
Displacement of a bubble located at a fluid-viscoelastic medium interface
Hasan Koruk, and James J. Choi

Citation: The Journal of the Acoustical Society of America 145, EL410 (2019); doi: 10.1121/1.5108678
View online: https://doi.org/10.1121/1.5108678
View Table of Contents: https://asa.scitation.org/toc/jas/145/5
Published by the Acoustical Society of America

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/684191261/x01/AIP/HA_JASA_PDF_AIPPAcademy_2019/Intro_1640x440.jpg/4239516c6c4676687969774141667441?x
https://asa.scitation.org/author/Koruk%2C+Hasan
https://asa.scitation.org/author/Choi%2C+James+J
/loi/jas
https://doi.org/10.1121/1.5108678
https://asa.scitation.org/toc/jas/145/5
https://asa.scitation.org/publisher/


Displacement of a bubble located at a
fluid-viscoelastic medium interface

Hasan Koruka)

Mechanical Engineering Department, MEF University, Istanbul 34396, Turkey
korukh@mef.edu.tr

James J. Choi
Department of Bioengineering, Imperial College London, London SW7 2AZ,

United Kingdom
j.choi@imperial.ac.uk

Abstract: A model for estimating the displacement of a bubble located
at a fluid-viscoelastic medium interface in response to acoustic radiation
force is presented by extending the model for a spherical object embed-
ded in a bulk material. The effects of the stiffness and viscosity of the
viscoelastic medium and the amplitude and duration of the excitation
force on bubble displacement were investigated using the proposed
model. The results show that bubble displacement has a nonlinear rela-
tionship with excitation duration and viscosity. The time at which the
steady state is reached increases with increasing medium viscosity and
decreasing medium stiffness.
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1. Introduction

Ultrasound has been used to determine tissue properties, such as the elastic modulus
(Ophir et al., 1991; Fatemi and Greenleaf, 1998; Sarvazyan et al., 2010). More
recently, the use of microbubbles in a fluid to push against tissue under ultrasound
exposure was proposed to improve the contrast and spatial resolution of elasticity
imaging (Koruk et al., 2015). There are several mathematical models that exist for
bubbles exposed to sound in a liquid (Prosperetti, 1987; Church, 1995; Doinikov et al.,
2009; Marmottant et al., 2005) or in an elastic and viscoelastic medium (Yang and
Church, 2005; Zabolotskaya et al., 2005; Barajas and Johnsen, 2017). Furthermore,
there are some models for the displacement of a bubble completely embedded in a tis-
sue (Ilinskii et al., 2005; Chen et al., 2002; Aglyamov et al., 2007; Karpiouk et al.,
2009; Urban et al., 2011; Yoon et al., 2011; Mikula et al., 2014). However, the dis-
placement of a bubble located at a fluid-viscoelastic medium interface has not been
comprehensively explored in the literature.

In the therapeutic and diagnostic ultrasound applications that use microbub-
bles, a large proportion of bubbles will be located at fluid-tissue interfaces (Erpelding
et al., 2005; Doherty et al., 2013; ter Haar, 2007; Acconcia et al., 2013; Pouliopoulos
et al., 2018). In a previous study, we developed a mathematical model for the displace-
ment of a bubble located at a fluid-elastic medium interface in response to acoustic
radiation force (Koruk and Choi, 2018). However, besides the elasticity, the viscosity
of a tissue can significantly affect the dynamic response (Kruse et al., 2000; Yoon
et al., 2011). Therefore, in the present study, a mathematical model for the displace-
ment of a bubble located at a fluid-viscoelastic medium interface, which more accu-
rately simulates the practice, was developed.

