubble and 𝜃ℎ is the angle between the x-axis and r-axis 

corresponding to the displacement h. Here 𝜎𝑟𝑟 and 𝜎𝑟𝜃 show the components of stress tensor at 

the surface of the bubble. The boundary conditions at the bubble surface (i.e., at 𝑟 = 𝑅) can be 

written as: 

−𝜎𝑟𝑟 + 𝑝𝑒 = 𝑝𝑔,  𝜎𝑟𝜃 = 0                              (3) 
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where 𝑝𝑒 is the pressure acting on the bubble surface (i.e., acoustic radiation pressure) and 𝑝𝑔 is 

the internal gas pressure. Here, we consider an external force with an amplitude 𝑓0 and a finite 

length 𝜏 given by: 

𝑓e = {
𝑓0       0 ≤ 𝑡 ≤ 𝜏

0               𝑡 > 𝜏
        (4) 

By substituting the expressions for the relation between the external pressure 𝑝𝑒 and force 𝑓e 

(Koruk and Choi, 2018) and the stress tensor components (Yoon et al., 2011) into Eq. (3), we 

can obtain the solution as follows: 

𝑢𝑟 = −
𝑗𝑓0

6𝜋𝑅[1−(1−
𝑢𝑟0

𝑅
)]

ℱ−1 [
(𝑒𝑗𝜔𝜏−1)(3−𝑗𝑘𝑅)

𝜔(𝐺−𝑗𝜂𝜔)(1−𝑗𝑘𝑅−
1

6
𝑘2𝑅2+

1

18
𝑗𝑘3𝑅3)

] cos𝜃     (5) 

𝑢𝜃 =
𝑗𝑓0

12𝜋𝑅[1−(1−
𝑢𝑟0

𝑅
)]

ℱ−1 [
(𝑒𝑗𝜔𝜏−1)(3+𝑗𝑘𝑅)

𝜔(𝐺−𝑗𝜂𝜔)(1−𝑗𝑘𝑅−
1

6
𝑘2𝑅2+

1

18
𝑗𝑘3𝑅3)

] sin𝜃               (6) 

where 𝑘 is the wave number of the shear wave with the frequency 𝜔, 𝑢𝑟0 is the radial 

displacement component for 𝜃 = 0 and ℱ−1 represents the inverse Fourier transform. For a 

given force 𝑓0, specific time 𝑡 and 𝜃 = 0, the unknown 𝑢𝑟0 in Eq. (5) can be determined. Here, 

the excitation duration 𝜏 was divided into N (e.g., 100) points and the calculations were repeated 

over the entire time period of interest using Matlab (Mathworks, Natick, MA, USA). Once 𝑢𝑟0 

is determined, the radial and polar displacement components for any 𝜃 can be determined using 

Eqs. (5) and (6). It should be noted that we used the minimum (≈ -10309) and maximum (≈ 10309) 

numbers defined in Matlab for the evaluation of the integrals in Eqs. (5) and (6). It is believed 

that the model presented here can simulate the practice appropriately and the model can be 

improved further by taking the surface tension and bubble oscillatory dynamics into account in 

the model. The use of different bubble models, including surface tension and radial and 

translational oscillatory bubble dynamics (Watanabe and Kukita, 1993; Zheng et al., 2007; 

Mettin and Doinikov, 2009), will be considered in our future studies.  

 



 8  

3. Methods 

The shear modulus for a tissue-mimicking material with a viscosity of 0.7 Pa s was 

determined to be around 6.5 kPa using an indentation test where a sphere with a radius of 4 mm 

was used (Qiang et al., 2011). In this test, a maximum displacement of 0.96 mm was obtained 

for the force amplitude of 75 mN. Assuming that the maximum displacements for a bubble and 

sphere (Ilinskii et al., 2005) will be the same for this case, our model for this displacement 

estimates that the shear modulus of the material is about 5.5 kPa (i.e., our model predicts that 

the maximum displacement of a bubble with a radius of 4 mm is 0.96 mm when the shear 

modulus is set to 5.5 kPa). It should be noted that, to the best knowledge of the authors, no prior 

study has presented experimental displacement-force relationship for a bubble located at a fluid-

viscoelastic medium interface. Although the indirect comparison here helps to evaluate the 

validity of the proposed model, experimental investigation using small and large bubbles (e.g., 

1-200 𝜇m in radius) at fluid-viscoelastic material (e.g., gelation with different concentrations) 

interfaces and different ultrasound parameters (e.g., sonication frequency and pulse length) will 

be considered in our future studies. 

