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EXECUTIVE SUMMARY 

 

THE HUMPBACK WHALE IDENTIFICATION WITH 

 CONVOLUTIONAL NEURAL NETWORKS 

 

Duygu Can 

 

 

Advisor: Assoc. Prof. Şuayb S. Arslan 

 

 

DECEMBER 2018, 68 pages 

 

 

 

The migration patterns of humpback whales are tracked with conventional photo-

identification techniques for decades. The distinct markings on whale flukes serve as unique 

fingerprints for these creatures. This study aims to identify humpback whales according to 

their fluke images using ResNET, a deep neural network architecture to help the 

conservation efforts for this endangered species by automatizing the process. We 

experimented with different train/test split schemes and initializations to obtain the best 

classifying model. Although we were limited with a small sized training set of 200 images, 

using state-of-the-art image processing and data augmentation methods we obtained a high 

accuracy of 0.94 for 11 distinct whales. This project is served as an friendly interface to dive 

deep into the field of image recognition with Convolutional Neural Networks. 
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ÖZET 

 

EVRİŞİMLİ SİNİR AĞLARI KULLANARAK KAMBUR BALİNA TANIMA 

 

Duygu Can 

 

 

Tez Danışmanı: Doç. Dr. Şuayb S. Arslan 

 

 

ARALIK 2018, 68 sayfa 

 

 

 

Kambur balinaların göç kalıpları, onlarca yıldır geleneksel fotoğraf tanımlama 

teknikleri ile izlenmektedir. Balina kuyrukları üzerindeki belirgin işaretler, bu canlılar için 

özgün parmak izleri gibi davranmaktadır. Tanıma sürecini otomatikleştirerek, nesli tehlikede 

olan kambur balinaların korunma çabalarına katkıda bulunmayı hedefleyen bu çalışmada, 

bir derin sinir ağı mimarisi olan ResNET ile kuyruk görsellerine göre balina tanıma 

hedeflenmiştir. En iyi sınıflandırma modelini elde etmek için farklı eğitim/test ayrımı 

şemaları ve değişik başlangıç noktalari ile deneyler yapılmıştır. 200 görüntüden oluşan 

küçük bir eğitim seti ile sınırlı kalınmasına rağmen, ileri görüntü işleme ve veri artırma 

yöntemlerini kullanılarak 11 farklı balina için 0.94 yüksek başarımı edilebilmiştir. Bu proje, 

Konvolüsyonel Sinir Ağları ile görüntü tanıma alanına derinlemesine dalmak için dostça bir 

arayüz olarak hizmet etmiştir. 
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1. INTRODUCTION 

After years of intense whaling, large whale species became extinct. Starting from the 

ancient times, 90% of the humpback whales are massacred during the whaling era 

(Anonymous, 2018). By 1986, International Whaling Commission banned commercial 

whaling for all whale species due to severe risk of extinction (International Whaling 

Commission, 2018). The moratorium is still valid today, but Japan, Norway and Iceland 

oppose the moratorium decision and establish their own hunting limits. Thanks to the ban, 

the humpback whale population is recovered and now it is estimated to be at least 80000.  

Now whaling no longer threatens the whales but other reasons such as collisions with ships, 

industrial fishing, ocean pollution, noise pollution and global ocean warming are still 

possible causes of risk for their survival. They travel 25750 kilometers on average on yearly 

basis for mating and feeding (Anonymous, Whale Facts: Marine Mammal Facts & 

Information, 2018). For conservation purposes, marine biologists track their migration 

routes and they get help from individual whale photos for these sacred efforts. 

1.1. Brief Literature Review 

Starting from the 1970s, scientists use natural markings to recognize an individual of 

a species (Fuhr, et al., 2016).  Especially it is easy to identify the humpback whales because 

they swim near the surface and when they dive deep for food, they raise their flukes up in 

the air. On those flukes, there are color variations from white to black, toothmarks of killer 

whales, algal films and various other scars and scratches. These distinct markings are 

fingerprints of the individual whales. Change in the color of the whale’s skin first noted by 

Lillie in 1915 but the uniqueness of this variation is not recognized (Lillie, 1915). Years later 

in 1960, utilizing these colors and marks Schevill and Backus could be able to track the same 

humpback whale over ten days of journey near Portland, Maine (Schevill & Backus, 1960). 

Thanks to Kraus and Katona, the first catalogue of 120 fluke photos is formed and later 

Katona and his colleagues enlarged the list to 1000 individuals for the North Atlantic region 

(Katona & Kraus, 1979; Katona, Harcourt, Perkins, & Kraus, 1980). Now, the Allied Whale 

of the College of the Atlantic curates the catalog and there are more than 8000 unique 

animals present in their up-to-date list (College of the Atlantic, 2018).  

Running over all those photos of flukes manually to identify individual whales 

requires a huge effort beyond human capacity. As the number of collected images increases 
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with the developing technology and the significant amount of recovery in the overall whale 

population, addressing this need with a limited number of scientists at hand is becoming 

challenging day by day. Furthermore, accurate identification is controversial because the 

distinctive power of conventional methods is quite dependent on photo quality, evaluation 

of the markings in time and the ability of the observers (Friday, Smith, Stevick, & Allen, 

2000).  

For the past 40 years, those photos identified manually by the scientists to be tagged 

with an ID according to certain marks in the flukes. This requires evaluating negatives of the 

photos under a magnifying glass to match the patterns. To ease the burden of manual image 

processing, fully automated techniques are developed. One of the modern methods is 

matching the sequence of patterns at the trailing edges of the flukes using integral curves 

calculated from the outline of the edges (Weideman, et al., 2017; Jablons, 2016). Another 

species-unspecific algorithm called HotSpotter, matches individuals by patterns on their 

body parts (Crall, Stewart, Y. Berger-Wolf, Rubenstein, & Sundaresan, 2013). Batboua 

improved these two existing methods by stacking a Support Vector Machine (SVM) 

algorithm for classifying feature vectors of the images obtained from HotSpotter and curve-

matching algorithms, respectively (2017). 

1.2. The Humpback Whales 

The humpback whale, Megaptera novaeangliae, is a large and thick warm-blooded 

mammal. Their females are larger than the males and can weigh upto 45 tons. The adult 

females can reach upto 19 meters while male humpback whales remain around 17.5 meters 

long. Their exact lifespan is unknown, but it is claimed to be in the range of 45 to 100 years 

(Dawes & Campbell, 2008) They are classified under baleen whales because they possess 

keratin palettes called baleen instead of teeth in their mouth. They live in shallow dense 

waters near coastal regions, close to the sea surface. They even sleep lying at the surface for 

only short periods. Moreover, they do not dive more than 100 meters. (Martin, 2002). 

Therefore, they are the widely studied whale species. They are famous for their breaching, 

jumping totally out of water and landing back on their sides creating a huge splash. They 

can sing not only in water but also in air, too. The function of their singing is unexplained 

by researchers, yet it is thought to serve for socialization (Martin, 2002). Male’s songs can 

also be interpreted as mating signal, territorial marking or immigrational calling. These 
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gentle giants can take great lengths for mating and feeding. On their long journey Sun’s 

position and the geomagnetic patterns of the Earth guide their way. They mostly feed on 

krill, but their diet is not restricted with only zooplanktons. They can also eat capelin, 

anchovy, cod, herring, mackerel, pilchards and small shrimp consuming 2000 kilograms of 

food per day, if available (Martin, 2002). They are curious and social animals which perform 

cooperative feeding. Once an individual of a pod is captured during hunting, other members 

have been observed to come to help or assist injured animal (Martin, 2002). The motives of 

their behavior is unknown. Their underwater life is still a mystery to the humankind. 

The color pigmentation varies among their population. One can observe black, dark 

gray or brown, and even white versions of these beautiful creatures in the whole Southern 

Hemisphere. The back of their flukes appears in darker color such as black or dark gray, but 

the underside of the flukes is white (Martin S., 2002). The tail of each humpback whale is 

visibly unique because there are individual markings of different shapes or spots. The small 

round shapes on the tails are due to cookie cutter sharks, for example.  Besides, most of the 

times barnacles sticks firmly to their flukes. 

1.3. Data Source Information 

Happy Whale is an online platform which collects photographs of the whales around 

the world and utilizes advanced image processing algorithms to contribute to the whale 

surveillance problem (Happywhale, 2018). Not only scientists but also individual whale 

watchers, naturalists or even passengers can submit photos to their website. Processing the 

unique marks, the pigmentation patterns, etc. found in dorsal fin or flukes with image 

recognition algorithm, their collaborating scientists at Cascadia Research Collective and 

Allied Whale identify those photos to deduce the story of whales: which ones survived 

during the year, what are their population trends, what are their migration, feeding or 

breeding patterns, etc. (Cascadian Research Collective, 2018; College of the Atlantic, 2018). 

Through connecting humans and the whales, this platform claims to bring attention to the 

marine ecosystem and also to the global challenges as we all humans face. They donated 

their data to a Kaggle competition and defined the problem so that many independent 

researchers, students, and other image recognition enthusiasts could work on it (Kaggle Inc., 

2018). 
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1.4. Description of the Dataset 

The dataset is composed of training and test images. Alternatively, an Excel file, 

train.csv, is also provided to link individual whale IDs with the training image file names. 

Unfortunately test images are not labeled in this Kaggle competitions. There are 9850 images 

of humpback whale flukes in the training set and 15610 in the test set. There are 4251 unique 

whale IDs in the dataset. Unluckily, each unique whale ID has only a few numbers of images 

associated with it and this makes the identification problem challenging. The unlabeled 

images which do not match with any of the IDs are tagged as new_whale. Some of the images 

are black and white, while some of them are colored. Sampling 1% of the whole dataset five 

times randomly, grayscale percentage is found to be 50.2%.  Some random examples from 

the training set can be seen in Figure 1.4.1. 

 

Figure 1.4.1 Random examples from the dataset 

Apart from underrepresentation, the dataset is also imbalanced. Number of 

observations belonging to some of the classes are significantly lower than the rest. There are 

even classes with only one or two training images. The most frequent 

category, new_whale appears with 810 samples and w_1287fbc follows it with a frequency 

of 34. 
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Figure 1.4.2 Categorical distribution of images’ PDE (blue solid line)  

 

Unfortunately, 2220 categories have only one image for training, 1034 categories 

have two, 492 categories have only three and so on… Number of categories and the number 

of images in them is visualized in Figure 1.4.3. Probability density estimate (PDE) of the 

categorical distribution is obtained by Kernel density estimate (KDE) and visualized in Fig. 

1.4.2. Freedman-Diaconis rule is used for selection of the bin size in the histogram 

(Freedman & Diaconis, 1981). The size and the resolution values also vary from image to 

image. Sampling 25% of the training images randomly, the most frequent resolution value 

is found as 700x1050 with more than 250 instances, secondly 600x1050 follows it with 

almost 250 occurrences as seen in Fig. 1.4.4. 
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Figure 1.4.3 Count of the categories by available images in the training set 

 

 

Figure 1.4.4 Occurrence frequencies of the images in the descending order 



 7 

2. PROJECT DEFINITION 

2.1. Problem Statement 

Class imbalance is the nightmare of most machine learning algorithms. If the event 

to be predicted has a representation rate below 5% in the dataset, it is referred as a rare event 

(Mukherjee, 2018).  Models trained on imbalanced datasets are known to be biased towards 

majority classes. As a result, the minority classes tend to be misclassified in the test set.  

The Humpback Whale dataset has a serious imbalance issue. Out of 4251 whale 

categories 2220 IDs have only one image per class. There are also classes containing less 

than 5 images. Since the training set is the only labeled dataset available, we need to split it 

into three parts for training, validation and test. Each whale should be represented in training, 

validation and test sets, ideally. To resolve imbalance and representation problems 

altogether, this identification problem is reframed by constraining the dataset to the whale 

categories containing 20 or more images.  

Deep Neural Networks performs well only when the number of inputs feeding their 

architecture is sufficiently high enough.  Advanced data augmentation techniques are 

utilized to create synthetic images (Anonymous, 2018). 

2.2. Project Objectives 

The aim of this project is to help the scientists by automatizing the process of photo-

identification of the humpback whales by using deep neural networks and in this way 

contributing to the conservation of the marine life.  

2.3. Project Scope 

This project only focuses on the classification of the humpback whale images. The 

Region of Interest (ROI), which is a user specified rectangle to limit the model to learn from 

the features within its boundaries, is whale flukes for the problem of interest. Refining 

calculations to ROI enhances the performance (Brinkmann, 2008). While most of the images 

in the dataset cropped tight around the animal flukes, in some of them the whale fluke 

occupies only a small portion and those images requires further cropping. Finding 

coordinates of ROI for each image is beyond the scope of this project. The bounding box 

coordinates are borrowed from Piotte’s work (2018). Piotte manually cropped 1200 photos 
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from the dataset using a Java application and then trained a CNN model to find the bounding 

box coordinates for rest of the images (2018). 

2.4. Project Environment 

In this project PILLOW which is a friendly fork of the image processing library 

called  Python Imaging Library (PIL) is extensively used for all processing procedures such 

as opening, reading, converting, transforming, cropping and finally saving the images (Clark 

& Contributors, 2010). 

