MEF UNIVERSITY

BUILDING FOOTPRINT EXTRACTION USING
DEEP LEARNING TECHNIQUES

Capstone Project

OYTUN DENIZ

ISTANBUL, 2018

il



i1



MEF UNIVERSITY

BUILDING FOOTPRINT EXTRACTION USING
DEEP LEARNING TECHNIQUES.

Capstone Project

OYTUN DENIZ

Prof. Dr. Muhittin Gokmen

ISTANBUL, 2018

v



MEF UNIVERSITY

Name of the project: Building Footprint Extraction Using Deep Learning
Techniques.

Name/Last Name of the Student: Oytun Deniz

Date of Thesis Defense: 10/09/2018

I hereby state that the graduation project prepared by Your Name (Title Format) has
been completed under my supervision. I accept this work as a “Graduation Project”.

10/09/2018

Prof. Dr. Muhittin Gokmen

I hereby state that I have examined this graduation project by Your Name (Title
Format) which is accepted by his supervisor. This work is acceptable as a graduation project
and the student is eligible to take the graduation project examination.

10/09/2018

Prof. Dr. Ozgiir Ozliik

We hereby state that we have held the graduation examination of Oytun Deniz and
agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE
Committee Member Signature
1. Prof. Dr. Muhittin Gokmen



Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that

I have neither given nor received inappropriate assistance in preparing it.

Name Date Signature
Oytun Deniz 10.09.2018

vi



EXECUTIVE SUMMARY

BUILDING FOOTPRINT EXTRACTION USING DEEP LEARNING TECHNIQUES.

Oytun Deniz

Advisor: Prof. Dr. Muhittin Gokmen

SEPTEMBER, 2018, 56 Pages

Geospatial industry is getting bigger and bigger these days in addition to creating
massive amount of data. Today map features such as roads, building footprints are created
through manual techniques. There is not automated solution that extracts map features such
as roads, building footprints from satellite imagery. Advance automated feature extraction
techniques will serve important uses of map data including disaster response.

SpaceNet is a commercial satellite imagery and labeled training data to foster
innovation in the development of computer vision algorithms. In this paper we will give a
brief explanation about image classification, object recognition processes and why deep
learning is effective on object recognition, and how we can apply these concepts to our
problem which is Building Footprint extraction. And we will use SpaceNet’s dataset and
apply tensorflow backhand object detection model.

Key Words: Deep Learning, Building, Footprint, Satellite
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OZET

DERIN OGRENME TEKNIKLERI KULLANILARAK UYDU GORUNTULERINDEK I
BINALARIN ISARETLENMESI.

Oytun Deniz

Tez Danismani: Prof. Dr. Muhittin Gokmen

EYLUL, 2018. 56 Pages

Cografi veri endiistrisi giin gectikge biiylimekte ve ciddi anlamda biiyiik veri setleri
olusturmaktalar. Gilinimiizde yollar, binalar gibi harita ozellikleri, uygu goriintiileri
kullanilarak manuel tekniklerle ayirt edilebiliyor. Bu insan giiciinii ortadan kaldiracak bir
otomasyon heniiz bulunmamakta. Olas1 bir otomasyon, gelecekte uydu goriintiilerinin
islenip insanlik yararina kullanilabilmesine olanak saglayacaktir.

SpaceNet goriintii islem algoritmalarin1 gelistirmek amaciyla her hangi bir ticari
amag giitmeden. test ve train veri setleri saglamaktadir. Bu ¢aligmada, resim siiflandirma
ve obje tanima algoritmalari ile ilgili detaylara ek olarak derin 6grenme tekniklerinin obje
tamimlama algoritmalarindaki 6nemi ve bu teknikleri uydu goriintiilerindeki binalari
isaretlemek icin nasil kullanildig1 incelenmektedir..

Anahtar Kelimeler: Derin Ogrenme, Bina, Kaplama Alani, Uydu
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1. INTRODUCTION AND LITERATURE REVIEW

In this section, firstly, we will explain details about image classification, and object
recognition concepts. Secondly, we will talk about Fundamentals of Deep Learning and why it’s
better than classic image classification techniques. At the last section, how we can apply these

techniques to our problem which is building footprint extraction.

