
 ii

MEF UNIVERSITY

HUMPBACK WHALE IDENTIFICATION WITH

CONVOLUTIONAL NEURAL NETWORKS

Capstone Project

Duygu Can

İSTANBUL, 2018

 iii

 iv

MEF UNIVERSITY

THE HUMPBACK WHALE IDENTIFICATION WITH

CONVOLUTIONAL NEURAL NETWORKS

Capstone Project

Duygu Can

Advisor: Assoc. Prof. Şuayb S. Arslan

İSTANBUL, 2018

 v

MEF UNIVERSITY

Name of the project: Humpback Whale Identification with CNN

Name/Last Name of the Student: Duygu Can

Date of Thesis Defense: 28/12/2018

I hereby state that the graduation project prepared by Duygu Can has been completed

under my supervision. I accept this work as a “Graduation Project”.

28/12/2018

Assoc. Prof. Şuayb S. Arslan

I hereby state that I have examined this graduation project by Duygu Can which is

accepted by his supervisor. This work is acceptable as a graduation project and the student

is eligible to take the graduation project examination.

28/12/2018

Director

of

Big Data Analytics Program

We hereby state that we have held the graduation examination of Duygu Can and

agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE

Committee Member Signature

1. Assoc. Prof. Şuayb S. Arslan

2. Prof. Özgür Özlük

 vi

Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that

I have neither given nor received inappropriate assistance in preparing it.

Duygu Can 28.12.2018

 ii

EXECUTIVE SUMMARY

THE HUMPBACK WHALE IDENTIFICATION WITH

 CONVOLUTIONAL NEURAL NETWORKS

Duygu Can

Advisor: Assoc. Prof. Şuayb S. Arslan

DECEMBER 2018, 68 pages

The migration patterns of humpback whales are tracked with conventional photo-

identification techniques for decades. The distinct markings on whale flukes serve as unique

fingerprints for these creatures. This study aims to identify humpback whales according to

their fluke images using ResNET, a deep neural network architecture to help the

conservation efforts for this endangered species by automatizing the process. We

experimented with different train/test split schemes and initializations to obtain the best

classifying model. Although we were limited with a small sized training set of 200 images,

using state-of-the-art image processing and data augmentation methods we obtained a high

accuracy of 0.94 for 11 distinct whales. This project is served as an friendly interface to dive

deep into the field of image recognition with Convolutional Neural Networks.

Key Words: Convolutional Neural Networks (CNN), Humpback Whale, Artificial

Neural Networks (ANN), Image Classification, Photo-identification, ResNET.

 iii

ÖZET

EVRİŞİMLİ SİNİR AĞLARI KULLANARAK KAMBUR BALİNA TANIMA

Duygu Can

Tez Danışmanı: Doç. Dr. Şuayb S. Arslan

ARALIK 2018, 68 sayfa

Kambur balinaların göç kalıpları, onlarca yıldır geleneksel fotoğraf tanımlama

teknikleri ile izlenmektedir. Balina kuyrukları üzerindeki belirgin işaretler, bu canlılar için

özgün parmak izleri gibi davranmaktadır. Tanıma sürecini otomatikleştirerek, nesli tehlikede

olan kambur balinaların korunma çabalarına katkıda bulunmayı hedefleyen bu çalışmada,

bir derin sinir ağı mimarisi olan ResNET ile kuyruk görsellerine göre balina tanıma

hedeflenmiştir. En iyi sınıflandırma modelini elde etmek için farklı eğitim/test ayrımı

şemaları ve değişik başlangıç noktalari ile deneyler yapılmıştır. 200 görüntüden oluşan

küçük bir eğitim seti ile sınırlı kalınmasına rağmen, ileri görüntü işleme ve veri artırma

yöntemlerini kullanılarak 11 farklı balina için 0.94 yüksek başarımı edilebilmiştir. Bu proje,

Konvolüsyonel Sinir Ağları ile görüntü tanıma alanına derinlemesine dalmak için dostça bir

arayüz olarak hizmet etmiştir.

Anahtar Kelimeler: Evrişimli Sinir Ağları (ESA), Kambur Balina, Yapay Sinir

Ağları (YSA), Görüntü Sınıflandırma, Foto-tanımlama, ResNET.

 iv

TABLE OF CONTENTS

Academic Honesty Pledge .. vi

EXECUTIVE SUMMARY ... ii

ÖZET .. iii

TABLE OF CONTENTS .. iv

TABLE OF FIGURES .. vi

1. INTRODUCTION ... 1

1.1. Brief Literature Review ... 1

1.2. The Humpback Whales .. 2

1.3. Data Source Information .. 3

1.4. Description of the Dataset .. 4

2. PROJECT DEFINITION ... 7

2.1. Problem Statement ... 7

2.2. Project Objectives .. 7

2.3. Project Scope ... 7

2.4. Project Environment .. 8

3. METHODOLOGY .. 9

3.1. Exploratory Data Analysis on the Constrained Dataset ... 9

3.2. Image Pre-processing ... 11

3.2.1. Grayscale Conversion ... 11

3.2.2. Outlier Detection ... 11

3.2.3. Rotation ... 12

3.2.4. Image Cropping and Reshaping .. 12

3.2.5. Affine Transformation .. 14

3.2.6. Standardization ... 15

3.3. Image Augmentation .. 15

3.4. Artificial Neural Networks .. 15

3.5. Convolutional Neural Networks .. 17

3.6. ResNET50 .. 21

RESULTS AND DISCUSSION .. 23

3.7. Establishing a Baseline Model ... 23

 v

3.8. Different Initializations .. 28

4. CONCLUSION .. 31

5. SOCIAL AND ETHICAL ASPECTS ... 32

6. VALUE DELIVERED .. 33

Bibliography .. 34

APPENDIX A .. 38

APPENDIX B .. 54

 vi

TABLE OF FIGURES

Figure 1.4.1 Random examples from the dataset ... 4

Figure 1.4.2 Categorical distribution of images’ PDE (blue solid line) 5

Figure 1.4.3 Count of the categories by available images in the training set 6

Figure 1.4.4 Occurrence frequencies of the images in the descending order 6

Figure 3.1.1 Image count of each whale ID ... 10

Figure 3.1.2 Occurrence rates of image sizes available in the constrained dataset . 10

Figure 3.2.1 Outlier images in the constrained dataset .. 11

Figure 3.2.2 Upside down images found in the constrained dataset 12

Figure 3.2.3 Automatic rotation of required image files while reading 12

Figure 3.2.4 Final categorical count of the dataset .. 13

Figure 3.4.1 Biological neuron .. 15

Figure 3.4.2 Multilayer structure of human cerebral cortex 16

Figure 3.4.3 Linear threshold unit .. 17

Figure 3.4.4 ANN with three hidden layers ... 17

Figure 3.5.1 Receptive field ... 18

Figure 3.6.1 Plain network vs. ResNET ... 21

Figure 4.1.1 Distribution of the images in training, validation and test sets 23

Figure 4.1.2 Performance comparison of three different splitting schemes 26

Figure 4.1.3 Confusion matrix of RESNET_90_10 ... 27

Figure 4.1.4 Image count distribution for 80/20 train/test split 27

Figure 4.2.1 Change in accuracy with different initializations 29

Figure 4.2.2 Performance comparison of models with different initializations 30

 1

1. INTRODUCTION

After years of intense whaling, large whale species became extinct. Starting from the

ancient times, 90% of the humpback whales are massacred during the whaling era

(Anonymous, 2018). By 1986, International Whaling Commission banned commercial

whaling for all whale species due to severe risk of extinction (International Whaling

Commission, 2018). The moratorium is still valid today, but Japan, Norway and Iceland

oppose the moratorium decision and establish their own hunting limits. Thanks to the ban,

the humpback whale population is recovered and now it is estimated to be at least 80000.

Now whaling no longer threatens the whales but other reasons such as collisions with ships,

industrial fishing, ocean pollution, noise pollution and global ocean warming are still

possible causes of risk for their survival. They travel 25750 kilometers on average on yearly

basis for mating and feeding (Anonymous, Whale Facts: Marine Mammal Facts &

Information, 2018). For conservation purposes, marine biologists track their migration

routes and they get help from individual whale photos for these sacred efforts.

1.1. Brief Literature Review

Starting from the 1970s, scientists use natural markings to recognize an individual of

a species (Fuhr, et al., 2016). Especially it is easy to identify the humpback whales because

they swim near the surface and when they dive deep for food, they raise their flukes up in

the air. On those flukes, there are color variations from white to black, toothmarks of killer

whales, algal films and various other scars and scratches. These distinct markings are

fingerprints of the individual whales. Change in the color of the whale’s skin first noted by

Lillie in 1915 but the uniqueness of this variation is not recognized (Lillie, 1915). Years later

in 1960, utilizing these colors and marks Schevill and Backus could be able to track the same

humpback whale over ten days of journey near Portland, Maine (Schevill & Backus, 1960).

Thanks to Kraus and Katona, the first catalogue of 120 fluke photos is formed and later

Katona and his colleagues enlarged the list to 1000 individuals for the North Atlantic region

(Katona & Kraus, 1979; Katona, Harcourt, Perkins, & Kraus, 1980). Now, the Allied Whale

of the College of the Atlantic curates the catalog and there are more than 8000 unique

animals present in their up-to-date list (College of the Atlantic, 2018).

Running over all those photos of flukes manually to identify individual whales

requires a huge effort beyond human capacity. As the number of collected images increases

 2

with the developing technology and the significant amount of recovery in the overall whale

population, addressing this need with a limited number of scientists at hand is becoming

challenging day by day. Furthermore, accurate identification is controversial because the

distinctive power of conventional methods is quite dependent on photo quality, evaluation

of the markings in time and the ability of the observers (Friday, Smith, Stevick, & Allen,

2000).

For the past 40 years, those photos identified manually by the scientists to be tagged

with an ID according to certain marks in the flukes. This requires evaluating negatives of the

photos under a magnifying glass to match the patterns. To ease the burden of manual image

processing, fully automated techniques are developed. One of the modern methods is

matching the sequence of patterns at the trailing edges of the flukes using integral curves

calculated from the outline of the edges (Weideman, et al., 2017; Jablons, 2016). Another

species-unspecific algorithm called HotSpotter, matches individuals by patterns on their

body parts (Crall, Stewart, Y. Berger-Wolf, Rubenstein, & Sundaresan, 2013). Batboua

improved these two existing methods by stacking a Support Vector Machine (SVM)

algorithm for classifying feature vectors of the images obtained from HotSpotter and curve-

matching algorithms, respectively (2017).

1.2. The Humpback Whales

The humpback whale, Megaptera novaeangliae, is a large and thick warm-blooded

mammal. Their females are larger than the males and can weigh upto 45 tons. The adult

females can reach upto 19 meters while male humpback whales remain around 17.5 meters

long. Their exact lifespan is unknown, but it is claimed to be in the range of 45 to 100 years

(Dawes & Campbell, 2008) They are classified under baleen whales because they possess

keratin palettes called baleen instead of teeth in their mouth. They live in shallow dense

waters near coastal regions, close to the sea surface. They even sleep lying at the surface for

only short periods. Moreover, they do not dive more than 100 meters. (Martin, 2002).

Therefore, they are the widely studied whale species. They are famous for their breaching,

jumping totally out of water and landing back on their sides creating a huge splash. They

can sing not only in water but also in air, too. The function of their singing is unexplained

by researchers, yet it is thought to serve for socialization (Martin, 2002). Male’s songs can

also be interpreted as mating signal, territorial marking or immigrational calling. These

 3

gentle giants can take great lengths for mating and feeding. On their long journey Sun’s

position and the geomagnetic patterns of the Earth guide their way. They mostly feed on

krill, but their diet is not restricted with only zooplanktons. They can also eat capelin,

anchovy, cod, herring, mackerel, pilchards and small shrimp consuming 2000 kilograms of

food per day, if available (Martin, 2002). They are curious and social animals which perform

cooperative feeding. Once an individual of a pod is captured during hunting, other members

have been observed to come to help or assist injured animal (Martin, 2002). The motives of

their behavior is unknown. Their underwater life is still a mystery to the humankind.

The color pigmentation varies among their population. One can observe black, dark

gray or brown, and even white versions of these beautiful creatures in the whole Southern

Hemisphere. The back of their flukes appears in darker color such as black or dark gray, but

the underside of the flukes is white (Martin S., 2002). The tail of each humpback whale is

visibly unique because there are individual markings of different shapes or spots. The small

round shapes on the tails are due to cookie cutter sharks, for example. Besides, most of the

times barnacles sticks firmly to their flukes.

1.3. Data Source Information

Happy Whale is an online platform which collects photographs of the whales around

the world and utilizes advanced image processing algorithms to contribute to the whale

surveillance problem (Happywhale, 2018). Not only scientists but also individual whale

watchers, naturalists or even passengers can submit photos to their website. Processing the

unique marks, the pigmentation patterns, etc. found in dorsal fin or flukes with image

recognition algorithm, their collaborating scientists at Cascadia Research Collective and

Allied Whale identify those photos to deduce the story of whales: which ones survived

during the year, what are their population trends, what are their migration, feeding or

breeding patterns, etc. (Cascadian Research Collective, 2018; College of the Atlantic, 2018).

Through connecting humans and the whales, this platform claims to bring attention to the

marine ecosystem and also to the global challenges as we all humans face. They donated

their data to a Kaggle competition and defined the problem so that many independent

researchers, students, and other image recognition enthusiasts could work on it (Kaggle Inc.,

2018).

