CHURN ANALYSIS OF
GITTIGIDIYOR
CUSTOMERS

Using Machine Learning Techniques

Ozlem Hazal KANTARCI
311602023

[STANBUL, 2017

MEF UNIVERSITY
MSc Big Data Analytics

Executive Summary

Churn Analysis of GittiGidiyor Customers
Ozlem Hazal Kantarci
Advisor: Dr. Tuna Cakar
SEPTEMBER, 2017, 41 pages

In this project, it is aimed to estimate the loyalty of the customers of the e-commerce
company named GittiGidiyor by analyzing the customer movements and examined which
movements affected the customer loyalty positively / negatively

In the dataset studied, it was seen that the number of active customers is much higher than
that of passive customers. Several methods have been tried to solve this "Class imbalance"
problem and it has been decided to replicate some lines of passive customers. Rows of
smaller classes are duplicated to compensate classes with generated code.

The data set was divided into training, validation and test and different algorithms were used.
One of the innovative approaches was training and validating models in an earlier time
window and testing the model with samples from a later time window. As a result of the
studies, it was decided to use "Linear Discriminant Analysis" considering its short training
time and especially the success of predicting passive customers.

Key Words: churn analysis, class imbalance problem, feature selection, pivot table,
correlation, process time, accuracy, classifier, boosting, linear discriminant analysis, decision
tree

Ozet

GittiGidiyor Musterileri icin Baglilk Analizi
Ozlem Hazal Kantarci
Tez Danismani: Dr. Tuna Cakar
EYLUL, 2017, 41 sayfa

GittiGidiyor e-ticaret sirketinin misterileri icin bagllik tahmini yapilmasi hedeflenen bu
projede musteri hareketlerinin analizi yapilarak musteri hareketlerinden musteri baglilig:
tahmin edilmeye calisildi.

Uzerinde calisilan veri setinde, aktif musteri sayisinin pasif musterilerden ¢ok daha fazla
oldugu goériildi. Bu “Sinif Dengesizligi” sorununu ¢ézmek igin bir gok yéntem denendi ve
pasif misterilerin bazi satirlarinin gogaltiimasina karar verildi. Gelistirilen kod ile siniflari

dengelemek i¢in daha kiigik sinifin satirlarinin gogaltiimasi saglandi.

Veri seti egitim, dogrulama ve test olarak lige ayirarak farkl algoritmalar ile galigildi.
Uygulanan inovatif yaklagimlardan birisi egitim ve dogrulamayi daha énceki bir zaman
diliminde yapilan iglermler ile yapilmasi, testin daha sonraki bir zaman diliminde yapilan
islemler ile yapilmasi oldu. Calismalar sonucunda hem egitim siresinin kisa olmasi hem de
Ozellikle pasif musterileri tahmin etme basarisi g6z 6ntinde bulundurularak “Linear
Discriminant Analysis” kullaniimaya karar verildi.

Anahtar Kelimeler: bagllik analizi, sinif dengesizligi, 6zellik segimi, pivot tablo,calisma
suresi, basari ylzdesi,korelasyon,siniflandirici,karar agaci, dogrusal diskriminant analizi

Table of Contents

Academic Honesty Pledge..........cooriiiiiiiieiiiieiei e i
EXecutive SUMMAIYo.uuuieiiieeceeeeeeeccceeeere e iii
OZEE ettt ettt n e iv
1 (oTe 18 o7 i o] o 1
Exploring the Datasetoooeeiiiiiiiiiicie e, 2
Exploratory Data ANAlYSIScccecieiececeecccceeceeeee e e 2
Data PreproCessinguu.ceiiieiieice et 6
Transforming the Data Frame ... e e 6
I E= = O [T g o o 11
Proof of Method Validitycc.coocioiiiiiiiieiie et e e e e e 11
Class Imbalance Problem ... e e e e e e e e e e nnnnes 18
FRAIUIE: SOOI xvsunsnsmss somesmsnmmss o ssmsirssnss i o3 swss M s AAAaT55 55555 S mamnnman s e Kmn 20
Training and AlgorithmsS.........ccviiiiiiiiiiecccccce e, 22
Gradient BOOSHINGcociiiiiiriiiee ettt e e e e e e nnraee s 22
Gradient Boosting RegreSSOr. ... iiiiiiieieiiiiccccceeeie e et ee e e e e et ee e e e e e e snnneeee e 23
Decision Tree Classifier scumssemmmssmmmumsmsumssus i s m i iaisiomenommmnemnmssnsns 26
Naive Bayes Classifier ...ttt e e sne e e e e anae e e e s 29
Multi-layer Perceptron ClassSifier....... .ot e e 29
Support VEector Machinescoei it srecctte et e e s e sree e e cane e s s snee e s e nnnnees 29
Linear Discriminant ANaIYSIScocueeiiiiiiiiiiciccceniieee e e e e e s e e e e e e e ssnnne e e ee e e s 29
(@70] g Te] U 1] o] o [URURSRR 31
REfErenCesScoovuieeeecccee e 32
APPENAIX A et e eaaaas 33
APPENTIX B ... 34

Introduction

GittiGidiyor is one of the biggest e-commerce companies of Turkey. It aims to increase
customer satisfaction and customer loyality using Big Data Analytics and Machine Learning.
If customers who are likely to leave can be predicted in advance it can be possible to take
counter measures to prevent them leave.

“Churned customer” is defined by Gittigidiyor as “a customer who has not made any
transactions in the last 365 days. The aim of this project is predicting the customers that will
churn in the next x months.

To build a predictive model of churn, historical data of customer transactions was analyzed.
GittiGidiyor provided a table of transactions from which the following information could be
extracted:

e length of the business relationship
e frequency of customer transactions
e types of products purchased

e average purchase sizes

e bad experience frequency

Customer demographics was not provided by Gittigidiyor. Accuracy of this study can be
further improved using attributes such as:

e age

e gender
e segment
e job type

e geographic location

In some real world applications, various problems related to the data can reduce the power
of machine learning algorithms. The problem of "Class imbalance" encountered in this
project is one of them and a common one." Class imbalance" occurs when a class is
represented by many individuals while the other one is represented by only a few people,
which may cause some problems. Such a situation can cause problems. Several techniques
have been proposed in the literature. One of these techniques was used in this project

For the initial investigation of data, a proprietary data mining software RapidMiner and
Microsoft Excel were used. Later, all the coding was done in Python on Jupyter Notebooks
using the libraries Pandas, numpy and sckit-learn. Plots were created using graphviz and
mplot3d libraries. ‘

Exploring the Dataset

GittiGidiyor gave 2 files containing customer transactions called SMF0.csv and SMF1.csv.

