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Abstract 

The use of a non-contact electromagnetic excitation system is highly recommended in the 

literature to identify the mechanical properties of materials using the Oberst Beam Method. 

However, it is not possible to test a specimen made of non-magnetic material using the Oberst 

beam test rig, comprising of an electromagnetic exciter, unless the specimen is modified using 

some magnetic particles or small discs made of a ferromagnetic material. Although doing so 

makes it possible to perform the test, this results in an undesirable modification to the test 

specimen, leading to unquantified levels of errors in the estimated material properties. This 

study proposes an approach for eliminating the adverse effects of such mass modification to 

the test specimen, and also allows subsequent removal of the electromagnetic stiffening 

effects produced by the electromagnetic exciter. The proposed method is validated using both 

finite element (FE) simulations and experimental data. Results confirm that the proposed 

method for the removal of the adverse effects of mass modification, combined with the 

subsequent removal of the electromagnetic stiffening effects, is very effective, making it 

possible to determine the material properties of non-magnetic materials with a very good 

accuracy.  

Keywords: Oberst Beam Method, Non-contact excitation, Tip mass, Young’s modulus, Loss 

factor, Material characterization. 
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1. Introduction 

Non-metallic engineering materials such as biofibres, carbon and glass fibres and their 

composites are widely used in practical applications [1,2]. The mechanical properties of such 

materials are generally obtained using three-point bending [3], four-point bending, 

compression and impact drop tests [4]. However, these tests are not suitable for obtaining 

frequency-dependent mechanical properties. Although the so-called dynamic mechanical 

analysis or spectroscopy can be used as an alternative for identifying frequency-dependent 

material properties [5,6], it has low frequency excitation limits and nonlinearities may occur 

because of fixations [7]. The Oberst Beam Method (OBM) [8] is a standard experimental 

technique for determining elastic and damping properties of materials as a function of 

frequency [9,10]. The general method of measuring damping using a vibrating cantilever 

beam is also referred to as the Oberst beam test in the ASTM E756 standard [9]. This 

technique depends on measuring the Frequency Response Functions (FRFs) of some specially 

prepared specimens. Layered as well as self-supporting homogeneous beams are used in 

Oberst beam tests to identify the material properties. Although OBM is widely used in 

practice [11–20], it has some drawbacks [21–25], hence, some alternative forms and solutions 

are also proposed in the literature [26–32].  

The use of a non-contact excitation system in the Oberst beam test rig is strongly 

recommended due to the fact that a contacting excitation can cause additional damping, mass 

and stiffness effects on the system under test [10]. A few studies in the literature, confined to 

testing ferromagnetic materials, show that some of these adverse effects could not be avoided, 

even when a non-contact excitation mechanism is employed. Koruk and Sanliturk 

investigated the effects of the amplitude of excitation, mounting conditions, input excitation 

type and the length of the sample, and explored the adverse electromagnetic effect of the non-
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contact excitation system used in OBM for uniform beams made of ferromagnetic materials 

[32]. The adverse effect of the electromagnetic excitation in OBM is modelled as a spring 

attached to the free end of the beam and a method is proposed to remove this adverse 

stiffening effect in [32]. The problem of the stiffening effect caused by electromagnetic 

excitation systems has also been studied by others and handled in different ways in the 

literature [33–36]. 

If the material to be characterised using the Oberst beam test rig is self-supporting, it can 

be directly tested as a uniform beam specimen made from the material itself [9]. Otherwise, 

layered test samples with a supporting base beam are used in OBM. It should be remembered 

that forming a layered test sample mostly requires the use of adhesive which can be a source 

of error itself due to its own elastic and damping properties [9]. Therefore, if the material to 

be characterized is self-supporting, the use of homogeneous test samples is recommended in 

such tests. Nevertheless, irrespective of whether a homogeneous or layered beam is to be 

tested, if these beams are made of non-magnetic material, it is necessary to attach some 

magnetic particles or ferromagnetic discs to the test beam so that the electromagnetic exciter 

in the Oberst beam test system can provide the required excitation. Although one may wish to 

use a negligible amount of magnetic particles to minimise the adverse mass modification 

effect, such a small amount of modification is insufficient to create an acceptable level of 

magnetic excitation, hence, in practice, a considerable amount of small magnetic particles or 

discs need to be used. However, this ‘small’ modification, i.e., the additional mass and the 

resulting magnetic stiffness, can change the frequency response of the test specimen 

significantly, which, in turn, can lead to unacceptable levels of errors in estimated material 

properties. 

To the best of the authors’ knowledge, removing the adverse effects of adding tip mass to 

non-magnetic test specimens in Oberst beam tests has not been studied in the literature. This 



5 

 

study aims to fill this gap by exploring the errors caused by the aforementioned mass 

modification in a systematic way and then propose a method to remove its adverse effects, 

which also allows subsequent removal of the electromagnetic stiffening effects produced by 

an electromagnetic exciter [32]. Thus, an accurate test procedure using an Oberst test rig with 

a magnetic exciter is provided for obtaining material properties (i.e., Young’s moduli and loss 

factors) of non-magnetic specimens.  