Tensorflow, which is developed by Google Brain, is an open source numerical 

computation library which makes machine learning faster and easier using high-performance 

C++ native code (Tensorflow, 2018). It is called Tensorflow because the numerical 

computation is carried out by data flow graphs whose nodes represents the operations while 

the edges represents the data as tensors flowing in between those nodes. However, working 

with Tensorflow has a steep learning curve since it requires a solid background in linear 

algebra and tensor calculus. Building models in Tensorflow is not easy for many of those 

who are new to deep learning concepts. 

In this project, user-friendly, model-level deep learning library Keras is utilized. It is 

written in Python and operates on top of the TensorFlow backend engine with GPU support 

(Keras Team, 2018; Tensorflow, 2018). The modular structure of Keras and its sound 

documentation is advantageous for beginners of deep learning. Especially, with the help of 

Sequential model network layers can be stacked on top of each other easily.  

Apart from those, we benefited from Scikit-learn library for data preprocessing and 

model evaluation; we have preferred to transform the images with SciPy library and we also 

utilized seaborn visualization library to form informative statistical graphics (Pedregosa, et 

al., 2011; Jones, Oliphant, Peterson, & Others, 2001).   
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3. METHODOLOGY 

3.1. Exploratory Data Analysis on the Constrained Dataset 

First new_whale category is dropped from the dataset since it includes all the images 

of the animals that are not listed in the scientist’s database, and therefore it is not informative 

for the classification problem. Later only the categories containing 20 or more images are 

selected. Then we are left with 11 whale IDs and total 259 images in the dataset. The most 

frequent images belong to w_1287fbc category with 34 occurrences. The number of images 

in each whale category is given in Table 3.1.1, below. 

 

Table 3.1.1 Number of images contained by whale IDs 

RANK WHALE ID NUMBER OF IMAGES 

1 w_1287fbc 34 

2 w_98baff9 27 

3 w_7554f44 26 

4 w_1eafe46 23 

5 w_693c9ee 22 

6 w_ab4cae2 22 

7 w_fd1cb9d 22 

8 w_73d5489 21 

9 w_43be268 21 

10 w_987a36f 21 

11 w_f19faeb 20 

 

After constraining the dataset to 11 unique categories the severe class imbalance 

problem is partially resolved. Majority of the classes contain 20 – 25 photos while just one 

whale ID (w_1287fbc) with more than 30 images is present. The image count distribution 

by whale category is visualized in Fig. 3.1.1 in descending order. 

When the size of the images investigated from Fig. 3.1.2, 700x1050 is found to be 

most frequent.  Average aspect ratio of the images in the constrained dataset is found as 2.09. 
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Figure 3.1.1 Image count of each whale ID 

 

Figure 3.1.2 Occurrence rates of image sizes available in the constrained dataset 
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3.2. Image Pre-processing 

3.2.1. Grayscale Conversion 

Upon sampling 1% of the whole training images and checking their RGB codes it is 

found that average grayscale ratio is 52.04%. So, we can claim that almost half of the images 

are black and white, and the other half is colored. Since the humpback whale flukes are found 

mostly in black or mostly in white nature, we would not lose much information by converting 

three channel images into one and gain more in computation time. Using Pillow Image 

Library, all colored images are converted to grayscale. 

3.2.2. Outlier Detection 

According to photo upload instructions of the Happy Whale website, the flukes must 

be photographed when the whale dives into the sea and when their tail rises above the 

waterline (happywhale, n.d.). Besides, underside the flukes must be seen in those photos. 

Unfortunately, some of the images in the training set do not meet these criteria. Images of 

whales, broken fragments of dead whale flukes, photos taken at weird angles, photos of 

multiple animals, etc. are all excluded. Upon our visual inspection, 47 outliers are found 

among all training images and file names stored in a text file. Fortunately, there are only two 

such outlier images from two different classes in the constrained dataset. In order not to force 

the model to learn wrong features from those images, images shown in Fig. 3.2.1 are 

excluded from the dataset. 

 

Figure 3.2.1 Outlier images in the constrained dataset 
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3.2.3. Rotation 

Note that in some of the images edges of the flukes points down. Upon visual 

inspection they are recorded and to increase the accuracy of classification, rotated by 180 

degrees. Those upside-down images can be seen in Fig. 3.2.2. 

 

Figure 3.2.2 Upside down images found in the constrained dataset 

An image reading function is written to automatically flip the images that are found 

in the rotation list as seen in Fig. 3.2.3. 

 

 

Figure 3.2.3 Automatic rotation of required image files while reading 

3.2.4. Image Cropping and Reshaping  

Images are cropped to ROI, i.e. the whale flukes, using bounding-box coordinates 

taken from a previous work (Piotte, Bounding box data for the whale flukes, 2018). A margin 
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is left around the rectangle to save us from cropping the edges of the flukes accidentally. 

Otherwise, information loss due to faulty cropping gives more harm than the gain due to 

tight cropping. That is why a margin of error is defined around each image to compensate 

for bounding box errors. Upon experimenting with the borders, 10% of the height for the top 

and bottom borders, 10% of the width for the left border and 15% of the width again for the 

right border is chosen to be optimum values that minimizes the cropping errors. Despite 

careful inspection and various trials with compression rate and margin ratios some of the 

images are failed to be cropped properly. Those are listed in a separate file and dropped from 

the dataset to prevent the model from learning misguiding features. After omitting the 

erroneously cropped images, we are left with 250 samples in total. Class distributions do not 

change much after all those extractions. We still have more than 20 images in each class as 

seen in Fig. 3.2.4. 

 

Figure 3.2.4 Final categorical count of the dataset  

 

Using affine transformation, rectangular images are further mapped to a square with 

224x224 resolution (considering single channel for black & white). The size of the images 

is adjusted to match the input size of the model to be used (i.e. ResNET). The average width 
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over height aspect ratio of the images in the dataset was calculated to be 2.09 previously. 

This value is used as a horizontal compression ratio while the square images are created.  

3.2.5. Affine Transformation 

Prior to cropping to the bounding box, coordinates of the bottom left corner (x0, y0) 

and coordinates of the upper right corner (x1, y1) are obtained from Piotte’s work (2018). 

These coordinates are enlarged to the margins as mentioned above and then affine 

transformation is performed. Affinity, meaning likeness or similarity is a mapping between 

affine spaces which preserves collinearity and the ratios in between distances of points, 

straight lines and planes. Affine transformation can be described mathematically as given as 

(Weisstein, n.d.), 

 “If 𝑋 and 𝑌 are affine spaces, then every affine transformation 𝑓: 𝑋 → 𝑋′ is of the 

form 𝑥 → 𝑇𝑥 + 𝑏, where 𝑇 is a linear transformation on the space 𝑋, 𝑥 is a vector 

in 𝑋, and 𝑏  is a vector in 𝑋′.” 

 

The transformation matrix can be represented in an augmented form such that: 

 

[
𝒙′

1
] =  [

  𝑇
0 ⋯ 0

 𝒃 
 1

] [
𝒙
1

] 

 

The equation above is equivalent to the following linear equation, expressed in a compact 

form, 

𝒙′ = 𝑇𝒙 + 𝑏 

With the help of the augmented matrices, both the translation and the linear mapping can be 

represented as using a single matrix multiplication. For the problem of interest, the 

transformation matrix is given below. 

 

𝐓 ∶= [

1 0
(𝑦1 + 𝑦0)

2⁄

0 1
(𝑥1 + 𝑥0)

2⁄

0 0 1

] [

(𝑦1 − 𝑦0)
224⁄ 0 0

0
(𝑥1 − 𝑥0)

224⁄ 0

0 0 1

] [

1 0 −224
2⁄

0 1 −224
2⁄

0 0 1

]  

 

Here, the first and last matrices are for translation whereas the matrix in the middle scales 

the ROI to the output image size (224x224). Applying the operator above to all of the images, 

we obtain cropped and squared versions of them with 224x224 resolution. 



 15 

3.2.6. Standardization 

As a final step, to suppress different illumination effects in each image, mean value 

is subtracted from each pixel value and the result further divided by the variance, as follows, 

𝑧 =
(𝑥 − µ)

𝜎
 

Here x is the initial pixel value,  µ is the mean value of the image, 𝜎 is the standard deviation 

and z is called the standardized pixel value. In this way images are standardized to zero mean 

and unit variance. Since the image matrices do not possess a sparse characteristic, custom 

standardization is preferred over plain normalization and scaling.  

3.3. Image Augmentation 

To make the model more robust, the dataset is expanded with ImageDataGenerator 

class of Keras. Some noise is added, images are distorted by random shifting, rotating and 

flipping. These transformations are done because change in the perspective can change the 

apparent shape of the flukes. Here images are allowed to rotate 20 degrees, randomly zoomed 

up to 20%, shifted up to 20% of their height and width and flipped horizontally. These 

random transformations are skipped during the testing phase. 

3.4. Artificial Neural Networks  

The heart of the deep learning lies in artificial neural networks (ANN) since they are 

the starting point of all. Their architecture is inspired from biological neural networks. In our 

brains, learning happens in response to external stimuli. Below a simplified diagram shows 

the structure of a neuron. 

 

Figure 3.4.1 Biological neuron 
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Neurons are found in the cerebral cortex of the brain. Differing from other cells, neurons 

possess very long axon to carry signals. At the very end of each axon branches called 

telodendria lies. At the tips of each telodendrion, there are synaptic terminals which enable 

neurons to talk with other neurons. When a neuron receives sufficient amount of signals 

from others within a short amount of time via its dendrites, it fires its own signal for the 

adjacent cell.  

Each neuron is connected to thousands of other neurons to form vast networks. The 

size of such networks reaches to billions of units, so that the brain can perform complex 

tasks. Below vertical cross-section of Golgi-stained cortex of an infant is shown (reproduced 

from (Cajal, 1899)). Here, the neurons form a laminar structure and each layer is densely 

connected to one another via synaptic terminals. 

  

Figure 3.4.2 Multilayer structure of human cerebral cortex 

In 1943, McCulloch and Pitts first introduced ANNs mathematically with a model 

called propositional logic (McCulloch & Pitts, 1943). In their pioneering paper, the authors 

suggested a simple computational model to explain how neurons cooperate with each other 

to perform complex computations (McCulloch & Pitts, 1943). 

In 1957, Rosenblatt invented the perceptron, a single layer of linear threshold (LTU) 

units (the artificial neuron shown in Fig. 3.4.3) with each neuron is connected to all inputs. 

The LTU collects all the signals coming from all inputs as the biological neuron does and 

takes a weighted sum of them. If the resulting sum exceeds a threshold called bias the unit 

is activated and outputs 1, otherwise it just outputs 0. In other words, LTU behaves like a 

classifier and bias is a measure of how easy it is to get the artificial unit to fire. With different 

combinations of LTUs, logical operations such as AND, OR, XOR, etc. can be performed. 

Later, the research on the subject is escalated starting from1960s and multilayer perceptrons 
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are developed as shown in Fig. 3.4.4 (Geron, 2017). Notice that the units of each layer are 

densely connected to the units of neighboring layers. These architectures are called ANNs.  

 

 

Figure 3.4.3 Linear threshold unit 

 

 

Figure 3.4.4 ANN with three hidden layers 

3.5. Convolutional Neural Networks 

Studies on brain’s visual cortex led to another classes of deep, feed-forward artificial 

neural networks called convolutional neural networks (CNN). Differing from ANNs which 

have fully connected layers, CNNs are able to take into account the spatial structure of the 

input data. Thus, application of CNN architectures to visual imagery is shown to be pretty 

successful up to now.  
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During 1958 and 1959 Hubel and Wiesel made series of curial and yet crucial 

experiments on cats and later in 1968 on monkeys to study the underlying structure of virtual 

cortex (Hubel, 1959; Hubel & Wiesel, 1959; Wiesel & Hubel, 1968). They presented 

different visual images to an anesthetized cat with a deep brain probe and observed that 

individual nerve cells fire vigorously only to the lines at particular orientation within their 

receptive field (Blakemore, 1973). Their findings can further be summarized as follows: 

i. Neurons organized in a columnar architecture, act together to pursue a 

perception. 

ii. Many neurons possess a small receptive field. 

iii. Some neurons react to only specific line orientations 

iv. Other neurons with larger receptive fields might react to more complex 

patterns. 

    The biological idea behind the CNN architecture is the feature specific neurons and the 

notion of the receptive field as discussed above. Network layers are stacking over each other 

inspired by the columnar structure of the biological neurons in the visual cortex. Each unit 

in the first hidden layer of a CNN will be connected to a small region of the inputs (receptive 

field) as shown in the figure below. A receptive field is rectangular area sliding across the 

input image with defined stride steps. 

 

Figure 3.5.1 Receptive field 

Learning is done by the associated weight of each connection. Besides, hidden layer also 

learns a bias. Through the filter weighted sums are calculated, and feature map is created 

(the convolutional part of the network maps the features). Deep down the network, those 
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filters become larger (i.e. with large receptive fields), so they can consider signal coming 

from a larger area and reproduce more complex features. Finally, the networks outputs N-

dimensional vector for N classes and the densely connected part at the very end of each CNN 

detects those high-level features. 

 A typical CNN architecture is constructed by stacking convolutional layers on top of 

each other. Output of each layer is the input of the next. The input image is passed to the 

first layer by input layer. This stacked architecture of convolutional layers makes it easy for 

CNN to focus on local features in the first hidden layer, then assemble them to learn more 

complex features in the next hidden layer. Global features of the image are deduced via this 

combined approach. 