SMFO0 includes all the transactions whether they are completed (paid, delivered and
approved) or not. SMF1 includes only the approved transactions. Thus, approved
transactions exist in both files.

If customers are not satisfied, they can start return/cancellation process. The price of these
products are not passed to the sellers and these transactions reside only in SMFO.

If customers don’t start return/cancellation process within 15 days after delivery, these
transactions are automatically approved and copied into SMF1. It’s logical that some
transactions will exist in SMFO but not SMF1.

It may be expected that all transactions those exist in SMF1 will also exist in SMFO.
However, since our data is from a limited time window (April 1st 2015 — April 30th 2017),
some transactions that were approved between April 1st 2015 and April 15th 2015 may be
created before April 1st 2015 and, thus, not exist in SMFO.

In addition, some rare artifacts in data were discovered. Some transaction from mid 2016
exist only in SMF1. This may be caused by losing some lines in the database or problems
during exporting the data. (Sample member id: 24165)

In order to have a consistent data, only SMFO table was used in this study.

In addition to transaction data, some visit data was given by GittiGidiyor. It consisted the
number of visits of each customer on each day of the week and on some special days like
Valentine’s day, Mother’s day etc. These numbers were the sum of visits in the last 12
months. Since the dates needed to be parametrized, this data was not used at all.

Exploratory Data Analysis

SMFO has 125377 transactions. As of April 30th 2017, 82.3% of these transactions belong to
churned customers, while 17.7% of these transactions belong to active customers.

Status Count Fraction
Active 103229 0.823
Passive 22148 0177

Table 1: Distribution of transactions as of 30.04.2017

—
|

The transactions are between April 1st 2015 and April 30th 2017.

SMFType ~ EarliestDate LatestDate
iSMFo ,Apnl 12015 | April30,2017

e-_
Table 2 : Transaction date range

As seen in Figure 1, number of transactions increase dramatically after July 1% 2016.

HREPCRT_DATE

265,000
25,000
24,000
23.000
22,000
21,000
20,000
19,000
18,000
17,000
16,000
15,000
14,000
13,000
12,000
11,000
10,000
9,000
8,000
7000
8,000
5.000
4,000
3000
2000
1,000
0

Frequency

Jul 1,2015 12:00:00 AM EEST Jan 1,2018 12:00:00 AM EET Jul 1,2016 12:00:00 AM EEST Jan 1, 2017 12:00:00 AM EET

Figure 1 : Transaction date distribution

In Table 3, it's seen that 96% of all purchases are made using credit cards. Since 96% is a
quite high ratio, it does not give a discriminative information, and it's not used in the model.

Index Hominal value Absolute count Fraction
1 cc 119760 0955
2 ME 322 0.020
3 BKM 1879 0015
4 PP 757 0005
5 GP 449 0.004

Table 3 : SMFO payment types count

The categories of transactions are given in the dataset. Every letter/figure stands for a
category and they are stacked hierarchically. The first letter/figure is the top category.

,_“_,‘\

Table 4 shows the most common 20 categories and Figure 1 shows this distribution
graphically.

Only the top hierarchical category is used in the model.

Index Nominal value Absolute count Fraction
1 taf 3093 0.025
2 tc 2210 0.018
3 uéa 1805 0.013
4 ncma 967 0.008
5 la 945 0.008
6 1% 942 0.008
7 1cd 306 0.007
8 coch 821 0.007
9 3fa 818 0.007
10 tuct 813 0.006
11 3fo 785 0.006
12 tah 756 0.006
13 tucc 739 0.006
14 caabd 737 0.006
15 njc 684 0.005
16 (>4 672 0.005
17 rgz 624 0.005
18 usf 600 0.005
19 1de 571 0.005
20 xaf 567 0.005

Table 4 : The most common 20 categories

Bcare

CATC

Figure 2 : Category distribution in SMF0

Figure 3 shows the distribution of the installment count, which is between 1 and 12 with an
average of 2.87 as shown in Table 5.

~ SMFType Minlinstallment Average Installment Max Installment |

=

|

His

Frequency

SRR b

5.00
475
450
425
4.00
375

3350

)

325

- w
moN o o Mo
=1 wm o o o w o

125
1.00

073

0.25
0.00

|

" Table 5 : Installment count

5.0 85 70 75 8.0 85 90 95 100 105 110 115 120 125
Value

Figure 3 : Installment distribution

Amount of purchases gives an important information about churn probability of a customer.
Hata! Bagvuru kaynag bulunamadi. gives the statistical values of purchase amounts and

Figure 4 shows the distribution graphically. Amount is one of the most prominent features

that will be used in the model.

SMFO 1 0.020 246.093 51999.600 685.211

'SMFType Min Average Max. Deviation

|

 Table 6: Amount statistical values

B Amount

525
5.00
475
4.50
4325
4.00
375
350
325
3.00

273

Frequency

250
225
2.00
1.75
1.50
1.25
1.00
075
0.50
0.25
0.00

-

0 2500 5000 7,500 10000 12500 15000 17,500 20000 22,500 25,000 27,5&0 30000 32500 35000 37,500 40000 42,500 45000 47,500 30,000 52,500
Value

Figure 4: Amount distribution

Data Preprocessing

Transforming the Data Frame

SMFO is transaction based. The aim of this study is predicting the customers that will churn,
thus we need to convert the data to member based. Pandas’s pivot table will be used for this
transformation.

Every customer may have multiple rows. What is desired is having 1 single row for each
customer and still keep the information. In this section, it will be investigated how to collect
the information like shopping dates, bad experiences, categories, product IDs together in a
single row.

The data is from a range of time. The trained model will be tested for different time periods.
So, it’s required to handle dates easily. In the code, it's enough to set TODAY and
DAYS_TO_PREDICT variables. The remaining of the code assumes that the date of
execution is TODAY and it tries to predict the statuses of active customers
DAYS_TO_PREDICT days later.

For training, TODAY was set to 2016-04-28. The model was trained to predict 60 days later
and the trained model was tested after setting TODAY to 2017-02-28.

There are 2 separate code files for training and testing. Training code saves the trained
model to the disk, testing code reads the trained model from the disk and tests it for a
different time period.