The outline of the work presented in this paper is as follows. First, a mathematical model 

of a cantilever beam specimen with tip mass exposed to electromagnetic excitation is 

presented in Section 2. By using this model, some preliminary investigations are carried out to 

explore the significance of the errors caused by the tip mass modification and the associated 

magnetic stiffening. Then, a new method is proposed to remove the adverse effects of the 

additional mass in Section 3.1. The proposed method also allows the removal of the adverse 

stiffness effect of the electromagnetic exciter, which was previously employed for 

ferromagnetic homogenous beams [32]. Some numerical simulations, comprising finite 

element (FE) models of homogeneous as well as layered beams with tip masses, are 

performed to assess the performance of the proposed method for the estimation of the correct 

natural frequencies and material properties in Section 3.2. This is followed by the 

experimental validation of the proposed method using homogeneous ferromagnetic as well as 

non-magnetic beams in Section 3.3. The significance and limitations of some of the 

assumptions made in the proposed method are investigated in Section 4. Results show that the 

mass modification at the tip of the test specimen and the additional stiffening effect of the 

electromagnetic exciter can produce a very significant amount of errors in estimated Young’s 

moduli of non-magnetic materials. However, the results also confirm that the proposed 

method is capable of removing almost all the adverse effects of mass and the associated 
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magnetic stiffness modifications, thus, allowing the identification of material properties of 

non-magnetic materials with high accuracy.  

2. Theoretical Model of a Cantilever Beam with Tip Mass Exposed to Electromagnetic 

Excitation 

The specimen with magnetic discs attached at the tip is assumed to be fully clamped at 

one end and excited at the other end via an electromagnetic exciter in a test rig in accordance 

with the ASTM E756 standard [9] as illustrated in Fig. 1(a). Here, the beam can be 

homogeneous or composite. In the proposed method, the additional inertia effect of the 

magnetic discs in Fig. 1(a) is modelled as a point mass m and the additional stiffness caused 

by the electromagnetic shaker is modelled as a spring with coefficient k as shown in Fig. 1(b). 

The electromagnetic spring is assumed to be linear based on experimental and theoretical 

examinations of a beam exposed to electromagnetic excitation in [22,32]. The equation of 

motion of the beam, based on Euler-Bernoulli beam theory, is as follows: 
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where EI is the flexural rigidity, ρ is the density of the beam material and A is the cross-
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and the BCs at the free end of the beam supported by a spring and tip mass are given by: 
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Figure 1: (a) The beam in electromagnetic field affect and (b) the simplified model of the system.  

Based on the assumption that the vibration has a harmonic form as ( , ) ( ) i tw x t W x e = , the 

equation of motion becomes: 

 ( ) ( )
2

0        0iv A
W x W x x L

EI

 
− =     (4) 

where the superscript iv refers to the fourth derivative with respect to x. The general solution 

of Eq. (4) is given as: 

 ( ) 1 2 3 4sin cos sinh coshW x a x a x a x a x   = + + +   (5) 

 where  

 

2
4 A

EI

 
 =   (6) 

and a1, a2, a3 and a4 are some constants to be determined using the BCs. Applying the BCs, 

the characteristic equation of the system is obtained as [37]:  

 ( ) ( )3/4 1/4 1/4 1/4 1/4 1/4 1/4cos cosh 1 cos sinh cosh sin 0       + − − =   (7) 

where the non-dimensional terms are given as: 
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The roots of the characteristics equation yield  values which, in turn, are used to 

calculate the natural frequencies of the system using Eq. (9). It should be noted that when the 

  coefficient is zero, i.e., when k = m = 0, the characteristic equation becomes: 

 ( )3/4 1/4 1/4cos cosh 1 0   + =   (10) 

which is the characteristic equation for a beam without any modification. Setting the terms in 

the parenthesis in Eq. (10) to zero yields the non-trivial solution of a cantilever beam as: 

 1/4 1/4cos cosh 1 0  + =   (11) 

It should be stated here that the   coefficient, which is a function of frequency, determines 

how the dynamics of the system change when mass and stiffness modifications are made at 

the tip of the beam. To illustrate the frequency-dependent characteristics of the   coefficient 

for given m and k modifications,   in Eq. (8) is normalised to obtain a non-dimensional 

parameter '  as: 
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kL
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where  

 ,       ' /
'

r k m





= =   (13) 

Here, r is the normalised frequency and '  is the natural frequency of a single degree of 

freedom system defined by k and m. This non-dimensional parameter '  can be examined to 

quantify the contributions of additional mass and/or spring to the change in a natural 

frequency, hence, error in material properties.  
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The variation of '  is plotted as a function of normalised frequency r in Fig. 2. It is 

obvious that ' = 1 when r = 0, quadratically decreasing to zero when r = 1 and then it 

becomes negative. A physical interpretation of this result is that '  is positive when the 

modification is stiffness dominated, thus, the corresponding natural frequencies of the system 

are expected to increase relative to those of the unmodified system. On the other hand, when 

'  is negative, the overall modification is mass (inertia) dominated, which is causing the 

corresponding natural frequencies of the system to decrease relative to those of the 

unmodified system. '  = 0 corresponds to a special case at a specific frequency ' =  at 

which the system is not affected by the combination of mass and stiffness modifications at all.  

 

Figure 2: The non-dimensional parameter '  as a function of normalized frequency r. 

The amount of changes, or errors, in the first four natural frequencies of a cantilever beam 

as a function of non-dimensional mass (i.e., the ratio of the tip mass to the mass of the beam) 

and stiffness (i.e., the ratio of the spring coefficient to the stiffness of the beam) are plotted in 

Fig. 3. The results suggest that the mass and stiffness modifications can lead to unacceptable 

levels of errors in natural frequencies. Furthermore, it is seen, as expected, that while the 

stiffness effect can be dominant for the lower modes, higher modes are affected 

predominantly by the mass modification. The possibility of high levels of errors in natural 

frequencies naturally demands the removal of the adverse effects caused by the attached mass 
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and magnetic stiffening so as to estimate accurate material properties using the method in the 

ASTM E756 standard [9].  This is addressed in the next section.  