In the following, we explored the effects of the stiffness and viscosity of the medium and the 

amplitude and duration of the excitation force on bubble displacement using the proposed 

model. Analyses are performed for physiologically relevant materials (i.e., G = 2 - 4 kPa, 𝜌 =

1000 kg/m3 and 𝜂 = 0.02 – 2 Pa s). For example, the shear modulus, density and viscosity of 

the liver are around 2 kPa (Maccabi et al., 2018), 1000 kg/m3 (Woodard and White, 1986) and 

0.5 Pa s (Chen et al., 2009), respectively. It should be noted that in small vessels, such as 

arterioles and capillaries, their thickness approaches a single cell and in the case of microvessels 

with thin walls, the vessel takes on the elasticity of the surrounding tissue microstructures 

(Saharkhiz et al., 2018). Therefore, the model presented here can be used to determine the 

stiffness of tissue microenvironments. It should be remembered that the microbubbles typically 
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range from 0.5 to 5  μm in radius (Postema and Gilja, 2011; Appis et al., 2015). The mean radii 

were reported to be 0.55-1.65 and 1.5-2.25 𝜇m (Karshafian et al., 2010), respectively, for the 

commercially available microbubbles Definity® and Optison®. It should be noted that large 

bubbles (i.e, R = 25-250 𝜇m) are frequently used in research to identify the mechanical 

properties of materials and explore bubble dynamics (Erpelding et al., 2005; Yoon et al., 2011). 

The analyses are performed for both small and large bubbles (i.e., 𝑅 = 2 - 100 𝜇m) in this study. 

The magnitude of the acoustic radiation force on a bubble with a diameter of 1 𝜇m is determined 

to be 5 nN when the peak negative pressure is 100 kPa and the excitation frequency is 2.25 MHz 

(Dayton et al., 2002). The magnitude of excitation force produced on bubbles increases as the 

bubble diameter increases and it can be in the order of 𝜇Ns for larger bubbles even when the 

excitation frequency is far from the resonance frequency of the bubble (Dayton et al., 2002; 

Leighton et al., 1990). The magnitude of excitation force is chosen as 2.5-25 nN for small 

bubbles (i.e., R = 2-4 𝜇m) and 10 𝜇N for the large bubble (i.e., R = 100 𝜇m) in this study. It 

should be noted that it was shown that the bubble remains almost spherical when bubble 

displacement does not exceed half times the radius of the bubble for medium materials with 

similar elastic properties studied in this paper (Ilinskii et al., 2005; Koruk and Choi, 2018).  

 

4. Results and discussion 

The time response of a bubble (𝑅 = 100 𝜇m) at a fluid-medium (𝐺 = 2 kPa and 𝜌 = 1000 

kg/m3) interface with different medium viscosities (𝜂 = 0.02, 0.05, 0.10 and 0.25 Pa s) and an 

external force (𝑓0 = 10 𝜇N) with different durations (𝜏 = 10, 30, 100 and 300 μs) in Fig. 2 

clearly show that viscosity dramatically changes the displacement profile. Oscillatory behaviour 

is observed in bubble displacement for small viscosity values (Fig. 2a) while there are no 

oscillations when the viscosity is high enough (Figs. 2b-d). This is expected because the 

damping force slows the back and forth motion and, when the viscosity force is large enough, 
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the medium does not oscillate (i.e., move toward the equilibrium). It is seen that a minimum 

excitation duration to reach the steady state is required (e.g., around 300 𝜇s for 𝜂 = 0.02 Pa s).  

 

 

FIG. 2. (Color online) The response of a bubble (𝑅 = 100 μm) for a medium (𝐺 = 2 kPa and 

𝜌 = 1000 kg/m3) with the viscosity (𝜂) of (a) 0.02, (b) 0.05, (c) 0.10 and (d) 0.25 Pa s and an 

external force with the amplitude of 𝑓0 = 10 𝜇N and different pulse durations (𝜏 = 10, 30, 100 

and 300 μs). 

The maximum displacements for a microbubble (𝑅 = 3 𝜇m) and different medium (𝐺 =

2 kPa and 𝜌 = 1000 kg/m3) viscosities (𝜂 = 0.03, 0.10, 0.40 and 2.0 Pa s) as a function of the 

duration of the excitation force (𝑓0 = 25 nN) in Fig. 3a clearly show that the bubble 

displacement has a nonlinear relation with the excitation duration. For a highly damped 

medium, the steady-state displacement can be achieved by keeping the excitation duration long 

enough. For example, the time duration to reach to the steady state for the system in Fig. 3a is 

0.13, 0.38, 1.65 and 9.0 ms for 𝜂 = 0.03, 0.10, 0.40 and 2 Pa s, respectively. It is seen that when 

the pulse duration gets close to the values that induce the steady state displacement, the increase 

in maximum bubble displacement decreases slowly. The results (𝑅 = 3 𝜇m, 𝐺 = 2 kPa, 1000 

kg/m3 and 𝑓0 = 25 nN) for different excitation durations (𝜏 = 0.1, 0.2, 0.4 and 0.8 ms) in Fig. 
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3b clearly show the nonlinear effect of the medium viscosity on the bubble displacement. The 

bubble displacement decreases nonlinearly as viscosity increases for a specific excitation 

duration. For example, the bubble displacement is 0.95, 0.88 and 0.74 𝜇m for 𝜂 = 0.5, 1.0 and 

