
 1 

MEF UNIVERSITY 

 

 

 

 

 

 

 

TEXT CLASSIFICATION USING APACHE SPARK 

 

 

 

 
Capstone Project 

 

 

 

 

 

 

 

 

 

Umut Rezan Azizoğlu 

 

 

 

 

 

 

İSTANBUL, 2018



 2 



 3 

 

MEF UNIVERSITY 

 

 

 

 

 

TEXT CLASSIFICATION USING APACHE SPARK 

 

 

 
Capstone Project 

 

 

 

 

 

Umut Rezan Azizoğlu 

 

 

 

 

 

Advisor: Prof. Dr. Özgür Özlük 

 

 

 

 

İSTANBUL, 2018



 4 

 

MEF  UNIVERSITY 
 

 

Name of the project: Text Classification Using Apache Spark 

Name/Last Name of the Student: Umut Rezan Azizoğlu 

Date of Thesis Defense: 28/12/2018 

 

 

 

I hereby state that the graduation project prepared by Umut Rezan Azizoğlu has 

been completed under my supervision. I accept this work as a “Graduation Project”.  

       

dd/mm/yyyy 

     Prof. Dr. Özgür Özlük 

 

 

 

I hereby state that I have examined this graduation project by Azizoğlu has been 

completed under my supervision. I accept this work as a “Graduation which is accepted by 

his supervisor. This work is acceptable as a graduation project and the student is eligible to 

take the graduation project examination. 

 

 

 

dd/mm/yyyy 

            Prof. Dr. Özgür Özlük 

 

 

 

Director 

of 

Big Data Analytics Program 

 

 

 

 

We hereby state that we have held the graduation examination of __________ and 

agree that the student has satisfied all requirements. 

THE EXAMINATION COMMITTEE 

Committee Member      Signature 

1. Prof. Dr. Özgür Özlük     ……………………….. 

2. …………………………..    ……………………….. 



 5 

Academic Honesty Pledge 

 

I promise not to collaborate with anyone, not to seek or accept any outside help, 

and not to give any help to others.  

 

I understand that all resources in print or on the web must be explicitly cited.  

 

In keeping with MEF University’s ideals, I pledge that this work is my own and 

that I have neither given nor received inappropriate assistance in preparing it. 

 

 

 

U. Rezan Azizoğlu    28/12/2018  Signature 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

EXECUTIVE SUMMARY 

 

TEXT CLASSIFICATION USING APACHE SPARK 
 

Umut Rezan Azizoğlu 

 

 

Advisor: Prof. Dr. Özgür Özlük 

 

 

DECEMBER, 2018,   29 page 

 

 

 

One of the biggest problems of enterprises which are marketplace e-commerce 

business model with social platform; The improper communication of their social platform 

is the negative impact of the customer experience and the damage of the brand's value both 

materially and morally. 

As the number of daily commentaries is in numbers that cannot be read manually 

with optimal human resources in terms of company profitability, the interpretation modules 

in social market places are left unconscious. 

With this Project; established a model that prevents sentences that spoil the 

customer experience in their social platforms. 

Both data preparation and machine learning model were developed on Databricks 

notebook, using the apache spark platform with SparkML libraries and Pyspark language. 

The “Text Classification” approach is adopted when determining the model. 
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ÖZET 

 

APACHE SPARK İLE METİN SINIFLANDIRMA 

 

Umut Rezan AZİZOĞLU 

 

 

Tez Danışmanı: Prof. Dr. Özgür Özlük 

 

 

ARALIK,2018, 29 sayfa 

 

 

 

Sosyal platformu bulunan,elektronik pazar yeri iş modeliyle çalışan girişimlerin, en 

büyük problemlerinden biri; sosyal mecralarında ki uygunsuz yorumların, müşteri 

deneyimini olumsuz etki etmesi ve girişimin marka değerinin hem maddi hem manevi 

zarar görmesidir. 

Günlük yorum sayılarının şirket karlılığı açısından, optimal insan kaynağı ile 

manuel olarak okunamayacak sayılarda olması nedeniyle çoğunlukla sosyal pazar 

yerlerinde ki yorumlaşma modülleri deyim yerindeyse başıboş bırakılmaktadır. 

Bu Proje ile; bu durumu çözmek amacıyla girişimlerin sosyal mecralarında müşteri 

deneyimini bozan cümleleri engelleyen bir model geliştirilmiştir. 