1.1. Image Classification and Object Detection

What 1s Image Classification? Basically, Image classification takes an image and predicts
the object in an image. For example, you have a picture of a dog or cat. The model predicts that its
dog or cat. What if we have a dog and cat image in the single picture. What would our model
predict? To solve this problem, we can create a multi-label classifier which predicts both. To do
that we have to find the location of classes in the image. It is like a drawing rectangle. In a single
image, predicting the location of the object and its class is an example of Object Detection.

Simple visualization could make more clear the problem. Let’s think that we are working
on the automated car system. Our sensors captured the image below. And we are trying to make

car system recognize objects and stops at the proper time.
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Example input image illustrated in Figure 1:

Figure 1: Example input image

To solve this problem, somehow if we could drive a box around these objects. Car system

can mark this boxes and then make a decision. So our aim is something like Figure 2.

Figure 2 — Decision Boxes
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Firstly, we have to find the location of all objects and then identify it using some kind of
image classifier.

We can start by dividing the picture into pieces, then feed this images our classifier and we
can find the location of objects.

We divided the picture into 4 pieces. Upper left illustrated in Figure 3:

Figure 3: Upper of Input Image

Upper right illustrated in Figure 4:

Figure 4: Upper right of Input Image
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Lower left of image illustrated in Figure 5:

Figure 5: Lower Lefi of Input Image

Lower right of image illustrated in Figure 6:

Figure 6: Lower right of Input Image
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If we merge these images output illustrated in Figure 7.

Figure 7: Merged Input Image

This is a good approach but we need a more accurate way and confidential system. Another
idea can be, increasing pieces.

The result illustrated in Figure 8.

Figure 8: Full input image with object boxes

The solution seems a bit better than previous but our boxes are overlapping. We need the

more structured way to solve this problem.
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We can perform more structured division. Divide images same small pieces maybe 20x20
grid. As we know our objects in images are connected with other pieces around them. Assume that
we dived person piece in 3 if we go around middle pieces in different heights and aspect ratio.
After that, we can pass these images to the classifier and get predictions. Results will be more
structured but improbable.

The result illustrated in Figure 9.

Figure 9: Relationship between sub images

The final solution is promising but we can add some efficient ways to the solution. We can

increase grid and patch size. In addition, instead of feeding all pieces of images to image
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classifier, we can feed it a different classifier like background prediction, after that, we apply
our main classifier. I affect our model accuracy in a good way and speeds up our model run

time.

1.2. Neural Networks and Object Detection
The imagenet project is a database which is designed for visual object detection research.
It contains over 14 million URLs of images. Since 2010, every year ImageNet publishes
competition about visual recognition. The unexpected solution shows up in 2010 ImageNet Large
Scale Visual Recognition Challenge. A convolutional neural network, which is developed with
CUDA for GPU support achieved a winning top 5 test error rate of 15.3% and achieved by the best
second-best entry. Its name is ALEXNET. ALEXNET has an incredible impact on the machine
learning field. Especially it is the deep learning application on machine vision field. The popularity
of deep learning in computer vision field increases over years, since 2012. [13][15]
1.3. Object Detection Methods
1. Hog Features
In 2005 a paper published by Navneet Dalal and Bill Triggs. It is adopting the linear SVM
base model. In theory, model converts pixel —based representation into gradient-based and feeds
them SVM for classifying.

To be more clear algorithm illustrated in Figure 10. [22]

Figure 10: Hog Features
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Histogram of Oriented Gradients features are inexpensive on computation power and it can
be used for real-time object detection, face detection.
2. Region-based Convolutional Neural Networks (R-CNN)
Histogram of Oriented Gradients features are inexpensive on computation power and
it can be used for real-time object detection, face detection.

You can see the visualization of selective search algorithm in Figure 11. [4]

Figure 11: Selective Search

Selective Search uses clues like texture, color etc. to find possible location of the

object in the image.

R-CCN has 3 steps:
e Using selective search algorithm, it scans input image and generates ~2000
possible region proposals
e Runs convolutional Neural network (CNN) for each these regions
e Take outputs for each CNN and feed all into SVN to classify the region after

that a linear regression for box creation around the objects
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These steps are illustrated in Figure 12:

R-CNN Linear Regression for bounding box offsets

| Bboxreg || svMs | Classify regions with

| Bboxreg || SVMs | SVMs
R
Bhoc reg | | SYMs | ConvN Forward each
ConvN ot region through
ot ConvNet
ConvN
& Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Input image

Figure 12: Region-based Convolutional Neural Networks (R-CNN)

R-CCN’s are intuitive but slow. [2][3][12]

3. Fast Region-based Convolutional Network (Fast R-CNN)

In 2015, Ross Girshick developed Fast R-CNN. If we compare R-CNN and Fast R
CNN, the main idea is the same but Fast R-CNN has better time consumption.