Pivot tables were created starting from dates. Minimum and maximum of transaction dates
for each customer was taken and these were called “LAST PURCHASE” and
“FIRST_PURCHASE” in the new data frame.

first and last purchase dates of each member

piv2 = df.pivot_table (index=["member id"], values=["DATE"], aggfunc=[max, min])
piv2.fillna (0, inplace=True)

piv2.reset_index(inplace=True)

piv2.columns = ['member_id', 'LAST_ PURCHASE', 'FIRST PURCHASE']

Listing 1: Finding first and last purchase of customers

GittiGidiyor defines churn of a customer as not having a transaction in the last 12 months.
The status of each customer DAYS_TO_PREDICT days after TODAY was found and added
into the new data frame with a column name “FUTURE_STATUS”. FUTURE_STATUS is set
to 1 if the customer is still active on the prediction date, and to 0 if he churns.

PREDICTION DATE = TODAY + timedelta (days=DAYS_TO PREDICT)
ONE_YEAR_ BEFORE_PREDICTION = PREDICTION_ DATE - timedelta (days=365)

statuses ['FUTURE_STATUS'] = np.where(statuses['LAST PURCHASE'] >
pd.to_datetime (ONE_YEAR BEFORE PREDICTION), 1, 0)

Listing 2: Detecting statuses of customers on prediction date

Every PAYMENT_ID stands for a separate shopping cart. Number of unique carts for each
customer was found and put into the new column called “NUMBER_CARTS” with the code
in Listing 3.

carts = pd.DataFrame ()
carts = df.groupby("member_id").PAYMENT_ID.nunique().to_frame().reset_index()
carts.columns = ['member_id', 'NUMBER_CARTS']

Listing 3: Finding number of carts for each customer

Number of items each customer purchased is shown in column named “NUMBER_ITEMS”.

how many items did each member buy?

pivl = df.pivot_table(index=["member id"], values=["Amount"],
aggfunc=[np.sum, np.mean, len])

pivl.fillna (0, inplace=True)

pivl.reset_index(inplace=True)

pivl.columns = ['member_id', 'TOTAL AMOUNT', 'AVERAGE_AMOUNT PER_ITEM',
'NUMBER_ITEMS']

Listing 4: Finding how many items each member purchased

ey

The number of unique sellers each customer purchased from is stored in column called
“‘“NUMBER_SELLERS”.

number of unique sellers count per user

sellers = pd.DataFrame ()

sellers = df.groupby("member_id").s_member_id.nunique().to_frame().reset_index()
sellers.columns = ['member_id', 'NUMBER SELLERS']

Listing 5: Finding how many sellers each customer purchased from

The number of unique items each customer purchased is calculated by counting unique
URUN_IDs for each member and is stored in column called “NUMBER_UNIQUE_ITEMS” as
show in Listing 6:

number of unique product ids per user

products = pd.DataFrame ()

products = df.groupby(“member_id").URUN_ID.nunique().to_frame().reset_index()
products.columns = ['member_id', 'NUMBER UNIQUE ITEMS']

Listing 6:

The number of items each customer purchased is calculated by counting rows for each
customer and is stored in column called “NUMBER_ITEMS", as shown in Listing 7.

The total of amounts and average amount per item are also calculated in Listing 7.

how many items did each member buy?

pivl = df.pivot_table (index=["member id"], values=["Amount"],
aggfunc=[np.sum,np.mean, len])

pivl.fillna (0, inplace=True)

pivl.reset_index(inplace=True)

pivl.columns = ['member_id',6 'TOTAL_AMOUNT', 'AVERAGE AMOUNT PER ITEM',
'NUMBER_ITEMS']

Listing 7:

Since the transactions are from many number of categories, the number of transactions per
category is very low. Thus, only the top category is used for classification. The first
letter/figure is the top category.

New columns for each top category were added to the data frame, so it's possible to store
how many purchases each customer made from each category.

get only the top category

df ['TOP_CATEGORY'] = df ['CATC'] .astype (str) .str[0]

how many items did each member buy from each top category?

piv4 = df.pivot_table (index=["member id", "TOP_CATEGORY"], values=["PAYMENT ID"],
aggfunc=[len])

piv4.columns = piv4.columns.map('|'.join)

piv4.reset_index(inplace=True)

convert top categories index into columns

piv4 = piv4.pivot_table (index='member id', values="'len|PAYMENT ID',
columns='TOP_CATEGORY')

piv4.fillna (0, inplace=True)

piv4.reset_index(inplace=True)

Listing 8:

The number of unique top categories is stored in another column called
“‘“NUMBER_DIFFERENT_TOPCATEGORY”.

def count_nonzero (*args) :

cnt=0
for a in args:
if a>0:

cnt=cnt+1
return cnt

piv4 ['NUMBER_DIFFERENT TOPCATEGORY'] = piv4.apply(lambda row:
count_nonzero(row['l'],row[’2'],row['3'],row[‘a'],row['b'],row['c'],row['e'],row['f

'],row['g‘],row[’h'],row['i'],row['j'],row['k'],row['l'],row['m’],row['n'],row['p']
,row['r'],row['t'],row['u‘],row['v'],row['x'],row['y'],row['z']), axis=1)
Listing 9:

The number of times each member had a bad experience is stored in the column called
“NUMBER_BAD_EXPERIENCE”.

how many times did each member have a bad experience?

piv5 = df.pivot_table (index=["member_id"], values=["Bad Experience"],
aggfunc= [sum])

piv5.fillna (0, inplace=True)

piv5.reset_index(inplace=True)

piv5.columns = ['member_ id', 'NUMBER BAD EXPERIENCE']

Listing 10:

In order to find in how many 3-months periods each customer made purchases, the
transactions were handled in 4 separate periods ending in TODAY. This number is stored in
a column called “NUMBER_PURCHASE_PERIODS".

divide transactions in the last year into 4 periods
PERIOD1 = TODAY - timedelta(days=365)

PERIOD2 = TODAY - timedelta (days=273)

PERIOD3 = TODAY - timedelta (days=182)