(a) (b)  

(c) (d)  

Figure 3: The errors in (a) first, (b) second, (c) third and (d) fourth natural frequencies of cantilever 

beams as a function of mass and stiffness ratios. 

 

3. Removal of the Adverse Loading Effects in the Oberst Beam Test Rig 

As stated before, testing non-magnetic materials using the Oberst beam test rig with a 

magnetic exciter requires making mass modification to the test specimen and this 

modification changes the natural frequencies, yielding an unreliable estimation of the material 

properties. Thus, the main objective of this work is to propose a method that can remove the 

adverse effects caused by such a modification. However, it is already known that the Oberst 

beam test rig with a magnetic exciter also introduces a magnetic stiffening effect [32]. 
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Therefore, for the complete removal of the adverse loading effects, it is also necessary to 

remove the adverse effects of magnetic stiffening. Accordingly, the method proposed here for 

the complete removal of the adverse loading effects is a two-stage process which comprises 

the removal of the mass loading effect in the first step followed by the removal of the 

magnetic stiffening effect, as suggested in [32], in the second stage. The associated steps in 

this process are outlined as a flowchart in Fig. 4. 

The theoretical aspect of the removal of the adverse effects of the mass modification is 

presented in the next subsection, followed by numerical validation of the proposed method 

using the FE results of the homogeneous and layered beams. The experimental validation of 

the proposed method is carried out in the last subsection using ferromagnetic (steel) as well as 

non-magnetic beams. 

Step 2: Perform FRF 
measurements (vary magnetic 

effect) 

Step 5: Remove the adverse 
stiffening effects

Step 3: Identify natural 
frequencies and loss factors

Step 4: Remove the adverse 
mass loading effects 

Step 1: Attach magnetic 
discs to test specimen

Step 6: Calculate material 
properties 

 

Figure 4: The outline of the proposed method to identify material properties of non-magnetic 

specimens. 

 

3.1 Theory 

In what follows, the theoretical foundation of the proposed method for the removal of 

only the mass loading effect is described. For brevity, the theory of the identification and 

removal of the adverse effect of the magnetic stiffness is not included here as it is already 
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available in [32]. However, removal of both mass and stiffness modifications are included in 

experimental applications of the proposed method in a forthcoming section.  

Removing the adverse effects of undesirable mass loading from vibration measurements 

has been investigated extensively in the literature. However, the undesirable mass loading 

effects studied in the literature are generally considered to be caused by measurement 

transducers and such adverse effects are mostly removed from FRFs [38–40]. In the present 

study, we aim to determine the natural frequencies of the unmodified test specimen using the 

natural frequencies of the modified system so that it will be possible to estimate accurate 

material properties. 

If one considers the case when a lumped mass is attached to the tip of a cantilever beam 

(without the magnetic spring effect), the characteristic equation given in Eq. (7) can be re-

written as: 

 ( ) ( )3/4 1/4 1/4 1/4 1/4 1/4 1/4cos cosh 1 cos sinh cosh sin 0m       + − − =   (14) 

where 

 

2 3

m

m L

EI
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

−
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The symbol m  here represents the situation when there is only an additional mass effect. m  

in the characteristic equation can be expressed in terms of the parameter λ as follows: 

 m

m

AL
 


= −   (16) 

This equation allows the characteristic equation to be written as a function of λ, tip mass m 

and the mass of the test beam as:  
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 ( ) ( )1/4 1/4 1/4 1/4 1/4 1/4 1/4cos cosh 1 cos sinh cosh sin 0
m

AL
      


+ + − =   (17) 

The eigenvalue λ satisfying Eq. (17) can now be referred to as the mass-affected 

eigenvalue, and hereupon, it is denoted with symbol λm. On the other hand, the corrected 

eigenvalue (i.e., the eigenvalue of the characteristic equation of the cantilever beam without 

any adverse effect) satisfying Eq. (11) is denoted by λc. Accordingly, the ratio of λc to λm 

given in Eq. (18) can be obtained purely based on theoretical grounds by numerically solving 

Eqs. (11) and (17).  

 c c m  =   (18) 

Once the eigenvalue ratio in Eq. (18) is known for a given tip mass and noting the relationship 

between the eigenvalue and the natural frequency:   

 1/2

4

1

2
c c

EI
f

AL


 
=   (19) 

the corresponding natural frequencies of the test beam without the adverse effects of the tip 

mass (fc) can be calculated using the measured natural frequencies with the tip mass (fm) as 

follows: 

 c m cf f =  (20) 

The so-called Frequency Correction Factors (FCFs) for individual modes, 
c , are 

calculated as a function of the ratio of the tip mass to the mass of the cantilever beam and 

results are presented in Fig. 5 for the first four bending modes. It can immediately be seen that 

the lower modes are more strongly affected by the tip mass modification. It can also be seen 

that larger the attached mass, the higher the adverse effect, hence the FCFs. It is worth stating 
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that the theoretical results presented in Fig. 5 allow one to determine the FCFs just by 

knowing the attached mass and the total mass of the test beam.  Although not included here 

for brevity, FCFs for modes higher than the fourth mode can also be obtained by using the 

same procedure described above. 

 

Figure 5: Frequency correction factors as a function of the non-dimensional mass ratio for the first 

four modes of cantilever beams. 