 4

1.4. Description of the Dataset

The dataset is composed of training and test images. Alternatively, an Excel file,

train.csv, is also provided to link individual whale IDs with the training image file names.

Unfortunately test images are not labeled in this Kaggle competitions. There are 9850 images

of humpback whale flukes in the training set and 15610 in the test set. There are 4251 unique

whale IDs in the dataset. Unluckily, each unique whale ID has only a few numbers of images

associated with it and this makes the identification problem challenging. The unlabeled

images which do not match with any of the IDs are tagged as new_whale. Some of the images

are black and white, while some of them are colored. Sampling 1% of the whole dataset five

times randomly, grayscale percentage is found to be 50.2%. Some random examples from

the training set can be seen in Figure 1.4.1.

Figure 1.4.1 Random examples from the dataset

Apart from underrepresentation, the dataset is also imbalanced. Number of

observations belonging to some of the classes are significantly lower than the rest. There are

even classes with only one or two training images. The most frequent

category, new_whale appears with 810 samples and w_1287fbc follows it with a frequency

of 34.

 5

Figure 1.4.2 Categorical distribution of images’ PDE (blue solid line)

Unfortunately, 2220 categories have only one image for training, 1034 categories

have two, 492 categories have only three and so on… Number of categories and the number

of images in them is visualized in Figure 1.4.3. Probability density estimate (PDE) of the

categorical distribution is obtained by Kernel density estimate (KDE) and visualized in Fig.

1.4.2. Freedman-Diaconis rule is used for selection of the bin size in the histogram

(Freedman & Diaconis, 1981). The size and the resolution values also vary from image to

image. Sampling 25% of the training images randomly, the most frequent resolution value

is found as 700x1050 with more than 250 instances, secondly 600x1050 follows it with

almost 250 occurrences as seen in Fig. 1.4.4.

 6

Figure 1.4.3 Count of the categories by available images in the training set

Figure 1.4.4 Occurrence frequencies of the images in the descending order

 7

2. PROJECT DEFINITION

2.1. Problem Statement

Class imbalance is the nightmare of most machine learning algorithms. If the event

to be predicted has a representation rate below 5% in the dataset, it is referred as a rare event

(Mukherjee, 2018). Models trained on imbalanced datasets are known to be biased towards

majority classes. As a result, the minority classes tend to be misclassified in the test set.

The Humpback Whale dataset has a serious imbalance issue. Out of 4251 whale

categories 2220 IDs have only one image per class. There are also classes containing less

than 5 images. Since the training set is the only labeled dataset available, we need to split it

into three parts for training, validation and test. Each whale should be represented in training,

validation and test sets, ideally. To resolve imbalance and representation problems

altogether, this identification problem is reframed by constraining the dataset to the whale

categories containing 20 or more images.

Deep Neural Networks performs well only when the number of inputs feeding their

architecture is sufficiently high enough. Advanced data augmentation techniques are

utilized to create synthetic images (Anonymous, 2018).

2.2. Project Objectives

The aim of this project is to help the scientists by automatizing the process of photo-

identification of the humpback whales by using deep neural networks and in this way

contributing to the conservation of the marine life.

2.3. Project Scope

This project only focuses on the classification of the humpback whale images. The

Region of Interest (ROI), which is a user specified rectangle to limit the model to learn from

the features within its boundaries, is whale flukes for the problem of interest. Refining

calculations to ROI enhances the performance (Brinkmann, 2008). While most of the images

in the dataset cropped tight around the animal flukes, in some of them the whale fluke

occupies only a small portion and those images requires further cropping. Finding

coordinates of ROI for each image is beyond the scope of this project. The bounding box

coordinates are borrowed from Piotte’s work (2018). Piotte manually cropped 1200 photos

 8

from the dataset using a Java application and then trained a CNN model to find the bounding

box coordinates for rest of the images (2018).

2.4. Project Environment

In this project PILLOW which is a friendly fork of the image processing library

called Python Imaging Library (PIL) is extensively used for all processing procedures such

as opening, reading, converting, transforming, cropping and finally saving the images (Clark

& Contributors, 2010).

Tensorflow, which is developed by Google Brain, is an open source numerical

computation library which makes machine learning faster and easier using high-performance

C++ native code (Tensorflow, 2018). It is called Tensorflow because the numerical

computation is carried out by data flow graphs whose nodes represents the operations while

the edges represents the data as tensors flowing in between those nodes. However, working

with Tensorflow has a steep learning curve since it requires a solid background in linear

algebra and tensor calculus. Building models in Tensorflow is not easy for many of those

who are new to deep learning concepts.

In this project, user-friendly, model-level deep learning library Keras is utilized. It is

written in Python and operates on top of the TensorFlow backend engine with GPU support

(Keras Team, 2018; Tensorflow, 2018). The modular structure of Keras and its sound

documentation is advantageous for beginners of deep learning. Especially, with the help of

Sequential model network layers can be stacked on top of each other easily.

Apart from those, we benefited from Scikit-learn library for data preprocessing and

model evaluation; we have preferred to transform the images with SciPy library and we also

utilized seaborn visualization library to form informative statistical graphics (Pedregosa, et

al., 2011; Jones, Oliphant, Peterson, & Others, 2001).

 9

3. METHODOLOGY

3.1. Exploratory Data Analysis on the Constrained Dataset

First new_whale category is dropped from the dataset since it includes all the images

of the animals that are not listed in the scientist’s database, and therefore it is not informative

for the classification problem. Later only the categories containing 20 or more images are

selected. Then we are left with 11 whale IDs and total 259 images in the dataset. The most

frequent images belong to w_1287fbc category with 34 occurrences. The number of images

in each whale category is given in Table 3.1.1, below.

Table 3.1.1 Number of images contained by whale IDs

RANK WHALE ID NUMBER OF IMAGES

1 w_1287fbc 34

2 w_98baff9 27

3 w_7554f44 26

4 w_1eafe46 23

5 w_693c9ee 22

6 w_ab4cae2 22

7 w_fd1cb9d 22

8 w_73d5489 21

9 w_43be268 21

10 w_987a36f 21

11 w_f19faeb 20

After constraining the dataset to 11 unique categories the severe class imbalance

problem is partially resolved. Majority of the classes contain 20 – 25 photos while just one

whale ID (w_1287fbc) with more than 30 images is present. The image count distribution

by whale category is visualized in Fig. 3.1.1 in descending order.

When the size of the images investigated from Fig. 3.1.2, 700x1050 is found to be

most frequent. Average aspect ratio of the images in the constrained dataset is found as 2.09.

 10

Figure 3.1.1 Image count of each whale ID

Figure 3.1.2 Occurrence rates of image sizes available in the constrained dataset

 11

3.2. Image Pre-processing

3.2.1. Grayscale Conversion

Upon sampling 1% of the whole training images and checking their RGB codes it is

found that average grayscale ratio is 52.04%. So, we can claim that almost half of the images

are black and white, and the other half is colored. Since the humpback whale flukes are found

mostly in black or mostly in white nature, we would not lose much information by converting

three channel images into one and gain more in computation time. Using Pillow Image

Library, all colored images are converted to grayscale.

3.2.2. Outlier Detection

According to photo upload instructions of the Happy Whale website, the flukes must

be photographed when the whale dives into the sea and when their tail rises above the

waterline (happywhale, n.d.). Besides, underside the flukes must be seen in those photos.

Unfortunately, some of the images in the training set do not meet these criteria. Images of

whales, broken fragments of dead whale flukes, photos taken at weird angles, photos of

multiple animals, etc. are all excluded. Upon our visual inspection, 47 outliers are found

among all training images and file names stored in a text file. Fortunately, there are only two

such outlier images from two different classes in the constrained dataset. In order not to force

the model to learn wrong features from those images, images shown in Fig. 3.2.1 are

excluded from the dataset.

Figure 3.2.1 Outlier images in the constrained dataset

 12

3.2.3. Rotation

Note that in some of the images edges of the flukes points down. Upon visual

inspection they are recorded and to increase the accuracy of classification, rotated by 180

degrees. Those upside-down images can be seen in Fig. 3.2.2.

Figure 3.2.2 Upside down images found in the constrained dataset

An image reading function is written to automatically flip the images that are found

in the rotation list as seen in Fig. 3.2.3.

Figure 3.2.3 Automatic rotation of required image files while reading

3.2.4. Image Cropping and Reshaping

Images are cropped to ROI, i.e. the whale flukes, using bounding-box coordinates

taken from a previous work (Piotte, Bounding box data for the whale flukes, 2018). A margin

 13

is left around the rectangle to save us from cropping the edges of the flukes accidentally.

Otherwise, information loss due to faulty cropping gives more harm than the gain due to

tight cropping. That is why a margin of error is defined around each image to compensate

for bounding box errors. Upon experimenting with the borders, 10% of the height for the top

and bottom borders, 10% of the width for the left border and 15% of the width again for the

right border is chosen to be optimum values that minimizes the cropping errors. Despite

careful inspection and various trials with compression rate and margin ratios some of the

images are failed to be cropped properly. Those are listed in a separate file and dropped from

the dataset to prevent the model from learning misguiding features. After omitting the

erroneously cropped images, we are left with 250 samples in total. Class distributions do not

change much after all those extractions. We still have more than 20 images in each class as

seen in Fig. 3.2.4.

Figure 3.2.4 Final categorical count of the dataset

Using affine transformation, rectangular images are further mapped to a square with

224x224 resolution (considering single channel for black & white). The size of the images

is adjusted to match the input size of the model to be used (i.e. ResNET). The average width

 14

over height aspect ratio of the images in the dataset was calculated to be 2.09 previously.

This value is used as a horizontal compression ratio while the square images are created.

3.2.5. Affine Transformation

Prior to cropping to the bounding box, coordinates of the bottom left corner (x0, y0)

and coordinates of the upper right corner (x1, y1) are obtained from Piotte’s work (2018).

These coordinates are enlarged to the margins as mentioned above and then affine

transformation is performed. Affinity, meaning likeness or similarity is a mapping between

affine spaces which preserves collinearity and the ratios in between distances of points,

straight lines and planes. Affine transformation can be described mathematically as given as

(Weisstein, n.d.),

 “If 𝑋 and 𝑌 are affine spaces, then every affine transformation 𝑓: 𝑋 → 𝑋′ is of the

form 𝑥 → 𝑇𝑥 + 𝑏, where 𝑇 is a linear transformation on the space 𝑋, 𝑥 is a vector

in 𝑋, and 𝑏 is a vector in 𝑋′.”

The transformation matrix can be represented in an augmented form such that:

[
𝒙′

1
] = [

 𝑇
0 ⋯ 0

 𝒃
 1

] [
𝒙
1

]

The equation above is equivalent to the following linear equation, expressed in a compact

form,

𝒙′ = 𝑇𝒙 + 𝑏

With the help of the augmented matrices, both the translation and the linear mapping can be

represented as using a single matrix multiplication. For the problem of interest, the

transformation matrix is given below.

𝐓 ∶= [

1 0
(𝑦1 + 𝑦0)

2⁄

0 1
(𝑥1 + 𝑥0)

2⁄

0 0 1

] [

(𝑦1 − 𝑦0)
224⁄ 0 0

0
(𝑥1 − 𝑥0)

224⁄ 0

0 0 1

] [

1 0 −224
2⁄

0 1 −224
2⁄

0 0 1

]

Here, the first and last matrices are for translation whereas the matrix in the middle scales

the ROI to the output image size (224x224). Applying the operator above to all of the images,

we obtain cropped and squared versions of them with 224x224 resolution.

 15

3.2.6. Standardization

As a final step, to suppress different illumination effects in each image, mean value

is subtracted from each pixel value and the result further divided by the variance, as follows,

𝑧 =
(𝑥 − µ)

𝜎

Here x is the initial pixel value, µ is the mean value of the image, 𝜎 is the standard deviation

and z is called the standardized pixel value. In this way images are standardized to zero mean

and unit variance. Since the image matrices do not possess a sparse characteristic, custom

standardization is preferred over plain normalization and scaling.

3.3. Image Augmentation

To make the model more robust, the dataset is expanded with ImageDataGenerator

class of Keras. Some noise is added, images are distorted by random shifting, rotating and

flipping. These transformations are done because change in the perspective can change the

apparent shape of the flukes. Here images are allowed to rotate 20 degrees, randomly zoomed

up to 20%, shifted up to 20% of their height and width and flipped horizontally. These

random transformations are skipped during the testing phase.

3.4. Artificial Neural Networks

The heart of the deep learning lies in artificial neural networks (ANN) since they are

the starting point of all. Their architecture is inspired from biological neural networks. In our

brains, learning happens in response to external stimuli. Below a simplified diagram shows

the structure of a neuron.

Figure 3.4.1 Biological neuron

 16

Neurons are found in the cerebral cortex of the brain. Differing from other cells, neurons

possess very long axon to carry signals. At the very end of each axon branches called

telodendria lies. At the tips of each telodendrion, there are synaptic terminals which enable

neurons to talk with other neurons. When a neuron receives sufficient amount of signals

from others within a short amount of time via its dendrites, it fires its own signal for the

adjacent cell.