PERIOD4 = TODAY - timedelta(days=91)

df_periodl = df[(df['DATE'] <= pd.to_datetime (PERIOD2))]

df_period2 = df[((df['DATE'] <= pd.to_datetime (PERIOD3)) & (df['DATE'] >
pd.to_datetime (PERIOD2)))]

df_period3 = df[((df['DATE'] <= pd.to datetime (PERIOD4)) & (df['DATE'] >
pd.to_datetime (PERIOD3)))]

df_period4 = df[(df['DATE'] > pd.to_datetime (PERIOD4))]

how many items did each member buy in each period

pivéa = df_periodl.pivot_table (index=["member_id"], values=["URUN_ID"],
aggfunc=[len])

pivéa.fillna (0, inplace=True)

pivéa.reset_index(inplace=True)

pivéa.columns = ['member_id', 'ITEMS_ PERIOD1']

piveb = df_period2.pivot_table (index=["member_id"], values=["URUN ID"],
aggfunc=[len])

piveb.fillna (0, inplace=True)

pivéb.reset_index (inplace=True)

pivéeb.columns = ['member_id', 'ITEMS_ PERIOD2']

pivéc = df_period3.pivot_table(index=["member_ id"], values=["URUN_ID"],
aggfunc=[len])

pivéc.fillna (0, inplace=True)

pivéc.reset_index(inplace=True)

pivéc.columns = ['member_id',6 'ITEMS_PERIOD3']

pivéd = df_period4.pivot_table(index=["member_ id"], values=["URUN_ID"],
aggfunc=[len])

pived.fillna (0, inplace=True)

pivéd.reset_ index(inplace=True)

pived.columns = ['member_id', 'ITEMS PERIODA4']

pivé = pd.merge(pivéa, pivéb, 'outer', on=['member id'])
pivé pd.merge (pivé, pivéc, 'outer', on=['member id'l])
pive pd.merge (pivée, pivéed, 'outer', on=['member id'l])

1

1}

pivée.fillna (0, inplace=True)

Listing 11:

After merging these pivot tables, some new columns were added:

e DATE_RANGE: number of days from the first transaction date to the last transaction
date

e SINCE_FIRST: number of days from the first transaction date to TODAY

e SINCE_LAST: number of days from the last transaction date to TODAY

e AVERAGE_PERIOD: average number of days between creating carts

e AVERAGE_AMOUNT_PER_CART: average amount per cart

10

piv['DATE RANGE']
piv['DATE_RANGE']

piv['LAST_PURCHASE'] - piv['FIRST PURCHASE']
piv['DATE_RANGE'] .dt.days

piv['SINCE FIRST']
piv['SINCE FIRST']

pd.to_datetime (TODAY) - piv['FIRST PURCHASE']
piv['SINCE_FIRST'] .dt.days

piv['SINCE_LAST'] pd.to_datetime (TODAY) - piv['LAST PURCHASE']
piv['SINCE LAST'] = piv['SINCE LAST'].dt.days

average time between each purchase

members ['AVERAGE_PERIOD'] = members ['DATE RANGE'] / members ['NUMBER CARTS']
members [' AVERAGE_AMOUNT _PER CART'] = members [' TOTAL_AMOUNT'] /
members ['NUMBER_CARTS']

Listing 12:

An extra column called “ANALYTICAL_DISTANCE” was created, but not used in the final
model because it was causing overfitting.

[AB]=y(x,%,) + (v,

Figure 5:

analytical distance between first and last purchase

members ['ANALYTICAL DISTANCE'] = ((TODAY - members ['LAST PURCHASE']) .dt.days**2 +
(TODAY - members['FIRST PURCHASE']).dt.days**2)**0.5
Listing 13:

Data Cleansing

Data cleansing was required before training the model.

After determining the status of members on PREDICTION_DATE, the transactions after
TODAY were discarded.

The customers who made only 1 transaction were also discarded, because they can’t be
regarded as permanent GittiGidiyor customers.

Proof of Method Validity

The model was trained by using the transactions between 28.04.2015 and 28.04.2016, then
the model was tested with the transactions between 29.04.2016 and 30.04.2017.
Comparison of extracted features prove that the distribution is similar in these two periods.
Please note that Table 7 is in log scale, while Table 8 is not. The distribution of most features
is very similar when some outliers are discarded.

11

—

=T

S

Train & Validation
with Log Scale

(28.04.2015 and 28.04.2016)

Test
with Log Scale
(29.04.2016 and 30.04.2017)

10¢

10°

10!

10°

TOTAL AMOUNT

0

20000 40000 €0000 €0000 100000 120000 140000

TOTAL_AMOUNT

10*

10*

107

10!

10° i
20000 40000 €0000 E0000 100000 120000140000 160000

10*

10%

10

1

AVERAGE_AMOUNT _PER_ITEM

0

10000

20000 30000 40000 50000

AVERAGE_AMOUNT PER_ITEM

10*

10*

10°

NUMBER_ITEMS

NUMBER_ITEMS

12

—_—

B

——
{

—

10*

10° 1

10?

10!

10°

NUMBER_DIFFERENT_TOPCATEGORY

NUMBER_DIFFERENT_TOPCATEGORY

10*

10°

10t 4

10° 4

10° {

10° 1

10!

10° §

NUMBER_GF

10° 5

10° 1

10! 1

10°

NUMBER_GF

NUMBER_BAD_EXPERIENCE

107 §

10* +

10% §

NUMBER_BAD_EXPERIENCE

10° ;

103 1

10°

13

sy

e

ITEMS_PERIOD1

- ITEMS_PERIOD1
10¢ | i i
103 4
103
107 1
1074
1
10 10! -
10° | 10°
ITEMS_PERIOD2 ITEMS_PERIOD2
10¢

10° {

107 1

10t

wpy—

ITEMS_PERIOD3

ITEMS_PERIOD3

14

]

[TEMS_PERIOD4 ITEMS_PERIOD4
10° 4 10¢
10° | 10°
102 10°
10! 10" A
10° 10° 1
NUMBER_PURCHASE_PERIODS MIMBER, PURCHASE PERIODS
10°
4x10%
3Ix10°
103 -
2x10°
107 1
| 10° : ; | .
10 15 25 35 40 10 15 25 30 35 40
NUMBER CARTS NUMBER_CARTS
10° 1 - : L -
1071 10° 4
10° 16
1 4
10 1o]
10° 1