After the correct natural frequencies of test samples are obtained, their material properties 

can be determined with higher accuracy. The Young’s modulus of a self-supporting material 

for a given mode is calculated as [9]: 

 

4 2

2 2

12 n

n

L f
E

H C


=   (21) 

where ρ is the density [kg/m3], L is the length of the beam [m], fn is the nth corrected natural 

frequency [Hz], H is the thickness of the specimen [m], and Cn refers to the coefficient for the 

cantilever beam. The loss factor of a self-supporting material can be obtained via analysing 

the measured FRFs. The proposed method can also be applied to non-self-supporting 

materials by using the layered configurations in OBM [9]. For this purpose, the measured 

natural frequencies of the base and layered beams are corrected first, then the corrected 
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natural frequencies are used to determine the material properties according to the formulations 

presented in [9] as described in the next section. 

3.2 Numerical Validation 

This subsection aims to demonstrate the validity of the proposed method for the removal 

of the adverse effect of the tip mass via numerical simulations based on the FE approach. The 

removal of the adverse effects of both the tip mass and the stiffness of the electromagnetic 

exciter are addressed in the next section using experimental data. Here, a homogeneous and 

three free-layered beams (named as FL1, FL2 and FL3) are investigated. The homogenous 

beam is made of aluminium and the individual free-layered (Oberst) beams are formed using 

the same aluminium base and three different damping materials. The properties of the base 

and damping layers are listed in Table 1 where the symbols ν and η represent the Poisson’s 

ratio and the loss factor of the materials, respectively.  

Table 1: The properties of the base and damping layers for the beams used in numerical simulations 

(Length: 220 mm, width: 10 mm). 

Material t (mm) E (GPa) ν ρ (kg/m3) η 

Aluminium 1 69.0 0.35 2700 0.00 

DM1 2 0.2 0.45 1460 0.38 

DM2 2 1.0 0.45 1460 0.38 

DM3 2 5.0 0.45 1460 0.38 

 

Sufficient numbers of three-dimensional 20-noded solid elements, (C3D20R) in 

ABAQUS [41], are used for modelling the homogenous and layered beams. In the FE model, 

the tip mass is modelled as a lumped point-mass with a value of 0.34 g at the tip of the beam. 

Natural frequencies of the beams are predicted for the two cases corresponding to the 

situations with and without the tip mass. Then, the natural frequencies of the beams without 

the tip mass (referred to as mass-corrected frequencies) are calculated using the FCFs and the 

natural frequencies of the beams with the tip mass. The results are listed in Table 2. It can be 
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clearly seen that a tip mass of less than even half a gram can produce a very significant 

amount of error in natural frequencies if the tip mass is ignored in the model. However, it can 

also be seen that the proposed method is successfully estimating the correct natural 

frequencies of the bare and layered beams without the tip mass, thus, reducing the errors in 

the natural frequencies to almost a negligible level.  

Table 2: Comparisons of the actual, estimated (with the tip mass) and the corrected natural 

frequencies, and the associated errors.  

  Without tip mass 
With tip mass FCF Mass-Corrected 

 (Actual) 

Beam MODE factual (Hz) fm (Hz) Error (%)  fc (Hz) Error (%) 

Base 1 16.96 15.29 -9.85 1.1091 16.96 0.00 

 2 106.26 97.34 -8.39 1.0915 106.25 -0.01 

 3 297.54 275.68 -7.35 1.0791 297.49 -0.02 

 4 583.15 545.29 -6.49 1.0692 583.02 -0.02 

        

FL1 1 12.77 12.12 -5.09 1.0535 12.77 0.00 

 2 79.99 76.24 -4.69 1.0491 79.98 -0.01 

 3 223.81 214.08 -4.35 1.0455 223.82 0.00 

 4 438.18 420.50 -4.03 1.0421 438.20 0.00 

        

FL2 1 16.14 15.31 -5.14 1.0535 16.13 -0.06 

 2 101.01 96.28 -4.68 1.0491 101.01 0.00 

 3 282.42 270.15 -4.34 1.0455 282.44 0.01 

 4 552.36 530.08 -4.03 1.0421 552.40 0.01 

        

FL3 1 26.34 24.99 -5.13 1.0535 26.33 -0.04 

 2 164.82 157.09 -4.69 1.0491 164.80 -0.01 

 3 460.59 440.56 -4.35 1.0455 460.61 0.00 

 4 900.10 863.78 -4.04 1.0421 900.15 0.01 

 

In accordance with OBM, the Young’s moduli of the base beam and the damping layers 

are calculated using the uncorrected and corrected natural frequencies listed in Table 2. The 

results are presented in Table 3. It is seen that, for the base beam (i.e., for self-supporting 

materials), the proposed method removes almost all of the adverse effects of the additional 

mass, leading to identify the correct material properties. Inspection of the identified Young’s 
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moduli of the individual damping layers before and after the mass-corrections in Table 3 

reveals that: (i) the tip mass can cause very large amount of errors in estimated material 

properties if its adverse effects are not removed, (ii) the proposed method successfully 

eliminates the errors caused by the tip mass in all cases, reducing the errors in E to a level of 

about 0.3 % even in the worst case. It should be noted that if the adverse effects of the added 

mass are not removed, the same amount tip mass can result in very different levels of errors in 

identified E of the damping layer depending on the properties of the Oberst beam (e.g., on 

average, more than 25% for DM1, about -1% for DM2 and about -6% for DM3). These errors 

depend on how the natural frequencies of the Oberst beam are changing relative to those of 

the base beam. The highest errors are obtained when the natural frequencies of the Oberst 

beam are significantly lower than those of the base beam due to the inertia dominated effect 

of the free layer. 

Table 3: Comparisons of the actual (reference), estimated (with the tip mass) and the corrected 

Young’s moduli, and the associated errors. 