Each neuron is connected to thousands of other neurons to form vast networks. The

size of such networks reaches to billions of units, so that the brain can perform complex

tasks. Below vertical cross-section of Golgi-stained cortex of an infant is shown (reproduced

from (Cajal, 1899)). Here, the neurons form a laminar structure and each layer is densely

connected to one another via synaptic terminals.

Figure 3.4.2 Multilayer structure of human cerebral cortex

In 1943, McCulloch and Pitts first introduced ANNs mathematically with a model

called propositional logic (McCulloch & Pitts, 1943). In their pioneering paper, the authors

suggested a simple computational model to explain how neurons cooperate with each other

to perform complex computations (McCulloch & Pitts, 1943).

In 1957, Rosenblatt invented the perceptron, a single layer of linear threshold (LTU)

units (the artificial neuron shown in Fig. 3.4.3) with each neuron is connected to all inputs.

The LTU collects all the signals coming from all inputs as the biological neuron does and

takes a weighted sum of them. If the resulting sum exceeds a threshold called bias the unit

is activated and outputs 1, otherwise it just outputs 0. In other words, LTU behaves like a

classifier and bias is a measure of how easy it is to get the artificial unit to fire. With different

combinations of LTUs, logical operations such as AND, OR, XOR, etc. can be performed.

Later, the research on the subject is escalated starting from1960s and multilayer perceptrons

 17

are developed as shown in Fig. 3.4.4 (Geron, 2017). Notice that the units of each layer are

densely connected to the units of neighboring layers. These architectures are called ANNs.

Figure 3.4.3 Linear threshold unit

Figure 3.4.4 ANN with three hidden layers

3.5. Convolutional Neural Networks

Studies on brain’s visual cortex led to another classes of deep, feed-forward artificial

neural networks called convolutional neural networks (CNN). Differing from ANNs which

have fully connected layers, CNNs are able to take into account the spatial structure of the

input data. Thus, application of CNN architectures to visual imagery is shown to be pretty

successful up to now.

 18

During 1958 and 1959 Hubel and Wiesel made series of curial and yet crucial

experiments on cats and later in 1968 on monkeys to study the underlying structure of virtual

cortex (Hubel, 1959; Hubel & Wiesel, 1959; Wiesel & Hubel, 1968). They presented

different visual images to an anesthetized cat with a deep brain probe and observed that

individual nerve cells fire vigorously only to the lines at particular orientation within their

receptive field (Blakemore, 1973). Their findings can further be summarized as follows:

i. Neurons organized in a columnar architecture, act together to pursue a

perception.

ii. Many neurons possess a small receptive field.

iii. Some neurons react to only specific line orientations

iv. Other neurons with larger receptive fields might react to more complex

patterns.

 The biological idea behind the CNN architecture is the feature specific neurons and the

notion of the receptive field as discussed above. Network layers are stacking over each other

inspired by the columnar structure of the biological neurons in the visual cortex. Each unit

in the first hidden layer of a CNN will be connected to a small region of the inputs (receptive

field) as shown in the figure below. A receptive field is rectangular area sliding across the

input image with defined stride steps.

Figure 3.5.1 Receptive field

Learning is done by the associated weight of each connection. Besides, hidden layer also

learns a bias. Through the filter weighted sums are calculated, and feature map is created

(the convolutional part of the network maps the features). Deep down the network, those

 19

filters become larger (i.e. with large receptive fields), so they can consider signal coming

from a larger area and reproduce more complex features. Finally, the networks outputs N-

dimensional vector for N classes and the densely connected part at the very end of each CNN

detects those high-level features.

 A typical CNN architecture is constructed by stacking convolutional layers on top of

each other. Output of each layer is the input of the next. The input image is passed to the

first layer by input layer. This stacked architecture of convolutional layers makes it easy for

CNN to focus on local features in the first hidden layer, then assemble them to learn more

complex features in the next hidden layer. Global features of the image are deduced via this

combined approach.

As we go deep down in the network, the size of the layers shrinks (due to

convolution) and network starts to ignore features at the edges (pixels with no neighbors).

To avoid these padding is used. Simply a buffer layer of zeros is put around the input image,

so that the size of the output layer will be the same with the input layer.

Shared filter weights are initialized in each convolutional layer. For example,

ResNET uses MSRA initialization. It is a Gaussian type initialization which keeps variances

through transformation (Li, Jiao, Han, & Weissman, 2016).

After each convolutional layer, an activation layer is applied. For ResNET, rectified

linear unit (ReLu) is used for the sake of computational efficiency (except SoftMax is used

in the last layer). ReLu outperforms other conventional non-linear activation functions such

as sigmoid and tanh (Xavier, Bordes, & Bengio, 2011). ReLu also said to be the solution of

the vanishing gradient problem which stops the neural network from further training. In this

layer 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) is applied to all of the values in the input. All negative activations

are replaced by zero. So, nonlinearity is introduced to the system without affecting the

receptive fields of the convolutional layer.

Pooling layer is another key element of CNNs. Output of the previous layer is down-

sampled to reduce computational load and number of parameters. By the virtue of pooling,

the risk of over-fitting is reduced somehow. Shrinking the input image also introduces a level

of location invariance, so that the neural network can tolerate a little bit of image shift

(Geron, 2017). In ResNET average pooling is used as aggregation function. Just like in

convolutional layer, a rectangular window with defined size, padding and stride is slid across

the input layer, and average input value in each kernel makes it to the next layer.

 20

When a complex model fits the noise in the data instead of the underlying relationship

of the features, overfitting occurs. This can be avoided by a regularization technique such as

batch normalization as ResNET does. Using an initializer with ReLU reduces the

vanishing/exploding gradient problem at the beginning of the training but not during the

training. The input distribution of each layer changes during training as the parameters of

the previous layer changes leading to a drop in the learning rate. This problem is addressed

as Internal Covariate Shift in the 2015 paper of Ioffe and Szegedy within which

normalization for each training mini-batch is suggested (Ioffe & Szegedy, 2015). The

authors claim that this method not only is a solution to vanishing/exploding gradient problem

but also acts somehow as a regularization technique that eliminates the need for dropout.

Upon experiment, the same effect is observed and dropout layers after convolutional layers

are excluded. Before activation function of each layer inputs are zero-centered, normalized,

scaled and shifted by batch-normalization scaling and shifting parameters per layer. The

required means and standard deviations of the inputs for zero-centering and normalization

steps are estimated from the current mini-batch.

Finally, the output of the last pooling layer is flattened to feed the fully connected

layers at the end. High level features coming from the activation maps of the previous layer

are detected. In the final dense layer, the net output is given as the probability distribution

of each class. Using SoftMax approach the class with highest probability is chosen. That is

how a CNN transforms an input image into a vector of features describing the whale.

 21

3.6. ResNET50

Residual Network (ResNET) is an enhanced 50 layered CNN trained on ImageNET

dataset. It solves the degradation problem of CNNs using shortcuts between layers and

shortens the training time via bottleneck design. Degradation problem is defined by the

authors of the original paper of ResNET as (He, Zang, Ren, & Sun, 2016):

“When deeper networks are able to start converging, a degradation problem has

been exposed: with the network depth increasing, accuracy gets saturated (which

might be unsurprising) and then degrades rapidly.”

In a typical network, weights are updated proportional to the partial derivative of the

error function with respect to the error function after each epoch. However, if the cost

function that is to be optimized during training has a plateau, then these gradients become

very small, hence weights will not be updated effectively. This is the vanishing gradient

problem. Specifically learning decelerates through the layers of the deep neural network due

to very slow gradient descent. ResNET both solves those saturation and degradation

problems via residual learning.

Figure 3.6.1 Plain network vs. ResNET

As Andrew NG beautifully put it in his online course on deep learning, layers of plain

networks transfer their input from one another as activation in an order, however ResNET is

composed of residual blocks stacked over each other (NG, 2017). As shown in Fig. 3.4.3,

LTUs of a layer linearly transforms the incoming activation at first then the nonlinearity is

applied (i.e. ReLU). After passing a layer activation 𝑎𝑙 becomes 𝑎𝑙+1 in two step process:

𝑧[𝑙+1] = 𝑊[𝑙+1]𝑎[𝑙] + 𝑏[𝑙] and 𝑎[𝑙+1] = 𝑓(𝑧[𝑙+1])

 22

Here W is the weight matrix, b is the bias term and f is the nonlinear activation

function (i.e. ReLu). Similarly, final activation can be formulated as,

𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+1] and 𝑎[𝑙+2] = 𝑓(𝑧[𝑙+2])

In ResNET, there is a shortcut is added before the nonlinearity as shown in Fig. 3.6.1,

so the final activation becomes,

𝑎[𝑙+2] = 𝑓(𝑧[𝑙+2] + 𝑎[𝑙])

Even if 𝑧[𝑙+2] vanishes due to L2 regularization, addition of the residual term, 𝑎[𝑙],

at the end guaranties that the network does not degrade as plain networks does since

𝑎[𝑙+2] = 𝑓(𝑎[𝑙]) = 𝑎[𝑙]

The equation above implies that the residual network learns the identity function well

and this brings a lower bound on its learning process. That is the fundamental concept of

ResNET.

In this study, we loaded ResNET50 model from Keras repository. The input size was

set to 224x224x1. The implementation can be found in Appendix A and the model

architecture is given in Appendix B.

 23

4. RESULTS AND DISCUSSION

4.1. Establishing a Baseline Model

In the first part of this study the effect of different splitting schemes on the model’s

performance is investigated. Since a limited number (i.e.250) images are present, and

performance of a deep learning model is highly dependent on the size of the input images

available, the train/test split scheme was carried out with extreme care. We experimented on

three different splitting plans. All splits were carried out in a stratified fashion so that 11

classes were represented with the similar distribution in the resulting sets as seen in the Fig.

3.7.1. With stratified splitting we ensured that training set is a good representation of

validation and test sets.

Figure 4.1.1 Distribution of the images in training, validation and test sets

Before training the model, the learning process was configured. ADAM optimizer,

which is a combination of Gradient Descent with momentum and RMSProp have been

chosen because of its effectiveness. Authors of ADAM observed that exponential averages

of past gradients and variance of the gradients (first and second momentum) decay towards

zero, so they come up with a bias correction for these terms (Kingma & Ba, 2014). However,

we defined a custom decaying function decreasing the learning rate by 10% at each epoch.

 24

Hence, learning rate decreased as it gets closer to the optimal solution. The form of the

annealing function is given below.

𝜂𝑖+1 = (𝜂𝑖 − 𝜂𝑖
10

100
) = 𝜂0 (

90

100
)

𝑖

Here η is the learning rate, i is the epoch index (time step) and η0 is the initial learning rate

chosen to be 0.001. LearningRateSchedular of Keras was utilized to decay the learning rate

by 10% at each epoch.

As a cost function categorical cross entropy has been chosen since it penalizes

erroneous predictions more, producing larger gradients and thus converging faster. The cross

entropy between the estimated probability and the target probability was

minimized. Number of epochs was chosen as a large number (i.e. 300) to guarantee

convergence. Unfortunately, the batch size has been kept very small due to memory limits

of the available GPU (GeForce GTX 950M by NVIDIA). Therefore, the variance was

increased, and we obtained spiky graphs while monitoring the model’s performance during

training from epoch history as seen in Fig. 4.1.2.

In the first model (RESNET_VAL), 25% of 250 images was reserved for testing,

11.25% was kept for validation to monitor the performance history during training and

63.75% was used in training. The final validation accuracy was quite poor (0.448), and the

accuracy of the validation set got stuck at 0.43 after 50 epochs during training. We believe

that the reason of the observed bottleneck is due to limited size of the input space, we decided

to enlarge the training set. Then, the validation set was merged to training set and another

model, RESNET_75_25 has been trained. The performance was improved obtaining a

validation accuracy of 0.635 but this still was not as expected. Finally, decreasing the test

set size to 10% of the dataset, we ran a final model called RESNET_90_10. The saturation

in the validation accuracy during training still persisted somehow but final validation

accuracy quickly escalated to 0.84. The performance metrics of the models deployed can be

found in Table 4.1.1.

Table 4.1.1 Performance comparison of baseline models

MODEL TRAIN/VAL./TEST

RATIO (%)

TRAIN

ACC.

VAL.

ACC.

TRAIN

LOSS

VAL. LOSS

RESNET_VAL 63.75/11.25/25 0.627 0.448 1.067 1.717

RESNET_75_25 75/25 0.840 0.635 0.496 1.107

RESNET_90_10 90/10 0.964 0.840 0.119 0.501

 25

The confusion matrix of the best model, RESNET_90_10 can be seen in Fig. 4. When

we observed the confusion matrix, we saw that erroneously classified categories, especially

6th (w_7554f44) and 10th (w_43be268) whale IDs, have only two test images available.

Wrong labeling just one image of those categories corresponds to incorrectly predicting half

of the labels. This situation substantially increased the multinomial loss (0.501).

 26

Figure 4.1.2 Performance comparison of three different splitting schemes

 27

Figure 4.1.3 Confusion matrix of RESNET_90_10

Considering threshold in between training and test set size as discussed above, we

decided to continue reserving 20% of the dataset for validation. This split ratio was enough

to reserve at least four images for each category in the test set as seen in Fig. 4.1.4.