The technique for modelling the displacement of a bubble followed in this
study is based on the approach used for the displacement of a spherical object embed-
ded in a bulk material (Ilinskii et al., 2005; Yoon et al., 2011) and the mathematical
model proposed for a bubble located at a fluid-elastic medium interface (Koruk and
Choi, 2018). However, as in practice, the medium was modelled to exhibit both the
elastic and viscous characteristics this time. In addition, after the validity of the model
was briefly evaluated, the effects of the stiffness and viscosity of the viscoelastic
medium and the amplitude and duration of the excitation force on bubble displace-
ment were explored using the proposed model. Since the microbubbles used in
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biomedical ultrasound applications are frequently located at fluid-viscoelastic medium
interfaces, our model can be exploited in practical applications including the determi-
nation of the stiffness of tissue microenvironments.

2. Mathematical model

A bubble at fluid-solid interface [Fig. 1(a)] displaces the surrounding medium when it
is exposed to an external force [Fig. 1(b)]. Here, it is assumed that the surrounding
environment is homogeneous and isotropic (Yoon et al., 2011). The medium is
assumed to be incompressible, as it is in most tissues (Yoon et al., 2011; Sarvazyan,
1975). The model for the medium material includes both elastic and viscous character-
istics (i.e., the medium is modeled as a viscoelastic material), as in practice (Yoon
et al., 2011; Sarvazyan, 1975; Zhou et al., 2017; Maccabi et al., 2018). It is assumed
that the medium does not rupture. The fluid dynamic properties, such as fluid iner-
tance are ignored (Field and Drzewiecki, 1998). It should be noted that the acoustic
impedance mismatch between the bubble and the surrounding fluid or tissue is much
greater than the mismatch between the fluid and the tissue. Therefore, the contribution
of the radiation force due to the acoustic impedance mismatch between the fluid and
the viscoelastic medium is neglected. The problem here is axisymmetric and there is no
force dependence in the azimuthal direction. Therefore, the deformation of the bubble
is symmetrical about the x axis. The equation of motion for incompressible viscoelastic
medium in time domain is given by (Yoon et al., 2011)

�rpþ Gr2uþ gr2 @u
@t
¼ q

@2u
@t2 ; (1)

where p is the internal pressure; u is the displacement vector; G, g, and q are the shear
modulus, viscosity, and density of the medium, respectively; and t shows the time.

The polar axis of the spherical system of coordinates (r; h;/) is along the force
vector (i.e., there is an angle h between the radius vector and displacement) and the
vector of displacement due to an external force fe has radial (ur) and polar (uh) compo-
nents given by u ¼ ður; uh; 0Þ. For the problem illustrated in Fig. 1, the external force
applied to a displaced bubble can be written as (Koruk and Choi, 2018)

fe ¼ �2pR2
ðhh

0
ðrrr cos h� rrh sin hÞ sin hdh; (2)

where R is the radius of the bubble and hh is the angle between the x-axis and r-axis
corresponding to the displacement h. Here rrr and rrh show the components of stress
tensor at the surface of the bubble. The boundary conditions at the bubble surface
(i.e., at r ¼ R) can be written as

�rrr þ pe ¼ pg; rrh ¼ 0; (3)

where pe is the pressure acting on the bubble surface (i.e., acoustic radiation pressure)
and pg is the internal gas pressure. Here, we consider an external force with an ampli-
tude f0 and a finite length s given by

fe ¼
f0; 0 � t � s;

0; t > s:

(
(4)

Fig. 1. (Color online) The bubble (with the radius R) located at fluid-solid interface (a) displaces the surround-
ing medium (with the shear modulus G, density q, and viscosity g) when it is exposed to an external force (b).
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By substituting the expressions for the relation between the external pressure pe and
force fe (Koruk and Choi, 2018) and the stress tensor components (Yoon et al., 2011)
into Eq. (3), we can obtain the solution as follows:

ur ¼ �
jf0

6pR 1� 1� ur0

R

� �� �F�1 ðejxs � 1Þ 3� jkRð Þ

x G � jgxð Þ 1� jkR� 1
6

k2R2 þ 1
18

jk3R3

� �
2
64

3
75cos h;