Hem mevcut datanın hazırlığı, hem de Makine öğrenmesi modeli; databricks 

notebook kullanılarak, Apache Spark üzerinden Python(Pyspark) dili ile sparkml 

kütüphaneleri kullanılarak geliştirilmiştir. Model belirlenirken metin sınıflandırma 

yaklaşımı benimsenmiştir.  

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler:  metin kategorileştirme, sentiment analizi, Apache Spark, 

Python (Pyspark), Databricks 
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1. INTRODUCTION 

 

One of the widely used natural language processing task in different business 

problems is “Text Classification”. The goal of text classification is to automatically 

classify the text documents into one or more defined categories.  

“Text Classification” have 2 common type. Fist one is topic classification, 

categorizing a text document into one of a predefined set of topics. In many topic 

classification problems, this categorization is based primarily on keywords in the text. 

Another common type of text classification is sentiment analysis, whose goal is to 

identify the polarity of text content: the type of opinion it expresses. This can take the form 

of a binary like/dislike rating, or a more granular set of options, such as a star rating from 1 

to 5. [14] 

Some examples of text classification are: 

• Understanding audience sentiment from social media, 

• Detection of spam and non-spam emails, 

• Auto tagging of customer queries, and 

• Categorization of news articles into defined topics.[14] 

 

This project will focus on sentiment analysis approach, Sentiment analysis aims to 

estimate the sentiment polarity of a body of text based solely on its content. The 

sentiment polarity of text can be defined as a value that says whether the expressed opinion 

is positive (polarity=1), negative (polarity=0), or neutral. [15] 

Like other machine learning approach on “Text Classification”, sentiment analysis 

has higher recall but a lower precision.[2] The project also will descibe how overcome this 

issue 

1.1. About Data 

Data are provided from Modacruz. Modacruz is a leading secondhand fashion, 

marketplace e-commerce. Since business model is C2C, users can communicate with the 

product under the listed products through the comment feature. There are approximately 

22500 interpretations in Modacruz daily. 
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In this study, the used dataset encloses the randomly selected comments. The first, 

dataset contains a total of 34552 comments. And these comments are labeled. Although 

5912 of the comments do not matches with the policies of the site, 28640 of them have not 

seen any harm. 

And second iteration process – The reason of this methodology explained in the 

project document in “The Project Concerns” section- contains a total of x comments. 

Although x of the comments do not comply with the policies of the site, x of them have not 

seen any harm. 

 

The dataset has two columns; 

i. Label: label of comments. If it is approvable, takes 0 if not 1 

ii. Text: content text of comments 

 

 

2. DATABRICKS AND APACHE SPARK 

2.1. Databricks Notebook 

Azure Databricks is an Apache Spark-based analytics platform optimized for the 

Microsoft Azure cloud services platform. Designed with the founders of Apache Spark, 

Databricks is integrated with Azure to provide one-click setup, streamlined workflows, and 

an interactive workspace that enables collaboration between data scientists, data engineers, 

and business analysts. Databricks providing a zero-management cloud platform built 

around Spark that delivers fully managed Spark clusters, an interactive workspace for 

exploration and visualization, a production pipeline scheduler, and a platform for powering 

Spark-based applications. [11] 

You can use Scala, Python, Java, Sql, or R in Databricks notebooks or a same 

notebook. Notebooks can be shared by multiple sessios, Libraries can be imported and 

called in notebooks. 
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Figure 1: Databricks cluster configuration screen 

 

2.2. Apache Spark 

Apache Spark is an open-source cluster computing framework for big data 

processing. Just like Hadoop MapReduce, it also works with the system to distribute data 

across the cluster and process the data in parallel. Apache Spark achieves high 

performance for both batch and streaming data, using a state-of-the-art DAG (directed 
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acyclic graph) execution engine that supports cyclic data flow and in-memory 

computing.[9] 

Spark uses master/slave architecture i.e. one central coordinator and many 

distributed workers. The central coordinator is called the driver. The driver runs in its own 

java process. These drivers communicate with a potentially large number of distributed 

workers called executors. Each executor is a separate java process. A Spark Application is 

a combination of driver and its own executors. With the help of cluster manager, a Spark 