Differences:
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e Fast R-CNN performs feature extraction just before the region proposing. So

Instead of feeding all regions to CNN, running just one CNN.

e Replacing SVM with softmax layer.

These steps are illustrated in Figure 13

Fast R-CNN

Softmax
classifier

Linear +
softmax

FCs

T

Linear

%

Bounding-box
regressors

Fully-connected layers

L7 /=7 /7 “RolPooling” layer

Regions of ﬁ@,&ﬁ/”convy’ feature map of image

Interest (Rols)
from a proposal
method

/ T

ConvNet

Forward whole image through
ConvNet

Figure 13: Fast Region-based Convolutional Network (Fast R-CNN)

Fast R-CNN performs much better than R-CNN. [3][2][1][12]

4. Faster Region-based Convolutional Network (Faster R-CNN)

In 2016, Shaoqing Ren developed Faster R-CNN. The only difference between Fast

R-CNN was selective search algorithm. Faster R-CNN replaces selective search algorithm

with a convolutional network which name is Region Proposal Network. Selective Search is

the slowest part of previous algorithms. With RPN approach time consumption is better. [2]
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These steps are illustrated in figure 14.

Object is a cat Refine BB position

Faster R-CNN

Object or not object BB proposal
proposals/ /
Region Proposal Network

pre-train image-net

Figure 14: Faster Region-based Convolutional Network (Faster R-CNN)

5. Region-based Fully Convolutional Network (R-FCN)
In 2016, Jifeng Dai developed R-FCN. R-FCN is a model which has only
convolutional layers. Developers merged location invariant and location variant in a single

model. [1]

R-FCN Steps:
* Model takes input

21



* Generates a score bank. Last layer outputs feature maps. These maps are unique
in the detection of specific image and location. This is called position sensitive score maps.

* RPN to generate the region of interest.

* For each region of interest, model divides are pieces or sub regions which is
score maps

* For each sub-regions model checks score bank to see sub region matches of
some object. For example, a cat is lower right. We will grab score maps which are related

lower right.

An Example illustrated in Figure 14:

vote
— yes

image and Rol position-sensitive

Rol-pool

Figure 14: Region-based Fully Convolutional Network (R-FCN) yes vote

We can see that model trying to detect a person. Sub regions in feature maps related
to a person. If its true algorithm votes yes. And identifies the person and its location.
In Figure 15, we can see that region of interest could not find object properly. It’s

shifted right and cannot center person. So the final vote will be no.
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vote
— no

position-sensitive
Rol-pool

image and Rol

Figure 15: Region-based Fully Convolutional Network (R-FCN) no vote

6. YOLO: You only Look Once

In 2016, J.Redmon et al. developed a model. Its approaches on object recognition
problems were different than other methods.
Yolo Detection System:
e Model takes input image
e Resizes the input image 448 X 448
e Runs a single convolutional network.

e Thresholds detectors by model’s confidence.

Thus process illustrated in Figure 16:

1. Resize i e,
2. Run convolutional netwark.
3. Hon-max suppression.

Figure 16: Yolo algorithm steps

Yolo divides each image into an S x S grid. Each grid predicts N bounding boxes
and confidence. We can say that confidence is the synonym of the accuracy of bounding

boxes.
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For example, we have boxes predicted. If the box does not contain any image its
score must be lower. So let’s set our threshold %40 confidence. Output illustrated in

Figure 17.