As we go deep down in the network, the size of the layers shrinks (due to 

convolution) and network starts to ignore features at the edges (pixels with no neighbors). 

To avoid these padding is used. Simply a buffer layer of zeros is put around the input image, 

so that the size of the output layer will be the same with the input layer. 

Shared filter weights are initialized in each convolutional layer. For example, 

ResNET uses MSRA initialization. It is a Gaussian type initialization which keeps variances 

through transformation (Li, Jiao, Han, & Weissman, 2016).  

After each convolutional layer, an activation layer is applied. For ResNET, rectified 

linear unit (ReLu) is used for the sake of computational efficiency (except SoftMax is used 

in the last layer). ReLu outperforms other conventional non-linear activation functions such 

as sigmoid and tanh (Xavier, Bordes, & Bengio, 2011). ReLu also said to be the solution of 

the vanishing gradient problem which stops the neural network from further training. In this 

layer 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) is applied to all of the values in the input. All negative activations 

are replaced by zero. So, nonlinearity is introduced to the system without affecting the 

receptive fields of the convolutional layer. 

Pooling layer is another key element of CNNs. Output of the previous layer is down-

sampled to reduce computational load and number of parameters. By the virtue of pooling, 

the risk of over-fitting is reduced somehow. Shrinking the input image also introduces a level 

of location invariance, so that the neural network can tolerate a little bit of image shift 

(Geron, 2017). In ResNET average pooling is used as aggregation function. Just like in 

convolutional layer, a rectangular window with defined size, padding and stride is slid across 

the input layer, and average input value in each kernel makes it to the next layer. 
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When a complex model fits the noise in the data instead of the underlying relationship 

of the features, overfitting occurs. This can be avoided by a regularization technique such as 

batch normalization as ResNET does. Using an initializer with ReLU reduces the 

vanishing/exploding gradient problem at the beginning of the training but not during the 

training. The input distribution of each layer changes during training as the parameters of 

the previous layer changes leading to a drop in the learning rate. This problem is addressed 

as Internal Covariate Shift in the 2015 paper of Ioffe and Szegedy within which 

normalization for each training mini-batch is suggested (Ioffe & Szegedy, 2015). The 

authors claim that this method not only is a solution to vanishing/exploding gradient problem 

but also acts somehow as a regularization technique that eliminates the need for dropout. 

Upon experiment, the same effect is observed and dropout layers after convolutional layers 

are excluded. Before activation function of each layer inputs are zero-centered, normalized, 

scaled and shifted by batch-normalization scaling and shifting parameters per layer. The 

required means and standard deviations of the inputs for zero-centering and normalization 

steps are estimated from the current mini-batch. 

Finally, the output of the last pooling layer is flattened to feed the fully connected 

layers at the end. High level features coming from the activation maps of the previous layer 

are detected. In the final dense layer, the net output is given as the probability distribution 

of each class. Using SoftMax approach the class with highest probability is chosen. That is 

how a CNN transforms an input image into a vector of features describing the whale.  
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3.6. ResNET50 

Residual Network (ResNET) is an enhanced 50 layered CNN trained on ImageNET 

dataset. It solves the degradation problem of CNNs using shortcuts between layers and 

shortens the training time via bottleneck design. Degradation problem is defined by the 

authors of the original paper of ResNET as (He, Zang, Ren, & Sun, 2016): 

“When deeper networks are able to start converging, a degradation problem has 

been exposed: with the network depth increasing, accuracy gets saturated (which 

might be unsurprising) and then degrades rapidly.” 

 

In a typical network, weights are updated proportional to the partial derivative of the 

error function with respect to the error function after each epoch. However, if the cost 

function that is to be optimized during training has a plateau, then these gradients become 

very small, hence weights will not be updated effectively. This is the vanishing gradient 

problem. Specifically learning decelerates through the layers of the deep neural network due 

to very slow gradient descent. ResNET both solves those saturation and degradation 

problems via residual learning. 

 

Figure 3.6.1 Plain network vs. ResNET 

As Andrew NG beautifully put it in his online course on deep learning, layers of plain 

networks transfer their input from one another as activation in an order, however ResNET is 

composed of residual blocks stacked over each other (NG, 2017). As shown in Fig. 3.4.3, 

LTUs of a layer linearly transforms the incoming activation at first then the nonlinearity is 

applied (i.e. ReLU). After passing a layer activation 𝑎𝑙  becomes 𝑎𝑙+1 in two step process: 

𝑧[𝑙+1] = 𝑊[𝑙+1]𝑎[𝑙] + 𝑏[𝑙] and 𝑎[𝑙+1] = 𝑓(𝑧[𝑙+1]) 



 22 

Here W is the weight matrix, b is the bias term and f is the nonlinear activation 

function (i.e. ReLu). Similarly, final activation can be formulated as, 

𝑧[𝑙+2] = 𝑊[𝑙+2]𝑎[𝑙+1] + 𝑏[𝑙+1] and 𝑎[𝑙+2] = 𝑓(𝑧[𝑙+2]) 

In ResNET, there is a shortcut is added before the nonlinearity as shown in Fig. 3.6.1, 

so the final activation becomes, 

𝑎[𝑙+2] = 𝑓(𝑧[𝑙+2] + 𝑎[𝑙]) 

Even if  𝑧[𝑙+2] vanishes due to L2 regularization, addition of the residual term, 𝑎[𝑙], 

at the end guaranties that the network does not degrade as plain networks does since 

𝑎[𝑙+2] = 𝑓(𝑎[𝑙]) = 𝑎[𝑙] 

The equation above implies that the residual network learns the identity function well 

and this brings a lower bound on its learning process. That is the fundamental concept of 

ResNET. 

In this study, we loaded ResNET50 model from Keras repository. The input size was 

set to 224x224x1. The implementation can be found in Appendix A and the model 

architecture is given in Appendix B. 
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4. RESULTS AND DISCUSSION 

4.1. Establishing a Baseline Model 

In the first part of this study the effect of different splitting schemes on the model’s 

performance is investigated. Since a limited number (i.e.250) images are present, and 

performance of a deep learning model is highly dependent on the size of the input images 

available, the train/test split scheme was carried out with extreme care. We experimented on 

three different splitting plans. All splits were carried out in a stratified fashion so that 11 

classes were represented with the similar distribution in the resulting sets as seen in the Fig. 

3.7.1. With stratified splitting we ensured that training set is a good representation of 

validation and test sets. 

 

 

Figure 4.1.1 Distribution of the images in training, validation and test sets  

Before training the model, the learning process was configured. ADAM optimizer, 

which is a combination of Gradient Descent with momentum and RMSProp have been 

chosen because of its effectiveness. Authors of ADAM observed that exponential averages 

of past gradients and variance of the gradients (first and second momentum) decay towards 

zero, so they come up with a bias correction for these terms (Kingma & Ba, 2014). However, 

we defined a custom decaying function decreasing the learning rate by 10% at each epoch. 
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Hence, learning rate decreased as it gets closer to the optimal solution. The form of the 

annealing function is given below. 

𝜂𝑖+1 = (𝜂𝑖 − 𝜂𝑖
10

100
) = 𝜂0 (

90

100
)

𝑖

 

Here η is the learning rate, i is the epoch index (time step) and η0 is the initial learning rate 

chosen to be 0.001. LearningRateSchedular of Keras was utilized to decay the learning rate 

by 10% at each epoch. 

As a cost function categorical cross entropy has been chosen since it penalizes 

erroneous predictions more, producing larger gradients and thus converging faster. The cross 

entropy between the estimated probability and the target probability was 

minimized.  Number of epochs was chosen as a large number (i.e. 300) to guarantee 

convergence. Unfortunately, the batch size has been kept very small due to memory limits 

of the available GPU (GeForce GTX 950M by NVIDIA). Therefore, the variance was 

increased, and we obtained spiky graphs while monitoring the model’s performance during 

training from epoch history as seen in Fig. 4.1.2. 

In the first model (RESNET_VAL), 25% of 250 images was reserved for testing, 

11.25% was kept for validation to monitor the performance history during training and 

63.75% was used in training.  The final validation accuracy was quite poor (0.448), and the 

accuracy of the validation set got stuck at 0.43 after 50 epochs during training. We believe 

that the reason of the observed bottleneck is due to limited size of the input space, we decided 

to enlarge the training set. Then, the validation set was merged to training set and another 

model, RESNET_75_25 has been trained. The performance was improved obtaining a 

validation accuracy of 0.635 but this still was not as expected. Finally, decreasing the test 

set size to 10% of the dataset, we ran a final model called RESNET_90_10. The saturation 

in the validation accuracy during training still persisted somehow but final validation 

accuracy quickly escalated to 0.84. The performance metrics of the models deployed can be 

found in Table 4.1.1.  

Table 4.1.1 Performance comparison of baseline models 

MODEL TRAIN/VAL./TEST 

RATIO (%) 

TRAIN 

ACC.  

VAL. 

ACC.  

TRAIN 

LOSS  

VAL. LOSS  

RESNET_VAL 63.75/11.25/25 0.627 0.448 1.067 1.717 

RESNET_75_25 75/25 0.840 0.635 0.496 1.107 

RESNET_90_10 90/10 0.964 0.840 0.119 0.501 
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The confusion matrix of the best model, RESNET_90_10 can be seen in Fig. 4. When 

we observed the confusion matrix, we saw that erroneously classified categories, especially 

6th (w_7554f44) and 10th (w_43be268) whale IDs, have only two test images available. 

Wrong labeling just one image of those categories corresponds to incorrectly predicting half 

of the labels. This situation substantially increased the multinomial loss (0.501).  
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Figure 4.1.2 Performance comparison of three different splitting schemes 
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Figure 4.1.3 Confusion matrix of RESNET_90_10 

Considering threshold in between training and test set size as discussed above, we 

decided to continue reserving 20% of the dataset for validation. This split ratio was enough 

to reserve at least four images for each category in the test set as seen in Fig. 4.1.4. 

 

 

Figure 4.1.4 Image count distribution for 80/20 train/test split 
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4.2. Different Initializations 

In the second part of the study, we trained the models once with different learning 

rates to ensure convergence. Then, resetting the learning rate to ADAM’s default learning 

rate of 0.001, we reduced it by 10% every epoch during training. By doing so, we changed 

the position of the initial point of optimization prior to the training process. In other words, 

to accelerate the learning procedure we experimented on the effect of the initialization on 

the minimization of the cost function (i.e. convergence). We experimented by setting the 

initial learning rate to 0.001, to 0.005 and then to 0.01, respectively and obtained the best 

results for 0.005. The performance metrics are given in Table 4.2.1. for comparison 

purposes. 

Transferring the calculations on a CPU with 64 GB of RAM we could finally increase 

the batch size to 50. At the same time the epoch number was decreased to 70 since we 

observed that previous models converged before 75 epochs.  

 

Table 4.2.1 Performance metrics for different learning rates 

MODEL INITIAL 

LEARNING 

RATE 

TRAIN ACC.  VAL. ACC. TRAIN LOSS VAL. LOSS 

RESNET_ADAM_1E3 0.001 0.975 0.920 0.071 0.421 

RESNET_ADAM_5E3 0.005 1.000 0.940 0.033 0.318 

RESNET_ADAM_1E2 0.01 0.980 0.880 0.059 0.335 

RESNET_ADAM_OPT 0.00432 1.000 0.940 0.024 0.341950 

 

The model RESNET_ADAM_5E3 has been built with an initial learning rate of 

0.005 outperformed all others. It reached to an accuracy value of 0.940 in the validation set 

while minimizing the loss to 0.318. On the other hand, the curious case of the training 

accuracy hitting to the unity might be due to overfitting. Unfortunately, the model’s 

performance could not be improved more due to limited number of the training images (i.e. 

200 photos). When we inspected Fig. 4.2.2. we concluded that the one and only train/test 

gap that is in the closing trend is that of RESNET_ADAM_1E3. Furthermore, the unstable 

behavior in the train/test validation and loss curves was not observed in that model since its 



 29 

starting learning rate is the same with the one that is used in the annealing function, so the 

learning rate of the first and second epochs was not changing abruptly. 

Assuming the accuracy is a quadratic function of the initial learning rate, we fitted a 

second order polynomial to the accuracy versus learning rate plot and calculated the value 

that maximizes the fit function (see Fig.  4.2.2). The climax point has a learning rate of 

0.00432. Then the model, RESNET_ADAM_OPT, is trained again with this rate, but neither 

the accuracy nor the loss has been improved significantly when compared to the scores 

obtained by RESNET_ADAM_1E5. The performance metrics are given in Table 4.1.1. The 

closeness of the performance scores of those two models is not surprising since their initial 

points are nearly the same and for this reason they converge to the same solution with the 

same methods. 

 

 
Figure 4.2.1 Change in accuracy with different initializations 

  

y = -1888,9x2 + 16,333x + 0,9056

0,87

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0 0,002 0,004 0,006 0,008 0,01 0,012

V
al

id
at

io
n

 A
cc

u
ra

cy

Initial Learning Rate

Accuracy vs. Learning Rate 

Actual Data LR = 0.00435 Poly. (Actual Data)



 30 

 

 

 

 

Figure 4.2.2 Performance comparison of models with different initializations
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5. CONCLUSION 

In conclusion, we report that ResNET_ADAM_1E5 is a successful CNN model to 

identify humpback whale images with an accuracy of 0.94 although it is trained with a very 

small dataset of 200 images, only. This, model could be enhanced further if only more 

images were available. Recently, Kaggle has restarted the Humpback Whale Identification 

Competition with an expanded dataset (Kaggle Inc., 2018). As a future work, this enlarged 

dataset will be used to improve the model, even making it to identify all of the whale IDs, 

even the ones not cataloged yet. To enhance the image preprocessing identical photos known 

to be present in the train set will be determined using image hashing and will be dropped. 