Application is launched on a set of machines. Standalone Cluster Manager is the default 

built in cluster manager of Spark. Apart from its built-in cluster manager, Spark works 

with some open source cluster manager like Hadoop Yarn, Apache Mesos etc. Spark is 100 

times faster than Bigdata Hadoop and 10 times faster than accessing data from disk. [13] 

 

 

 

 

Figure 2: Performance of logistic regression in Hadoop MapReduce vs. Spark 

for 100GB of data on 50 m2.4xlarge EC2 nodes.[10] 
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2.2.1. Spark ML 

Spark comes with a library containing common machine learning (ML) 

functionality, called Spark ML, previously MLlib. Spark ML provides multiple types of 

machine learning algorithms, including classification, regression, clustering, and 

collaborative filtering, as well as supporting functionality such as model evaluation and 

data import. All these methods are designed to scale out across a cluster. Recently, 

SparkML switched its primary data source from RDDs to dataframes to take advantage of 

the dataframe functionality, which provides a more intuitive interface and improved 

processing. In its current state, SparkML only supports parallel algorithms that run well on 

clusters, so it provides a somewhat limited set that should be mainly used on large datasets. 

For smaller datasets, other tools such as Python’s scikit-learn or R should be used. [3] 

 

2.2.2. Spark Machine Learning Pipeline 

In general, a machine learning pipeline describes the process of writing code, 

releasing it to production, doing data extractions, creating training models, and tuning the 

algorithm. It should be a continuous process as a team works on their ML platform. But for 

Apache Spark a pipeline is an object that puts transform, evaluate, and fit steps into one 

object pyspark.ml.Pipeline. [16] 

MLlib standardizes APIs for machine learning algorithms to make it easier to 

combine multiple algorithms into a single pipeline. A Pipeline is specified as a sequence of 

stages, and each stage is either a Transformer or an Estimator. These stages are run in 

order, and the input DataFrame is transformed as it passes through each stage. 

For Transformer stages, the transform() method is called on the DataFrame. 

For Estimator stages, the fit() method is called to produce a Transformer (which becomes 

part of the PipelineModel, or fitted Pipeline), and that Transformer’s transform() method is 

called on the DataFrame. [9] 

A big benefit of using ML Pipelines is hyperparameter optimization. With 

paramgridbuilder function, it is possible to tune both feature extraction parameters and ml 

algorithm parameters. 

Also Parameters belong to specific instances of Estimators and Transformers. For 

example, if we have two Logistic Regression instances lr1 and lr2, then we can build 



 14 

a ParamMap with both maxIter parameters specified: ParamMap(lr1.maxIter -> 10, 

lr2.maxIter -> 20). This is useful if there are two algorithms with the maxIter parameter in 

a Pipeline. 

Pipelines are a simple and effective way to manage complex machine learning 

workflows. Overall, the Pipeline API is a major step in making machine learning scalable 

and easy. 

 

3. TEXT CLASSIFICATIONS STEPS 

In the following sections of the study, the text categorization project will be 

explained step by step.  

 

 

Figure-3: Traditional Text Classification Steps 
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3.1. RegexTokenizer 

Tokenizer performs the tokenization on a string of words that are separated by 

spaces and returns an array of words. If there is a need to perform tokenization with a 

different delimiter, then you can use RegexTokenizer. A regex based tokenizer that 

extracts tokens either by using the provided regex pattern to split the text (default) or 

repeatedly matching the regex (if gaps is false). Optional parameters also allow filtering 

tokens using a minimal length. It returns an array of strings that can be empty.[9] 

Regextokinezer is not just provide tokenizing stage, it also takes role part of data 

cleaning and text normalization stage for text categorization. 

In this project, pattern parameter used for split and clean words. Pattern is shown 

below which is used in this project: 

 

pattern=' |,|;|-|_|\*|\t|\!|\.|\*|\:|\(|\|\"|\&|\$|\|\#|\}|\]|\[|\)|\{|\/|\'|<|>' 

 

Generally, words, which are not match with company policy, are using with 

punctuation (for example “d*ş&rd& buluşalım”), for this reason regextokenizer plays 

important role. 

Also Uppercase and Lowercase usage is not standard in the dataset; so we need to 

convert all words or letters to Lowercase with “toLowercase” parameters. 

 

3.2. Stops Words Remover 

Stop words are words which should be excluded from the input, typically because 

the words appear frequently and don’t carry as much meaning. 