2.0 Pa s, respectively, when 𝜏 = 0.8 ms.  

 

FIG. 3. (Color online) The change of the displacement of a microbubble (𝑅 = 3 𝜇m) at the 

fluid-medium (𝐺 = 2 kPa and 𝜌 = 1000 kg/m3) interface: (a) for different medium viscosities 

(𝜂 = 0.03, 0.10, 0.40 and 2.0 Pa s) as a function of the duration of the excitation force (𝑓0 = 25 

nN), and (b) for different excitation force (𝑓0 = 25 nN) durations (𝜏 = 0.1, 0.2, 0.4 and 0.8 ms) 

as a function of medium viscosity. 

The response of a microbubble (𝑅 = 2 𝜇m) for two different medium (𝜂 = 0.25 Pa s and 𝜌 =

1000 kg/m3) moduli (𝐺 = 2 and 4 kPa) excited for 𝜏 = 1 ms with different force amplitudes 

(𝑓0 = 2.5, 5, 10 and 20 nN) as a function of time in Fig. 4 shows that the force magnitude does 

not change the time at which the steady state is reached. However, the time to reach steady state 

depends on the medium stiffness; the medium with a high shear modulus responds faster. For 

example, for all force levels, the steady state is revealed at about 0.9 and 0.5 ms for 𝐺 = 2 and 4 

kPa, respectively. Please note that 0.9 and 0.5 ms correspond to 450 and 250 cycles of an 

ultrasound plane wave, for example, if the excitation frequency is 0.5 MHz. It should be noted 

that the oscillatory behaviour of the excitation force is neglected here; the same has been done in 

the previous literature (Yoon et al., 2011).  
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It is seen that the model presented here can provide an explanation for the dynamic response 

of a bubble at a fluid-viscoelastic medium interface exposed to an external force. The model can 

be exploited in practical applications. It can be used to understand the measured echo signal 

from a bubble at a fluid-medium interface under ultrasound exposure. The stiffness of tissue 

microenvironments can be determined by measuring the response of the bubble under 

ultrasound exposure and the formulation presented here. It can be used to design experiments, 

for example, to select the excitation duration for a specific bubble displacement when the 

microbubble radius and material properties are approximately known. We have presented the 

model for the displacement of a single bubble located at a fluid-viscoelastic medium interface in 

this study, though many microbubbles will be flowing throughout the vessels in biomedical 

applications. However, microbubbles injected into the blood at the clinical dose will likely be 

isolated from each other. Although the distance between the microbubbles may vary locally, a 

clinical dose of microbubbles (c = 2x106 microbubbles/ml), based on rough calculations using 

𝐿 = 𝑐−1/3 (Kryuchkov, 2001;Lazarus et al., 2017), will result in a mean inter-bubble distance of 

𝐿 = 80 μm, noting that the microbubbles typically range from 0.5 to 5  μm in radius (Postema 

and Gilja, 2011; Appis et al., 2015). Here we assumed that there is no tissue rupture or any long-

term alteration to the tissue stiffness, though this should be investigated experimentally in 

future.  Experimental investigation using large and small isolated bubbles and many 

microbubbles flowing in a channel exposed to ultrasound as well as the improvement of the 

model by taking the surface tension and bubble oscillatory dynamics into account will be 

considered in our future studies. 

 

 



 13  

 

FIG. 4. (Color online) The response of a microbubble (𝑅 = 2 μm) for a medium (𝜂 =0.25 Pa s 

and 𝜌 = 1000 kg/m3) with the shear modulus (𝐺) of (a) 2 and (b) 4 kPa excited for 𝜏 = 1 ms 

with different force levels (𝑓0 = 2.5, 5, 10 and 20 nN). 

 

5. Conclusion 

In this study, we developed a mathematical model for the displacement of a bubble at a fluid-

viscoelastic medium interface in response to acoustic radiation force by extending the model for 

a spherical object embedded in a bulk material. We investigated the effects of the stiffness and 

viscosity of the medium and the amplitude and duration of the excitation force on bubble 

displacement using the proposed model. The results show that the bubble displacement has a 

nonlinear relation with the excitation duration and the medium stiffness and viscosity. The time 

at which the steady state is reached increases with increasing medium viscosity and decreasing 

medium stiffness. The potential applications of the model presented in this study include the 

determination of the stiffness of tissue microenvironments, as the bubbles used in biomedical 

ultrasound applications are frequently found at fluid-viscoelastic medium interfaces.  
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