Furthermore, we will be training our own object detector such as YOLO, Faster R-CNN, 

Mask R-CNN or a single shot detector (SSD) to determine the bounding box coordinates.  
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6. SOCIAL AND ETHICAL ASPECTS 

This study does not violate privacy or liberties of any individual of the humpback 

whale community. Since the photographs of the dataset were taken at a distance no animals 

were harmed. In this cruelty free study, the end product was not tested on live animals. 
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7. VALUE DELIVERED 

By classifying the humpback whales, we contribute to Happy Whale’s efforts to 

understand these endangered animals.  To ensure their survival for future generations, their 

migration patterns needed to be tracked. Moreover, tracking is important to understand their 

pod dynamics. Photo identification is the only advanced and automatized method to help the 

scientist to track the whales individually and we obtained a high accuracy of 0.92 with these 

techniques.  We are planning to pursue our studies on the enlarged dataset to aid whale 

conservation efforts more. Moreover, this project reminded us that all the species of this 

planet have equal rights to live, breed and prosper. The Earth does not belong to the 

humankind, only.  
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APPENDIX A 

from __future__ import print_function 

%matplotlib inline 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from skimage.io import imread 

import numpy as np 

from collections import Counter 

import seaborn as sns 

from sklearn.preprocessing import LabelEncoder 

from PIL import Image 

from PIL import ImageStat 

import pickle 

import tensorflow as tf 

from keras.preprocessing.image import img_to_array,array_to_img 

from scipy.ndimage import affine_transform 

from pylab import * 

from keras.utils.np_utils import to_categorical 

from sklearn.preprocessing import StandardScaler 

#import imagehash 

from sklearn.model_selection import train_test_split 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Flatten,  BatchNormalization, Conv2D, MaxPooling2D 

from keras.utils import plot_model 

#import pydot 

from keras.utils import np_utils 

from sklearn.preprocessing import LabelEncoder,OneHotEncoder 

from keras.preprocessing.image import ImageDataGenerator 

import keras 

from keras.callbacks import LearningRateScheduler 

from keras.applications.resnet50 import ResNet50 

from sklearn.preprocessing import MinMaxScaler 

#from scipy.ndimage.interpolation import affine_transform 

from sklearn.metrics import confusion_matrix 

from keras.models import load_model 

from keras.callbacks import ModelCheckpoint 

import numpy as np 

import tensorflow as tf 

import random as rn 

# The below is necessary in Python 3.2.3 onwards to 

# have reproducible behavior for certain hash-based operations. 

# See these references for further details: 

# https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED 

# https://github.com/keras-team/keras/issues/2280#issuecomment-306959926 

import os 

os.environ['PYTHONHASHSEED'] = '0' 

# The below is necessary for starting Numpy generated random numbers 

# in a well-defined initial state. 

np.random.seed(42) 

# The below is necessary for starting core Python generated random numbers 

# in a well-defined state. 

rn.seed(123) 

# Force TensorFlow to use single thread. 

# Multiple threads are a potential source of 
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# non-reproducible results. 

# For further details, see: https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-

to-realize-100-reproducibility-of-training-res 

session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) 

from keras import backend as K 

# The below tf.set_random_seed() will make random number generation 

# in the TensorFlow backend have a well-defined initial state. 

# For further details, see: https://www.tensorflow.org/api_docs/python/tf/set_random_seed 

tf.set_random_seed(1234) 

sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) 

K.set_session(sess) 

print(len(os.listdir("../input/train"))) 

#print(len(os.listdir("../input/test"))) 

map = pd.read_csv("../input/train.csv") 

map.head() 

randomRows = map.sample(frac=1.)[:10] # randomly choose 8 rows of the .csv file 

filenames = list(randomRows['Image']) # convert Image column of the dataframe to filename list 

labels = list(randomRows['Id']) # convert ID column of the dataframe to filename list 

images = [imread(f'../input/train/{filename}') for filename in filenames] # using formatted string for changing 

filenames 

# create a list of arrays of rantomly chosen 10 images 

figure = plt.figure(figsize=(20, 10)) # set figure size to 8 inches x 6 inches 

rows = 2 # define # of rows 

cols = 5 # define # of columns 

for i in range(len(images)): # loop over images 

    subplot = figure.add_subplot(rows, cols, i + 1) # add subplots to rows x columns figure grid 

    subplot.axis('Off') #turn-off axis 

    subplot.set_title(labels[i], fontsize=14) # set titles 

    plt.imshow(images[i]) # show images    

figure.savefig("../figures/flukes.png") 

def is_gray_scale(p): 

    """Adapted from https://stackoverflow.com/questions/23660929/how-to-check-whether-a-jpeg-image-is-

color-or-gray-scale-using-only-python-stdli""" 

    img = Image.open(f'../input/train/{p}') 

    img = img.convert('RGB') 

    width,height = img.size 

    for i in range(width): 

        for j in range(height): 

            r,g,b = img.getpixel((i,j)) 

            if r != g != b: return False 

    return True 

percentage = 0 #initialize % 

N = 5 #number of samples 

for i in range(N): 

    is_gray = [is_gray_scale(i) for i in map['Image'].sample(frac=0.01)] 

    percentage = percentage + sum([i for i in is_gray]) / len([i for i in is_gray]) * 100 #add %'s of different 

samples up    

percentage = round(percentage/N,2) #avarage the percentage sum 

print(f" Nearly {percentage}% of training images are grayscaled") 

catNumber = len(map['Id'].unique()) # number of unique categories are counted 

print(f'Number of categories: {catNumber}')# and printed 

map['Id'].value_counts() # number of images in each class is printed 

le = LabelEncoder()  

Ids = le.fit_transform(map['Id']) # assign ordinal levels to categorical IDs 

fig = plt.figure(figsize = (8, 6)) 

sns.distplot(Ids, vertical = True) 

plt.title('Categorical Distribution') 

plt.ylabel("Ordinal Whale IDs") 
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plt.xlabel("PDF") 

plt.show() # plot the distribution 

fig.savefig("../figures/ID_dist.png") 

from collections import Counter 

whale_dist = Counter(map['Id'].value_counts().values) 

print("\n(# of images, # of classes containing those # of images)\n") 

print(sorted(whale_dist.items())) 

fig = plt.figure(figsize = (8, 6)) 

plt.bar(range(len(whale_dist)), list(whale_dist.values())[::-1], align='center') 

plt.xticks(range(len(whale_dist)), list(whale_dist.keys())[::-1]) 

plt.title("Number of Categories by Number of Images") 

plt.xlabel('Number of Images') 

plt.ylabel('Number of Categories') 

plt.show() 

fig.savefig('../figures/Cat_by_Number.png') 

filenames = map['Image'].sample(frac=0.25) 

images={filename: plt.imread(f'../input/train/{filename}') for filename in filenames} 

img_sizes = Counter([value.shape[:2] for value in images.values()]) 

size, freq = zip(*Counter({i: v for i, v in img_sizes.items() if v > 1}).most_common(20)) 

fig = plt.figure(figsize=(8, 6)) 

plt.bar(range(len(freq)), list(freq), align='center') 

plt.xticks(range(len(size)), list(size), rotation=70) 

plt.title("Image size frequencies (where freq > 1)") 

plt.xlabel("Image Size") 

plt.ylabel("Count") 

plt.show() 

fig.savefig('../figures/imgSize_Dist.png') 

map20 = map[map["Id"].isin(top20.ID)] 

#map20.Id.unique() # check name of classes 

map20.shape 

map20.describe() 

map20["Id"].unique() 

filenames = map20['Image']#.sample(frac=0.25) 

images={filename: plt.imread(f'../input/train/{filename}') for filename in filenames} 

img_sizes = Counter([value.shape[:2] for value in images.values()]) 

size, freq = zip(*Counter({i: v for i, v in img_sizes.items() if v > 1}).most_common(20)) 

fig = plt.figure(figsize=(8, 6)) 

plt.bar(range(len(freq)), list(freq), align='center') 

plt.xticks(range(len(size)), list(size), rotation=70) 

plt.title("Image size frequencies (where freq > 1)") 

plt.xlabel("Image Size") 

plt.ylabel("Count") 

plt.show() 

fig.savefig('../figures/imgSize_Dist_cons.png') 

with open("../input/Outliers.txt") as f1: # Open file of image names to be excluded 

    outliers = f1.read().splitlines()   

outlierSET = set(outliers) #convert list of names to set to avoid repetitive names 

outliers = list(outlierSET) #re-convert set to list of names.  

#len(outliers) # total number of outliers = 47 

allExclude = list(map20[map20["Image"].isin(outliers)].Image) 

toBeExcluded = [imread(f'../input/train/{filename}') for filename in allExclude] 

figure = plt.figure(figsize=(20, 40)) # set figure size to 8 inches x 6 inches 

rows = 1 # define # of rows 

cols = 2 # define # of columns 

for i in range(len(toBeExcluded)): # loop over images 

    subplot = figure.add_subplot(rows, cols, i + 1) # add subplots to rows x columns figure grid 

    subplot.axis('Off') #turn-off axis 

    subplot.set_title(allExclude[i], fontsize=14) # set titles 
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    plt.imshow(toBeExcluded[i])# show images        

figure.savefig("../figures/toBeExcluded2.png") 

omitIndices = [] 

for p in allExclude: 

    #print(p) 

    index = list(map20["Image"]).index(p) 

    omitIndices.append(index) 

map20 = map20.drop(map20.index[omitIndices])   

len(map20) 

with open('../input/rotate.txt') as f: # Open Piotte's findings 

    rotationList = f.read().splitlines()  

with open("../input/extendRotate.txt") as f1: # Open mine 

    allUpsdDwn = f1.read().splitlines()  

totalUpsnDwn = set(rotationList).union(allUpsdDwn) #convert list of names to set to avoid repetitive names 

totalUpsnDwn = list(totalUpsnDwn) 

#map20[map20["Image"].isin(totalUpsnDwn)] 

allRotate = list(map20[map20["Image"].isin(totalUpsnDwn)].Image) 

toBeRotated = [imread(f'../input/train/{filename}') for filename in allRotate] 

figure = plt.figure(figsize=(20, 40)) # set figure size to 8 inches x 6 inches 

rows = 1 # define # of rows 

cols = 3 # define # of columns 

for i in range(len(toBeRotated)): # loop over images 

    subplot = figure.add_subplot(rows, cols, i + 1) # add subplots to rows x columns figure grid 

    subplot.axis('Off') #turn-off axis 

    subplot.set_title(allRotate[i], fontsize=14) # set titles 

    plt.imshow(toBeRotated[i])# show images       

figure.savefig("../figures/toBeRotated.png") 

# Read the bounding box data from the bounding box kernel (see reference above) 

with open('../input/bounding-box.pickle', 'rb') as f: 

    p2bb = pickle.load(f) 

list(p2bb.items())[:5] 

def readImage(p): 

    img = Image.open(f"../input/train/{p}") 

    if p in allRotate:  

        img = img.rotate(180) 

    #img = imread(f"data/train/{p}") 

    return img 

aspectRatio = 0 

for p in map20.Image: 

    img = readImage(p) 

    width, height = img.size 

    aspectRatio += width/height 

aspectRatio = aspectRatio/len(map20) #take average 

print("Average aspect ratio:",aspectRatio ) 

def crop(p): 

    img_shape    = (224,224,1) # The image shape used by the model 

    anisotropy   = 2.09 # The horizontal compression ratio 

    margin  = 0.1 # The margin added around the bounding box to compensate for bounding box inaccuracy 

    # Determine the region of the original image we want to capture based on the bounding box. 

    x0,y0,x1,y1   = p2bb[p] 

    # Read the image 

    p = readImage(p) 

    #if p in allRotate: BUG FIXED!!! no need to flip since readImage already does! 