StopWordsRemover takes as input a sequence of strings (e.g. the output of 

a Tokenizer) and drops all the stop words from the input sequences. The list of stopwords 

is specified by the stopWords parameter. Default stop words for some languages are 

accessible by calling StopWordsRemover.loadDefaultStopWords(language), for which 

available options are “danish”, “dutch”, “english”, “finnish”, “french”, “german”, 

“hungarian”, “italian”, “norwegian”, “portuguese”, “russian”, “spanish”, “swedish” and 

“turkish”. A boolean parameter caseSensitive indicates if the matches should be case 

sensitive (false by default). [9] 
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These are Turkish stop words: 

['acaba', 'ama', 'aslında', 'az', 'bazı', 'belki', 'biri', 

'birkaç', 'birşey', 'biz', 'bu', 'çok', 'çünkü', 'da', 'daha', 'de', 

'defa', 'diye', 'eğer', 'en', 'gibi', 'hem', 'hep', 'hepsi', 'her', 

'hiç', 'için', 'ile', 'ise', 'kez', 'ki', 'kim', 'mı', 'mu', 'mü', 

'nasıl', 'ne', 'neden', 'nerde', 'nerede', 'nereye', 'niçin', 'niye', 

'o', 'sanki', 'şey', 'siz', 'şu', 'tüm', 've', 'veya', 'ya', 'yani'] 

 

It is possible to add manually some special words; But in this project isn’t used 

default stop words, decided to remove characters at below, Cause as mentioned before data 

have too much punctuation and too many words not grammatical. For this reason, we need 

special approach. 

Dataset contains, in terms of data analysis, too many meaningless symbols; which 

are shown below. So; In project, these symbols are removed from dataset. 

 

stopWordstr = ['❤️', '◻', '😑', '🙏🏻', '🌸', '🙌🏻',  '😇',  '😊', '😢', '⭐️', '🌼', '🙈', 

'🍀', '💗', '💕', '😊', '🌺', '😅', '💵', '🙈', '✔️', '😌🙏🏻', '😍', '👍', ':)', '👏🏼',, '🤔', 

'☺️', '😑', ':(', '😊', '👌', '💃🏻', '✌🏻', ':))', ':)))', '🎃','😉','😄'] 

 

3.3. Term frequency & inverse document frequency (TF-IDF) 

TF-IDF is an efficient and simple algorithm for matching words in a text to 

documents that are relevant to that text. From the data collected, we see that TF-IDF 

returns documents that are highly relevant to a particular text. If a user were to input a text 

for a particular topic, TF-IDF can find documents that contain relevant information on the 

text. Furthermore, encoding TF-IDF is straightforward, making it ideal for forming the 

basis for more complicated algorithms and text retrieval systems (Berger et al, 2000). 

Despite its strength, TF-IDF has its limitations. In terms of synonyms, notice that TF-IDF 

does not make the jump to the relationship between words. Going back to (Berger & 

Lafferty, 1999), if the user wanted to find information about, say, the word dışardan, TF-

IDF would not consider documents that might be relevant to the query but instead use the 

word “dşrdn”.  For large document collections, this could present an escalating problem.[4] 
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In Spark (TF-IDF) is a feature vectorization method widely used in text mining to 

reflect the importance of a term to a document in the corpus. Denote a term by t, a 

document by d, and the corpus by D. Term frequency TF(t,d)  is the number of times that 

term tt appears in document dd, while document frequency DF(t,D) is the number of 

documents that contains term tt. If we only use term frequency to measure the importance, 

it is very easy to over-emphasize terms that appear very often but carry little information 

about the document, e.g. “de”, “ve”, and “ben”. If a term appears very often across the 

corpus, it means it doesn’t carry special information about a particular document. Inverse 

document frequency is a numerical measure of how much information a term provides: 

IDF(t,D) = log|D|+1 / DF(t,D)+1 

 

Where |D||D| is the total number of documents in the corpus. Since logarithm is 

used, if a term appears in all documents, its IDF value becomes 0. Note that a smoothing 

term is applied to avoid dividing by zero for terms outside the corpus. The TF-IDF 

measure is simply the product of TF and IDF:  

TFIDF(t,d,D)=TF(t,d)⋅IDF(t,D)   

 

There are several variants on the definition of term frequency and document 

frequency. In Spark MLlib separate TF and IDF to make them flexible.  