Class probability map

Figure 17: Yolo algorithm class probability map and bounding boxes

As we know current detection systems transforms image classifiers to perform
object detection. Yolo acts different. IT reframes object detection like a regression problem
so it’s fast and don’t have complex pipeline. YOLO base network can run 45 frame per

second. It means that yolo can be used for real time object detection. [27][28]

7. SSD: Single Shot Detector
In 2016, Lui, W. et al. developed single shot detector model. It has similarities to
YOLO. But main difference is SSD have feature pyramid and its decision making process
similar to Faster-RCNN. [29]
SSD does, regions of interest and region classification in “single shot”. It predicts
bounding box and class at the same time.
SSD steps:
e Passes input images a series of convolutional layers in different scales.
For example, 10 x 10 then 6 x 6
o Like Faster R-CNN model uses 3x3 convolutional filter to create small

bounding boxes
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e Model predicts bounding box and class simultaneously
e Predicted boxes base on Jaccard index. Best predicted box marked a

“positive”

SSD steps illustrated in Figure 18:

e
- .
- bt o i
[ e o} [} == ]
L1 N L i i il
] [ - e
==h TEE=fr (U, AR i F e
St SUSE[ .1 e 3.
T [ L[]
I gt e
Sl
‘ . q==f Vloc: Alex, cy,w, h)
< p conf : (¢1,¢0,- -, Cp)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Figure 18: single shot detector algorithm steps

2. ABOUT DATA

SpaceNet is a commercial satellite imagery and labeled training data to foster innovation in the
development of computer vision algorithms. DigitalGlobe, CosmiQ Works, and NVIDIA have
partnered to release the SpaceNet data set to the public to enable developers and data scientists.

2.1. Data Access

SpaceNet dataset hosted as an Amazon Web Services (AWS) Public Dataset. The AWS

Command Line Interface (CLI) must be installed with an active AWS account. A sample of

directory tree of dataset is below.

— AOI 3 Paris_Train.tar.gz

| |— geojson

| | L— buildings # Contains GeoJson labels of buildings for each tile

| — MuUL # Contains Tiles of 8-Band Multi-Spectral raster data from
WorldView-3

| |— MUL-PanSharpen # Contains Tiles of 8-Band Multi-Spectral raster data
pansharpened to 0.3m

| |— PAN # Contains Tiles of Panchromatic raster data from Worldview-3

25
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| I—— RGB-PanSharpen # Contains Tiles of RGB raster data from Worldview-3
| L— summaryData # Contains CSV with pixel based labels for each building in
the Tile Set.

Example of dataset training directory illustrated in figure 19:

Name

L spacenst_TrainData
I | 3band
= || 8band
¥ || vectordata
* |79 geodson
k| ] summaryData

Figure 19: SpaceNet Sample Directory
2.2. Details About Data

3-band imageries are pan-sharpened and they are 438—439 pixels in width, and 406407
pixels in height. 8-band images have not been pan-sharpened and so have 1/4 the resolution of
the 3-band imagery at 110 x 102 pixels. Each image has unique Id and we can find related label
record in vectordata/geoJson directory. geoJSON file has polygon vertices in latitude and
longitude. Computer vision algorithms operate in pixel spaces. Because of that, the label data
must be converted to a matrix of pixel positions. We will explain three methods of converting
GeoJSON label files into pixel coordinates. [31][33][35]

Example of JSON label file for img950:

"type": "FeatureCollection",
"crs": {
"type": "name",
"properties": {
"name": "urn:ogc:def:crs:0GC:1.3:CRS84"
}
¥
"features": [{
"type": "Feature",
"properties": {
"timestamp": "2016-06-22T21:27:50Z",
"version": "1",
"changeset": "5404",
"user": "Derick",
"uid": "43",
"HGIS_OID": "1182422.0",
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18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,

"building": "yes",
"type“: IINonell,
"id": "way\/75286",
"area": "None",

"QAStatus": "Original_Building",

"HGISOID": 1182422.000000,
"TaskArea": "West",
"Revisionl": "No",
"Shape_Leng": 0.000500,
"Shape_Area": 0.000000,
"partialBuilding": ©.000000,
"partialDec": 1.000000

¥

"geometry": {
"type": "Polygon",
"coordinates": [

[

[-43.715911899999981,
[-43.715955299999962,
[-43.716095199999984,
[-43.716051799999946,
[-43.715911899999981,

1. Building Outline Coordinates

-22.894361599999968,
-22.894427499999949,
-22.894322599999953,
-22.894261799999981,
-22.894361599999968,

OO0
(SRR RV
e
. v .