        #img = img.rotate(180) 

    # Get size 

    size_x,size_y = p.size 

    if p in allRotate: x0, y0, x1, y1 = size_x - x1, size_y - y1, size_x - x0, size_y - y0 

    dx            = x1 - x0 
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    dy            = y1 - y0 

    x0           -= dx*margin 

    x1           += dx*1.5*margin + 1 

    y0           -= dy*margin 

    y1           += dy*margin + 1 

    if (x0 < 0):  

        x0 = 0 

    if (x1 > size_x): 

        x1 = size_x 

    if (y0 < 0):  

        y0 = 0 

    if (y1 > size_y):  

        y1 = size_y 

    dx            = x1 - x0 

    dy            = y1 - y0 

    if dx > dy*anisotropy: 

        dy  = 0.5*(dx/anisotropy - dy) 

        y0 -= dy 

        y1 += dy 

    else: 

        dx  = 0.5*(dy*anisotropy - dx) 

        x0 -= dx 

        x1 += dx  

    # Generate the transformation matrix 

    trans = np.array([[1, 0, -0.5*img_shape[0]], [0, 1, -0.5*img_shape[1]], [0, 0, 1]]) 

    trans = np.dot(np.array([[(y1 - y0)/img_shape[0], 0, 0], [0, (x1 - x0)/img_shape[1], 0], [0, 0, 1]]), trans) 

    trans = np.dot(np.array([[1, 0, 0.5*(y1 + y0)], [0, 1, 0.5*(x1 + x0)], [0, 0, 1]]), trans) 

    # Transform to black and white and comvert to numpy array 

    img   = p.convert('L') #keep 3 channel info for ResNET 

    img   = img_to_array(img)#img_to_array(img) 

    # Apply affine transformation 

    matrix = trans[:2,:2] 

    offset = trans[:2,2] 

    img    = img.reshape(img.shape[:-1])# 

    img    = ndimage.affine_transform(img, matrix, offset, output_shape=img_shape[:-1], order=1, 

mode='constant', cval=np.average(img)) 

    img    = img.reshape(img_shape) 

    # Normalize to zero mean and unit variance 

    img  -= np.mean(img, keepdims=True) 

    img  /= np.std(img, keepdims=True) + K.epsilon() 

    return img 

for p in allRotate: 

    img = readImage(p) 

    print("Original Image") 

    plt.imshow(Image.open(f"../input/train/{p}")) 

    plt.show() 

    print("Flipped Image") 

    plt.imshow(readImage(p)) 

    plt.show() 

    print("Cropped & Reshaped Version") 

    cropped =crop(p) 

    #plt.imshow(cropped) 

    plt.imshow(cropped.reshape(img_shape[0], img_shape[1]),cmap = matplotlib.cm.binary) 

    plt.show()  

with open("../input/cropFail.txt") as f: # Open file of image names to be excluded 

    cropFail = list(f.read().splitlines()) 

 

#toBeExcluded = [imread(f'data/train/{filename}') for filename in allExclude] 
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figure = plt.figure(figsize=(20, 40)) # set figure size to 20 inches x 6 inches 

rows = 9 # define # of rows 

cols = 2 # define # of columns 

index = 0 

for i in cropFail: # loop over images 

    subplot = figure.add_subplot(rows, cols, index + 1) # add subplots to rows x columns figure grid 

    subplot.axis('Off') #turn-off axis 

    subplot.set_title(i, fontsize=14) # set titles 

    plt.imshow(readImage(i))# show images 

    #plt.show()  

    cropped =(crop(i)) 

    subplot = figure.add_subplot(rows, cols, index + 2) # add subplots to rows x columns figure grid 

    subplot.axis('Off') #turn-off axis 

    plt.imshow(cropped.reshape(img_shape[0], img_shape[1]),cmap = matplotlib.cm.binary) 

    title = "Cropped " + i 

    subplot.set_title(title, fontsize=14) # set titles 

    #plt.show()    

    index = index + 2 

figure.savefig("../figures/cropFail.png") 

omitIndices = [] 

for p in cropFail: 

    #print(p) 

    index = list(map20["Image"]).index(p) 

    omitIndices.append(index) 

map20 = map20.drop(map20.index[omitIndices])   

len(map20) 

final_top20 = pd.DataFrame(map20['Id'].value_counts().head(11)) 

final_top20.reset_index(inplace=True) 

final_top20.columns = ['ID','Counts'] 

fig = plt.figure(figsize = (8, 6)) 

plt.title('Whale Categories with 20 or more Images') 

sns.set_color_codes("pastel") 

sns.barplot(x="ID", y="Counts", data=final_top20, 

            label="Count") 

locs, labels = plt.xticks() 

plt.setp(labels, rotation=45) 

plt.show() 

fig.savefig('final_top20.png') 

y = map20["Id"] 

names = list(map20["Image"]) 

X = [] 

for i in range(len(map20)): 

    imgName = names[i] 

    cropped = crop(imgName) 

    #cropped =to_rgb(cropped) 

    X.append(cropped) 

X = np.array(X)   

X = X.reshape( (-1, 224, 224, 1)).astype("float32") 

print(X.shape) 

print(y.shape) 

import pickle 

with open('../input/X_gray', 'wb') as f1: 

    pickle.dump(X, f1) 

with open('../input/y_gray', 'wb') as f2: 

    pickle.dump(y, f2) 

with open ('../input/X_gray', 'rb') as f3: 

    X = pickle.load(f3) 

with open ('../input/y_gray', 'rb') as f4: 
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    y = pickle.load(f4) 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.25,stratify=y) 

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15,stratify=y_train) 

height = 224 

width = 224 

channels =1 

X_train = X_train.reshape(-1,height,width,channels) # dimension (60000) is inferred by setting the first 

element to -1 

X_test = X_test.reshape(-1,height,width,channels) 

X_val = X_val.reshape(-1,height,width,channels) 

print("<3 Shape of My Heart <3 : ") 

print("=========================") 

print("Training:", X_train.shape) 

print("Testing:", X_test.shape) 

print("Validation:", X_val.shape) 

print(y_train.shape) 

train_top20 = pd.DataFrame(y_train.value_counts()) 

train_top20.reset_index(inplace=True) 

train_top20.columns = ['ID','Counts'] 

val_top20 = pd.DataFrame(y_val.value_counts()) 

val_top20.reset_index(inplace=True) 

val_top20.columns = ['ID','Counts'] 

test_top20 = pd.DataFrame(y_test.value_counts()) 

test_top20.reset_index(inplace=True) 

test_top20.columns = ['ID','Counts'] 

f,(ax1,ax2,ax3) = plt.subplots(3,1,sharex=True) 

fig1 = sns.barplot(x="ID", y="Counts", data=train_top20, ax=ax1) 

fig1.set_ylabel('Train') 

fig1.set_xlabel('') 

fig2 = sns.barplot(x="ID", y="Counts", data=val_top20, ax=ax2) 

fig2.set_xlabel('') 

fig2.set_ylabel('Validation') 

fig3 = sns.barplot(x="ID", y="Counts", data=test_top20, ax=ax3) 

fig3.set_ylabel('Test') 

fig3.set_xlabel('') 

f=plt.xticks(rotation=45) 

suptitle("Categorical Distrbution of Images", fontsize=16) 

#f.savefig('../figures/train_val_test_Dist.png') 

y_train = LabelEncoder().fit_transform(y_train) 

#y_train = OneHotEncoder().fit_transform(y_train.reshape(-1,1)) 

y_val = LabelEncoder().fit_transform(y_val) 

#y_val = OneHotEncoder().fit_transform(y_val.reshape(-1,1)) 

y_test = LabelEncoder().fit_transform(y_test) 

#y_test = OneHotEncoder().fit_transform(y_test.reshape(-1,1)) 

print(y_train.shape) 

print(y_val.shape) 

print(y_test.shape) 

classNum = 11#len(np.unique(y_train)) # number of unique labels is counted to determine the # of classes 

y_train = to_categorical(y_train, num_classes = classNum) 

y_test = to_categorical(y_test, num_classes = classNum) 

y_val = to_categorical(y_val, num_classes = classNum) 

datagen = ImageDataGenerator( 

        rotation_range=20,  # randomly rotate images in the range (degrees, 0 to 180) 

        zoom_range = 0.2, # Randomly zoom image  

        width_shift_range=0.2,  # randomly shift images horizontally (fraction of total width) 

        height_shift_range=0.2,  # randomly shift images vertically (fraction of total height) 

        horizontal_flip=True,  # randomly flip images horizontally only! 

        vertical_flip=False,  #  do not randomly flip images vertically! 
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        fill_mode='nearest')  

datagen.fit(X_train, augment=True) 

inputShape = (224,224,1) 

model = ResNet50(include_top = True, classes=11, input_shape = inputShape) 

model.summary() 

from keras.utils import plot_model 

plot_model(model, to_file='../figures/models1.png') 

pil_image.open('../figures/models1.png') 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adam(), #instead of annealer decay = DR can be set, too 

              metrics=['accuracy']) 

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

# Fit the model 

Epochs = 300 #  

batchSize = 12 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_val,y_val), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[annealer]) 

from keras.models import load_model 

model.save('../models/ResNET50.h5')  # creates a HDF5 file 'my_model.h5' 

#del model  # deletes the existing model 

# returns a compiled model 

# identical to the previous one 

#model = load_model('my_model.h5') 

valLoss, valAcc = model.evaluate(X_val, y_val, verbose=0) 

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0) 

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc)) 

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc)) 

sns.set_color_codes("pastel") 

sns.set_style("white") 

sns.lineplot(x='loss', data = ) 

plt.plot(history.history['loss'], label = "Training Loss") 

plt.plot(history.history['val_loss'], label = "Validation Loss") 

plt.legend() 

plt.show() 

plt.plot(history.history['acc'],label = "Training Accuracy") 

plt.plot(history.history['val_acc'], label = "Validation Accuracy") 

plt.legend() 

plt.show() 

pred = model.predict(X_test) # Predict values of the test set 

#y_testCat = to_categorical(y_test, num_classes = classNum)  

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0) 

print(testLoss,testAcc) 

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors 

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors 

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix 

plt.figure(figsize=(9,9)) 

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu"); 

plt.ylabel('True Labels'); 

plt.xlabel('Predicted Labels'); 

 

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15); 

 

#plot_confusion_matrix(confusion_mtx, classes = range(10)) 

with open ('../input/X_gray', 'rb') as f3: 

    X = pickle.load(f3) 
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with open ('../input/y_gray', 'rb') as f4: 

    y = pickle.load(f4) 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.25,stratify=y, random_state =42) 

#X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15,stratify=y_train) 

height = 224 

width = 224 

channels =1 

X_train = X_train.reshape(-1,height,width,channels) # dimension (60000) is inferred by setting the first 

element to -1 

X_test = X_test.reshape(-1,height,width,channels) 

#X_val = X_val.reshape(-1,height,width,channels) 

y_train = LabelEncoder().fit_transform(y_train) 

#y_train = OneHotEncoder().fit_transform(y_train.reshape(-1,1)) 

#y_val = LabelEncoder().fit_transform(y_val) 

#y_val = OneHotEncoder().fit_transform(y_val.reshape(-1,1)) 

y_test = LabelEncoder().fit_transform(y_test) 

#y_test = OneHotEncoder().fit_transform(y_test.reshape(-1,1)) 

print(y_train.shape) 

#print(y_val.shape) 

print(y_test.shape) 

classNum = 11#len(np.unique(y_train)) # number of unique labels is counted to determine the # of classes 

y_train = to_categorical(y_train, num_classes = classNum) 

y_test = to_categorical(y_test, num_classes = classNum) 

#y_val = to_categorical(y_val, num_classes = classNum) 

datagen = ImageDataGenerator( 

        rotation_range=20,  # randomly rotate images in the range (degrees, 0 to 180) 

        zoom_range = 0.2, # Randomly zoom image  

        width_shift_range=0.2,  # randomly shift images horizontally (fraction of total width) 

        height_shift_range=0.2,  # randomly shift images vertically (fraction of total height) 

        horizontal_flip=True,  # randomly flip images horizontally only! 

        vertical_flip=False,  #  do not randomly flip images vertically! 

        fill_mode='nearest', 

        zca_whitening = False) # A whitening transform of an image is a linear algebra operation that reduces 

the redundancy in the matrix of pixel images. Less redundancy in the image is intended to better highlight the 

structures and features in the image to the learning algorithm. 

datagen.fit(X_train, augment=True) 

# configure batch size and retrieve one batch of images 

#os.makedirs('augmentedImages') 

#for X_batch, y_batch in datagen.flow(X_train, y_train, batch_size=9, save_to_dir='../augmentedImages', 

save_prefix='aug', save_format='png'): 

inputShape = (224,224,1) 

model = load_model('../models/ResNET50.h5') 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adam(), #instead of annealer decay = DR can be set, too 

              metrics=['accuracy']) 

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

# Fit the model 

Epochs = 300 #  

batchSize = 12 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_test,y_test), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[annealer]) 

model.save('../models/ResNET50_wo_val.h5')  # creates a HDF5 file 'my_model.h5' 

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0) 

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0) 

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc)) 
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print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc)) 

sns.set_color_codes("pastel") 

sns.set_style("white") 

#sns.lineplot(x='loss', data = ) 

plt.plot(history.history['loss'], label = "Training Loss") 

plt.plot(history.history['val_loss'], label = "Validation Loss") 

plt.legend() 

plt.show() 

plt.plot(history.history['acc'],label = "Training Accuracy") 

plt.plot(history.history['val_acc'], label = "Validation Accuracy") 

plt.legend() 

plt.show() 

pred = model.predict(X_test) # Predict values of the test set 

#y_testCat = to_categorical(y_test, num_classes = classNum)  

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0) 

print(testLoss,testAcc) 

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors 

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors 

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix 

plt.figure(figsize=(9,9)) 

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu"); 

plt.ylabel('True Labels'); 

plt.xlabel('Predicted Labels'); 

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15); 

#plot_confusion_matrix(confusion_mtx, classes = range(10)) 

inputShape = (224,224,1) 

model = load_model('../models/ResNET50_80_20_split.h5') 

model.load_weights('../models/ResNET50_80_20_50batchSize_weights.h5') 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adam(lr=0.01), #instead of annealer decay = DR can be set, too 

              metrics=['accuracy']) 

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

# Fit the model 

Epochs = 70 #  

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

# checkpoint 

filepath="../models/ResNET_80_20_split_ADAM_LR0.01_weights-improvement-{epoch:02d}-