  Without tip mass 

(Reference) 
With tip mass Mass-Corrected 

Layer Mode EFE (GPa) EFE (GPa) Error (%) Ecorr (GPa) Error (%) 

Base 1 69.718 56.664 -18.7 69.718 0.00 
 2 69.683 58.475 -16.1 69.670 -0.02 
 3 69.688 59.824 -14.2 69.664 -0.03 
 4 69.708 60.951 -12.6 69.677 -0.04 

       

DM1 1 0.2035 0.2838 39.5 0.2035 0.00 
 2 0.2028 0.2632 29.8 0.2027 -0.05 
 3 0.2008 0.2480 23.5 0.2013 0.25 
 4 0.1980 0.2353 18.8 0.1986 0.30 
       

DM2 1 1.0205 1.0245 0.39 1.0178 -0.26 
 2 1.0151 1.0067 -0.83 1.0153 0.02 
 3 1.0086 0.9915 -1.70 1.0093 0.07 
 4 0.9996 0.9771 -2.25 1.0005 0.09 
       

DM3 1 5.0849 4.7653 -6.29 5.0795 -0.11 
 2 5.0643 4.7473 -6.26 5.0630 -0.03 
 3 5.0362 4.7260 -6.16 5.0375 0.03 
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 4 4.9969 4.6981 -5.98 4.9986 0.03 

 

The Young’s moduli of the bare beam and the damping layer as well as the loss factors of 

the Oberst beam are required for the determination of the loss factor of the damping layer. 

The modal loss factors of the beams with and without the tip mass are estimated using the 

modal strain energy method [42]. Although the numerical results are not presented here, for 

brevity, it is found that adding tip mass as a lumped point-mass to the FE models did not 

cause any change in modal loss factors of homogenous and layered (Oberst) beams. This is an 

expected result since a lumped point-mass can neither stores strain energy nor dissipates 

energy. It is worth stating here that this issue is revisited in the discussion section where the 

tip mass is considered as a 3D object in the FE model. As a summary, the results of the FE 

simulations suggest that the method proposed for removing the adverse effects of mass 

modification can be very effective for determining the correct modal parameters of the test 

specimens.  

3.3 Experimental Validation 

An experimental setup is designed for the experimental validation and application of the 

proposed method for the removal of the adverse effects of the tip mass and the magnetic 

stiffness. In the experimental study, a signal is generated and amplified using a power 

amplifier (TWS 18) and sent through a T-router to the magnetic exciter. The other end of the 

T-router is connected to an analyser, as shown in Fig. 6(a). A laser scanning head (Polytech 

PSV 400) is used to measure the response of the beam exposed to the electromagnetic 

excitation and the response signal is also sent to the analyser to perform FRF measurements. 

The measurements are performed within 0-2000 Hz. An image of the Oberst beam test rig, 

including the test specimen with ferromagnetic discs, is also presented in Fig. 6(b). It is worth 

mentioning here that the length of the segment of the beam exposed into the magnetic exciter 
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slot (δ), shown in Fig. 6(a), is the main parameter controlling the magnetic stiffening effect 

and, when δ is constant, it is acting as a linear spring [22,32]. 

         

         (a)                                                                                       (b) 

Figure 6: (a) Schematic of the experimental setup and (b) the Oberst beam test rig including the test 

specimen with ferromagnetic discs. 

The next two subsections present the results of the applications of the proposed method to 

beams made of different materials. The homogeneous beam is made of steel, which, in fact, 

does not require the attachment of additional ferromagnetic material to the tip of the beam for 

magnetic excitation. However, a homogeneous steel beam is deliberately used here so as to be 

able to determine the actual natural frequencies of the system without the tip mass 

experimentally so that the performance of the method can be assessed using the “actual” 

natural frequencies and loss factors as reference values. Then, the proposed method is used 

for a beam made of non-magnetic material, which represents a real situation demanding tip 

mass modification in order to estimate modal properties for material characterisation.  

3.3.1 Validation using a homogeneous beam made of ferromagnetic material 

A steel beam specimen with the properties t = 1 mm, w = 10 mm, L = 220 mm, ρsteel = 

7581 kg/m3 is tested using the Oberst beam test rig. FRF measurements are performed 

without the tip mass first, and then with a total of 0.34 g tip mass (two small discs made of 
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steel) in order to quantify the effects of the attached mass. The discs are glued to the tip of the 

beam on both sides such that the mass centres of the discs coincide with the tip of the beam. It 

should be noted, however, that this resulted in a portion of the small discs extending beyond 

the tip of the beam. Sample FRFs presented in Fig. 7 clearly demonstrate the natural 

frequency shifts caused by the attachment of the ferromagnetic discs to the tip of the beam. It 

is also seen in Fig. 7 that the sharpness of the peaks of the FRFs around each mode remains 

almost the same, suggesting that the change of modal damping values due to the added tip 

mass is either very small or negligible. The experiments are performed for different values of 

gap parameter, δ, with an increment of 1 mm, in order to estimate the magnetic stiffening 

effect of the electromagnetic exciter. However, the maximum possible value of δ, dictated by 

the magnetic exciter used in the tests, was 5 mm.  

 

Figure 7: Two measured FRFs of the steel beam with (dashed curve) and without (continuous curve) 

tip mass modification. 

The tests described so far provided experimentally identified natural frequencies for the 

steel beam with and without the tip mass for different values of gap parameter δ. The natural 

frequencies corresponding to the beam with tip mass are corrected using the FCFs in order to 

estimate the natural frequencies of the system without the tip mass. The FCFs are obtained to 

be 1.0407 for the first mode, 1.0377 for the second mode, 1.0353 for the third mode and 

1.0334 for the fourth mode. The measured natural frequencies of the beam with and without 
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the tip mass, and the mass-corrected natural frequencies are plotted as a function of the gap 

parameter in Fig. 8. 
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Figure 8: Experimentally obtained natural frequencies of a steel specimen with tip mass (▲), without 

tip mass (♦) and mass-corrected natural frequencies (■) for (a) first, (b) second, (c) third and (d) fourth 

modes.  