As I mention before JSON files has building polygon vertices in latitude and longitude. To
be able to use these coordinates, we have to convert them into pixel coordinates. This kind of
process could be done with the GDAL library. [31][33][35]

Example of code: Outline Coordinates:

Now we have pixel coordinates and we can add another layer our input images to reveal
polygons that we have pixel coordinates.

Example of code: Plot Coordinates:
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Input image illustrated in Figure 19:

Figure 19: Input image for Ground Truth Polygons demonstration
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Ground Truth Polygons image illustrated in Figure 20:

Ground Truth Bullding Polygons

a0

250

i

35

A0

a S il 150 200 300 50 400

R
L
[=]

Figure 20: Ground Truth of Building Polygons example
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2. Building Mask
Image masks are useful for neural network segmentation algorithms. Building

masks illustrated below: [31][33][35]

Example of code: Building Mask:

Input Image for building mask example illustrated in Figure 21:

Figure 21: Input image for building mask example
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Ground Truth Building Mask image example illustrated in figure 22:

Figure 22: Output image of building mask

3. Signed Distance Transform
In 2016, Juangye Yuan published a paper which is about building extraction and

signed distance transform. This is another method for labeling ground truth.

Example of Code: Signed Distance Transform:
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Input Image for signed distance transform example illustrated in Figure 23:

Figure 23: Input image for Signed Distance Transform example
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Signed Distance Transformed Image illustrated in Figure 24:

Figure 24: Signed Distance Transformed Image

3. PROJECT DEFINITION

In this section we will discuss the objective and scope of project.
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3.1. Problem Statement
Geospatial industry getting bigger and bigger these days in addition makes massive
amount of data. There is not automated solution that extracts map features such as roads, building

footprints from satellite imagery.

3.2. Project Objective
Finding automated method for extracting building footprints from satellite imagery. I will

visualize it by creating polygonal areas which represents buildings.

3.3. Project Scope

Scope of project covers only building footprint extraction.

4. METHODOLOGY

To solve this problem, we used Convolutional Neural Network. It’s based on Semantic
Segmentation of Small Objects and Modeling of Uncertainty in Urban paper [34]. Due to the lack
of computer power. We decided to use 1 image with shredded in pieces. Modeling process has 2
steps. These steps are especially data preparation section are implemented from SpaceNet

Challenge 1 — Rio de Janeiro Building Footprint Extraction solution. [35]

4.1. Data Preparation

In previous sections, we explain how we can use geojson files. In this section, we used
GDAL, shapely, CV2 Python packages to create input and target numpy arrays. In general, we
create 2 numpy array. Input and target for training. For more training data we imputed images.

Firstly, we read 3Band image file, applied polygons on that file using the geojson file and
convert it to numpy array. This was our target. To input image, we used 3Band and 8Band
images and created 4d dimension numpy array.

Here is some detail about process, we read 3band image and get geo data using
GetGeoTransform() method from GDAL library. To draw a polygon, we converted geo

transformation point list and feed them to CV2 package drawContours function. After that
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process we create target numpy array. For input image we normalized and create numpy array
for training.

The second step is about image imputing. So we could have more training data. Each
512*512 images are imputed into 128*128 images with %50 overlap. So we have 49 numpy array

file for training model.

Example code: Data Preparation

4.2. Model Creation
We used the approach that used by Tensorflow in Build a Convolutional Neural Network
using Estimators tutorial. [36]
Our input layer has 4 parameters. Batch size, image height, image width, and channels. Our
image size is 128 x 128, we have 3 channel (red, green blue) we don’t use 1 because our image is

not monochrome.

CNN architecture:
1- Convolutional layer #1: Applies 32 3x3 filters. With ReL.U activation function
2- Pooling Layer #1: Performs max pooling using 2x2 filter
3- Convolutional layer #2: Applies 64 3x3 filters. With ReLU activation function
4- Pooling Layer #2: Performs max pooling using 2x2 filter.
5- Convolutional layer #3: Applies 128 3x3 filters. With ReLU activation function
6- Pooling Layer #3: Performs max pooling using 2x2 filter.
7- Convolutional layer #4: Applies 1024 5x5 filters. With ReLLU activation function
8- Convolutional layer #5: Applies 128 1x1 filters. With ReLU activation function
9- Deconvolution layer #1: 2 class (building or not building) 16 x 16 with 8 x 8

subsample

10- Softmax activation.
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CNN architecture illustrated in Figure 28:

. Convolutional layer, . Max pooling layer, . Deconvolutional layer

Where:

D Reshaping layer, . Softmax layer

Figure 28: CNN Architecture
In this figure, blue layers represent convolutional layers, plus these layers have Relu and
batch-normalization layers. In this network we have 8 convolutional layers. Red layers represent
pooling layers. Green layer represents the fractional-strided convolution layer. We can call it

deconvolution layer too. Final layer which is black colored represents softmax layer, it classifiers

pixel into building or not building.