{val_acc:.2f}.hdf5" 

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') 

#callbacks_list = [checkpoint] 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_test,y_test), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[annealer, checkpoint]) 

model.save('../models/ResNET_80_20_split_ADAM_LR0.01.h5')  # creates a HDF5 file 'my_model.h5' 

# save weights 

model.save_weights('../models/ResNET_80_20_split_ADAM_LR0.01_weights.h5') 

# to restore a model from a checkpoint see: https://machinelearningmastery.com/check-point-deep-learning-

models-keras/ 

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0) 

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0) 

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc)) 

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc)) 

sns.set_color_codes("pastel") 

sns.set_style("white") 

#sns.lineplot(x='loss', data = ) 

plt.plot(history.history['loss'], label = "Training Loss") 
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plt.plot(history.history['val_loss'], label = "Validation Loss") 

plt.legend() 

plt.show() 

plt.plot(history.history['acc'],label = "Training Accuracy") 

plt.plot(history.history['val_acc'], label = "Validation Accuracy") 

plt.legend() 

plt.show() 

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.01.h5') 

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.01_weights.h5') 

pred = model.predict(X_test) # Predict values of the test set 

#y_testCat = to_categorical(y_test, num_classes = classNum)  

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0) 

print(testLoss,testAcc) 

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors 

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors 

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix 

plt.figure(figsize=(9,9)) 

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu"); 

plt.ylabel('True Labels'); 

plt.xlabel('Predicted Labels'); 

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15); 

#plot_confusion_matrix(confusion_mtx, classes = range(10)) 

inputShape = (224,224,1) 

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.01.h5') 

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.01_weights.h5') 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adam(lr=0.005), #instead of annealer decay = DR can be set, too 

              metrics=['accuracy']) 

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

# Fit the model 

Epochs = 70 #  

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

# checkpoint 

filepath="../models/ResNET_80_20_split_ADAM_LR0.005_weights-improvement-{epoch:02d}-

{val_acc:.2f}.hdf5" #PREVIOUSLY WRONGLY NAMED PATH!! 

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')   

#ACCIDENTALLY WROTE 0.01 instead of 0.005 :() 

#callbacks_list = [checkpoint] 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_test,y_test), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[annealer, checkpoint]) 

model.save('../models/ResNET_80_20_split_ADAM_LR0.005.h5')  # creates a HDF5 file 'my_model.h5' 

# save weights 

model.save_weights('../models/ResNET_80_20_split_ADAM_LR0.005_weights.h5') 

# to restore a model from a checkpoint see: https://machinelearningmastery.com/check-point-deep-learning-

models-keras/ 

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0) 

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0) 

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc)) 

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc)) 

sns.set_color_codes("pastel") 

sns.set_style("white") 

#sns.lineplot(x='loss', data = ) 

plt.plot(history.history['loss'], label = "Training Loss") 

plt.plot(history.history['val_loss'], label = "Validation Loss") 

plt.legend() 
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plt.show() 

plt.plot(history.history['acc'],label = "Training Accuracy") 

plt.plot(history.history['val_acc'], label = "Validation Accuracy") 

plt.legend() 

plt.show() 

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.005.h5') 

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.005_weights.h5') 

pred = model.predict(X_test) # Predict values of the test set 

#y_testCat = to_categorical(y_test, num_classes = classNum)  

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0) 

print(testLoss,testAcc) 

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors 

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors 

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix 

plt.figure(figsize=(9,9)) 

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu"); 

plt.ylabel('True Labels'); 

plt.xlabel('Predicted Labels'); 

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15); 

#plot_confusion_matrix(confusion_mtx, classes = range(10)) 

inputShape = (224,224,1) 

model = load_model('../models/ResNET50_90_10_split.h5') 

model.load_weights('../models/ResNET50_90_10_weights.h5') 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adam(), #instead of annealer decay = DR can be set, too 

              metrics=['accuracy']) 

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

# Fit the model 

Epochs = 70 #  

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

# checkpoint 

filepath="../models/ResNET_80_20_split_LR0.001-{epoch:02d}-{val_acc:.2f}.hdf5" 

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') 

#callbacks_list = [checkpoint] 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_test,y_test), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[annealer, checkpoint]) 

model.save('../models/ResNET50_80_20_split_LR0.001.h5')  # creates a HDF5 file 'my_model.h5' 

# save weights 

model.save_weights('../models/ResNET50_80_20_LR0.001_weights.h5') 

# to restore a model from a checkpoint see: https://machinelearningmastery.com/check-point-deep-learning-

models-keras/ 

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0) 

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0) 

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc)) 

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc)) 

sns.set_color_codes("pastel") 

sns.set_style("white") 

#sns.lineplot(x='loss', data = ) 

plt.plot(history.history['loss'], label = "Training Loss") 

plt.plot(history.history['val_loss'], label = "Validation Loss") 

plt.legend() 

plt.show() 

plt.plot(history.history['acc'],label = "Training Accuracy") 

plt.plot(history.history['val_acc'], label = "Validation Accuracy") 

plt.legend() 
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plt.show() 

pred = model.predict(X_test) # Predict values of the test set 

#y_testCat = to_categorical(y_test, num_classes = classNum)  

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0) 

print(testLoss,testAcc) 

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors 

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors 

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix 

plt.figure(figsize=(9,9)) 

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu"); 

plt.ylabel('True Labels'); 

plt.xlabel('Predicted Labels'); 

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15); 

#plot_confusion_matrix(confusion_mtx, classes = range(10)) 

def get_lr_metric(optimizer): 

    def lr(y_true, y_pred): 

        return optimizer.lr 

    return lr 

inputShape = (224,224,1) 

model = load_model('../models/ResNET_80_20_split_ADAM_LR0.005.h5') 

model.load_weights('../models/ResNET_80_20_split_ADAM_LR0.005_weights.h5') 

opt = keras.optimizers.Adam(lr=0.004323416) 

lr_metric = get_lr_metric(opt) 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adam(lr=0.004323416), #instead of annealer decay = DR can be set, too 

              metrics=['accuracy', lr_metric]) 

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

# Fit the model 

Epochs = 70 #  

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

# checkpoint 

filepath="../models/ResNET_80_20_split_ADAM_LR0.0043_weights-improvement-{epoch:02d}-

{val_acc:.2f}.hdf5"  

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')    

#callbacks_list = [checkpoint] 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_test,y_test), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[annealer, checkpoint]) 

 

….. 

 

from keras.callbacks import Callback 

import keras.backend as K 

import numpy as np 

 

class SGDRScheduler(Callback): 

    '''Cosine annealing learning rate scheduler with periodic restarts. 

    # Usage 

        ```python 

            schedule = SGDRScheduler(min_lr=1e-5, 

                                     max_lr=1e-2, 

                                     steps_per_epoch=np.ceil(epoch_size/batch_size), 

                                     lr_decay=0.9, 

                                     cycle_length=5, 

                                     mult_factor=1.5) 

            model.fit(X_train, Y_train, epochs=100, callbacks=[schedule]) 
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        ``` 

    # Arguments 

        min_lr: The lower bound of the learning rate range for the experiment. 

        max_lr: The upper bound of the learning rate range for the experiment. 

        steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`.  

        lr_decay: Reduce the max_lr after the completion of each cycle. 

                  Ex. To reduce the max_lr by 20% after each cycle, set this value to 0.8. 

        cycle_length: Initial number of epochs in a cycle. 

        mult_factor: Scale epochs_to_restart after each full cycle completion. 

    # References         

    Blog post: jeremyjordan.me/nn-learning-rate 

        Original paper: http://arxiv.org/abs/1608.03983 

    ''' 

    def __init__(self, 

                 min_lr, 

                 max_lr, 

                 steps_per_epoch, 

                 lr_decay=1, 

                 cycle_length=10, 

                 mult_factor=2): 

 

        self.min_lr = min_lr 

        self.max_lr = max_lr 

        self.lr_decay = lr_decay 

        self.batch_since_restart = 0 

        self.next_restart = cycle_length 

        self.steps_per_epoch = steps_per_epoch 

        self.cycle_length = cycle_length 

        self.mult_factor = mult_factor 

        self.history = {} 

         

    def clr(self): 

        '''Calculate the learning rate.''' 

        fraction_to_restart = self.batch_since_restart / (self.steps_per_epoch * self.cycle_length) 

        lr = self.min_lr + 0.5 * (self.max_lr - self.min_lr) * (1 + np.cos(fraction_to_restart * np.pi)) 

        return lr 

 

    def on_train_begin(self, logs={}): 

        '''Initialize the learning rate to the minimum value at the start of training.''' 

        logs = logs or {} 

        K.set_value(self.model.optimizer.lr, self.max_lr) 

 

    def on_batch_end(self, batch, logs={}): 

        '''Record previous batch statistics and update the learning rate.''' 

        logs = logs or {} 

        self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr)) 

        for k, v in logs.items(): 

            self.history.setdefault(k, []).append(v) 

        self.batch_since_restart += 1 

        K.set_value(self.model.optimizer.lr, self.clr()) 

 

    def on_epoch_end(self, epoch, logs={}): 

        '''Check for end of current cycle, apply restarts when necessary.''' 

        if epoch + 1 == self.next_restart: 

            self.batch_since_restart = 0 

            self.cycle_length = np.ceil(self.cycle_length * self.mult_factor) 

            self.next_restart += self.cycle_length 

            self.max_lr *= self.lr_decay 
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            self.best_weights = self.model.get_weights() 

    def on_train_end(self, logs={}): 

        '''Set weights to the values from the end of the most recent cycle for best performance.''' 

        self.model.set_weights(self.best_weights)         

 

inputShape = (224,224,1) 

model = load_model('../models/ResNET50_80_20_split.h5') 

model.load_weights('../models/ResNET50_80_20_50batchSize_weights.h5') 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=5e-4, nesterov=True), #instead of 

annealer decay = DR can be set, too 

              metrics=['accuracy']) 

 

# Fit the model 

Epochs = 70 #  

batchSize = 50 # number of randomly taken samples from features and labels to feed into each epoch  

                # until an epoch limit is reached. 

# cosine annealer reference: https://arxiv.org/abs/1608.03983 

#annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) 

schedule = SGDRScheduler(min_lr=1e-4, 

                        max_lr=1e-2, 

                        steps_per_epoch = X_train.shape[0] // batchSize,#np.ceil(epoch_size/batch_size), 

                        lr_decay=0.9, 

                        cycle_length=5, 

                        mult_factor=1.5) 

# checkpoint 

filepath="../models/ResNET_SGD_LR0.01_weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5" 

checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') 

 

history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batchSize), 

                              epochs = Epochs, validation_data = (X_test,y_test), 

                              verbose = 1, steps_per_epoch=X_train.shape[0] // batchSize 

                              , callbacks=[schedule, checkpoint]) 

model.save('../models/ResNET50_SGD_LR001.h5')  # creates a HDF5 file 'my_model.h5' 

# save weights 

model.save_weights('../models/ResNET50_SGD_LR001_weights.h5') 

valLoss, valAcc = model.evaluate(X_test, y_test, verbose=0) 

trainLoss, trainAcc = model.evaluate(X_train, y_train, verbose=0) 

print("Validation Loss: {0:.6f}, Validation Accuracy: {1:.6f}".format(valLoss, valAcc)) 

print("Train Loss: {0:.6f}, Train Accuracy: {1:.6f}".format(trainLoss, trainAcc)) 

sns.set_color_codes("pastel") 

sns.set_style("white") 

#sns.lineplot(x='loss', data = ) 

plt.plot(history.history['loss'], label = "Training Loss") 

plt.plot(history.history['val_loss'], label = "Validation Loss") 

plt.legend() 

plt.show() 

plt.plot(history.history['acc'],label = "Training Accuracy") 

plt.plot(history.history['val_acc'], label = "Validation Accuracy") 

plt.legend() 

plt.show() 

pred = model.predict(X_test) # Predict values of the test set 

#y_testCat = to_categorical(y_test, num_classes = classNum)  

testLoss, testAcc = model.evaluate(X_test, y_test, verbose=0) 

print(testLoss,testAcc) 

pred1hot = np.argmax(pred, axis=1) # Convert predicted classes to one hot vectors 

y_test1hot = np.argmax(y_test, axis=1) # Convert true classes to one hot vectors 

cm = confusion_matrix(y_test1hot, pred1hot) #confusion matrix 
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plt.figure(figsize=(9,9)) 

sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square = True, cmap="YlGnBu"); 

plt.ylabel('True Labels'); 

plt.xlabel('Predicted Labels'); 

plt.title('Test Loss = %.4f, Test Accuracy = %.4f'%(testLoss, testAcc), size = 15); 

#plot_confusion_matrix(confusion_mtx, classes = range(10)) 
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APPENDIX B 