HashingTF is a Transformer which takes sets of terms and converts those sets into 

fixed-length feature vectors. In text processing, a “set of terms” might be a bag of 

words. HashingTF utilizes the hashing trick. [9] 

Hashing Trick is especially suitable for the almost linearly separable training set, 

where the training set is large and very high dimensional. Hashing trick is a 

complementary variation of kernel trick hashing trick hashes very high dimensional input 

vector to a lower dimensional feature space. The new feature space preserves sparsity and 

consumes less space compared to that of the original input matrix. [5] 

3.4. VectorAssembler 

VectorAssembler is a transformer that combines a given list of columns into a 

single vector column. It is useful for combining raw features and features generated by 

different feature transformers into a single feature vector, in order to train ML models like 
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logistic regression and decision trees. VectorAssembler accepts the following input column 

types: all numeric types, boolean type, and vector type. In each row, the values of the input 

columns will be concatenated into a vector in the specified order. [9] 

The VectorAssembler is used to concatenate all attributes into a single vector. This 

vector attribute is placed under Features in the data frame. 

 

4. PERFORMANCE OF CLASSIFICATION ALGORITHM 

In this study, selected machine learning algorithm was Logistic regression. Also 

studied with Naïve Bayes, Support Vector Machine and XGboost Classifier. But Logistic 

regression gave best solutions. 

 

4.1. Configuration 

When working with Databricks, the configuration of the Spark Cluster affects the 

performance as well as the parameters of the relevant ML algorithm. Therefore, specifying 

the relevant configuration; contains information on the scope of the study. 

Here are Configuration of Cluster: 

• Databricks Runtime Version: 4.1 (includes Apache Spark 2.3.0, Scala 2.11) 

• Driver Type: 32.0 GB Memory, 16 Cores, 2 DBU 

• Worker Type: 32.0 GB Memory, 16 Cores, 2 DBU 

• Number of workers: 2 

 

4.2. Parameter Tuning 

One of the most critical points that determine performance in ML studies is to tune 

the parameters of the relevant algorithm. 

Although the relevant parameters vary according to the content of the data set; The 

study showed that for text classification, if TF-IDF fetaure extraction is used, the most 

important effect is the numfeature parameter.  

In the study, the numfeature parameter was set as 221.  
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Another effective parameter is the regparam parameter of logistic regression, 

regparam is L2 regularization, its penalizing models for being too complex. 

In the study, the regparam parameter was set as 0.006.  

 

4.3. Evaluation Metrics and Comparison of Algorithms 

There are different measures to evaluate the performance of classification 

algorithms. In the Project, the confusion matrix is choosen for performance metrics and 

consider the following measures Test Error,Accuracy,Weightened Precision, Weightened  

Recall, F-measure.  

Table -1 shows us the performance of the Logistic Regression model used in the 

project. And the table show us, the performances of Naive Bayes, SVM and XGboost. The 

most successful results were obtained by Logistic Regression. 

After Logistic regression, SVM gave best result. 

 

Algorithms/Metrics Test Error Accurracy W-Precision W-Recall F-Measure

Logistic regression 0.0645 0.9355 0.9281 0.9355 0.9318

Naive Bayes 0.1435 0.8565 0.8777 0.8565 0.8639

SVM 0.0834 0.9166 0.9141 0.9166 0.9150

Xgboost 0.1286 0.8714 0.8739 0.8714 0.8458  

Table-1 Comparison of metrics of the Algorithms  

 

Noticeable point is Precision is not as good as Accuracy and Recall in Logistic 

Regression model, although, it is better than other algorithms. 

Precision is a more important metric for Modacruz's business model. Blocking 

user’s comments also means disrupting the flow of purchases. Therefore, the correct 

positive predictions out of all the positive predictions takes important role. 

The project dataset is unbalanced, although it was not preferred to use stratified 

sample in the project because all of the data was needed for an accurate modeling. 

Weighted precision and recall were preferred when evaluating the project due to unbalance 

problem. 
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Getting the precision and recall for each class, and weight by the count of data of 

each class. That will give the weighted precision and recall.  