Model Diagram illustrated Figure 25:
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Figure 25: Model Diagram
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Example Model Code: Create Model

S. RESULTS

5.1. Model output
As we mentioned before we used 1 image for training model because of lack of computing
power and time. Training process with epoch parameter 200 took 2 hours with NVIDIA GTX 970
GPU. Final model weights ~ 200MB (from 1 image training) and the final model accuracy score

is approximately 0.16.

Here are the parameters of final CNN network:

Layer (type) Output Shape Param #

conv2d_9 (Conv2D) (None, 128, 128,32) 1184

activation_9 (Activation) (None, 128, 128,32) 0

conv2d 10 (Conv2D) (None, 128, 128, 32) 9248

activation_10 (Activation) (None, 128, 128,32) 0

max_pooling2d 4 (MaxPooling2 (None, 64, 64, 32) 0

conv2d 11 (Conv2D) (None, 64, 64, 64) 18496

activation_11 (Activation) (None, 64, 64, 64) 0

conv2d 12 (Conv2D) (None, 64, 64, 64) 36928

activation 12 (Activation) (None, 64, 64, 64) 0

max_pooling2d 5 (MaxPooling2 (None, 32, 32, 64) 0

conv2d 13 (Conv2D) (None, 32, 32, 128) 73856

activation_13 (Activation) (None, 32, 32, 128) 0

conv2d 14 (Conv2D) (None, 32, 32, 128) 147584
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activation_14 (Activation) (None, 32, 32, 128) 0

max_pooling2d 6 (MaxPooling2 (None, 16, 16, 128) 0

conv2d 15 (Conv2D) (None, 16, 16, 1024) 3277824

activation_15 (Activation) (None, 16, 16,1024) 0

conv2d_16 (Conv2D) (None, 16, 16, 128) 131200

conv2d_transpose 2 (Conv2DTr (None, 128, 128, 2) 65538

reshape 2 (Reshape) (None, 16384, 2) 0

activation_16 (Activation) (None, 16384, 2) 0

Total params: 3,761,858
Trainable params: 3,761,858
Non-trainable params: 0

First convolutional block has 32 filters with 2x2 pooling. Second block has 64 filters; third
block has 128 filters. Forth layer has 1024 filters, fifth layer has 128 filters. [34][35]

Predicted building footprints illustrated below:

Input image illustrated in Figure 26:
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Figure 26: Input image for model building footprint prediction demonstration

Building footprints as an output of model illustrated in Figure 27:
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Figure 27: Building Footprint model predicted output
5.2. Conclusion

We can see that our accuracy score is too low 0.16 but the model prediction is not bad for
standalone buildings. In addition, prediction comes from the model which is trained from 1 image
so this is not bad. Results are promising.

In this paper, we deep dive into object recognition and deep learning algorithms. In
addition, Deep learning in Geographic industry. Deep learning applications in geographic industry
are too new. The oldest paper on this topic is 2 years old and new ideas show up. Even the
preparation process of this paper new object detection algorithm released. (You Only Look Twice).
Moreover, lead companies like NVIDIA, Digital Globe are supporting and investing the satellite
imagery industry.

Creating new neural network especially imagery subject is too expensive. Training model

consumes time and computing power. For example, the size of the area of interest training dataset



for Vegas is 30 Gb. So as another approach to the problem instead of creating a new network from
scratch. Pre-Trained models can be used to solve problems.

The challenging part of using pre-trained models is data preparation. For example, for
machine learning techniques most of the time your data will be CSV file. Let’s say that we use
python. To create a new model, we will read data with pandas, clear data and feed it to some of
the scikit-learn algorithms. On the other hand, deep learning is different most of the pre-trained
models uses public datasets for the training process. So to use that model you have to convert your

data to that formats.