__________________________________________________________________________________________________  
Layer (type)                    Output Shape         Param #     Connected to                      
========================================================== ========================================  
input_5 (InputLayer)            (None, 224, 224, 1)  0                                             
__________________________________________________________________________________________________  
zero_padding2d_4 (ZeroPadding2D (None, 230, 230, 1)  0           input_5[0][0]                     
________________________________________________________ __________________________________________  
conv1 (Conv2D)                  (None, 112, 112, 64) 3200        zero_paddi ng2d_4[0][0]            
__________________________________________________________________________________________________  
bn_conv1 (Batch Normalization)   (None, 112, 112, 64) 256         conv1[0][0]                       
__________________________________ ________________________________________________________________  
activation_197 (Activation)     (None, 112, 112, 64) 0           bn_conv1 [0][0]                    
____________________________________________________________________________________________ ______  
max_pooling2d_5 (MaxPooling2D)  (None, 55, 55, 64)   0           activation_197[0][0]              
________________________________ __________________________________________________________________  
res2a_branch2a (Conv2D)         (None, 55, 55, 64)   4160        max_pooling2d_5[0][0]             
__________________________________________________________________________________________ ________  
bn2a_branch2a (BatchNormalizati (None, 55, 55, 64)   256         res2a_branch2a[0][0]              
__________ ________________________________________________________________________________________  
activation_198 (Activation)     (None, 55, 55, 64 )   0           bn2a_branch2a[0][0]               
__________________________________________________________________________________________________  
res2a_branch2b (Conv2D)         (None, 55, 55, 64)   36928       activation_198[0][0]              
________ __________________________________________________ ________________________________________  
bn2a_branch2b (BatchNormalizati (None, 55, 55, 64)   256         res2a_branch2b[0][0]              
__________________________________________________________________ ________________________________  
activation_199 (A ctivation)     (None, 55, 55, 64)   0           bn2a_branch2b[0][0]               
__________________________________________________________________________________________________  
res2a_branch2c (Conv2D)         (None, 55, 55, 256)  16640       activation _199[0][0]              
__________________________________________________________________________________________________  
res2a_branch1 (Conv2D)          (None, 55, 55, 256)  16640       max_pooling2d_5[0] [0]             
__________________________________ ________________________________________________________________  
bn2a_branch2c (BatchNormalizati (None, 55, 55, 256)  1024        res2a_branch2c[0][0]              
__________________________________________ __________________________________________________ ______  
bn2a_branch1 (BatchNormalizatio (None, 55, 55, 256)  1024        res2a_branch1[0][0]               
__________________________________________________________________________________________________  
add_65 (Add)                    (None, 55, 55, 256)   0           bn2a_branch2c[0][0]               
                                                                 bn2a_branch1[0][0]                
___________________________________________________________ _______________________________________  
activation _200 (Activation)     (None, 55, 55, 256)  0           add_65[0][0]                      
__________________________________________________________________________________________________  
res2b_branch2a (Co nv2D)         (None, 55, 55, 64)   16448       act ivation_200[0][0]              
__________________________________________________________________________________________________  
bn2b_branch2a (BatchNormalizati (None, 55, 55, 64)   256         res2b_branc h2a[0][0]              
__________________________________________________________________________________________________  
activation_201 (Activation)     (None, 55, 55, 64)   0           bn2b_branch2a[0][0]               
___________________________________ _______________________ ________________________________________  
res2b_branch2b (Conv2D)         (None, 55, 55, 64)   36928       activation_201[0][0]              
_____________________________________________________________________________________________ _____  
bn2b_branch2b (Ba tchNormalizati (None, 55, 55, 64)   256         res2b_branch2b[0][0]              
__________________________________________________________________________________________________  
activation_202 (Activation)     (None, 55, 55, 64)   0           bn2b_branc h2b[0][0]               
__________________________________________________________________________________________________  
res2b_branch2c (Conv2D)         (None, 55, 55, 256)  16640       activation_202[0][0]              
___________ _______________________ ________________________________________________________________  
bn2b_branch2c (BatchNormalizati (None, 55, 55, 256)  1024        res2b_branch2c[0][0]              
_____________________________________________________________________ _______________________ ______  
add_66 (Add)                    (None, 55, 55, 256)  0           bn2b_branch2c[0][0]               
                                                                 activation_200[0][0]              
____________________________ _______________________ _______________________________________________  
activation_203 (Activation)     (None, 55, 55, 256)  0           add_66[0][0]                      
______________________________________________________________________________________ ____________  
res2c_bran ch2a (Conv2D)         (None, 55, 55, 64)   16448       activation_203[0][0]              
__________________________________________________________________________________________________  
bn2c_branch2a (BatchNormalizati (None, 55, 55 , 64)   256         res 2c_branch2a[0][0]              
__________________________________________________________________________________________________  
activation_204 (Activation)     (None, 55, 55, 64)   0           bn2c_branch2a[0][0]               
____ ______________________________________________________________________________________________  
res2c_branch2b (Conv2D)         (None, 55, 55, 64)   36928       activation_204[0][0]              
______________________________________________________________ ____________________________________  
bn2c_branch2b (BatchNormalizati (None, 55, 55, 64)   256         res2c_branch2b[0][0]              
_______________________________________________ ___________________________________________________  
activation_205 (Activ ation)     (None, 55, 55, 64)   0           bn2c_branch2b[0][0]               
__________________________________________________________________________________________________  
res2c_ branch2c (Conv2D)         (None, 55, 55, 256)  16640       activation_205 [0][0]              
__________________________________________________________________________________________________  
bn2c_branch2c (BatchNormalizati (None, 55, 55, 256)  1024        res2c_branch2c[0][0]              
______________________________________ ____________________________________________________________  
add_67 (Add)                    (None, 55, 55, 256)  0           bn2c_branch2c[0][0]               
                                                                 activation_203[0][0]              
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__________________________________________________________________________________________________  
activation_206 (Activation)     (None, 55, 55, 256)  0           add_67[0][0]                      
_______________________________________________________ ___________________________________________  
res3a_branch2a (Conv2D)         (None, 28, 28, 128)  32896       activation_206[0][0]              
________________________________________ __________________________________________________________  
bn3a_branch2a (BatchNormalizati (None, 28, 28, 128)  512         res3a_branch2a[0][0]              
__________________________________________________________________________________________________  
activation_207 (Activation)     (None, 28, 28, 128)  0           bn3a_br anch2a[0][0]               
__________________________________________________________________________________________________  
res3a_branch2b (Conv2D)         (None, 28, 28, 128)  147584      activation_207[0][0]              
_______________________________ ___________________________________________________________________  
bn3a_branch2b (BatchNormalizati (None, 28, 28, 128)  512         res3a_branch2b[0][0]              
_________________________________________________________________________________________ _________  
activation_208 (Activation)     (None, 28, 28, 128)  0           bn3a_branch2b[0][0]               
_________________ _________________________________________________________________________________  
res3a_branch2c (Conv2D)         (None, 28, 28, 5 12)  66048       activation_208[0][0]              
___________________________________________________________________________ _______________________  
res3a_branch1 (Conv2D)          (None, 28, 28, 512)  131584      activation_206[0][0]              
_______ ___________________________________________________________________________________________  
bn3a_branch2c (BatchNormalizati (N one, 28, 28, 512)  2048        res3a_branch2c[0][0]              
_________________________________________________________________ _________________________________  
bn3a_branch1 (BatchNormalizatio (None, 28, 28, 512)  2048        res3a_branch1[0][0]               
__________________________________________________________________________________________________  
add_68 (Add)                    (None, 28, 28, 512)  0           bn3a_branch2c[0][0]               
                                                                 bn3a_branch1[0][0]                
__________________________________________________________________________________ ________________  
activation_209 (Activation)     (None, 28, 28, 512)  0           add_68[0][0]                      
__________ ________________________________________________________________________________________  
res3b_branch2a (Conv2D)         (None, 28 , 28, 128)  65664       activation_209[0][0]              
____________________________________________________________________ ______________________________  
bn3b_branch2a (BatchNormalizati (None, 28, 28, 128)  512         res3b_branch2a[0][0]              
__________________________________________________________________________________________________  
activation_210 (Activation)     (None, 28, 28, 128)  0           bn3b_branch2a[0][0]               
__________________________________________________________ ________________________________________  
res3b_branch2b (Conv2D)         (None, 28, 28, 128)  14758 4      activation_210[0][0]              
__________________________________________________________________________________________________  
bn3b_branch2b (Ba tchNormalizati (None, 28, 28, 128)  512         res3b_branch2b[0][0]              
_________________ _________________________________________________________________________________  
activation_211 (Activation)     (None, 28, 28, 128)  0           bn3b_branc h2b[0][0]               
___________________________________________________________________________ _______________________  
res3b_branch2c (Conv2D)         (None, 28, 28, 512)  66048       activation_211[0][0]              
__________________________________ ________________________________________________________________  
bn3b_branch2c (BatchNormalizati (N one, 28, 28, 512)  2048        res3b_branch2c[0][0]              
____________________________________________________________________________________________ ______  
add_69 (Add)                    (None, 28, 28, 512)  0           bn3b_branch2c[0][0]               
                                                                 activation_209[0][0]              
___________________________________________________ _______________________________________________  
activation_212 (Activation)     (None, 28, 28, 512)   0           add_69[0][0]                      
__________________________________________________________________________________________________  
res3c_bran ch2a (Conv2D)         (None, 28, 28, 128)  65664       activation_212[0][0]              
__________ ________________________________________________________________________________________  
bn3c_branch2a (BatchNormalizati (None, 28, 28, 128)  512         res 3c_branch2a[0][0]              
____________________________________________________________________ ______________________________  
activation_213 (Activation)     (None, 28, 28, 128)  0           bn3c_branch2a[0][0]               
___________________________ _______________________________________________________________________  
res3c_branch2b (Conv2D)         (None, 28, 28, 128)  147584      activation_213[0][0]              
_____________________________________________________________________________________ _____________  
bn3c_branch2b (BatchNormalizati (None, 28, 28, 128)  512         res3c_branch2b[0][0]              
__________________________________________________________________________________________________  
activation_214 (Activation)     (None, 28, 2 8, 128)  0           bn3c_branch2b[0][0]               
_________________ _________________________________________________________________________________  
res3c_branch2c (Conv2D)         (None, 28, 28, 512)  66048       activation_214[0][0]              
___________________________________________________________________________ _______________________  
bn3c_branch2c (BatchNormalizati (None, 28, 28, 512)  2048        res3c_branch2c[0][0]              
_____________________________________________________________ _____________________________________  
add_70 (Add)                    (N one, 28, 28, 512)  0           bn3c_branch2c[0][0]               
                                                                 activation_212[0][0]              
____________________ ________________________________________________________________________ ______  
activation_215 (Activation)     (None, 28, 28, 512)  0           add_70[0][0]                      
______________________________________________________________________________ ____________________  
res3d_branch2a (Conv2D)         (None, 28, 28, 128)   65664       activation_215[0][0]              
__________________________________________________________________________________________________  
bn3d_branch2a (BatchNormalizati (None , 28, 28, 128)  512         res3d_branch2a[0][0]              
__________ ________________________________________________________________________________________  
activation_216 (Activation)     (None, 28, 28, 128)  0           bn3d_branch2a[0][0]               
____________________________________________________________________ ______________________________  
res3d_branch2b (Conv2D)         (None, 28, 28, 128)  147584      activation_216[0][0]              
______________________________________________________ ____________________________________________  
bn3d_branch2b ( BatchNormalizati (None, 28, 28, 128)  512         res3d_branch2b[0][0]              
__________________________________________________________________________________________________  
activation_21 7 (Activation)     (None, 28, 28, 128)  0           bn3d_bra nch2b[0][0]               
__________________________________________________________________________________________________  
res3d_branch2c (Conv2D)         (None, 28, 28, 512)  66048       activa tion_217[0][0]              
________________________________ __________________________________________________________________  