Figure 4.1.4 Image count distribution for 80/20 train/test split

 28

4.2. Different Initializations

In the second part of the study, we trained the models once with different learning

rates to ensure convergence. Then, resetting the learning rate to ADAM’s default learning

rate of 0.001, we reduced it by 10% every epoch during training. By doing so, we changed

the position of the initial point of optimization prior to the training process. In other words,

to accelerate the learning procedure we experimented on the effect of the initialization on

the minimization of the cost function (i.e. convergence). We experimented by setting the

initial learning rate to 0.001, to 0.005 and then to 0.01, respectively and obtained the best

results for 0.005. The performance metrics are given in Table 4.2.1. for comparison

purposes.

Transferring the calculations on a CPU with 64 GB of RAM we could finally increase

the batch size to 50. At the same time the epoch number was decreased to 70 since we

observed that previous models converged before 75 epochs.

Table 4.2.1 Performance metrics for different learning rates

MODEL INITIAL

LEARNING

RATE

TRAIN ACC. VAL. ACC. TRAIN LOSS VAL. LOSS

RESNET_ADAM_1E3 0.001 0.975 0.920 0.071 0.421

RESNET_ADAM_5E3 0.005 1.000 0.940 0.033 0.318

RESNET_ADAM_1E2 0.01 0.980 0.880 0.059 0.335

RESNET_ADAM_OPT 0.00432 1.000 0.940 0.024 0.341950

The model RESNET_ADAM_5E3 has been built with an initial learning rate of

0.005 outperformed all others. It reached to an accuracy value of 0.940 in the validation set

while minimizing the loss to 0.318. On the other hand, the curious case of the training

accuracy hitting to the unity might be due to overfitting. Unfortunately, the model’s

performance could not be improved more due to limited number of the training images (i.e.

200 photos). When we inspected Fig. 4.2.2. we concluded that the one and only train/test

gap that is in the closing trend is that of RESNET_ADAM_1E3. Furthermore, the unstable

behavior in the train/test validation and loss curves was not observed in that model since its

 29

starting learning rate is the same with the one that is used in the annealing function, so the

learning rate of the first and second epochs was not changing abruptly.

Assuming the accuracy is a quadratic function of the initial learning rate, we fitted a

second order polynomial to the accuracy versus learning rate plot and calculated the value

that maximizes the fit function (see Fig. 4.2.2). The climax point has a learning rate of

0.00432. Then the model, RESNET_ADAM_OPT, is trained again with this rate, but neither

the accuracy nor the loss has been improved significantly when compared to the scores

obtained by RESNET_ADAM_1E5. The performance metrics are given in Table 4.1.1. The

closeness of the performance scores of those two models is not surprising since their initial

points are nearly the same and for this reason they converge to the same solution with the

same methods.

Figure 4.2.1 Change in accuracy with different initializations

y = -1888,9x2 + 16,333x + 0,9056

0,87

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0 0,002 0,004 0,006 0,008 0,01 0,012

V
al

id
at

io
n

 A
cc

u
ra

cy

Initial Learning Rate

Accuracy vs. Learning Rate

Actual Data LR = 0.00435 Poly. (Actual Data)

 30

Figure 4.2.2 Performance comparison of models with different initializations

 31

5. CONCLUSION

In conclusion, we report that ResNET_ADAM_1E5 is a successful CNN model to

identify humpback whale images with an accuracy of 0.94 although it is trained with a very

small dataset of 200 images, only. This, model could be enhanced further if only more

images were available. Recently, Kaggle has restarted the Humpback Whale Identification

Competition with an expanded dataset (Kaggle Inc., 2018). As a future work, this enlarged

dataset will be used to improve the model, even making it to identify all of the whale IDs,

even the ones not cataloged yet. To enhance the image preprocessing identical photos known

to be present in the train set will be determined using image hashing and will be dropped.

Furthermore, we will be training our own object detector such as YOLO, Faster R-CNN,

Mask R-CNN or a single shot detector (SSD) to determine the bounding box coordinates.

 32

6. SOCIAL AND ETHICAL ASPECTS

This study does not violate privacy or liberties of any individual of the humpback

whale community. Since the photographs of the dataset were taken at a distance no animals

were harmed. In this cruelty free study, the end product was not tested on live animals.

 33

7. VALUE DELIVERED

By classifying the humpback whales, we contribute to Happy Whale’s efforts to

understand these endangered animals. To ensure their survival for future generations, their

migration patterns needed to be tracked. Moreover, tracking is important to understand their

pod dynamics. Photo identification is the only advanced and automatized method to help the

scientist to track the whales individually and we obtained a high accuracy of 0.92 with these

techniques. We are planning to pursue our studies on the enlarged dataset to aid whale

conservation efforts more. Moreover, this project reminded us that all the species of this

planet have equal rights to live, breed and prosper. The Earth does not belong to the

humankind, only.

 34

Bibliography

Anonymous. (2018, 5 26). Deep learning unbalanced training data? Solve it like this.

Retrieved 12 4, 2018, from mc.ai: Aggregated news around AI and co.:

https://mc.ai/deep-learning-unbalanced-training-datasolve-it-like-this/

Anonymous. (2018). Whale Facts: Marine Mammal Facts & Information. Retrieved 12 27,

2018, from Humpback Whale Facts: https://www.whalefacts.org/humpback-whale-

facts/

Batbouta, A. (2017). Computer Assisted Labeling of Humpback Whales and Whale

Sharks. Troy, New York: Rensselaer Polytechnic Institute.

Blakemore, C. (1973). Colin Blakemore does terrible things to kittehz. For science!

Retrieved 12 23, 2018, from https://www.youtube.com/watch?v=QzkMo45pcUo

Brinkmann, R. (2008). The Art and Science of Digital Compositing: Techniques for visual

effects, animation and motion graphics. Morgan Kaufmann.

Cajal, S. R. (1899). Wikipedia. Retrieved 12 22, 2018, from Cerabral Cortex:

https://en.wikipedia.org/wiki/Cerebral_cortex

Cascadian Research Collective. (2018, July 22). Retrieved from Cascadia Research:

http://www.cascadiaresearch.org/

Clark, A., & Contributors. (2010). PILLOW. Retrieved from GitHub:

https://github.com/python-pillow/Pillow

College of the Atlantic. (2018, July 22). Allied Whale. Retrieved from College of the

Atlantic: https://www.coa.edu/allied-whale/

Crall, J., Stewart, C., Y. Berger-Wolf, T., Rubenstein, D., & Sundaresan, S. (2013).

HotSpotter - Patterned Species Instance Recognition. IEEE Workshop on

Applications of Computer Vision (WACV) (pp. 230-237). IEEE.

Dawes, J., & Campbell, A. (2008). Exploring the World of Aquatic Life. New York:

Chelsea House Publications.

Freedman, D., & Diaconis, P. (1981). On the Histogram as a Density Estimator: L2

Theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4),

453-476.

Friday, N., Smith, T. D., Stevick, P. T., & Allen, J. (2000). Measurement of photographic

quality and individual distinctiveness for the photographic identification of

 35

humpback whales, Megaptera novaeangliae. Marine Mammal Science, 16(2), 355-

374.

Fuhr, N., Quaresma, P., Gonçalves, T., Larsen, B., Balog, K., & Macdonald, C. (2016).

LifeCLEF 2016: Multimedia Life Species Identification Challenges. In L.

Cappellato, & N. Ferro (Ed.), International Conference of the Cross-Language

Evaluation Forum for European Languages (pp. 286-310). Cambridge: Springer.

Geron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems. Sebastopol, California:

O'Reilly Media, Inc.

Happywhale. (2018, July 21). Happywhale. Retrieved from About Happywhale:

https://happywhale.com

happywhale. (n.d.). Image Submission Guidelines. Retrieved December 4, 2018, from

Happywhale: https://happywhale.com/instructions

He, K., Zang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image

Recognition. IEEE conference on computer vision and pattern recognition, (pp.

770-778).

Hubel, D. H. (1959). Single unit activity in striate cortex of unrestrained cats. The Journal

of physiology, 2(147), 226-238.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's striate

cortex. The Journal of physiology, 3(148), 574-591.

International Whaling Commission. (2018). Commercial Whaling. Retrieved 12 27, 2018,

from International Whaling Commission: https://iwc.int/commercial

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. doi:1502.03167

Jablons, Z. (2016, April). Identifying humpback whale flukes by sequence matching of

trailing edge curvature. Troy, New York: Rensselaer Polytechnic Institute.

Jones, E., Oliphant, T., Peterson, P., & Others. (2001). SciPy: Open source scientific tools

for Python. Retrieved 12 19, 2018, from http://www.scipy.org

Kaggle Inc. (2018). Humpback Whale Identification. Retrieved 12 26, 2018, from kaggle:

https://www.kaggle.com/c/humpback-whale-identification

Kaggle Inc. (2018, July 22). Kaggle. Retrieved from Humpback Whale Identification

Challenge: https://www.kaggle.com/c/whale-categorization-playground

 36

Katona, S. K., & Kraus, S. (1979). Photographic identification of individual humpback

whales (Megaptera novaeangliae): evaluation and analysis of the technique.

Washington, DC.: NTIS.

Katona, S. K., Harcourt, P. M., Perkins, J. S., & Kraus, S. (1980). Humpback Whales: a

catalogue of individuals identified in the western North Atlantic Ocean by means of

fluke photographs. Bar Harbour: College of the Atlantic.

Keras Team. (2018, July 25). Github. Retrieved from Keras: https://github.com/keras-

team/keras

Kingma, D. P., & Ba, J. (2014, 12 22). Adam: A method for stochastic optimization (2014).

doi:arXiv:1412.6980

Li, S., Jiao, J., Han, Y., & Weissman, T. (2016). arXiv preprint arXiv. doi:1611.01186.

Lillie, D. G. (1915). British Antartic ("Terra Nova") Expedition, 1910. Natural History

Reports, 1(3), 85-124.

Martin, S. (2002). The Whales' Journey: A Year in the Life of a Humpback Whale, and a

Century in the History of Whaling. Crows Nest, NSW, Australia: Allen & Unwin.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4), 115-133.

Mukherjee, U. (2018, December 4). How to handle Imbalanced Classification Problems in

machine learning? Retrieved from Analytics Vidhya:

https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/

NG, A. (2017, 11 7). C4W2L03 Resnets. Deeplearning.ai. Retrieved 12 27, 2018, from

https://www.youtube.com/watch?v=ZILIbUvp5lk

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .

Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research, 12, 2825-2830.

Piotte, M. (2018, June 25). Bounding box data for the whale flukes. Retrieved from

Kaggle: https://www.kaggle.com/martinpiotte/bounding-box-data-for-the-whale-

flukes

Piotte, M. (2018, December 4). Kaggle. Retrieved from Bounding Box Model:

https://www.kaggle.com/martinpiotte/bounding-box-model

Schevill, W. E., & Backus, R. H. (1960). Daily Patrol of a Megaptera. Journal of

Mammalogy, 41(2), 279-281.

 37

Tensorflow. (2018, July 26). Github. Retrieved from Tensorflow:

https://github.com/tensorflow/tensorflow

Weideman, H., Jablons, Z., Holmberg, J., Flynn, K., Calambokidis, J., Tyson, R., . . .

Stewart, C. (2017). Integral Curvature Representation and Matching Algorithms for

Identification of Dolphins and Whales. arXiv preprint arXiv:1708.07785. Retrieved

from Integral Curvature Representation and Matching Algorithms for Identification

of Dolphins and Whales:

http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w41/Weidem

an_Integral_Curvature_Representation_ICCV_2017_paper.pdf

Weisstein, E. W. (n.d.). Affine Transformation. Retrieved 12 19, 2018, from Mathworld:

Wolfram Web Resources:

http://mathworld.wolfram.com/AffineTransformation.html

Wiesel, T. N., & Hubel, D. H. (1968). Receptive fields and functional architecture of

monkey striate cortex. The Journal of physiology, 1(195), 215-243.

Wikipedia. (2018, 7 24). Convolutional neural network. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Convolutional_neural_network

Xavier, G., Bordes, A., & Bengio, Y. (2011). "Deep sparse rectifier neural networks."

Proceedings of the. 2011. Fourteenth international conference on artificial

intelligence and statistics, (pp. 315-323).

 38

APPENDIX A

from __future__ import print_function

%matplotlib inline

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from skimage.io import imread

import numpy as np

from collections import Counter

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from PIL import Image

from PIL import ImageStat

import pickle

import tensorflow as tf

from keras.preprocessing.image import img_to_array,array_to_img

from scipy.ndimage import affine_transform

from pylab import *

from keras.utils.np_utils import to_categorical

from sklearn.preprocessing import StandardScaler

#import imagehash

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Conv2D, MaxPooling2D

from keras.utils import plot_model

#import pydot

from keras.utils import np_utils

from sklearn.preprocessing import LabelEncoder,OneHotEncoder

from keras.preprocessing.image import ImageDataGenerator

import keras

from keras.callbacks import LearningRateScheduler

from keras.applications.resnet50 import ResNet50

from sklearn.preprocessing import MinMaxScaler

#from scipy.ndimage.interpolation import affine_transform

from sklearn.metrics import confusion_matrix

from keras.models import load_model

from keras.callbacks import ModelCheckpoint

import numpy as np

import tensorflow as tf

import random as rn

The below is necessary in Python 3.2.3 onwards to

have reproducible behavior for certain hash-based operations.

See these references for further details:

https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED

https://github.com/keras-team/keras/issues/2280#issuecomment-306959926

import os

os.environ['PYTHONHASHSEED'] = '0'

The below is necessary for starting Numpy generated random numbers

in a well-defined initial state.

np.random.seed(42)

The below is necessary for starting core Python generated random numbers

in a well-defined state.

rn.seed(123)

Force TensorFlow to use single thread.