(5)

uh ¼
jf0

12pR 1� 1� ur0

R

� �� �F�1 ðejxs � 1Þ 3þ jkRð Þ

x G � jgxð Þ 1� jkR� 1
6

k2R2 þ 1
18

jk3R3

� �
2
64

3
75sin h;

(6)

where k is the wave number of the shear wave with the frequency x, ur0 is the radial
displacement component for h ¼ 0, and F�1 represents the inverse Fourier transform.
For a given force f0, specific time t and h ¼ 0, the unknown ur0 in Eq. (5) can be deter-
mined. Here, the excitation duration s was divided into N (e.g., 100) points and the
calculations were repeated over the entire time period of interest using MATLAB

(Mathworks, Natick, MA). Once ur0 is determined, the radial and polar displacement
components for any h can be determined using Eqs. (5) and (6). It should be noted
that we used the minimum (��10309) and maximum (�10309) numbers defined in
MATLAB for the evaluation of the integrals in Eqs. (5) and (6). It is believed that the
model presented here can simulate the practice appropriately and the model can be
improved further by taking the surface tension and bubble oscillatory dynamics into
account in the model. The use of different bubble models, including surface tension
and radial and translational oscillatory bubble dynamics (Watanabe and Kukita, 1993;
Zheng et al., 2007; Mettin and Doinikov, 2009), will be considered in our future
studies.

3. Methods

The shear modulus for a tissue-mimicking material with a viscosity of 0.7 Pa s was
determined to be around 6.5 kPa using an indentation test where a sphere with a radius
of 4 mm was used (Qiang et al., 2011). In this test, a maximum displacement of
0.96 mm was obtained for the force amplitude of 75 mN. Assuming that the maximum
displacements for a bubble and sphere (Ilinskii et al., 2005) will be the same for this
case, our model for this displacement estimates that the shear modulus of the material
is about 5.5 kPa (i.e., our model predicts that the maximum displacement of a bubble
with a radius of 4 mm is 0.96 mm when the shear modulus is set to 5.5 kPa). It should
be noted that, to the best knowledge of the authors, no prior study has presented
experimental displacement-force relationship for a bubble located at a fluid-viscoelastic
medium interface. Although the indirect comparison here helps to evaluate the validity
of the proposed model, experimental investigation using small and large bubbles (e.g.,
1–200 lm in radius) at fluid-viscoelastic material (e.g., gelation with different concen-
trations) interfaces and different ultrasound parameters (e.g., sonication frequency and
pulse length) will be considered in our future studies.

In the following, we explored the effects of the stiffness and viscosity of the
medium and the amplitude and duration of the excitation force on bubble displace-
ment using the proposed model. Analyses are performed for physiologically relevant
materials (i.e., G¼ 2–4 kPa, q ¼ 1000 kg/m3, and g ¼ 0.02–2 Pa s). For example, the
shear modulus, density and viscosity of the liver are around 2 kPa (Maccabi et al.,
2018), 1000 kg/m3 (Woodard and White, 1986), and 0.5 Pa s (Chen et al., 2009), respec-
tively. It should be noted that in small vessels, such as arterioles and capillaries, their
thickness approaches a single cell and in the case of microvessels with thin walls, the
vessel takes on the elasticity of the surrounding tissue microstructures (Saharkhiz et al.,
2018). Therefore, the model presented here can be used to determine the stiffness of tis-
sue microenvironments. It should be remembered that the microbubbles typically range
from 0.5 to 5 lm in radius (Postema and Gilja, 2011; Appis et al., 2015). The mean
radii were reported to be 0.55–1.65 and 1.5–2.25 lm (Karshafian et al., 2010), respec-
tively, for the commercially available microbubbles DefinityVR and OptisonVR . It should
be noted that large bubbles (i.e, R¼ 25–250 lm) are frequently used in research to
identify the mechanical properties of materials and explore bubble dynamics
(Erpelding et al., 2005; Yoon et al., 2011). The analyses are performed for both small
and large bubbles (i.e., R ¼ 2–100 lm) in this study. The magnitude of the acoustic
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radiation force on a bubble with a diameter of 1 lm is determined to be 5 nN when
the peak negative pressure is 100 kPa and the excitation frequency is 2.25 MHz
(Dayton et al., 2002). The magnitude of excitation force produced on bubbles increases
as the bubble diameter increases and it can be in the order of lNs for larger bubbles
even when the excitation frequency is far from the resonance frequency of the bubble
(Dayton et al., 2002; Leighton et al., 1990). The magnitude of excitation force is cho-
sen as 2.5–25 nN for small bubbles (i.e., R¼ 2–4 lm) and 10 lN for the large bubble
(i.e., R¼ 100 lm) in this study. It should be noted that it was shown that the bubble
remains almost spherical when bubble displacement does not exceed half times the
radius of the bubble for medium materials with similar elastic properties studied in this
paper (Ilinskii et al., 2005; Koruk and Choi, 2018).