Dataset types:
1. PASCAL VOC2012
2. DARKNET

3. Segmentation Boundaries Dataset (SBD)

In addition, for most of the models this transformation is not enough. For example, to use
tensorflow pre-trained models like inceptionv3 or mobilenet we have to create generate

tenseorflow records types of data (TFRecord type).
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7. APPENDIX

Outline Coordinates:

from matplotlib.collections import PatchCollection
from osgeo import gdal, osr, ogr, gdalnumeric

from matplotlib.patches import Polygon

import matplotlib.pyplot as plt

import numpy as np

import shutil

import json

import glob

import sys

import os

# Spacenet utilities library:
https://github.com/SpaceNetChallenge/utilities

path to spacenet utils =
'/home/obi/gitProjects/utilities/python/spaceNetUtilities"
spacenet data dir = '/home/obi/deeplearning/processedBuildingLabels’
spacenet explore dir = '/home/obi/deeplearning/LabelingFiles’

# import packages
sys.path.extend([path to spacenet utils])
import geoTools as gT

# This function takes 2 argument and transforms geojson file to point of
pixels

# raster file input is .tff file, geojson file is location of json label
file.

def geojson to pixel arr(raster file, geojson file):

# load geojson file
with open(geojson file) as f:
geojson data = json.load(f)

# load raster file and get geo transforms

src_raster = gdal.Open(raster file)

targetsr = osr.SpatialReference()
targetsr.ImportFromWkt (src_raster.GetProjectionRef ())

geom_transform = src_raster.GetGeoTransform()
# get latlon coords

latlons = []
types = []
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for feature in geojson datal'features']:
coords_tmp = feature['geometry']['coordinates'][0]
type tmp = feature['geometry']['type']

print "feature['geometry']['coordinates'][0]", z
latlons.append(coords tmp)
types.append(type tmp)

print featurel['geometry']['type']

# convert latlons to pixel coords

pixel coords = []

latlon_coords = []

for i, (poly type, poly0) in enumerate(zip(types, latlons)):

if poly type.upper() == "MULTIPOLYGON':
#fprint "oops, multipolygon"
for poly in poly0:
poly=np.array(poly)
print ("poly.shape:", poly.shape)

# account for nested arrays
if len(poly.shape) == 3 and poly.shape[0] ==
poly = poly[0]

poly list pix = []
poly list latlon = []
print ("poly", poly)
for coord in poly:
print ("coord:", coord)
lon, lat, z = coord
px, py = gT.latlon2pixel(lat, lon,
input raster=src raster,
targetsr=targetsr,
geom transform=geom transform)
poly list pix.append([px, pyl)
print ("px, py", px, py)
poly list latlon.append([lat, lon])

ptmp = np.rint(poly list pix).astype(int)

elif poly type.upper() == 'POLYGON':
poly=np.array(poly0)
print ("poly.shape:", poly.shape)

# account for nested arrays
if len(poly.shape) == 3 and poly.shape[0] ==
poly = poly[0]

poly list pix = []
poly list latlon = []
print ("poly", poly)
for coord in poly:

print ("coord:", coord)

lon, lat, z = coord

px, py = gT.latlon2pixel(lat, lon,

input raster=src_raster,
targetsr=targetsr,
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geom_transform=geom transform)
poly list pix.append([px, pyl)
print ("px, py", px, py)
poly list latlon.append([lat, lon])

ptmp = np.rint(poly list pix).astype(int)

pixel coords.append(ptmp)
latlon coords.append(poly list latlon)

elif poly type.upper() == 'POINT':
print ("Skipping shape type: POINT in
geojson_to pixel arr()")
continue
else:
print ("Unknown shape type:", poly type, " in
geojson to pixel arr()")
return

return pixel coords, latlon coords

Plot Coordinates:

from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon

import matplotlib.pyplot as plt

import numpy as np

#This function takes input images, pixel coordinates. and returns ground
truth buildings

def plot truth coords(input image, pixel coords,

figsize=(8,8), plot name='",

add title=False, poly face color='orange',

poly edge color='red', poly nofill color='blue',
cmap='"bwr'") :

if add title:
suptitle = fig.suptitle(plot name.split('/')[-11,
fontsize='large')