 56 

bn3d_branch2c (BatchNormalizati (None, 28, 28, 512)  2048        res3d_branch2c[0][0]              
______________________________ ____________________________________________________________ ________  
add_71 (Add)                    (None, 28, 28, 512)  0           bn3d_branch2c[0][0]               
                                                                 activation_215[0][0]              
_________________________________________________ _________________________________________________  
activation_218 (Activation)     (None, 28, 28, 512)  0           add_71[0][0]                      
_______________________________________________ ___________________________________________________  
res4a_br anch2a (Conv2D)         (None, 14, 14, 256)  131328      activation_218[0][0]              
__________________________________________________________________________________________________  
bn4a_b ranch2a (BatchNormalizati (None, 14, 14, 256)  1024        r es4a_branch2a[0][0]              
__________________________________________________________________________________________________  
activation_219 (Activation)     (None, 14, 14, 256)  0           bn4a_branch2a[0][0]               
_________________________ _________________________________________________________________________  
res4a_branch2b (Conv2D)         (None, 14, 14, 256)  590080      activation_219[0][0]              
_______________________ ____________________________________________________________ _______________  
bn4a_branch2b (BatchNormalizati (None, 14, 14, 256)  1024        res4a_branch2b[0][0]              
_________________________________________________________________________________ _________________  
activation_220 ( Activation)     (None, 14, 14, 256)  0           bn4a_branch2b[0][0]               
__________________________________________________________________________________________________  
res4a_branch2c (Conv2D)         (None, 1 4, 14, 1024) 263168      activatio n_220[0][0]              
__________________________________________________________________________________________________  
res4a_branch1 (Conv2D)          (None, 14, 14, 1024) 525312      activation_218[0][0]              
_________________________________ _________________________________________________________________  
bn4a_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096        res4a_branch2c[0][0]              
_________________________________________________________ __________________________________ _______  
bn4a_branch1 (BatchNormalizatio (None, 14, 14, 1024) 4096        res4a_branch1[0][0]               
__________________________________________________________________________________________________  
add_72 (Add)                    (None, 14, 14, 102 4) 0           bn4a_branch2c[0][0]               
                                                                 bn4a_branch1[0][0]                
__________________________________________________________________________ ________________________  
activatio n_221 (Activation)     (None, 14, 14, 1024) 0           add_72[0][0]                      
__________________________________________________________________________________________________  
res4b_branch2a (Conv2D)         ( None, 14, 14, 256)  262400      ac tivation_221[0][0]              
__________________________________________________________________________________________________  
bn4b_branch2a (BatchNormalizati (None, 14, 14, 256)  1024        res4b_branch2a[0][0]              
__________________________ ________________________________________________________________________  
activation_222 (Activation)     (None, 14, 14, 256)  0           bn4b_branch2a[0][0]               
__________________________________________________ __________________________________ ______________  
res4b_branch2b (Conv2D)         (None, 14, 14, 256)  590080      activation_222[0][0]              
__________________________________________________________________________________________________  
bn4b_bran ch2b ( BatchNormalizati (None, 14, 14, 256)  1024        res4b_branch2b[0][0]              
__________________________________________________________________________________________________  
activation_223 (Activation)     (None, 14, 14, 256)  0           bn 4b_bra nch2b[0][0]               
__________________________________________________________________________________________________  
res4b_branch2c (Conv2D)         (None, 14, 14, 1024) 263168      activation_223[0][0]              
__________________________ ______ __________________________________________________________________  
bn4b_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096        res4b_branch2c[0][0]              
____________________________________________________________________________________ ______ ________  
add_73 (Add)                    (None, 14, 14, 1024) 0           bn4b_branch2c[0][0]               
                                                                 activation_221[0][0]              
___________________________________________ ______ _________________________________________________  
activation_224 (Activation)     (None, 14, 14, 1024) 0           add_73[0][0]                      
__________________________________________________________________________________________________  
re s4c_br anch2a (Conv2D)         (None, 14, 14, 256)  262400      activation_224[0][0]              
__________________________________________________________________________________________________  
bn4c_branch2a (BatchNormalizati (None, 14, 14, 256)  1024        r es4c_branch2a[0][0]              
__________________________________________________________________________________________________  
activation_225 (Activation)     (None, 14, 14, 256)  0           bn4c_branch2a[0][0]               
___________________ ______ _________________________________________________________________________  
res4c_branch2b (Conv2D)         (None, 14, 14, 256)  590080      activation_225[0][0]              
_____________________________________________________________________________ ______ _______________  
bn4c_branch2b (BatchNormalizati (None, 14, 14, 256)  1024        res4c_branch2b[0][0]              
__________________________________________________________________________________________________  
activation_226 ( Activation)     (Non e, 14, 14, 256)  0           bn4c_branch2b[0][0]               
__________________________________________________________________________________________________  
res4c_branch2c (Conv2D)         (None, 14, 14, 1024) 263168      activatio n_226[0][0]              
__________________________________________________________________________________________________  
bn4c_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096        res4c_branch2c[0][0]              
_________________________________ ____________________ _____________________________________________  
add_74 (Add)                    (None, 14, 14, 1024) 0           bn4c_branch2c[0][0]               
                                                                 activation_224[0][0]              
____________ ______________________________________________________________________________________  
activation_227 (Activation)     (None, 14, 14, 1024) 0           add_74[0][0]                      
__________________________________________________ ____________________ ____________________________  
res4d_branch2a (Conv2D)         (None, 14, 14, 256)  262400      activation_227[0][0]              
__________________________________________________________________________________________________  
bn4d_bran ch2a (BatchNormaliza ti (None, 14, 14, 256)  1024        res4d_branch2a[0][0]              
__________________________________________________________________________________________________  
activation_228 (Activation)     (None, 14, 14, 256)  0           bn 4d_branch2a[0][0]               
__________________________________________________________________________________________________  
res4d_branch2b (Conv2D)         (None, 14, 14, 256)  590080      activation_228[0][0]              
__________________________ ____________________ ____________________________________________________  
bn4d_branch2b (BatchNormalizati (None, 14, 14, 256)  1024        res4d_branch2b[0][0]              
____________________________________________________________________________________ ______________  
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activ ation_229 (Activation)     (None, 14, 14, 256)  0           bn4d_branch2b[0][0]               
__________________________________________________________________________________________________  
res4d_branch2c (Conv2D)         (None, 14, 14, 1024) 263168      activation_229[0][0]              
__________________________________________________________________________________________________  
bn4d_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096        res4d_branch2c[0][0]              
______________________ ____________________________________________________________________________  
add_75 (Add)                    (None, 14, 14, 1024) 0           bn4d_branch2c[0][0]               
                                                                 activation_227[ 0][0]              
__________________________________________________________________________________________________  
activation_230 (Activation)     (None, 14, 14, 1024) 0           add_75[0][ 0]                      
_______________________________________ ___________________________________________________________  
res4e_branch2a (Conv2D)         (None, 14, 14, 256)  262400      activation_230[0][0]              
__________________________________ _______________________________________________________________ _ 
bn4e_branch2a (BatchNormalizati (None, 14, 14, 256)  1024        res4e_branch2a[0][0]              
____________________________________________________________________________________________ ______  
activation_231 (Activation)     (None, 14, 14, 256)  0           bn4e_branch2a[0][0]               
__________________________________________________________________________________________________  
res4e_branch2b (Conv2D)         (None, 14, 14, 256)   590080      activation_231[0][0]              
_______________ ___________________________________________________________________________________  
bn4e_branch2b (BatchNormalizati (None, 14, 14, 256)  1024        res4e_branch2b[0][0]              
__________ _______________________________________________________________ _________________________  
activation_232 (Activation)     (None, 14, 14, 256)  0           bn4e_branch2b[0][0]               
____________________________________________________________________ ______________________________  
res4e_branch2c (Conv2D)         (None, 14, 14, 1024) 263168      activation_232[0][0]              
__________________________________________________________________________________________________  
bn4e_branch2c ( BatchNormalizati (None, 14, 14, 1024) 4096        res4e_branch2c[0][0]              
__________________________________________________________________________________________________  
add_76 (Add)                    (None, 14, 14, 1024) 0           bn4e_bra nch2c[0][0]               
                                                                 activation_230[0][0]              
__________________________________________________________________________________________________  
activation_233 (Activation)     (None, 14, 14, 1024) 0           add_76[0][0]                      
________ __________________________________________________________________________________________  
res4f_branch2a (Conv2D)         (None, 14, 14, 256)  262400      activation_233[0][0]              
__________________________________________________________________ ________________________________  
bn4f_branch2a (BatchNormalizati (None, 14, 14, 256)  1024        res4f_branch2a[0][0]              
_________________________________________________ _________________________________________________  
activation_234 (Activatio n)     (None, 14, 14, 256)  0           bn4f_branch2a[0][0]               
__________________________________________________________________________________________________  
res4f_br anch2b (Conv2D)         (None, 14, 14, 256)  590080      activation_234[0][ 0]              
__________________________________________________________________________________________________  
bn4f_branch2b (BatchNormalizati (None, 14, 14, 256)  1024        r es4f_branch2b[0][0]              
__________________________________________ ________________________________________________________  
activation_235 (Activation)     (None, 14, 14, 256)  0           bn4f_branch2b[0][0]               
_________________________ _________________________________________________________________________  
r es4f_branch2c (Conv2D)         (None, 14, 14, 1024) 263168      activation_235[0][0]              
___________________________________________________________________________________ _______________  
bn4f_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096        res4f_branch2c[0][0]              
__________________________________________________________________________________________________  
add_77 (Add)                    (None, 14, 14, 1024) 0           bn4f_branch2c[0][0]               
                                                                 activation_233[0][0]              
_________________________________________________________________________ _________________________  
activation_236 (Activation)     (None, 14, 14, 1024) 0           add_77[0][0 ]                      
__________________________________________________________________________________________________  
res5a_branch2a (Conv2D)         (None, 7, 7, 512)    524800      activation_236[0][0]              
___________________________________ _______________________________________________________________  
bn5a_branch2a (BatchNormalizati (None, 7, 7, 512)    2048        res5a_branch2a[0][0]              
_____________________________________________________________________________________________ _____  
activation_237 (Activation)     (None, 7, 7, 512)    0           bn5a_branch2a[0][0]               
_________________________________________________ _________________________________________________  
res5a_branch2b (Conv2D)         (None, 7, 7, 512)    2359808     activation_237[0][0]              
__________________________________________________________________________________________________  
bn5a_bra nch2b (BatchNormalizati (None, 7, 7, 512)    2048        res5a_branch2b[0][0]              
___________ _______________________________________________________________________________________  
activation_238 (Activation)     (None, 7, 7, 512)    0           b n5a_branch2b[0][0]               
__________________________________________________________________________________________________  
res5a_branch2c (Conv2D)         (None, 7, 7, 2048)   1050624     activation_238[0][0]              
_________________________ _________________________________ ________________________________________  
res5a_branch1 (Conv2D)          (None, 7, 7, 2048)   2099200     activation_236[0][0]              
___________________________________________________________________________________ _______________  
bn5a_branch2c (Ba tchNormalizati (None, 7, 7, 2048)   8192        res5a_branch2c[0][0]              
__________________________________________________________________________________________________  
bn5a_branch1 ( BatchNormalizatio (None, 7, 7, 2048)   8192        res5a_bran ch1[0][0]               
__________________________________________________________________________________________________  
add_78 (Add)                    (None, 7, 7, 2048)   0           bn5a_br anch2c[0][0]               
                                                                 bn5a_branch1[0][0]                
__________________________________________________________________________________________________  
activation_239 (Activation)     (None, 7, 7, 2048)   0           add_78[0][0]                      
__________________________________________________________________________________________________  
res5b_branch2a (Conv2D)         (None, 7, 7, 512)    1049088     activation_239[0][0]              
___________________________________________________ _______________________________________________  
bn5b_branch2a (BatchNormalizati (None, 7, 7, 512)    2048        res5b_branch2a[0][0]              
________________________________________________ __________________________________________________  
activation _240 (Activation)     (None, 7, 7, 512)    0           bn5b_branch2a[0][0]               
__________________________________________________________________________________________________  
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res5b_b ranch2b (Conv2D)         (None, 7, 7, 512)    2359808     act ivation_240[0][0]              
__________________________________________________________________________________________________  
bn5b_branch2b (BatchNormalizati (None, 7, 7, 512)    2048        res5b_branch2b[0][0]              
___________________________ _______________________________________________________________________  
activation_241 (Activation)     (None, 7, 7, 512)    0           bn5b_branch2b[0][0]               
________________________ _____________________________________________________________ _____________  
res5b_branch2c (Conv2D)         (None, 7, 7, 2048)   1050624     activation_241[0][0]              
__________________________________________________________________________________ ________________  
bn5b_branch2c (BatchNormalizati (None, 7, 7,  2048)   8192        res5b_branch2c[0][0]              
__________________________________________________________________________________________________  
add_79 (Add)                    (None, 7, 7, 2048)   0           bn5b_branch2c[0][0]               
                                                                 activation_239[0][0]              
_________________________________________________________________________ _________________________  
activation_242 (Activation)     (None, 7, 7, 2048)   0           add_79[0][0]                      
__________________________________________________________________________________________________  
res5c_branch2a (Conv2D)         (None, 7, 7, 512)    1049088     activation_242[0][0]              
____________________ ______________________________________________________________________________  
bn5c_branch2a (BatchNormalizati (None, 7, 7, 512)    2048        res5c_branch2a[0][0]              
______________________________________________________________________________ ____________________  
activation_243 (Activation)     (None, 7, 7, 512)    0           bn5c_branch2a[0][0]               
_________________________________________________ _________________________________________________  
res5c_branch2b (Conv2D)         (None , 7, 7, 512)    2359808     activation_243[0][0]              
__________________________________________________________________________________________________  
bn5c_bra nch2b (BatchNormalizati (None, 7, 7, 512)    2048        res5c_branch2b[0][0]              
__________________________________________________________________________________________________  
activation_244 (Activation)     (None, 7, 7, 512)    0           b n5c_branch2b[0][0]               
______________________________________________________ ____________________________________________  
res5c_branch2c (Conv2D)         (None, 7, 7, 2048)   1050624     activation_244[0][0]              
_________________________ _________________________________________________________________________  
bn5c_branch2c  (BatchNormalizati (None, 7, 7, 2048)   8192        res5c_branch2c[0][0]              
___________________________________________________________________________________ _______________  
add_80 (Add)                    (None, 7, 7, 2048)   0           bn5c_b ranch2c[0][0]               
                                                                 activation_242[0][0]              
__________________________________________________________________________________________________  
activation_245 (Activation)     (None, 7, 7, 2048)   0           add_80[0][0]                      
__________________________________________________________ ________________________________________  
avg_pool (AveragePooling2D)     (None, 1, 1, 2048)   0           activation_245[0][0]              
__________________________________________________________________________________________________  
flatten_3 (Flatte n)             (None, 2048)         0           avg_pool[0][0]                    
_______________________________________________ ___________________________________________________  
fc2 (Dense)                     (None, 11)           22539       flatten_3[ 0][0]                   
==================================================================================================  
Total params: 23,603,979  
Trainable params: 23,550,859  
Non- trainable params: 53,120  
__________________________________________________ ________________________________________________  
 

 