The inspection of the results presented in Fig. 8 demands assessing the results in two 

frequency ranges; one for the higher modes, and the other for the lower modes (first mode in 

this case). As far as the higher modes are concerned, it can be seen that the natural frequencies 

of the beam with the tip mass are always lower than those without the tip mass, implying that 

mass modification is dominating at these frequencies. Also, the results clearly show that the 

natural frequencies of the beam with and without the tip mass, even for a quantity of tip mass 

which is less than half a gram, are significantly different from each other, suggesting that 
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even such a small amount of tip mass should not be ignored in practice. Nevertheless, it is 

obvious that the application of the proposed method successfully estimates the natural 

frequencies of the beam without the tip mass using the natural frequencies of the beam with 

the tip mass and the calculated FCFs. As seen in Fig. 8, the corrected natural frequencies are 

very close to the correct ones for the second, third and fourth modes. On the other hand, the 

results for the first mode may appear somewhat unexpected at first sight in the sense that in 

spite of the tip mass modification, the natural frequency of the first mode hardly changes for 

the lower values of the gap parameter δ and then starts to increase for higher values of δ. This 

is actually not surprising at all; the results are simply demonstrating that around the first 

natural frequency, the net effect of the tip mass and magnetic stiffness modification is mainly 

stiffness dominated, causing the natural frequency to increase as the gap parameter is 

increased. However, it can also be seen that the effects of mass and stiffness modifications 

approximately cancel each other out when δ is about 1.0 mm, yielding almost identical natural 

frequencies for the beams with and without the tip mass.  

As the results in Fig. 8 demonstrate, the removal of the adverse effect of the tip mass 

alone may not be sufficient, especially for the lower mode(s) (in this case the first mode), in 

order to predict the natural frequencies of the unmodified system with acceptable accuracy. 

Thus, the removal of the adverse effect of the magnetic stiffness is also needed. This is 

addressed using the extrapolation method recommended in [32], yielding the final, corrected 

natural frequencies of the system as listed in Table 4. A third order extrapolation is employed 

here for removing the adverse magnetic stiffening effect. However, it is worth stating here 

that the order of the extrapolation does not significantly change the estimated natural 

frequencies. All in all, as can be seen from Table 4, the corrected natural frequencies (cleared 

from both of the adverse effects), fsc, are estimated with an error of less than half a percent for 

higher modes. However, the error for the first mode is somewhat higher, at around 3%. The 
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error being higher for the first mode is actually expected since the first mode is known to be 

adversely affected by other factors including air resistance. In fact, the use of the experimental 

results for the first mode is not recommended in practice, especially for sandwich beams for 

material characterisation [9]. Accordingly, although the results for the first mode are included 

in this paper, we do not recommend the use of the data for the first mode for the 

characterisation of materials if the test system introduces both mass and stiffness 

modifications to the test specimen.  

Table 4: Natural frequencies of a steel beam before and after the removal of the adverse effects of tip 

mass and magnetic stiffening.  

 

Experimental  

(without tip mass - actual) 

Experimental  

(with tip mass) 
Corrected 

Mode factual (Hz) fm (Hz) Error (%) fsc (Hz) Error (%) 

1 17.01 16.85 -0.94 17.54 3.12 

2 106.21 102.66 -3.34 106.53 0.30 

3 297.49 288.22 -3.12 298.39 0.30 

4 583.32 566.26 -2.92 585.16 0.32 

 

The benefits of the removal of the adverse effects of mass and stiffness modifications on 

material characterisation are also investigated. Accordingly, the Young’s moduli of the steel 

beam specimen are calculated using Eq. (21) by using the correct natural frequencies 

(experimental ones without the tip mass), natural frequencies with the tip mass and magnetic 

spring, and by using the corrected natural frequencies via the procedure proposed in this 

paper. The results presented in Table 5 confirm that the errors in the estimated Young’s 

moduli can be reduced by almost an order of magnitude for higher modes, although the error 

reduction in the estimated material properties corresponding to the first mode is somewhat 

higher. The reason for this relatively lower accuracy for the first mode is believed to be 

mainly due to the portion of the small discs made of ferromagnetic material extending beyond 

the tip of the beam as well as other non-linear effects including the air resistance. 
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Table 5: Comparisons of the estimated Young’s moduli of a steel beam with its actual values.  

 

Experimental  

(without tip mass - actual) 

Experimental  

(with tip mass) 
Corrected 

Mode Eactual (GPa) Emeas (GPa) Error (%) Ecorr (GPa) Error (%) 

1 196.91 193.22 -1.9 209.37 6.3 

2 195.47 182.62 -6.6 196.65 0.6 

3 195.60 183.60 -6.1 196.79 0.6 

4 195.84 184.55 -5.8 197.08 0.6 

 

The loss factors of the specimen are also determined using the measured FRFs with and 

without magnetic discs. The line-fit method [43] is used for this purpose and the results are 

listed in Table 6. It is known that the elastic and damping properties of steel are not expected 

to change with frequency in the frequency range of interest here. The identified loss factors 

are found to be about 0.2% or lower and these results in Table 6 are in good agreement with 

the literature [9]. It is seen that the gap parameter and mass modification have a negligible 

effect on modal loss factors (the difference being less than 0.06%), circumventing the need 

for any correction of modal loss factors. As stated before, the use of the first mode is not 

recommended in the standard as it is difficult to estimate reliable material properties for this 

mode. Accordingly, the loss factors for the first mode are not included in Table 6. 