4. Results and discussion

The time response of a bubble (R ¼ 100 lm) at a fluid-medium (G¼ 2 kPa and
q ¼ 1000 kg/m3) interface with different medium viscosities (g ¼ 0.02, 0.05, 0.10, and
0.25 Pa s) and an external force (f0 ¼ 10 lN) with different durations (s ¼ 10, 30, 100,
and 300 ls) in Fig. 2 clearly show that viscosity dramatically changes the displacement
profile. Oscillatory behaviour is observed in bubble displacement for small viscosity
values [Fig. 2(a)] while there are no oscillations when the viscosity is high enough
[Figs. 2(b)–2(d)]. This is expected because the damping force slows the back and forth
motion and, when the viscosity force is large enough, the medium does not oscillate
(i.e., move toward the equilibrium). It is seen that a minimum excitation duration to
reach the steady state is required (e.g., around 300 ls for g ¼ 0.02 Pa s).

The maximum displacements for a microbubble (R¼ 3 lm) and different
medium (G¼ 2 kPa and q ¼ 1000 kg/m3) viscosities (g ¼ 0.03, 0.10, 0.40, and 2.0 Pa s)
as a function of the duration of the excitation force (f0 ¼ 25 nN) in Fig. 3(a) clearly
show that the bubble displacement has a nonlinear relation with the excitation dura-
tion. For a highly damped medium, the steady-state displacement can be achieved by
keeping the excitation duration long enough. For example, the time duration to reach
to the steady state for the system in Fig. 3(a) is 0.13, 0.38, 1.65, and 9.0 ms for
g ¼ 0.03, 0.10, 0.40, and 2 Pa s, respectively. It is seen that when the pulse duration
gets close to the values that induce the steady state displacement, the increase in maximum
bubble displacement decreases slowly. The results (R¼ 3 lm, G¼ 2 kPa, 1000 kg/m3, and
f0 ¼ 25 nN) for different excitation durations (s ¼ 0:1, 0.2, 0.4, and 0.8 ms) in Fig. 3(b)
clearly show the nonlinear effect of the medium viscosity on the bubble displacement. The
bubble displacement decreases nonlinearly as viscosity increases for a specific excitation
duration. For example, the bubble displacement is 0.95, 0.88, and 0.74 lm for g ¼ 0.5,
1.0, and 2.0 Pa s, respectively, when s ¼ 0.8 ms.

The response of a microbubble (R ¼ 2lm) for two different medium (g ¼ 0.25 Pa s
and q ¼ 1000 kg/m3) moduli (G ¼ 2 and 4 kPa) excited for s ¼ 1 ms with different force
amplitudes (f0 ¼ 2.5, 5, 10, and 20 nN) as a function of time in Fig. 4 shows that
the force magnitude does not change the time at which the steady state is reached.