15

[P

—

10*

10° {

102 8

10' {

10° {-

NUMBER_SELLERS

NUMBER_SELLERS

NUMBER_UNIQUE_ITEMS

10° 1

10° 1

lol B

10° §

10° 1

AVERAGE_PERIOD

16

AVERAGE_AMOUNT PER_CART

10°
10° 1
102
10* 1§
10° § - {
0 10000 20000 30000 40000 50000
Table 7: Feature Comparison between Train and Test Time Period (Log Scale)
Train & Validation Test
(28.04.2015 and 28.04.2016) (29.04.2016 and 30.04.2017)
SINCE_FIRST SINCE_FIRST
2000 A
2000
1750 1750
1500 1500 1
1250 1250 1
1000 1000 1
750 A 750 1
500 500
250 250
0- 0
200 250 300
SINCE_LAST SINCE_LAST
— : = 3500
3000
2000 -
2500 -
1500 1 2000 1
1500
1000 1
1000 -
500 500 |
0- 0-

17

? 8000 1

€000

4000

2000

FUTURE_STATUS

10000 A

0.0 02 0.4 0.6

08

10

FUTURE_STATUS
10000 i !
8000
6000 1
4000
2000 1
0 - : - .
00 02 04 06 08

ANALYTICAL_DISTANCE

i 2000 1

1750
’ 1500
| 1250 -
¢ 1000

750 |
500
250

ANALYTICAL _DISTANCE

2500 A1

2000

1500 H

1000

500

6000

2000

10000 1,

4000

DATE_RANGE

0 50 100 150 200 250

T
300

350

400

DATE_RANGE

2000

1750

1500

1250 A

1000

750

500 4

250 1

350 400

Table 8: Feature Comparison between Train and Test Time Period (not Log Scale)

Class Imbalance Problem

When the number of churned/not churned customers are compared a problem is observed.
r The number of active customers is much more than the number of passive customers. This

problem is called “Class Imbalance Problem”. Since the number of samples from these two

classes are not close to each other, the trained model may be biased.

members_active = members[members['FUTURE_STATUS'] == 1]
members_passive = members [members ['FUTURE_STATUS'] == 0]

members who made more than 1 transaction (not oneshot members)
members_active = members_active[members_active['NUMBER_CARTS'] > 1]
members_active = members_active[members_active['DATE_RANGE'] >0]

members_passive = members_passive [members_passive['NUMBER_CARTS'] > 1]
members_passive = members_passive [members_passive['DATE RANGE'] > 0]

Listing 14:
Active Passive
Number of Customers 3149 175

Table 9: Number of Active and Passive Cusiomers in Test Dataset

In order to balance samples of these 2 classes, some rows of passive customers are
duplicated. The code snippet in Listing 15 duplicates the rows of smaller class to balance
them.

add extra rows to balance
active_count = len(members_active.index)
passive_count = len(members_passive.index)

if active_count > passive_count:
diff = active count - passive_count
members = members_passive
while diff > passive count:
members = pd.concat ([members, members_passive])
diff = diff - passive_count
members = pd.concat ([members, members passive.sample (diff)])
members = pd.concat ([members, members_activel)

elif passive_count > active_count:
diff = passive_count - active count
members = members_active
while diff > active_ count:
members = pd.concat ([members, members_activel])
diff = diff - active_count
members = pd.concat ([members, members_active.sample(diff)])
members = pd.concat ([members, members_ passivel])

else:
members = pd.concat ([members_active, members passive])

Listing 15: Balancing classes

19

Please note that, the classes are balanced only for training and validation datasets. Classes
in the test dataset are not balanced.

Feature Selection

Many tests were run for feature selection. The most prominent features were selected by
investigating the correlation between them and their importances in trained models.

The correlation of columns of the new data frame is shown as a heat map in Figure 6.

For example, AVERAGE_AMOUNT_PER_CART, TOTAL_AMOUNT and NUMBER_CARTS
columns seem to be highly correlated, using all of them does not improve the accuracy, and
thus AVERAGE_AMOUNT_PER_CART is not included in training.

The top categories seem to have very little correlation between them, however, their
importance’s are low in the trained models, thus they are not included in training too. Instead
a new feature is defined as the number of different top categories and used as a feature.

TOTAL_AMOUNT BB =
AVERAGE_AMOUNT_PER_ITEM [l - - | |
NUMBER_ITEMS £ =
NUMBER_GF i}

|5 J a0

1
2
3
a
b
[
e

) e
€

H 2] 04

.
H)
K
i

m

n

n

T
t

u
v

x

y

04

z
NUMEER_DIFFERENT_TOPCATEGORY []
NUMBER_BAD_EXPERIENCE f
TEMS_PERICO1 |
TEMS_PERICD2 B
MEMS_PERICD3 =
TEMS_PERIOD4 B

NUMBER CARTS)
NUMBER_SELLERS ; [

NUMBER_UNIQUE_ITEMS

FUTURE_STATUS

AVERAGE_ FERIOD
AVERAGE_AMOUNT_PER_CART M

ANALYTICAL_DISTANCE

1=

~NMm @OV~ oc T TXTEeaN Y s> NN

v

NUMBER_BAD_EXPERIENCE

oD2
D3
oDS

NUMBER_GF
ITEMS_PER|

TEMS_PER

NUMBER_PURCHASE PER

TAL_AMOUNT
NUMBER_ITEMS

AVERAGE _AMOUNT_PER_ITEM
TEMSTPER

NUMBER_DIFFERENT_TOPCATEGOR

Figure 6: Feature Correlation Heat Map

20

SINCE_FIRST
SNCE_LAST
NUMBER_CARTS

DATE _RAN

NUMBER SELLERS

NUMBER_UNIQUE _ITEMS
FUTURE_STATUS
AVERAGE_ PERIOD

AVERAGE_ANMOUNT_PER CART

ANALYTICAL_DISTANCE

—

Columns which depend on the date of purchase directly cause overfitting due to the
definition of churn. They give too much hint for predicting and the accuracy increases
unfairly. Thus LAST_PURCHASE and ANALYTICAL_DISTANCE are excluded too.

Figure 7 shows the heat map of the features that were decided to be used. All combinations
of features with high and low correlation were tested one by one and these are found to be
the optimal set of features.

SUMBER DIEFERENT_TOFGATEGORY
AR FUACHASE SFRINS
TATF_RANGE

TOTAL_AMOURT

NOMBER_TENS

MAEER GF (R
NUMBER EAD EXFERIENCE
MMBER_CARTS

KUMBER_SFILERS

HUMBER_UNIGUE _TEMS

o & - o<
e 3 I T S S S
£ £ = i 4 i I
5 4 & S T T L
o =) =] # I o
o3 %5 2 & 2 § & £ £
Ng 22 g 2 =
o I
L < o - i
= I !
i & ir [
= -
0 o & 5
L] = z
L a
& 3 Z
¢ 3
o]
=]
=
#

Figure 7 : Correlation Heat Map of Used Features

21

Table 10 gives the description of the features that are used in the final model.