The formula of weighted precision is: 

                      (pc1∗|c1|)+(pc2∗|c2|)|c1|+|c2| 

 

pc1:precision of class 1 

pc2: precision of class 2 

c1: count of data of class 1 

c2: count of data of class 2 

 

 

5. CONCERNS OF THE PROJECT 

5.1. More Data 

The Project; has some concerns that need to solve. First one is labelling process; the 

process take too much time and it is not effective for labor. At the same time, model gives 

good accuracy, but precision is not good as accuracy, this situation, disrupts model 

efficiency.  

For developing the model, the project need that much more data. For this reason, 

the project suggests iterative process to overcome this issue.  

When selecting the data to be added, The project approach is the iteration process 

based on the outputs of the first model. To improve the model, the data that the model 

predicted, but observed as type I and type II errors were corrected and added to the 

previous data. 

A limited number of data had to be selected in the reading of all data due to the 

identified difficulties. Therefore, instead of randomly selecting the data, instead of using 

label estimation. Probabilities are used; which are produced by the model. 
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The histogram of the two-day data was analyzed to decide which data range to 

select. 

 

Figure-4: Distribution of probability 

 

What Indicated of histograms, it was decided to read the labels under 0.017 and 

above the 0.50 probability and detect Type I and Type II errors. 

After re-labelling data, model was re-trained. And this process repeated 4 times. 

After the last iteration, observed that the model was not further developed. 

5.2. “Number” Problem 

In some comments contain numbers, such as telephone numbers, and sharing 

telephone numbers do not matches with the policies of the site. 

However, it was observed that the model was not very successful in estimating 

numbers. Because the data set also contains acceptable, too many numbers. To overcome 

this issue, two different method was used. 

5.2.1 Multi-class Classification 

Firstly, all non-acceptable number is labeled as ‘3’ and model is re-established with 

multi-class approach. But model is not performed as good as binary model. 
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5.2.2 Mark The Data 

Another approach is to convert the numbers to any text. For this process, 

regexp_replace functions importing from pyspark.sql.functions. and all numbers in the 

“Text” column was replaced with “sayi”. 

Here is code of this process: 

df.withColumn('Text', regexp_replace('Text', '\d+', 'sayi')) 

 

The desired result could not be achieved with this approach. 

 

 

6. CONCLUSION 

In this project, provided a solution, how to sort out undesirable text, if a company 

can not overcome the volume of the data.  Whole project was designed with “Big Data” 

approach. Not just provided solution for volume it is also provided how to overcome Data 

variety (In this project it is “Text”) and Data velocity. For e-commerce business Real-Time 

processing is “have to”. At this point, serializing the model and productionized is take key 

role. 

 

 

Figure-5:  3V of Big Data 
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For big data, Apache Spark is provided high performance, it is both handles easily, 

Data volume, Data variety and Data Velocity. Databricks notebook is developed by creator 

of Spark, so it matches well with Spark platform. Provides practical solutions such as easy 

management of Spark platform and the combination of many languages such as Scala, 

Python (Pyspark), Java,SQL and R language. 

For our data set Logistic Regression gives best solution than Naïve Bayes, Support 

Vector Machine and XGboost Classifier.  

Text Classifications have some methods to get achievement, for project dataset, 

given process is gives best solution, but each business may have different interpretation 

jargon, so comparing different algorithms takes important role. 

To overcome load of labeling process and “Text Classification” lower precision 

issue, project suggest that iterative labeling process. Start modelling with optimal size of 

data and productionize, output of model, then labeling much more data which are contain 

Type I and Type II error with evaluating probability not label prediction. 
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APPENDIX A 

PYTHON (PYSPARK) SCRIPT 

 

import pandas as pd 

import numpy as np 

from pyspark.sql import Row 

from pyspark import SparkContext,SparkConf 

from pyspark.sql import SparkSession 

import nltk 

 

from pyspark.ml.feature import HashingTF, IDF, 

RegexTokenizer,StopWordsRemover,VectorAssembleR 

 

from pyspark.ml import Pipeline 

from pyspark.ml.classification import LogisticRegression, 

from mleap.sklearn.preprocessing.data import FeatureExtractor, LabelEncoder,  

from pyspark.ml.evaluation import 

RegressionEvaluator,MulticlassClassificationEvaluator,BinaryClassificationEvaluator 

from pyspark.ml.tuning import ParamGridBuilder, TrainValidationSplit,CrossValidator 

from pyspark.mllib.regression import LabeledPoint 

from pyspark.sql.functions import * 

 

df = spark.table("df") 

df = df.na.drop() 

display(df.groupby('label').count()) 