Fig. 2. (Color online) The response of a bubble (R ¼ 100 lm) for a medium (G ¼ 2 kPa and q ¼ 1000 kg/m3)
with the viscosity (g) of (a) 0.02, (b) 0.05, (c) 0.10, and (d) 0.25 Pa s and an external force with the amplitude of
f0 ¼ 10 l N and different pulse durations (s ¼ 10, 30, 100, and 300 ls).
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However, the time to reach steady state depends on the medium stiffness; the medium
with a high shear modulus responds faster. For example, for all force levels, the steady
state is revealed at about 0.9 and 0.5 ms for G ¼ 2 and 4 kPa, respectively. Please note
that 0.9 and 0.5 ms correspond to 450 and 250 cycles of an ultrasound plane wave, for
example, if the excitation frequency is 0.5 MHz. It should be noted that the oscillatory
behaviour of the excitation force is neglected here; the same has been done previously
(Yoon et al., 2011).

It is seen that the model presented here can provide an explanation for the
dynamic response of a bubble at a fluid-viscoelastic medium interface exposed to an
external force. The model can be exploited in practical applications. It can be used to
understand the measured echo signal from a bubble at a fluid-medium interface under
ultrasound exposure. The stiffness of tissue microenvironments can be determined by
measuring the response of the bubble under ultrasound exposure and the formulation
presented here. It can be used to design experiments, for example, to select the excita-
tion duration for a specific bubble displacement when the microbubble radius and
material properties are approximately known. We have presented the model for the
displacement of a single bubble located at a fluid-viscoelastic medium interface in this
study, though many microbubbles will be flowing throughout the vessels in biomedical
applications. However, microbubbles injected into the blood at the clinical dose will
likely be isolated from each other. Although the distance between the microbubbles
may vary locally, a clinical dose of microbubbles (c¼ 2� 106 microbubbles/ml), based
on rough calculations using L ¼ c�1=3 (Kryuchkov, 2001; Lazarus et al., 2017), will
result in a mean inter-bubble distance of L ¼ 80 lm, noting that the microbubbles typi-
cally range from 0.5 to 5 lm in radius (Postema and Gilja, 2011; Appis et al., 2015).
Here, we assumed that there is no tissue rupture or any long-term alteration to the tis-
sue stiffness, though this should be investigated experimentally in the future.
Experimental investigation using large and small isolated bubbles and many

Fig. 3. (Color online) The change of the displacement of a microbubble (R ¼ 3 lm) at the fluid-medium
(G ¼ 2 kPa and q ¼ 1000 kg/m3) interface: (a) for different medium viscosities (g ¼ 0.03, 0.10, 0.40, and
2.0 Pa s) as a function of the duration of the excitation force (f0 ¼ 25 nN), and (b) for different excitation force
(f0 ¼ 25 nN) durations (s ¼ 0:1, 0.2, 0.4, and 0.8 ms) as a function of medium viscosity.

Fig. 4. (Color online) The response of a microbubble (R ¼ 2 lm) for a medium (g ¼ 0.25 Pa s and q ¼ 1000 kg/
m3) with the shear modulus (G) of (a) 2 and (b) 4 kPa excited for s ¼ 1 ms with different force levels (f0 ¼ 2.5, 5,
10, and 20 nNÞ.
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microbubbles flowing in a channel exposed to ultrasound as well as the improvement
of the model by taking the surface tension and bubble oscillatory dynamics into
account will be considered in our future studies.

5. Conclusion

In this study, we developed a mathematical model for the displacement of a bubble at
a fluid-viscoelastic medium interface in response to acoustic radiation force by extend-
ing the model for a spherical object embedded in a bulk material. We investigated the
effects of the stiffness and viscosity of the medium and the amplitude and duration of
the excitation force on bubble displacement using the proposed model. The results
show that the bubble displacement has a nonlinear relation with the excitation dura-
tion and the medium stiffness and viscosity. The time at which the steady state is
reached increases with increasing medium viscosity and decreasing medium stiffness.
The potential applications of the model presented in this study include the determina-
tion of the stiffness of tissue microenvironments, as the bubbles used in biomedical
ultrasound applications are frequently found at fluid-viscoelastic medium interfaces.
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