Feature Name

Feature Description

‘NUMBER_DIFFERENT_TOPCATEGORY'

how many different main categories a customer purchased from

'NUMBER_PURCHASE_PERIODS'

how many time periods a customer purchased in

'DATE_RANGE'

number of days between the last and the first purchases

‘TOTAL_AMOUNT'

total amount of a customer's purchases

'‘NUMBER_ITEMS'

total number of a customer's purchases

‘NUMBER_GF'

how many times a customer used the opportunity of the day

‘NUMBER_BAD_EXPERIENCE'

how many times a customer had bad experiences

‘NUMBER_CARTS'

how many different carts a customer has created

‘NUMBER_SELLERS'

how many different sellers a customer purchased from

‘NUMBER_UNIQUE_ITEMS'

How many different products a customer purchased

Table 10: Description of Features

Training and Algorithms

The model was trained using the transactions between 28.04.2015 and 28.04.2016. After the
member based data frame was created, the data frame was split into train and validation
datasets with the ratios of 80% and 20%.

The model was tested using the transactions between 29.04.2016 and 30.04.2017. The data
was transformed into member-based format and the whole data frame was used for testing

without splitting.

Many Machine Learning algorithms were tested to find the best accuracy. Feature
importances, partial dependence and boosting iterations were examined while comparing

the algorithms.

Gradient Boosting

lllustration of the effect of different regularization strategies for Gradient Boosting. The loss
function used is binomial deviance. Regularization via shrinkage (learning_rate < 1.0)
improves performance considerably. In combination with shrinkage, stochastic gradient
boosting (subsample < 1.0) can produce more accurate models by reducing the variance via
bagging. Subsampling without shrinkage usually does. In Figure 8, we can see boosting
iterations validation set deviance

22

No shrinkage
— learning_rate=01
12 1 — subsample=0.5
- learning_rate=0.1, subsample=0.5
-~ learning_rate=0 1, max_features=2

10 NN\

08 4

Test Set Deviance

06 4

0 20 40 €0 80 100
Boosting Iterations

Figure 8: Boosting iterations

Table 12 shows that this model predicts 66% of the active customers and 82% of the
passive customers correctly. Its performance for predicting churned customers is quite good.

However, Table 13 shows that its performance on test dataset is not so good. When the time
window is moved to 29.04.2016 - 30.04.2017 for testing, it can predict only 38% of the active
customers and 81% of the passive customers correctly.

Moreover, Table 14 shows that this model takes longer time train than the models trained
with other algorithms.

As a result, this model is not suitable for this use case since it can not predict churned
customers with a good accuracy.

Gradient Boosting Regressor

Partial dependence plots show the dependence between the target function and a set of
‘target’ features, marginalizing over the values of all other features (the complement
features).

In Table 11, the effects of selected features over the churn prediction accuracy is
investigates. (1 stands for active customers and 0 stands for passive customers)

23

o o

o
v
~

Partial dependence

449 l ' T ' l T T T
25 50 75 100 12s
NUMBER_DIFFERENT_TOPCATEGORY

Partial dependence
o o =] =]
w a ~ w

o
s

©
w

1
12 18 24 30 36
NUMBER_PURCHASE_PERIODS

Customers that purchased from more than
2.5 categories are less likely to churn.

Probability of customers that make purchases
in more than 2 periods to churn is less.
Customers that make purchases in more than
2 periods will definitely not churn.

09

08

07

06

Partial dependence

05

iy | I
0

50 100 150 200 250
DATE_RANGE

075

=)
-
=)

=]
o
b

o
w
bl

Partial dependence
o
&
=

o
v
t=3

ey al A _ i
0 E00 1600 2400 3200 4000
TOTAL_AMOUNT

If the date range between the first and the
last puchases is between 50 and 100, the
customer is less likely to churn. If the range
is less than 50, the probability is higher.

It's not possible to make a simple conclusion
with the total amount feature alone.

085

080

=}
~
o

Partial dependence

055
050 |

0 2 P &0 &0 100
NUMBER_ITEMS

o
o
o

o o
S %

o
o

wn
o

Partial dependence

o o o o
vl w
i @

o
w
~

=)
w
E=)

00 25 50 75 100
NUMBER_GF

Churn probability of a customer depends on
the number of items she purchased. The
probability is quite low if she purchased
more than 20 items.

Customers who used Opportunity of the Day
for more than 3 times are less likely to churn.
Customers who did not use it are more likely
to churn.

24

Partial dependence

0 5 10 15 20 s
NUMBER_BAD_EXPERIENCE

Partial dependence
o (=] o o
o v o o
= b @ "

o
w
o

0 15 » 4 €0 b3
NUMBER_CARTS

Cuustomers who did not file any bad
experience complaints are more probably to
churn. This may be interpretted as
customers who report having bad
experiences continue purchasing other
items after their problems are solved, but
many customers who have bad experiences
don’t report it and simply leave.

The probability of churn decreases if the
number of carts exceeds 13.

o
v
~

o ©
woowv
[-

=)
v
w

Partial dependence
o
P
o~

o o
[
- N

=)
w
=}

1l
0 15 20 4 60
NUMBER_SELLERS

o
ey
o

o
e
«n

o
vd
o

o
v
~

Partial dependence
o
»n
<

o
n
-

©
v
=)

0 20 Py 0 & 100
NUMBER_UNIQUE_TEMS

Customers who purchase from 3 or less
sellers are more loyal customers. It can be
inferred that customers loyal to a single
seller are also loyal to Gittigidiyor.

Customers who purchase more than 1 types
of items are less likely to churn. If a customer
purchased many different items, she is less
likely to churn.

0725
0700
[Hos7s
& 0650
0625
0600
0575

0550

Table 11: Feature partial dependence

25

Decision Tree Classifier

max_depth parameter is one of the most critical parameters of Decision Trees. It directly
controls over-fitting / under-fitting of the model. When it’s too high, the model over-fits the
data, in other words, it starts to memorize the samples. And when it's too low, the model
under-fits the data, in other words, it can’t learn the data well enough. 3 different max_depth
values were tested: 5, 10 and unlimited.

max_depth=5
10 features were given. When max_depth was set to 5, the tree uses 7 features in total.