Table 6: The experimentally determined modal loss factors of the steel beam with and without tip 

mass for different configurations of the gap parameter. 

Without Tip Mass 

δ (mm) 1 2 3 4 5 Average 

MODE η (%) 

2 0.22 0.21 0.19 0.24 0.25 0.22 

3 0.16 0.16 0.16 0.17 0.16 0.16 

4 0.14 0.14 0.15 0.13 0.14 0.14 

       
With Tip Mass 

δ (mm) 1 2 3 4 5 Average 

MODE η (%) 

2 0.24 0.24 0.22 0.22 0.23 0.23 

3 0.15 0.16 0.15 0.16 0.16 0.15 

4 0.13 0.13 0.13 0.13 0.13 0.13 
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3.3.2 Application to a beam made of non-magnetic material 

This section presents the application of the proposed method to a non-magnetic (carbon-

fibre reinforced composite) beam specimen whose properties cannot be measured via the 

Oberst beam test rig with an electromagnetic exciter without the use of ferromagnetic discs. 

The active length of the beam used here is L = 220 mm, the beam thickness is 0.7 mm and the 

overall density of the beam is ρcomp = 1202.6 kg/m3. One can easily infer that the adverse 

effects of the added mass will be stronger in this case due to the density of the beam being 

lower than that of the steel beam used in the previous tests. Two ferromagnetic discs (with a 

total mass 0.34 g again) are glued at the tip of the non-magnetic beam and the measurements 

are carried out for different gap parameters as it is done for the steel beam. The FCFs are 

calculated (using the ratio of the tip mass to the mass of the beam) for the beam and found to 

be 1.3216 for the first mode, 1.2011 for the second mode, 1.1471 for the third mode and 

1.1147 for the fourth mode. The high values of these FCFs immediately reveal that the added 

tip mass affects the natural frequencies quite strongly. 

The measured natural frequencies of the non-magnetic beam with the tip mass as well as 

the mass-corrected natural frequencies are presented in Fig. 9. As anticipated, the difference 

between the corrected and the measured natural frequencies are much greater than the 

corresponding results for the steel beam due to the density of the non-magnetic beam being 

much lower than that of the steel beam. After the removal of the effect of the tip mass, the 

effect of the magnetic stiffening effect is also removed by interpolating the mass-corrected 

natural frequencies in Fig. 9, i.e., estimating the natural frequencies corresponding to δ = 0.  
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Figure 9: Experimentally obtained natural frequencies of a non-magnetic specimen (▲) and mass-

corrected natural frequencies (■), for (a) first, (b) second, (c) third and (d) fourth modes.  

Table 7: Natural frequencies of a non-magnetic beam before and after the removal of mass and 

magnetic stiffening effects. 

 Experimental  

(with tip mass) 
Corrected 

MODE fm (Hz) Emeas (GPa) fsc (Hz) Ecorr (GPa) 

1 13.32 39.1 17.60  68.3 

2 68.20 26.1 81.90 37.6 

3 196.55 27.6 225.47 36.4 

4 396.77 29.3 442.27 36.4 

 

The final values of the corrected natural frequencies together with the measured ones as 

well as the estimated Young’s moduli of the carbon-fibre reinforced beam using the measured 

and corrected natural frequencies are listed in Table 7. It is obvious that while the discs made 

of ferromagnetic material make it possible to excite the system and allow the identification of 

the natural frequencies, the added mass can change (reduce in this case) the natural 

frequencies very significantly, much more than those seen for the steel beam case. According 
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to these results, it can be said that without the removal operation of the adverse effects, the 

estimated Young’s moduli of the specimen would have been about 25% lower than the actual 

value. It should be stressed, once again, that although the Young’s modulus corresponding to 

the first mode is calculated and listed in Table 7, it is evident that the result for the first mode 

is not reliable. Hence, it should be ignored in practice.  

The experimentally determined modal loss factors of the carbon-fibre reinforced beam 

with different gap parameter values are listed in Table 8. These results reveal, once again, that 

the loss factors do not significantly vary with the gap parameter. The experimental and 

numerical results confirm that the proposed method for the removal of the adverse effects of 

mass modification, combined with the subsequent removal of the electromagnetic stiffening 

effects, is very effective. 

Table 8: The experimentally determined modal loss factors of the carbon-fibre reinforced beam with 

the tip mass. 

δ (mm) 1 2 3 4 5 Average 

MODE η (%) 

2 0.33 0.32 0.29 0.33 0.32 0.32 

3 0.20 0.21 0.22 0.19 0.20 0.20 

4 0.24 0.24 0.24 0.24 0.24 0.24 

 

4. Discussion 

In the proposed method, the attached mass (small discs) at the tip of the beam is modelled 

as a lumped point-mass. This means that the rotational inertia of the discs as well as the strain 

energy carried by the discs during deformation are implicitly assumed to be negligible. 