Multiple threads are a potential source of

 39

non-reproducible results.

For further details, see: https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-

to-realize-100-reproducibility-of-training-res

session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)

from keras import backend as K

The below tf.set_random_seed() will make random number generation

in the TensorFlow backend have a well-defined initial state.

For further details, see: https://www.tensorflow.org/api_docs/python/tf/set_random_seed

tf.set_random_seed(1234)

sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)

K.set_session(sess)

print(len(os.listdir("../input/train")))

#print(len(os.listdir("../input/test")))

map = pd.read_csv("../input/train.csv")

map.head()

randomRows = map.sample(frac=1.)[:10] # randomly choose 8 rows of the .csv file

filenames = list(randomRows['Image']) # convert Image column of the dataframe to filename list

labels = list(randomRows['Id']) # convert ID column of the dataframe to filename list

images = [imread(f'../input/train/{filename}') for filename in filenames] # using formatted string for changing

filenames

create a list of arrays of rantomly chosen 10 images

figure = plt.figure(figsize=(20, 10)) # set figure size to 8 inches x 6 inches

rows = 2 # define # of rows

cols = 5 # define # of columns

for i in range(len(images)): # loop over images

 subplot = figure.add_subplot(rows, cols, i + 1) # add subplots to rows x columns figure grid

 subplot.axis('Off') #turn-off axis

 subplot.set_title(labels[i], fontsize=14) # set titles

 plt.imshow(images[i]) # show images

figure.savefig("../figures/flukes.png")

def is_gray_scale(p):

 """Adapted from https://stackoverflow.com/questions/23660929/how-to-check-whether-a-jpeg-image-is-

color-or-gray-scale-using-only-python-stdli"""

 img = Image.open(f'../input/train/{p}')

 img = img.convert('RGB')

 width,height = img.size

 for i in range(width):

 for j in range(height):

 r,g,b = img.getpixel((i,j))

 if r != g != b: return False

 return True

percentage = 0 #initialize %

N = 5 #number of samples

for i in range(N):

 is_gray = [is_gray_scale(i) for i in map['Image'].sample(frac=0.01)]

 percentage = percentage + sum([i for i in is_gray]) / len([i for i in is_gray]) * 100 #add %'s of different

samples up

percentage = round(percentage/N,2) #avarage the percentage sum

print(f" Nearly {percentage}% of training images are grayscaled")

catNumber = len(map['Id'].unique()) # number of unique categories are counted

print(f'Number of categories: {catNumber}')# and printed

map['Id'].value_counts() # number of images in each class is printed

le = LabelEncoder()

Ids = le.fit_transform(map['Id']) # assign ordinal levels to categorical IDs

fig = plt.figure(figsize = (8, 6))

sns.distplot(Ids, vertical = True)

plt.title('Categorical Distribution')

plt.ylabel("Ordinal Whale IDs")

 40

plt.xlabel("PDF")

plt.show() # plot the distribution

fig.savefig("../figures/ID_dist.png")

from collections import Counter

whale_dist = Counter(map['Id'].value_counts().values)

print("\n(# of images, # of classes containing those # of images)\n")

print(sorted(whale_dist.items()))

fig = plt.figure(figsize = (8, 6))

plt.bar(range(len(whale_dist)), list(whale_dist.values())[::-1], align='center')

plt.xticks(range(len(whale_dist)), list(whale_dist.keys())[::-1])

plt.title("Number of Categories by Number of Images")

plt.xlabel('Number of Images')

plt.ylabel('Number of Categories')

plt.show()

fig.savefig('../figures/Cat_by_Number.png')

filenames = map['Image'].sample(frac=0.25)

images={filename: plt.imread(f'../input/train/{filename}') for filename in filenames}

img_sizes = Counter([value.shape[:2] for value in images.values()])

size, freq = zip(*Counter({i: v for i, v in img_sizes.items() if v > 1}).most_common(20))

fig = plt.figure(figsize=(8, 6))

plt.bar(range(len(freq)), list(freq), align='center')

plt.xticks(range(len(size)), list(size), rotation=70)

plt.title("Image size frequencies (where freq > 1)")

plt.xlabel("Image Size")

plt.ylabel("Count")

plt.show()

fig.savefig('../figures/imgSize_Dist.png')

map20 = map[map["Id"].isin(top20.ID)]

#map20.Id.unique() # check name of classes

map20.shape

map20.describe()

map20["Id"].unique()

filenames = map20['Image']#.sample(frac=0.25)

images={filename: plt.imread(f'../input/train/{filename}') for filename in filenames}

img_sizes = Counter([value.shape[:2] for value in images.values()])

size, freq = zip(*Counter({i: v for i, v in img_sizes.items() if v > 1}).most_common(20))

fig = plt.figure(figsize=(8, 6))

plt.bar(range(len(freq)), list(freq), align='center')

plt.xticks(range(len(size)), list(size), rotation=70)

plt.title("Image size frequencies (where freq > 1)")

plt.xlabel("Image Size")

plt.ylabel("Count")

plt.show()

fig.savefig('../figures/imgSize_Dist_cons.png')

with open("../input/Outliers.txt") as f1: # Open file of image names to be excluded

 outliers = f1.read().splitlines()

outlierSET = set(outliers) #convert list of names to set to avoid repetitive names

outliers = list(outlierSET) #re-convert set to list of names.

#len(outliers) # total number of outliers = 47

allExclude = list(map20[map20["Image"].isin(outliers)].Image)

toBeExcluded = [imread(f'../input/train/{filename}') for filename in allExclude]

figure = plt.figure(figsize=(20, 40)) # set figure size to 8 inches x 6 inches

rows = 1 # define # of rows

cols = 2 # define # of columns

for i in range(len(toBeExcluded)): # loop over images

 subplot = figure.add_subplot(rows, cols, i + 1) # add subplots to rows x columns figure grid

 subplot.axis('Off') #turn-off axis

 subplot.set_title(allExclude[i], fontsize=14) # set titles

 41

 plt.imshow(toBeExcluded[i])# show images

figure.savefig("../figures/toBeExcluded2.png")

omitIndices = []

for p in allExclude:

 #print(p)

 index = list(map20["Image"]).index(p)

 omitIndices.append(index)

map20 = map20.drop(map20.index[omitIndices])

len(map20)

with open('../input/rotate.txt') as f: # Open Piotte's findings

 rotationList = f.read().splitlines()

with open("../input/extendRotate.txt") as f1: # Open mine

 allUpsdDwn = f1.read().splitlines()

totalUpsnDwn = set(rotationList).union(allUpsdDwn) #convert list of names to set to avoid repetitive names

totalUpsnDwn = list(totalUpsnDwn)

#map20[map20["Image"].isin(totalUpsnDwn)]

allRotate = list(map20[map20["Image"].isin(totalUpsnDwn)].Image)

toBeRotated = [imread(f'../input/train/{filename}') for filename in allRotate]

figure = plt.figure(figsize=(20, 40)) # set figure size to 8 inches x 6 inches

rows = 1 # define # of rows

cols = 3 # define # of columns

for i in range(len(toBeRotated)): # loop over images

 subplot = figure.add_subplot(rows, cols, i + 1) # add subplots to rows x columns figure grid

 subplot.axis('Off') #turn-off axis

 subplot.set_title(allRotate[i], fontsize=14) # set titles

 plt.imshow(toBeRotated[i])# show images

figure.savefig("../figures/toBeRotated.png")

Read the bounding box data from the bounding box kernel (see reference above)

with open('../input/bounding-box.pickle', 'rb') as f:

 p2bb = pickle.load(f)

list(p2bb.items())[:5]

def readImage(p):

 img = Image.open(f"../input/train/{p}")

 if p in allRotate:

 img = img.rotate(180)

 #img = imread(f"data/train/{p}")

 return img

aspectRatio = 0

for p in map20.Image:

 img = readImage(p)

 width, height = img.size

 aspectRatio += width/height

aspectRatio = aspectRatio/len(map20) #take average

print("Average aspect ratio:",aspectRatio)

def crop(p):

 img_shape = (224,224,1) # The image shape used by the model

 anisotropy = 2.09 # The horizontal compression ratio

 margin = 0.1 # The margin added around the bounding box to compensate for bounding box inaccuracy

 # Determine the region of the original image we want to capture based on the bounding box.

 x0,y0,x1,y1 = p2bb[p]

 # Read the image

 p = readImage(p)

 #if p in allRotate: BUG FIXED!!! no need to flip since readImage already does!

 #img = img.rotate(180)

 # Get size

 size_x,size_y = p.size

 if p in allRotate: x0, y0, x1, y1 = size_x - x1, size_y - y1, size_x - x0, size_y - y0

 dx = x1 - x0

 42

 dy = y1 - y0

 x0 -= dx*margin

 x1 += dx*1.5*margin + 1

 y0 -= dy*margin

 y1 += dy*margin + 1

 if (x0 < 0):

 x0 = 0

 if (x1 > size_x):

 x1 = size_x

 if (y0 < 0):

 y0 = 0

 if (y1 > size_y):

 y1 = size_y

 dx = x1 - x0

 dy = y1 - y0

 if dx > dy*anisotropy:

 dy = 0.5*(dx/anisotropy - dy)

 y0 -= dy

 y1 += dy

 else:

 dx = 0.5*(dy*anisotropy - dx)

 x0 -= dx

 x1 += dx

 # Generate the transformation matrix

 trans = np.array([[1, 0, -0.5*img_shape[0]], [0, 1, -0.5*img_shape[1]], [0, 0, 1]])

 trans = np.dot(np.array([[(y1 - y0)/img_shape[0], 0, 0], [0, (x1 - x0)/img_shape[1], 0], [0, 0, 1]]), trans)

 trans = np.dot(np.array([[1, 0, 0.5*(y1 + y0)], [0, 1, 0.5*(x1 + x0)], [0, 0, 1]]), trans)

 # Transform to black and white and comvert to numpy array

 img = p.convert('L') #keep 3 channel info for ResNET

 img = img_to_array(img)#img_to_array(img)

 # Apply affine transformation

 matrix = trans[:2,:2]

 offset = trans[:2,2]

 img = img.reshape(img.shape[:-1])#

 img = ndimage.affine_transform(img, matrix, offset, output_shape=img_shape[:-1], order=1,

mode='constant', cval=np.average(img))

 img = img.reshape(img_shape)

 # Normalize to zero mean and unit variance

 img -= np.mean(img, keepdims=True)

 img /= np.std(img, keepdims=True) + K.epsilon()

 return img

for p in allRotate:

 img = readImage(p)

 print("Original Image")

 plt.imshow(Image.open(f"../input/train/{p}"))

 plt.show()

 print("Flipped Image")

 plt.imshow(readImage(p))

 plt.show()

 print("Cropped & Reshaped Version")

 cropped =crop(p)

 #plt.imshow(cropped)

 plt.imshow(cropped.reshape(img_shape[0], img_shape[1]),cmap = matplotlib.cm.binary)

 plt.show()

with open("../input/cropFail.txt") as f: # Open file of image names to be excluded

 cropFail = list(f.read().splitlines())

#toBeExcluded = [imread(f'data/train/{filename}') for filename in allExclude]

 43

figure = plt.figure(figsize=(20, 40)) # set figure size to 20 inches x 6 inches

rows = 9 # define # of rows

cols = 2 # define # of columns

index = 0

for i in cropFail: # loop over images

 subplot = figure.add_subplot(rows, cols, index + 1) # add subplots to rows x columns figure grid

 subplot.axis('Off') #turn-off axis

 subplot.set_title(i, fontsize=14) # set titles

 plt.imshow(readImage(i))# show images

 #plt.show()

 cropped =(crop(i))

 subplot = figure.add_subplot(rows, cols, index + 2) # add subplots to rows x columns figure grid

 subplot.axis('Off') #turn-off axis

 plt.imshow(cropped.reshape(img_shape[0], img_shape[1]),cmap = matplotlib.cm.binary)

 title = "Cropped " + i

 subplot.set_title(title, fontsize=14) # set titles

 #plt.show()

 index = index + 2

figure.savefig("../figures/cropFail.png")

omitIndices = []

for p in cropFail:

 #print(p)

 index = list(map20["Image"]).index(p)

 omitIndices.append(index)

map20 = map20.drop(map20.index[omitIndices])

len(map20)

final_top20 = pd.DataFrame(map20['Id'].value_counts().head(11))

final_top20.reset_index(inplace=True)

final_top20.columns = ['ID','Counts']

fig = plt.figure(figsize = (8, 6))

plt.title('Whale Categories with 20 or more Images')

sns.set_color_codes("pastel")

sns.barplot(x="ID", y="Counts", data=final_top20,

 label="Count")

locs, labels = plt.xticks()

plt.setp(labels, rotation=45)

plt.show()

fig.savefig('final_top20.png')

y = map20["Id"]

names = list(map20["Image"])

X = []

for i in range(len(map20)):

 imgName = names[i]

 cropped = crop(imgName)

 #cropped =to_rgb(cropped)

 X.append(cropped)

X = np.array(X)

X = X.reshape((-1, 224, 224, 1)).astype("float32")

print(X.shape)

print(y.shape)

import pickle

with open('../input/X_gray', 'wb') as f1:

 pickle.dump(X, f1)

with open('../input/y_gray', 'wb') as f2:

 pickle.dump(y, f2)

with open ('../input/X_gray', 'rb') as f3:

 X = pickle.load(f3)

with open ('../input/y_gray', 'rb') as f4:

 44

 y = pickle.load(f4)

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.25,stratify=y)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15,stratify=y_train)

height = 224

width = 224

channels =1

X_train = X_train.reshape(-1,height,width,channels) # dimension (60000) is inferred by setting the first

element to -1

X_test = X_test.reshape(-1,height,width,channels)

X_val = X_val.reshape(-1,height,width,channels)

print("<3 Shape of My Heart <3 : ")

print("=========================")

print("Training:", X_train.shape)

print("Testing:", X_test.shape)

print("Validation:", X_val.shape)

print(y_train.shape)

train_top20 = pd.DataFrame(y_train.value_counts())

train_top20.reset_index(inplace=True)

train_top20.columns = ['ID','Counts']

val_top20 = pd.DataFrame(y_val.value_counts())

val_top20.reset_index(inplace=True)

val_top20.columns = ['ID','Counts']

test_top20 = pd.DataFrame(y_test.value_counts())

test_top20.reset_index(inplace=True)

test_top20.columns = ['ID','Counts']

f,(ax1,ax2,ax3) = plt.subplots(3,1,sharex=True)

fig1 = sns.barplot(x="ID", y="Counts", data=train_top20, ax=ax1)

fig1.set_ylabel('Train')

fig1.set_xlabel('')

fig2 = sns.barplot(x="ID", y="Counts", data=val_top20, ax=ax2)

fig2.set_xlabel('')

fig2.set_ylabel('Validation')

fig3 = sns.barplot(x="ID", y="Counts", data=test_top20, ax=ax3)

fig3.set_ylabel('Test')

fig3.set_xlabel('')

f=plt.xticks(rotation=45)

suptitle("Categorical Distrbution of Images", fontsize=16)

#f.savefig('../figures/train_val_test_Dist.png')

y_train = LabelEncoder().fit_transform(y_train)

#y_train = OneHotEncoder().fit_transform(y_train.reshape(-1,1))

y_val = LabelEncoder().fit_transform(y_val)

#y_val = OneHotEncoder().fit_transform(y_val.reshape(-1,1))

y_test = LabelEncoder().fit_transform(y_test)

#y_test = OneHotEncoder().fit_transform(y_test.reshape(-1,1))

print(y_train.shape)

print(y_val.shape)

print(y_test.shape)

classNum = 11#len(np.unique(y_train)) # number of unique labels is counted to determine the # of classes

y_train = to_categorical(y_train, num_classes = classNum)

y_test = to_categorical(y_test, num_classes = classNum)

y_val = to_categorical(y_val, num_classes = classNum)

datagen = ImageDataGenerator(

 rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)

 zoom_range = 0.2, # Randomly zoom image

 width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

 height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

 horizontal_flip=True, # randomly flip images horizontally only!

 vertical_flip=False, # do not randomly flip images vertically!

 45

 fill_mode='nearest')

datagen.fit(X_train, augment=True)

inputShape = (224,224,1)

model = ResNet50(include_top = True, classes=11, input_shape = inputShape)

model.summary()

from keras.utils import plot_model

plot_model(model, to_file='../figures/models1.png')

pil_image.open('../figures/models1.png')

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adam(), #instead of annealer decay = DR can be set, too

 metrics=['accuracy'])

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

Fit the model

Epochs = 300 #

batchSize = 12 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_val,y_val),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[annealer])

from keras.models import load_model

model.save('../models/ResNET50.h5') # creates a HDF5 file 'my_model.h5'

#del model # deletes the existing model

returns a compiled model

identical to the previous one

#model = load_model('my_model.h5')

valLoss, valAcc = model.evaluate(X_val, y_val, verbose=0)

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0)

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc))

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc))

sns.set_color_codes("pastel")

sns.set_style("white")

sns.lineplot(x='loss', data =)

plt.plot(history.history['loss'], label = "Training Loss")

plt.plot(history.history['val_loss'], label = "Validation Loss")

plt.legend()

plt.show()

plt.plot(history.history['acc'],label = "Training Accuracy")

plt.plot(history.history['val_acc'], label = "Validation Accuracy")

plt.legend()

plt.show()

pred = model.predict(X_test) # Predict values of the test set

#y_testCat = to_categorical(y_test, num_classes = classNum)

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0)

print(testLoss,testAcc)

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix

plt.figure(figsize=(9,9))

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu");

plt.ylabel('True Labels');

plt.xlabel('Predicted Labels');

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15);

#plot_confusion_matrix(confusion_mtx, classes = range(10))

with open ('../input/X_gray', 'rb') as f3:

 X = pickle.load(f3)

 46

with open ('../input/y_gray', 'rb') as f4:

 y = pickle.load(f4)

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.25,stratify=y, random_state =42)

#X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15,stratify=y_train)

height = 224

width = 224

channels =1

X_train = X_train.reshape(-1,height,width,channels) # dimension (60000) is inferred by setting the first

element to -1

X_test = X_test.reshape(-1,height,width,channels)

#X_val = X_val.reshape(-1,height,width,channels)

y_train = LabelEncoder().fit_transform(y_train)

#y_train = OneHotEncoder().fit_transform(y_train.reshape(-1,1))

#y_val = LabelEncoder().fit_transform(y_val)

#y_val = OneHotEncoder().fit_transform(y_val.reshape(-1,1))

y_test = LabelEncoder().fit_transform(y_test)

#y_test = OneHotEncoder().fit_transform(y_test.reshape(-1,1))

print(y_train.shape)

#print(y_val.shape)

print(y_test.shape)

classNum = 11#len(np.unique(y_train)) # number of unique labels is counted to determine the # of classes

y_train = to_categorical(y_train, num_classes = classNum)

y_test = to_categorical(y_test, num_classes = classNum)

#y_val = to_categorical(y_val, num_classes = classNum)

datagen = ImageDataGenerator(

 rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)

 zoom_range = 0.2, # Randomly zoom image

 width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

 height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

 horizontal_flip=True, # randomly flip images horizontally only!

 vertical_flip=False, # do not randomly flip images vertically!

 fill_mode='nearest',

 zca_whitening = False) # A whitening transform of an image is a linear algebra operation that reduces

the redundancy in the matrix of pixel images. Less redundancy in the image is intended to better highlight the

structures and features in the image to the learning algorithm.

datagen.fit(X_train, augment=True)

configure batch size and retrieve one batch of images

#os.makedirs('augmentedImages')

#for X_batch, y_batch in datagen.flow(X_train, y_train, batch_size=9, save_to_dir='../augmentedImages',

save_prefix='aug', save_format='png'):

inputShape = (224,224,1)

model = load_model('../models/ResNET50.h5')

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adam(), #instead of annealer decay = DR can be set, too

 metrics=['accuracy'])

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

Fit the model

Epochs = 300 #

batchSize = 12 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_test,y_test),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[annealer])

model.save('../models/ResNET50_wo_val.h5') # creates a HDF5 file 'my_model.h5'

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0)

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0)

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc))

 47

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc))

sns.set_color_codes("pastel")

sns.set_style("white")

#sns.lineplot(x='loss', data =)

plt.plot(history.history['loss'], label = "Training Loss")

plt.plot(history.history['val_loss'], label = "Validation Loss")

plt.legend()

plt.show()

plt.plot(history.history['acc'],label = "Training Accuracy")

plt.plot(history.history['val_acc'], label = "Validation Accuracy")

plt.legend()

plt.show()

pred = model.predict(X_test) # Predict values of the test set

#y_testCat = to_categorical(y_test, num_classes = classNum)

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0)

print(testLoss,testAcc)

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix

plt.figure(figsize=(9,9))

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu");

plt.ylabel('True Labels');

plt.xlabel('Predicted Labels');

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15);

#plot_confusion_matrix(confusion_mtx, classes = range(10))

inputShape = (224,224,1)

model = load_model('../models/ResNET50_80_20_split.h5')

model.load_weights('../models/ResNET50_80_20_50batchSize_weights.h5')

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adam(lr=0.01), #instead of annealer decay = DR can be set, too

 metrics=['accuracy'])

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

Fit the model

Epochs = 70 #

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

checkpoint

filepath="../models/ResNET_80_20_split_ADAM_LR0.01_weights-improvement-{epoch:02d}-

{val_acc:.2f}.hdf5"

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

#callbacks_list = [checkpoint]

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_test,y_test),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[annealer, checkpoint])

model.save('../models/ResNET_80_20_split_ADAM_LR0.01.h5') # creates a HDF5 file 'my_model.h5'

save weights

model.save_weights('../models/ResNET_80_20_split_ADAM_LR0.01_weights.h5')

to restore a model from a checkpoint see: https://machinelearningmastery.com/check-point-deep-learning-

models-keras/

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0)

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0)

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc))

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc))

sns.set_color_codes("pastel")

sns.set_style("white")

#sns.lineplot(x='loss', data =)

plt.plot(history.history['loss'], label = "Training Loss")

 48

plt.plot(history.history['val_loss'], label = "Validation Loss")

plt.legend()

plt.show()

plt.plot(history.history['acc'],label = "Training Accuracy")

plt.plot(history.history['val_acc'], label = "Validation Accuracy")

plt.legend()

plt.show()

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.01.h5')

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.01_weights.h5')

pred = model.predict(X_test) # Predict values of the test set

#y_testCat = to_categorical(y_test, num_classes = classNum)

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0)

print(testLoss,testAcc)

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix

plt.figure(figsize=(9,9))

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu");

plt.ylabel('True Labels');

plt.xlabel('Predicted Labels');

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15);

#plot_confusion_matrix(confusion_mtx, classes = range(10))

inputShape = (224,224,1)

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.01.h5')

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.01_weights.h5')

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adam(lr=0.005), #instead of annealer decay = DR can be set, too

 metrics=['accuracy'])

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

Fit the model

Epochs = 70 #

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

checkpoint

filepath="../models/ResNET_80_20_split_ADAM_LR0.005_weights-improvement-{epoch:02d}-

{val_acc:.2f}.hdf5" #PREVIOUSLY WRONGLY NAMED PATH!!

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

#ACCIDENTALLY WROTE 0.01 instead of 0.005 :()

#callbacks_list = [checkpoint]

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_test,y_test),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[annealer, checkpoint])

model.save('../models/ResNET_80_20_split_ADAM_LR0.005.h5') # creates a HDF5 file 'my_model.h5'

save weights

model.save_weights('../models/ResNET_80_20_split_ADAM_LR0.005_weights.h5')

to restore a model from a checkpoint see: https://machinelearningmastery.com/check-point-deep-learning-

models-keras/

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0)

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0)

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc))

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc))

sns.set_color_codes("pastel")

sns.set_style("white")

#sns.lineplot(x='loss', data =)

plt.plot(history.history['loss'], label = "Training Loss")

plt.plot(history.history['val_loss'], label = "Validation Loss")

plt.legend()

 49

plt.show()

plt.plot(history.history['acc'],label = "Training Accuracy")

plt.plot(history.history['val_acc'], label = "Validation Accuracy")

plt.legend()

plt.show()

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.005.h5')

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.005_weights.h5')

pred = model.predict(X_test) # Predict values of the test set

#y_testCat = to_categorical(y_test, num_classes = classNum)

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0)

print(testLoss,testAcc)

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix

plt.figure(figsize=(9,9))

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu");

plt.ylabel('True Labels');

plt.xlabel('Predicted Labels');

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15);

#plot_confusion_matrix(confusion_mtx, classes = range(10))

inputShape = (224,224,1)

model = load_model('../models/ResNET50_90_10_split.h5')

model.load_weights('../models/ResNET50_90_10_weights.h5')

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adam(), #instead of annealer decay = DR can be set, too

 metrics=['accuracy'])

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

Fit the model

Epochs = 70 #

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

checkpoint

filepath="../models/ResNET_80_20_split_LR0.001-{epoch:02d}-{val_acc:.2f}.hdf5"

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

#callbacks_list = [checkpoint]

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_test,y_test),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[annealer, checkpoint])

model.save('../models/ResNET50_80_20_split_LR0.001.h5') # creates a HDF5 file 'my_model.h5'

save weights

model.save_weights('../models/ResNET50_80_20_LR0.001_weights.h5')

to restore a model from a checkpoint see: https://machinelearningmastery.com/check-point-deep-learning-

models-keras/

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0)

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0)

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc))

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc))

sns.set_color_codes("pastel")

sns.set_style("white")

#sns.lineplot(x='loss', data =)

plt.plot(history.history['loss'], label = "Training Loss")

plt.plot(history.history['val_loss'], label = "Validation Loss")

plt.legend()

plt.show()

plt.plot(history.history['acc'],label = "Training Accuracy")

plt.plot(history.history['val_acc'], label = "Validation Accuracy")

plt.legend()

 50

plt.show()

pred = model.predict(X_test) # Predict values of the test set

#y_testCat = to_categorical(y_test, num_classes = classNum)

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0)

print(testLoss,testAcc)

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix

plt.figure(figsize=(9,9))

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu");

plt.ylabel('True Labels');

plt.xlabel('Predicted Labels');

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15);

#plot_confusion_matrix(confusion_mtx, classes = range(10))

def get_lr_metric(optimizer):

 def lr(y_true, y_pred):

 return optimizer.lr

 return lr

inputShape = (224,224,1)

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.005.h5')

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.005_weights.h5')

opt = keras.optimizers.Adam(lr=0.004323416)

lr_metric = get_lr_metric(opt)

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adam(lr=0.004323416), #instead of annealer decay = DR can be set, too

 metrics=['accuracy', lr_metric])

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

Fit the model

Epochs = 70 #

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

checkpoint

filepath="../models/ResNET_80_20_split_ADAM_LR0.0043_weights-improvement-{epoch:02d}-

{val_acc:.2f}.hdf5"

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

#callbacks_list = [checkpoint]

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_test,y_test),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[annealer, checkpoint])

…..

from keras.callbacks import Callback

import keras.backend as K

import numpy as np

class SGDRScheduler(Callback):

 '''Cosine annealing learning rate scheduler with periodic restarts.