Figure 9 depicts the importance’s of the features. The most important feature is
'‘NUMBER_PURCHASE_PERIODS.

Figure 10 shows the trained decision tree. It can be seen that it's a quite shallow and
imbalanced tree, one feature is much more important than all others.

|

1
m

ature ranking:

1. feature 1 (0.8233¢%%)
2. feature 2 (0.102383)
3. feature 4 (0.027617)
4. feature 7 (0.016520)
S. feature 3 (0.014385)
€. feature @ (0.00%600)
7. feature 0 (0.0060&9)
8. feature & (0.000000)
€. feature & (0.000000)
10. feature 5 (0.000000)
Feature importances
0.8 4
0.7 1
0.6
0.5 1
04
0.3
0.2 1
0.1 4

0.0 [T —

Figure 9 : Feature importance for max_depth=5

Visualizing a decision tree gives a lot of information about the model.

26

gini=0.5
samples = 5038
value =[2518, 2519]

True

[NUMBER_PURCH{\SE_PERIODS s15]

DATE_RANGE $20.5
ini = 04234

samples = 3621
value =[2519, 1102}

gini = 0.4746 gini =0.3283
samples = 1854 samples = 1667
value =[1197, 757] value = [1322, 345]

NUMBER_CARTS s 5.5} [DATE_RANGE < no]

TOTAL_AMOUNT = 78.99
gini = 0.4708
samples = 1928
value = [1197, 731]

NUMBER_ITEMS £ 125
gini =0.2977

samples = 1599
value = (1308, 281]

NUMBER_UNIQUE_ITEMS < 3.5 DATE'_MNGE 2265 NUMBER_ITEMS <3.5
gini = 0.4648 _ gini=0.2871 gini =0.4978
samples = 1870 samples = 1583 samples = 30
value = [1183, 687] value = [1308, 275] value = [14, 16]

b\

gini = 0.4488 gini = 0.4992 gini = 0.3944 " gini=0.2571
samples = 1503 samples = 367 samples = 296 samples = 1287
value = [892, 511) value = [191, 176] value = [216, 80] value = [1092, 185]

Figure 10 : Decision Tree Structure for max_depth=5

gini = 0.497
samples = 26
value =[14, 12]

max_depth=10

When max_depth is set to 10, all features are used. NUMBER_PURCHASE_PERIODS is
still the most important. When Figure 13 is investigated, it can be seen that it starts like the
previous tree but the tree branches more with the increasing depth.

Scores increase when max_depth is increased to 10.

Feature ranking:

1. feature 1 (0.618000)
2. feature 3 (0.124404)
3. feature 2 (0.109252)
4. feature 7 (0.037144)
S. feature 4 (0.0368&83)
6. feature 0 (0.026768)
7. feature & (0.015500)
8. feature 35 (0.015212)
S. feature 9 (0.014373)

10. feature € (0.002666)

Feature importances

0.6 1

0.5 1

04

0.3 1

0.2 1

01

004

Figure 11 : Feature importance for max_depth=10

27

max_depth=None

When max_depth of the decision tree is set to unlimited, a tree with a depth of 25 is created.
This can be said to be over-fitting.

Figure 12 shows that all features are used and the importances of features are so separated.
This increases the reliability of the model.

Feature ranking:

1. feature 1 (0.391619)
2. feature (0.240625)
3. feature (0.160536)
4. feature (0.047987)
5. feature (0.035615)
€. feature (0.0259212)
7. feature (0.028281)
g. feature (0.0267%1)
§. feature (0.019%34)
10. feature € (0.01%401)

W U <3 O w

Feature importances

040
035
030 1
025 4
020 1
015

1 3 2 0 4 7 5 8 9 6

Figure 12 : Feature importance for max_depth=None

After investigating tree structures, validation and test scores need to be investigated too.

As seen in Table 12 a decision tree’s performance increases as its max_depth increases.
For validation dataset, a decision tree can predict 85% if its max_depth is 5, 87% if its
max_depth is 10 and 97% if its max_depth is unlimited. However, this is not the only metric
that should be considered, a more careful investigation is needed.Figure14 shows the
trained decision tree.

Table 13 shows the performances on test dataset, which consists of the transactions in a
different time range (between 29.04.2016 and 30.04.2017). The accuracy of a decision tree
with max_depth 5 and 10 is 72% and its accuracy rises only 5% if its max depth is unlimited.
Furthermore, its performance of predicting passive customers is too low only 9% for an
unlimited depth decision tree. Thus a Decision Tree is not suitable for this use case.

28

Naive Bayes Classifier

Table 12 and Table 13 show that this algorithm performs badly on both validation and test
datasets. Using different parameters did not improve its performance too. Thus, this
algorithm is not suitable.

Multi-layer Perceptron Classifier

MLP Classifier is the basic deep neural network with only feed forward data flow. This
classifier can predict only half of the customers that will churn. Thus, this algorithm is not
suitable.

Support Vector Machines

As it can be seen on Table 14, this algorithms training time is longer than others.

In validation dataset it can predict almost all passive customers correctly. However, its
performance on test dataset is only 7%.

Linear Discriminant Analysis

The model trained with LDA algorithm can predict almost all the passive customers correctly
on the validation dataset. Moreover, its performance on test dataset is also better than other
algorithms. As shown in Table 13, it can predict all of the passive customers and 76% of the
active customers correctly.

Furthermore, its training time is good when compared with other algorithms as seen in Table
14.

Normalization should not be forgotten and feature selection should be done depending on
well-founded investigation instead of instincts. Correlation of features does not spoil the
accuracy always.