 

train_df, test_df = df.randomSplit([0.65, 0.35], seed = 2018) 

 

print("Training Dataset Count: " + str(train_df.count())) 

print("Test Dataset Count: " + str(test_df.count())) 

 



 27 

stopWordstr = ['❤️', '◻', '😑', '🙏🏻', '🌸', '🙌🏻',  '😇',  '😊', '😢', '⭐️', '🌼', '🙈', '🍀', 

'💗', '💕', '😊', '🌺', '😅', '💵', '🙈', '🙏🙏🙏', '🙏🙏', '✔️', '😌🙏🏻', '😍', '👍', 

'👍👍', '👍👍👍', ':)', '👏🏼', '👏🏼👏🏼', '👏🏼👏🏼👏🏼', '🤔', '☺️', '😑😑', '😑', ':(', '😊', '👌👌', 

'👌', '💃🏻', '✌🏻', ':))', ':)))', '🎃','😉','😄','🤗'] 

 

regexTokenizer = RegexTokenizer(inputCol="Text", outputCol="words", pattern=' |,|;|-

|_|\*|\t|\!|\.|\*|\:|\(|\|\"|\&|\$|\|\#|\}|\]|\[|\)|\{|\/|\'|<|>',toLowercase=True) 

 

remover = StopWordsRemover(inputCol="words", outputCol="filtered",stopWords 

=stopWordstr) 

 

hashtf = HashingTF(inputCol="filtered", outputCol='tf') 

 

idf = IDF(inputCol='tf', outputCol="tffeatures") 

 

va = VectorAssembler(inputCols=["tf", "tffeatures"], outputCol="features")  

 

lr = LogisticRegression() 

 

pipelinelr = Pipeline(stages=[regexTokenizer,remover,hashtf, idf, va,lr]) 

 

paramGrid = (ParamGridBuilder() 

             .addGrid(lr.regParam, [0.0001,0.006,0.003,0.01,0.03]) 

             .addGrid(idf.minDocFreq,[2,3,4]) 

             .addGrid(hashtf.numFeatures, [2**3,2**18,2**21]) 

             .addGrid(hashtf.binary, [True,False]) 

             .addGrid(lr.fitIntercept, [True,False]) 

             .addGrid(lr.standardization, [True,False]) 

             .addGrid(lr.elasticNetParam, [0.01,0.05,0.1]) 

             .addGrid(lr.aggregationDepth, [2,3]) 

             .addGrid(lr.maxIter,[5,1000]) 

             .addGrid(lr.family,['binomial']) 
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             .addGrid(lr.tol,[1e-06,1e-01]) 

             .build()  ) 

 

cvlr = CrossValidator(estimator=pipelinelr, evaluator=MulticlassClassificationEvaluator(), 

estimatorParamMaps=paramGrid) 

 

cvModel = cvlr.fit(train_df) 

modellr = cvModel.bestModel 

 

modellr.stages[4].extractParamMap() 

 

predictions = modellr.transform(train_df) 

  

 

predictions = predictions.select(col("label").cast("Float"),col("prediction")) 

evaluator = MulticlassClassificationEvaluator(labelCol="label", 

predictionCol="prediction", metricName="accuracy") 

accuracy = evaluator.evaluate(predictions) 

print("Test Error = %g" % (1.0 - accuracy)) 

 

  

evaluator = MulticlassClassificationEvaluator(labelCol="label", 

predictionCol="prediction", metricName="accuracy") 

accuracy = evaluator.evaluate(predictions) 

print("Accuracy = %g" % accuracy) 

  

evaluatorf1 = MulticlassClassificationEvaluator(labelCol="label", 

predictionCol="prediction", metricName="f1") 

f1 = evaluatorf1.evaluate(predictions) 

print("f1 = %g" % f1) 
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evaluatorwp = MulticlassClassificationEvaluator(labelCol="label", 

predictionCol="prediction", metricName=" weightedPrecision ") 

wp = evaluatorwp.evaluate(predictions) 

print("weightedPrecision = %g" % wp) 

  

evaluatorwr = MulticlassClassificationEvaluator(labelCol="label", 

predictionCol="prediction", metricName="weightedRecall ") 

wr = evaluatorwr.evaluate(predictions) 

print("weightedRecall = %g" % wr) 

 

 