 # Usage

        ```python 

            schedule = SGDRScheduler(min_lr=1e-5, 

                                     max_lr=1e-2, 

                                     steps_per_epoch=np.ceil(epoch_size/batch_size), 

                                     lr_decay=0.9, 

                                     cycle_length=5, 

                                     mult_factor=1.5) 

            model.fit(X_train, Y_train, epochs=100, callbacks=[schedule]) 



 51 

        ``` 

 # Arguments

 min_lr: The lower bound of the learning rate range for the experiment.

 max_lr: The upper bound of the learning rate range for the experiment.

 steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`.

 lr_decay: Reduce the max_lr after the completion of each cycle.

 Ex. To reduce the max_lr by 20% after each cycle, set this value to 0.8.

 cycle_length: Initial number of epochs in a cycle.

 mult_factor: Scale epochs_to_restart after each full cycle completion.

 # References

 Blog post: jeremyjordan.me/nn-learning-rate

 Original paper: http://arxiv.org/abs/1608.03983

 '''

 def __init__(self,

 min_lr,

 max_lr,

 steps_per_epoch,

 lr_decay=1,

 cycle_length=10,

 mult_factor=2):

 self.min_lr = min_lr

 self.max_lr = max_lr

 self.lr_decay = lr_decay

 self.batch_since_restart = 0

 self.next_restart = cycle_length

 self.steps_per_epoch = steps_per_epoch

 self.cycle_length = cycle_length

 self.mult_factor = mult_factor

 self.history = {}

 def clr(self):

 '''Calculate the learning rate.'''

 fraction_to_restart = self.batch_since_restart / (self.steps_per_epoch * self.cycle_length)

 lr = self.min_lr + 0.5 * (self.max_lr - self.min_lr) * (1 + np.cos(fraction_to_restart * np.pi))

 return lr

 def on_train_begin(self, logs={}):

 '''Initialize the learning rate to the minimum value at the start of training.'''

 logs = logs or {}

 K.set_value(self.model.optimizer.lr, self.max_lr)

 def on_batch_end(self, batch, logs={}):

 '''Record previous batch statistics and update the learning rate.'''

 logs = logs or {}

 self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))

 for k, v in logs.items():

 self.history.setdefault(k, []).append(v)

 self.batch_since_restart += 1

 K.set_value(self.model.optimizer.lr, self.clr())

 def on_epoch_end(self, epoch, logs={}):

 '''Check for end of current cycle, apply restarts when necessary.'''

 if epoch + 1 == self.next_restart:

 self.batch_since_restart = 0

 self.cycle_length = np.ceil(self.cycle_length * self.mult_factor)

 self.next_restart += self.cycle_length

 self.max_lr *= self.lr_decay

 52

 self.best_weights = self.model.get_weights()

 def on_train_end(self, logs={}):

 '''Set weights to the values from the end of the most recent cycle for best performance.'''

 self.model.set_weights(self.best_weights)

inputShape = (224,224,1)

model = load_model('../models/ResNET50_80_20_split.h5')

model.load_weights('../models/ResNET50_80_20_50batchSize_weights.h5')

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=5e-4, nesterov=True), #instead of

annealer decay = DR can be set, too

 metrics=['accuracy'])

Fit the model

Epochs = 70 #

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch

 # until an epoch limit is reached.

cosine annealer reference: https://arxiv.org/abs/1608.03983

#annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)

schedule = SGDRScheduler(min_lr=1e-4,

 max_lr=1e-2,

 steps_per_epoch = X_train.shape[0] // batchSize,#np.ceil(epoch_size/batch_size),

 lr_decay=0.9,

 cycle_length=5,

 mult_factor=1.5)

checkpoint

filepath="../models/ResNET_SGD_LR0.01_weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5"

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize),

 epochs = Epochs, validation_data = (X_test,y_test),

 verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize

 , callbacks=[schedule, checkpoint])

model.save('../models/ResNET50_SGD_LR001.h5') # creates a HDF5 file 'my_model.h5'

save weights

model.save_weights('../models/ResNET50_SGD_LR001_weights.h5')

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0)

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0)

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc))

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc))

sns.set_color_codes("pastel")

sns.set_style("white")

#sns.lineplot(x='loss', data =)

plt.plot(history.history['loss'], label = "Training Loss")

plt.plot(history.history['val_loss'], label = "Validation Loss")

plt.legend()

plt.show()

plt.plot(history.history['acc'],label = "Training Accuracy")

plt.plot(history.history['val_acc'], label = "Validation Accuracy")

plt.legend()

plt.show()

pred = model.predict(X_test) # Predict values of the test set

#y_testCat = to_categorical(y_test, num_classes = classNum)

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0)

print(testLoss,testAcc)

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix

 53

plt.figure(figsize=(9,9))

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu");

plt.ylabel('True Labels');

plt.xlabel('Predicted Labels');

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15);

#plot_confusion_matrix(confusion_mtx, classes = range(10))

 54

APPENDIX B

__
Layer (type) Output Shape Param # Connected to
== ==
input_5 (InputLayer) (None, 224, 224, 1) 0
__
zero_padding2d_4 (ZeroPadding2D (None, 230, 230, 1) 0 input_5[0][0]
__ __
conv1 (Conv2D) (None, 112, 112, 64) 3200 zero_paddi ng2d_4[0][0]
__
bn_conv1 (Batch Normalization) (None, 112, 112, 64) 256 conv1[0][0]
__________________________________ __
activation_197 (Activation) (None, 112, 112, 64) 0 bn_conv1 [0][0]
__ ______
max_pooling2d_5 (MaxPooling2D) (None, 55, 55, 64) 0 activation_197[0][0]
________________________________ __
res2a_branch2a (Conv2D) (None, 55, 55, 64) 4160 max_pooling2d_5[0][0]
__ ________
bn2a_branch2a (BatchNormalizati (None, 55, 55, 64) 256 res2a_branch2a[0][0]
__________ __
activation_198 (Activation) (None, 55, 55, 64) 0 bn2a_branch2a[0][0]
__
res2a_branch2b (Conv2D) (None, 55, 55, 64) 36928 activation_198[0][0]
________ __ __
bn2a_branch2b (BatchNormalizati (None, 55, 55, 64) 256 res2a_branch2b[0][0]
__ ________________________________
activation_199 (A ctivation) (None, 55, 55, 64) 0 bn2a_branch2b[0][0]
__
res2a_branch2c (Conv2D) (None, 55, 55, 256) 16640 activation _199[0][0]
__
res2a_branch1 (Conv2D) (None, 55, 55, 256) 16640 max_pooling2d_5[0] [0]
__________________________________ __
bn2a_branch2c (BatchNormalizati (None, 55, 55, 256) 1024 res2a_branch2c[0][0]
__ __ ______
bn2a_branch1 (BatchNormalizatio (None, 55, 55, 256) 1024 res2a_branch1[0][0]
__
add_65 (Add) (None, 55, 55, 256) 0 bn2a_branch2c[0][0]
 bn2a_branch1[0][0]
___ _______________________________________
activation _200 (Activation) (None, 55, 55, 256) 0 add_65[0][0]
__
res2b_branch2a (Co nv2D) (None, 55, 55, 64) 16448 act ivation_200[0][0]
__
bn2b_branch2a (BatchNormalizati (None, 55, 55, 64) 256 res2b_branc h2a[0][0]
__
activation_201 (Activation) (None, 55, 55, 64) 0 bn2b_branch2a[0][0]
___________________________________ _______________________ __
res2b_branch2b (Conv2D) (None, 55, 55, 64) 36928 activation_201[0][0]
___ _____
bn2b_branch2b (Ba tchNormalizati (None, 55, 55, 64) 256 res2b_branch2b[0][0]
__
activation_202 (Activation) (None, 55, 55, 64) 0 bn2b_branc h2b[0][0]
__
res2b_branch2c (Conv2D) (None, 55, 55, 256) 16640 activation_202[0][0]
___________ _______________________ __
bn2b_branch2c (BatchNormalizati (None, 55, 55, 256) 1024 res2b_branch2c[0][0]
___ _______________________ ______
add_66 (Add) (None, 55, 55, 256) 0 bn2b_branch2c[0][0]
 activation_200[0][0]
____________________________ _______________________ ___
activation_203 (Activation) (None, 55, 55, 256) 0 add_66[0][0]
__ ____________
res2c_bran ch2a (Conv2D) (None, 55, 55, 64) 16448 activation_203[0][0]
__
bn2c_branch2a (BatchNormalizati (None, 55, 55 , 64) 256 res 2c_branch2a[0][0]
__
activation_204 (Activation) (None, 55, 55, 64) 0 bn2c_branch2a[0][0]
____ __
res2c_branch2b (Conv2D) (None, 55, 55, 64) 36928 activation_204[0][0]
__ ____________________________________
bn2c_branch2b (BatchNormalizati (None, 55, 55, 64) 256 res2c_branch2b[0][0]
___ ___
activation_205 (Activ ation) (None, 55, 55, 64) 0 bn2c_branch2b[0][0]
__
res2c_ branch2c (Conv2D) (None, 55, 55, 256) 16640 activation_205 [0][0]
__
bn2c_branch2c (BatchNormalizati (None, 55, 55, 256) 1024 res2c_branch2c[0][0]
______________________________________ __
add_67 (Add) (None, 55, 55, 256) 0 bn2c_branch2c[0][0]
 activation_203[0][0]

 55

__
activation_206 (Activation) (None, 55, 55, 256) 0 add_67[0][0]
___ ___
res3a_branch2a (Conv2D) (None, 28, 28, 128) 32896 activation_206[0][0]
__ __
bn3a_branch2a (BatchNormalizati (None, 28, 28, 128) 512 res3a_branch2a[0][0]
__
activation_207 (Activation) (None, 28, 28, 128) 0 bn3a_br anch2a[0][0]
__
res3a_branch2b (Conv2D) (None, 28, 28, 128) 147584 activation_207[0][0]
_______________________________ ___
bn3a_branch2b (BatchNormalizati (None, 28, 28, 128) 512 res3a_branch2b[0][0]
___ _________
activation_208 (Activation) (None, 28, 28, 128) 0 bn3a_branch2b[0][0]
_________________ ___
res3a_branch2c (Conv2D) (None, 28, 28, 5 12) 66048 activation_208[0][0]
___ _______________________
res3a_branch1 (Conv2D) (None, 28, 28, 512) 131584 activation_206[0][0]
_______ ___
bn3a_branch2c (BatchNormalizati (N one, 28, 28, 512) 2048 res3a_branch2c[0][0]
___ _________________________________
bn3a_branch1 (BatchNormalizatio (None, 28, 28, 512) 2048 res3a_branch1[0][0]
__
add_68 (Add) (None, 28, 28, 512) 0 bn3a_branch2c[0][0]
 bn3a_branch1[0][0]
__ ________________
activation_209 (Activation) (None, 28, 28, 512) 0 add_68[0][0]
__________ __
res3b_branch2a (Conv2D) (None, 28 , 28, 128) 65664 activation_209[0][0]
__ ______________________________
bn3b_branch2a (BatchNormalizati (None, 28, 28, 128) 512 res3b_branch2a[0][0]
__
activation_210 (Activation) (None, 28, 28, 128) 0 bn3b_branch2a[0][0]
__ __
res3b_branch2b (Conv2D) (None, 28, 28, 128) 14758 4 activation_210[0][0]
__
bn3b_branch2b (Ba tchNormalizati (None, 28, 28, 128) 512 res3b_branch2b[0][0]
_________________ ___
activation_211 (Activation) (None, 28, 28, 128) 0 bn3b_branc h2b[0][0]
___ _______________________
res3b_branch2c (Conv2D) (None, 28, 28, 512) 66048 activation_211[0][0]
__________________________________ __
bn3b_branch2c (BatchNormalizati (N one, 28, 28, 512) 2048 res3b_branch2c[0][0]
__ ______
add_69 (Add) (None, 28, 28, 512) 0 bn3b_branch2c[0][0]
 activation_209[0][0]
___ ___
activation_212 (Activation) (None, 28, 28, 512) 0 add_69[0][0]
__
res3c_bran ch2a (Conv2D) (None, 28, 28, 128) 65664 activation_212[0][0]
__________ __
bn3c_branch2a (BatchNormalizati (None, 28, 28, 128) 512 res 3c_branch2a[0][0]
__ ______________________________
activation_213 (Activation) (None, 28, 28, 128) 0 bn3c_branch2a[0][0]
___________________________ ___
res3c_branch2b (Conv2D) (None, 28, 28, 128) 147584 activation_213[0][0]
___ _____________
bn3c_branch2b (BatchNormalizati (None, 28, 28, 128) 512 res3c_branch2b[0][0]
__
activation_214 (Activation) (None, 28, 2 8, 128) 0 bn3c_branch2b[0][0]
_________________ ___
res3c_branch2c (Conv2D) (None, 28, 28, 512) 66048 activation_214[0][0]
___ _______________________
bn3c_branch2c (BatchNormalizati (None, 28, 28, 512) 2048 res3c_branch2c[0][0]
___ _____________________________________
add_70 (Add) (N one, 28, 28, 512) 0 bn3c_branch2c[0][0]
 activation_212[0][0]
____________________ __ ______
activation_215 (Activation) (None, 28, 28, 512) 0 add_70[0][0]
__ ____________________
res3d_branch2a (Conv2D) (None, 28, 28, 128) 65664 activation_215[0][0]
__
bn3d_branch2a (BatchNormalizati (None , 28, 28, 128) 512 res3d_branch2a[0][0]
__________ __
activation_216 (Activation) (None, 28, 28, 128) 0 bn3d_branch2a[0][0]
__ ______________________________
res3d_branch2b (Conv2D) (None, 28, 28, 128) 147584 activation_216[0][0]
__ __
bn3d_branch2b (BatchNormalizati (None, 28, 28, 128) 512 res3d_branch2b[0][0]
__
activation_21 7 (Activation) (None, 28, 28, 128) 0 bn3d_bra nch2b[0][0]
__
res3d_branch2c (Conv2D) (None, 28, 28, 512) 66048 activa tion_217[0][0]
________________________________ __