29

VALIDATION Cv;:rsi;on Precision Recall F1-score Support
Pas. | Act. | Tot. | Pas. | Act. | Tot. | Pas. | Act. | Tot. | Pas. | Act. Tot.
Gradient Boosting [[612, 4], 0.74 | 099 | 0.87 [0.99 | 0.66 | 0.82 | 0.85 | 0.79 | 0.82 | 616 644 1260
Classifier [218, 426]]
Decision Tree [[600, 18], 0.75 | 0.96 | 0.86 | 0.97 | 0.68 | 0.83 | 0.85 | 0.8 0.82 | 616 644 1260
Classifier(max_dept=5) | [203, 441]]
Decision Tree 602, 28]
Classifier [132 ,498]i 082 | 0.95 | 0.88 | 0.96 [0.79 | 0.87 | 0.88 | 0.86 | 0.87 | 630 630 1260
(max_dept=10) !
Decision Tree 1630, 0]
Classifier [38 '592]i 094 | 1 0.97 | 1 0.94 | 097 | 0.97 | 0.97 | 0.97 | 630 630 1260
(max_dept=None) :
[[584, 32], 0.7 092 | 0.81 | 0.95 | 0.61 | 0.78 | 0.8 0.74 | 0.77 | 616 644 1260
Naive Bayes Classifier [251, 393]]
Linear Discriminant [[612, 4], 069 | 099 | 0.84 | 0.99 [057 | 0.77 | 0.81 | 0.72 | 0.76 | 616 644 1260
Analysis [280, 364]]
Multi-layer Perceptron [[603, 13], 0.62 | 096 | 0.79 | 0.98 | 0.43 | 0.7 0.76 | 0.6 0.68 | 616 644 1260
Classifier [364, 280]]
Support Vector [[616, O], 099 | 1 1 1 099 |1 1 1 1 616 644 1260
Machines [6, 638]]
Table 12 : Performances of Algorithms Validation Dataset
TEST Confusion Precision Recall F1-score Support
Matrix
Pas. | Act. | Tot. | Pas. | Act. | Tot. | Pas. | Act. | Tot. | Pas. | Act. Tot.
Gradient Boosting [[1067,1721], | 0.34 | 0.82 | 0.72 | 0.38 08 | 0.71 | 0.36 | 0.81 | 0.71 | 2788 | 9941 12729
Classifier [2032, 7909]]
Decision Tree
Classifier [[[11915?’71522]]]' 037 | 083 | 073 | 042 | 0.8 | 072 | 04 | 082|072 | 2788 | 9941 | 12729
(max_depth=5) !
Decision Tree
Classifier Egggg' ;ggg}i 036 | 082 | 071 | 0.32 | 0.84 | 072 | 0.34 | 0.83 | 0.72 | 2788 | 9941 | 12729
(max_dept=10) !
Decision Tree
Classifier [[[fgg’gg,f&]]' 039 | 079 | 0.70 | 0.09 | 0.96 | 0.77 | 0.15 | 0.87 | 0.71 | 2788 | 9941 | 12720
(max_dept=None) :
Naive Bayes [[1369, 1419], | 0.38 | 0.84 | 0.74 | 0.49 | 0.77 | 0.71 | 0.43 | 0.81 | 0.72 | 2788 | 9941 12729
Classifier [2241, 7700]]
Linear Discriminant [[2782,6], 0.54 1 0.9 1 0.76 | 0.81 0.7 0.86 | 0.83 | 2788 | 9941 12729
Analysis [2384, 7557]]
Multi-layer [[1494,1294], | 0.22 | 0.78 | 0.66 | 0.54 | 0.47 | 0.49 | 0.31 | 0.59 | 0.53 | 2788 | 9941 12729
Perceptron Classifier | [5254, 4687]]
Support Vector [[187, 2601], 0.7 0.79 | 0.77 | 0.07 | 0.99 | 0.79 | 0.12 | 0.88 | 0.71 | 2788 | 9941 12729
Machines [79, 9862]]

Table 13 : Performances of Algorithms Test Dataset

30

Training time (seconds)

Gradient Boosting Classifier 2 985000086

Decision Tree Classifier(max_depth=5) 0.005000114

Decision Tree Classifier(max_depth=10) 0.0110001564026

Decision Tree Classifier(max_depth=None) 0.010999917984

Naive Bayes Classifier 0.002000093

Linear Discriminant Analysis

0.006999969

Multi-layer Perceptron Classifier 0.498000145

Support Vector Machines 1.430999994

Table 14: Model training time

Conclusion

The data set was divided into training, validation and test and different algorithms were used.
One of the innovative approaches was training and validating models in an earlier time
window and testing the model with samples from a later time window. As a result of the
studies, it was decided to use "Linear Discriminant Analysis" considering its short training
time and especially the success of predicting passive customers.

In the dataset studied, it was seen that the number of active customers is much higher than
that of passive customers. Several methods have been tried to solve this "Class imbalance"
problem and it has been decided to replicate some lines of passive customers. Rows of
smaller classes are duplicated to compensate classes with generated code.

In churn prediction, it is important to predict the customers that will churn, but it’s also
required to make a good prediction for customers that will not churn as well.

LDA algorithm gives a satisfactory result for both groups. It can predict almost all the
customers that will churn, which is a very essential.

31

References

e https://academic.oup.com/bioinformatics/article/27/14/1986/194387/Classification-
with-correlated-features

e https://ragulpr.github.io/assets/draft_master_thesis_martinsson_egil_wtte_rnn_20186.
pdf

e https://ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-churn-modeling

e http://rstudio-pubs-
static.s3.amazonaws.com/63125_2c67c7ed547946b7b1682379f1f1b2f4.html

e https://arxiv.org/ftp/arxiv/papers/1607/1607.07792.pdf

e https://www.researchgate.net/profile/Adnan_Amin/publication/280745147_Churn_Pre
diction_in_Telecommunication_Industry_Using_Rough_Set_Approach/links/562dadd
c08aef25a24431bbf.pdf

e https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-
modeling-scratch-in-python

e http://sebastianraschka.com/Articles/2014_python_Ida.html

e http://journals.ama.org/doi/abs/10.1509/jmkr.43.2.276?code=amma-site

e http://www.sciencedirect.com.sci-hub.cc/science/article/pii/S0957417410006779

e https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/retail-
big-data-analytics-solution-blueprint.pdf

e https://www.forbes.com/sites/groupthink/2013/05/14/can-big-data-cure-your-churn-
rate/#20be06fc56¢c4

e https://www.ijarcce.com/upload/2016/si/ICRITCSA-16/IJARCCE-
ICRITCSA%2028.pdf

e https://techwave.net/churn-analytics

e https://blog.kissmetrics.com/improve-by-predicting-churn

e http://www.aungz.com/PDF/Handling%20Class%20Imbalance%20in%20Customer%
20Behavior%20Prediction.pdf

32

Appendix A

C Lthew
o

e
s
it

|
(5am \
5
s
i

3
o
\ 7
|

a
/ \
e
i g
1 et
18 ALl 230NN
e

Figure 13 : Decision Tree Structure for max_depth=10

33

Appendix B

S
Iik‘.?f‘gﬂl'?{.ﬁi

Figure 14: Decision Tree Structure for max_depth =None

34