Moreover, it is assumed that the attached mass is positioned exactly at the tip of the beam, 

ignoring any positioning error. Here, using a FE model of the carbon-fibre reinforced beam 

(with 20-noded solid elements), some FE simulations are performed to assess the validity or 

implications of these assumptions. In the simulations, it is assumed that the discs are made of 
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steel, with material properties Edisc =205 GPa, ρdisc = 8750 kg/m3, νdisc = 0.3 and ηdisc = 0.0%, 

and the homogeneous beam is made of a non-magnetic material with material properties Ecf = 

37 GPa, ρcf = 1202.6 kg/m3, νcf = 0.35 and ηcf = 0.25%. This resulted in a mass ratio (discs 

masses to beam mass) being equal to about 0.18. The estimated natural frequencies using the 

FE model, their corrected values using the proposed method which does not take the 

rotational inertia effects into account and the corresponding errors are listed in Table 9. It can 

be seen that the effects of the discs’ rotational inertia on the natural frequency of the structure 

is almost negligible (less than 0.3%) for a mass ratio of 0.18 for the first four modes. Further 

analyses are carried out by doubling the mass at the tip and the error due to ignoring the 

effects of rotational inertia is found to be less than 0.5%, even for a mass ratio of 0.36.  

Table 9: The effects of rotary inertia of the discs on the natural frequencies of the test specimen. 

 Without discs 

(Actual) 

With discs 

(3D FE elements)  
Mass-Corrected 

MODE factual (Hz) fFE (Hz) fcorr (Hz) Error (%) 

1 13.02 9.89 13.00  -0.15 

2 81.56 67.97 81.50  -0.07 

3 228.39 198.95 228.04  -0.15 

4 447.71 400.76 446.49  -0.27 

 

The effect of the discs on modal damping values of the system is also investigated. During 

this investigation, the loss factors for the beam and disc materials are set to ηcf  = 0.25% and 

ηdisc = 0.0%, respectively. The modal loss factors for the beam with and without the discs are 

predicted via the modal strain energy method using the FE models. The modal loss factors for 

the beam with and without the discs are found to be almost identical, i.e., 0.25%. This means 

that strain energy stored by the discs at the tip of the cantilever beam is extremely small 

compared to that of the beam itself, hence, the effect of the tip mass on modal damping levels 

can safely be considered negligible as verified experimentally before. 
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As stated, the proposed method in this paper assumes that the ferromagnetic discs are 

placed exactly at the tip of the beam. However, this may not be possible in practice. Possible 

errors that might be caused by the imprecise positioning of the discs are estimated using the 

FE model for the carbon-fibre reinforced beam again. Natural frequencies of the system are 

predicted when the discs are placed at slightly different positions around the tip of the beam 

and the corrected natural frequencies are determined using the proposed method. Then, the 

errors in the natural frequencies due to the inaccurate positioning of the discs are determined 

and listed in Table 10. It can be seen that accurate positioning of the discs at the tip of the 

beam is important; a positioning error of around 1mm can lead to an error of around 0.8% in 

corrected natural frequencies for the first four modes. 

Table 10: Errors in corrected natural frequencies caused by misplacement of the tip mass. 

Error in position of 

the tip mass  (mm) 
0.5 1 1.5 

Mode Error (%) 

1 0.56 0.70 0.84 

2 0.48 0.80 1.12 

3 0.45 0.83 1.20 

4 0.44 0.85 1.26 

 

Positioning the discs at the tip of a beam has some advantages. For example, doing so 

guarantees that all the bending modes within a frequency range of interest can be excited by 

the electromagnetic exciter. Also, the strain energy carried by the added mass is automatically 

minimised when the mass is positioned at the tip of the beam. Nevertheless, the method 

proposed here can be extended for an arbitrary exciter position. The eigenvalue problem of a 

beam carrying a point mass at an arbitrary position has already been studied in the literature 

[44–46]. For extending the presented method here for an arbitrary disc position, only the 

characteristic equation in Eq. (17) should be replaced for the new case. This topic, as well as 
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testing different types of beam specimens including layered beams, is considered to be an area 

for future research. 

5. Conclusions 

The Oberst beam test rig with an electromagnetic exciter is widely used for identifying 

frequency-depended mechanical properties of materials. Although the specimens made of 

ferromagnetic materials can safely be excited and tested using this test rig, testing non-

magnetic materials using a test rig with an electromagnetic exciter is not possible unless some 

magnetic particles or ferromagnetic discs are attached to the tip of the test beam. However, 

attaching these particles or discs introduces undesirable mass modification combined with an 

electromagnetic stiffness effect to the system and these adverse effects can significantly 

reduce the accuracy of the estimated material properties. In this paper, first the consequences 

of such a modification are investigated and it is demonstrated that the natural frequencies of 

the beam with a relatively small amount of tip mass exposed to electromagnetic excitation are 

significantly affected. It is also shown that, relative to the unmodified system, the natural 

frequencies of the lower modes of the modified system can increase due to the stiffness-

dominated effect, while those of the higher modes decrease due to the mass-dominated effect. 

Then, a method is proposed for eliminating the adverse effects of the tip mass modification to 

the test specimen, which also allows the subsequent removal of the electromagnetic stiffening 

effects produced by the electromagnetic exciter.  

The validation of the proposed method is carried out using numerical simulations as well 

as experimental results. FE simulations confirmed that the proposed approach is very 

effective for removing the adverse effects of tip mass modification from the natural 

frequencies of homogeneous and Oberst beams subjected to such modifications, leading to 

more reliable identification of material properties. The experimental study comprised tests on 
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beam specimens made of steel as well as non-magnetic material. The experimental results 

also confirmed that the proposed method for the removal of the adverse effects of mass 

modification, combined with the subsequent removal of the electromagnetic stiffening effects, 

is very effective, making it possible to determine the Young’s moduli of non-magnetic 

materials with high accuracy. The findings of the experimental and numerical studies show 

that the magnetic stiffness and mass modification have negligible effects on modal loss 

factors of test specimens, hence, there is no need for correction of loss factors when a tip mass 

is used. The proposed method appears to be very promising for the accurate identification of 

material properties of non-magnetic materials using the Oberst Beam Method. 
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