 56

bn3d_branch2c (BatchNormalizati (None, 28, 28, 512) 2048 res3d_branch2c[0][0]
______________________________ __ ________
add_71 (Add) (None, 28, 28, 512) 0 bn3d_branch2c[0][0]
 activation_215[0][0]
___ ___
activation_218 (Activation) (None, 28, 28, 512) 0 add_71[0][0]
___ ___
res4a_br anch2a (Conv2D) (None, 14, 14, 256) 131328 activation_218[0][0]
__
bn4a_b ranch2a (BatchNormalizati (None, 14, 14, 256) 1024 r es4a_branch2a[0][0]
__
activation_219 (Activation) (None, 14, 14, 256) 0 bn4a_branch2a[0][0]
_________________________ ___
res4a_branch2b (Conv2D) (None, 14, 14, 256) 590080 activation_219[0][0]
_______________________ __ _______________
bn4a_branch2b (BatchNormalizati (None, 14, 14, 256) 1024 res4a_branch2b[0][0]
___ _________________
activation_220 (Activation) (None, 14, 14, 256) 0 bn4a_branch2b[0][0]
__
res4a_branch2c (Conv2D) (None, 1 4, 14, 1024) 263168 activatio n_220[0][0]
__
res4a_branch1 (Conv2D) (None, 14, 14, 1024) 525312 activation_218[0][0]
_________________________________ ___
bn4a_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096 res4a_branch2c[0][0]
___ __________________________________ _______
bn4a_branch1 (BatchNormalizatio (None, 14, 14, 1024) 4096 res4a_branch1[0][0]
__
add_72 (Add) (None, 14, 14, 102 4) 0 bn4a_branch2c[0][0]
 bn4a_branch1[0][0]
__ ________________________
activatio n_221 (Activation) (None, 14, 14, 1024) 0 add_72[0][0]
__
res4b_branch2a (Conv2D) (None, 14, 14, 256) 262400 ac tivation_221[0][0]
__
bn4b_branch2a (BatchNormalizati (None, 14, 14, 256) 1024 res4b_branch2a[0][0]
__________________________ __
activation_222 (Activation) (None, 14, 14, 256) 0 bn4b_branch2a[0][0]
__ __________________________________ ______________
res4b_branch2b (Conv2D) (None, 14, 14, 256) 590080 activation_222[0][0]
__
bn4b_bran ch2b (BatchNormalizati (None, 14, 14, 256) 1024 res4b_branch2b[0][0]
__
activation_223 (Activation) (None, 14, 14, 256) 0 bn 4b_bra nch2b[0][0]
__
res4b_branch2c (Conv2D) (None, 14, 14, 1024) 263168 activation_223[0][0]
__________________________ ______ __
bn4b_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096 res4b_branch2c[0][0]
__ ______ ________
add_73 (Add) (None, 14, 14, 1024) 0 bn4b_branch2c[0][0]
 activation_221[0][0]
___ ______ ___
activation_224 (Activation) (None, 14, 14, 1024) 0 add_73[0][0]
__
re s4c_br anch2a (Conv2D) (None, 14, 14, 256) 262400 activation_224[0][0]
__
bn4c_branch2a (BatchNormalizati (None, 14, 14, 256) 1024 r es4c_branch2a[0][0]
__
activation_225 (Activation) (None, 14, 14, 256) 0 bn4c_branch2a[0][0]
___________________ ______ ___
res4c_branch2b (Conv2D) (None, 14, 14, 256) 590080 activation_225[0][0]
___ ______ _______________
bn4c_branch2b (BatchNormalizati (None, 14, 14, 256) 1024 res4c_branch2b[0][0]
__
activation_226 (Activation) (Non e, 14, 14, 256) 0 bn4c_branch2b[0][0]
__
res4c_branch2c (Conv2D) (None, 14, 14, 1024) 263168 activatio n_226[0][0]
__
bn4c_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096 res4c_branch2c[0][0]
_________________________________ ____________________ ___
add_74 (Add) (None, 14, 14, 1024) 0 bn4c_branch2c[0][0]
 activation_224[0][0]
____________ __
activation_227 (Activation) (None, 14, 14, 1024) 0 add_74[0][0]
__ ____________________ ____________________________
res4d_branch2a (Conv2D) (None, 14, 14, 256) 262400 activation_227[0][0]
__
bn4d_bran ch2a (BatchNormaliza ti (None, 14, 14, 256) 1024 res4d_branch2a[0][0]
__
activation_228 (Activation) (None, 14, 14, 256) 0 bn 4d_branch2a[0][0]
__
res4d_branch2b (Conv2D) (None, 14, 14, 256) 590080 activation_228[0][0]
__________________________ ____________________ __
bn4d_branch2b (BatchNormalizati (None, 14, 14, 256) 1024 res4d_branch2b[0][0]
__ ______________

 57

activ ation_229 (Activation) (None, 14, 14, 256) 0 bn4d_branch2b[0][0]
__
res4d_branch2c (Conv2D) (None, 14, 14, 1024) 263168 activation_229[0][0]
__
bn4d_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096 res4d_branch2c[0][0]
______________________ __
add_75 (Add) (None, 14, 14, 1024) 0 bn4d_branch2c[0][0]
 activation_227[0][0]
__
activation_230 (Activation) (None, 14, 14, 1024) 0 add_75[0][0]
_______________________________________ ___
res4e_branch2a (Conv2D) (None, 14, 14, 256) 262400 activation_230[0][0]
__________________________________ ___ _
bn4e_branch2a (BatchNormalizati (None, 14, 14, 256) 1024 res4e_branch2a[0][0]
__ ______
activation_231 (Activation) (None, 14, 14, 256) 0 bn4e_branch2a[0][0]
__
res4e_branch2b (Conv2D) (None, 14, 14, 256) 590080 activation_231[0][0]
_______________ ___
bn4e_branch2b (BatchNormalizati (None, 14, 14, 256) 1024 res4e_branch2b[0][0]
__________ ___ _________________________
activation_232 (Activation) (None, 14, 14, 256) 0 bn4e_branch2b[0][0]
__ ______________________________
res4e_branch2c (Conv2D) (None, 14, 14, 1024) 263168 activation_232[0][0]
__
bn4e_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096 res4e_branch2c[0][0]
__
add_76 (Add) (None, 14, 14, 1024) 0 bn4e_bra nch2c[0][0]
 activation_230[0][0]
__
activation_233 (Activation) (None, 14, 14, 1024) 0 add_76[0][0]
________ __
res4f_branch2a (Conv2D) (None, 14, 14, 256) 262400 activation_233[0][0]
__ ________________________________
bn4f_branch2a (BatchNormalizati (None, 14, 14, 256) 1024 res4f_branch2a[0][0]
___ ___
activation_234 (Activatio n) (None, 14, 14, 256) 0 bn4f_branch2a[0][0]
__
res4f_br anch2b (Conv2D) (None, 14, 14, 256) 590080 activation_234[0][0]
__
bn4f_branch2b (BatchNormalizati (None, 14, 14, 256) 1024 r es4f_branch2b[0][0]
__ __
activation_235 (Activation) (None, 14, 14, 256) 0 bn4f_branch2b[0][0]
_________________________ ___
r es4f_branch2c (Conv2D) (None, 14, 14, 1024) 263168 activation_235[0][0]
___ _______________
bn4f_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096 res4f_branch2c[0][0]
__
add_77 (Add) (None, 14, 14, 1024) 0 bn4f_branch2c[0][0]
 activation_233[0][0]
___ _________________________
activation_236 (Activation) (None, 14, 14, 1024) 0 add_77[0][0]
__
res5a_branch2a (Conv2D) (None, 7, 7, 512) 524800 activation_236[0][0]
___________________________________ ___
bn5a_branch2a (BatchNormalizati (None, 7, 7, 512) 2048 res5a_branch2a[0][0]
___ _____
activation_237 (Activation) (None, 7, 7, 512) 0 bn5a_branch2a[0][0]
___ ___
res5a_branch2b (Conv2D) (None, 7, 7, 512) 2359808 activation_237[0][0]
__
bn5a_bra nch2b (BatchNormalizati (None, 7, 7, 512) 2048 res5a_branch2b[0][0]
___________ ___
activation_238 (Activation) (None, 7, 7, 512) 0 b n5a_branch2b[0][0]
__
res5a_branch2c (Conv2D) (None, 7, 7, 2048) 1050624 activation_238[0][0]
_________________________ _________________________________ __
res5a_branch1 (Conv2D) (None, 7, 7, 2048) 2099200 activation_236[0][0]
___ _______________
bn5a_branch2c (Ba tchNormalizati (None, 7, 7, 2048) 8192 res5a_branch2c[0][0]
__
bn5a_branch1 (BatchNormalizatio (None, 7, 7, 2048) 8192 res5a_bran ch1[0][0]
__
add_78 (Add) (None, 7, 7, 2048) 0 bn5a_br anch2c[0][0]
 bn5a_branch1[0][0]
__
activation_239 (Activation) (None, 7, 7, 2048) 0 add_78[0][0]
__
res5b_branch2a (Conv2D) (None, 7, 7, 512) 1049088 activation_239[0][0]
___ ___
bn5b_branch2a (BatchNormalizati (None, 7, 7, 512) 2048 res5b_branch2a[0][0]
__ __
activation _240 (Activation) (None, 7, 7, 512) 0 bn5b_branch2a[0][0]
__

 58

res5b_b ranch2b (Conv2D) (None, 7, 7, 512) 2359808 act ivation_240[0][0]
__
bn5b_branch2b (BatchNormalizati (None, 7, 7, 512) 2048 res5b_branch2b[0][0]
___________________________ ___
activation_241 (Activation) (None, 7, 7, 512) 0 bn5b_branch2b[0][0]
________________________ ___ _____________
res5b_branch2c (Conv2D) (None, 7, 7, 2048) 1050624 activation_241[0][0]
__ ________________
bn5b_branch2c (BatchNormalizati (None, 7, 7, 2048) 8192 res5b_branch2c[0][0]
__
add_79 (Add) (None, 7, 7, 2048) 0 bn5b_branch2c[0][0]
 activation_239[0][0]
___ _________________________
activation_242 (Activation) (None, 7, 7, 2048) 0 add_79[0][0]
__
res5c_branch2a (Conv2D) (None, 7, 7, 512) 1049088 activation_242[0][0]
____________________ __
bn5c_branch2a (BatchNormalizati (None, 7, 7, 512) 2048 res5c_branch2a[0][0]
__ ____________________
activation_243 (Activation) (None, 7, 7, 512) 0 bn5c_branch2a[0][0]
___ ___
res5c_branch2b (Conv2D) (None , 7, 7, 512) 2359808 activation_243[0][0]
__
bn5c_bra nch2b (BatchNormalizati (None, 7, 7, 512) 2048 res5c_branch2b[0][0]
__
activation_244 (Activation) (None, 7, 7, 512) 0 b n5c_branch2b[0][0]
__ __
res5c_branch2c (Conv2D) (None, 7, 7, 2048) 1050624 activation_244[0][0]
_________________________ ___
bn5c_branch2c (BatchNormalizati (None, 7, 7, 2048) 8192 res5c_branch2c[0][0]
___ _______________
add_80 (Add) (None, 7, 7, 2048) 0 bn5c_b ranch2c[0][0]
 activation_242[0][0]
__
activation_245 (Activation) (None, 7, 7, 2048) 0 add_80[0][0]
__ __
avg_pool (AveragePooling2D) (None, 1, 1, 2048) 0 activation_245[0][0]
__
flatten_3 (Flatte n) (None, 2048) 0 avg_pool[0][0]
___ ___
fc2 (Dense) (None, 11) 22539 flatten_3[0][0]
==
Total params: 23,603,979
Trainable params: 23,550,859
Non- trainable params: 53,120
__ __