# create patches
patches = []
patches nofill = []
if len(pixel coords) > 0:
# get patches
for coord in pixel coords:
patches nofill.append(Polygon (coord,
facecolor=poly nofill color,
edgecolor=poly edge color,
1lw=3))
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patches.append(Polygon(coord, edgecolor=poly edge color,
fi11=True,
facecolor=poly face color))
p0 = PatchCollection(patches, alpha=0.25, match original=True)
p2 = PatchCollection(patches nofill, alpha=0.75,
match original=True)

# truth polygons
zero_arr = np.zeros(input image.shape[:2])

axl.imshow(zero_arr, cmap=cmap)
if len(patches) > 0:
axl.add collection(p2)
axl.set title('Ground Truth Building Polygons')

plt.tight layout()
if add title:
suptitle.set y(0.95)
fig.subplots adjust(top=0.96)
plt.show()

Building Mask:

def create building mask(rasterSrc, vectorSrc, npDistFileName='",
noDataValue=0, burn values=l):

## open source vector file that truth data
source ds = ogr.Open(vectorSrc)
source layer = source ds.GetLayer()

## extract data from src Raster File to be emulated
## open raster file that is to be emulated
srcRas ds = gdal.Open(rasterSrc)

cols = srcRas ds.RasterXSize

rows = srcRas_ds.Raster¥YSize

## create First raster memory layer, units are pixels

# Change output to geotiff instead of memory

memdrv = gdal.GetDriverByName ('GTiff")

dst ds = memdrv.Create(npDistFileName, cols, rows, 1, gdal.GDT Byte,
options=['COMPRESS=LZW'])

dst ds.SetGeoTransform(srcRas ds.GetGeoTransform())

dst ds.SetProjection(srcRas ds.GetProjection())

band = dst ds.GetRasterBand(l)

band.SetNoDataValue (noDataValue)

gdal.Rasterizelayer(dst ds, [1], source layer,

burn values=[burn values])
dst ds =0

return
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Signed Distance Transform:

def create dist map(rasterSrc, vectorSrc, npDistFileName='",
noDataValue=0, burn values=l,
dist mult=1l, vmax dist=64):

source_ds = ogr.Open(vectorSrc)
source layer = source_ ds.GetLayer()

srcRas_ds = gdal.Open(rasterSrc)
cols = srcRas_ds.RasterXSize
rows = srcRas_ds.RasterYSize

geoTrans, poly, ulX, ulY, 1rX, 1lrY = gT.getRasterExtent(srcRas_ds)
transform WGS84 To UTM, transform UTM To WGS84, utm cs \

gT.createUTMTransform(poly)
line = ogr.Geometry(ogr.wkbLineString)
line.AddPoint (geoTrans[0], geoTrans[3])
line.AddPoint (geoTrans[0]+geoTrans[1], geoTrans[3])

line.Transform(transform WGS84 To UTM)
metersIndex = line.Length ()

memdrv gdal.GetDriverByName ('MEM'")

dst ds = memdrv.Create('', cols, rows, 1, gdal.GDT Byte)
dst ds.SetGeoTransform(srcRas ds.GetGeoTransform())

dst ds.SetProjection(srcRas_ds.GetProjection())

band = dst ds.GetRasterBand(1)

band.SetNoDataValue (noDataValue)

gdal.Rasterizelayer(dst ds, [1], source layer,
burn values=[burn values])
srcBand = dst ds.GetRasterBand(l)

memndrv2 = gdal.GetDriverByName ('MEM")

prox _ds = memdrv2.Create('', cols, rows, 1, gdal.GDT Intlo6)
prox ds.SetGeoTransform(srcRas ds.GetGeoTransform())

prox ds.SetProjection(srcRas_ds.GetProjection())

proxBand = prox ds.GetRasterBand(1l)

proxBand.SetNoDataValue (noDataValue)

opt string = 'NODATA='+str(noDataValue)
options = [opt string]

gdal.ComputeProximity(srcBand, proxBand, options)

memdrv3 = gdal.GetDriverByName ('MEM")

proxIn ds = memdrv3.Create('', cols, rows, 1, gdal.GDT Intlé6)
proxIn ds.SetGeoTransform(srcRas_ds.GetGeoTransform())

proxIn ds.SetProjection(srcRas_ds.GetProjection())

proxInBand = proxIn ds.GetRasterBand(l)
proxInBand.SetNoDataValue (noDataValue)

opt string2 = 'VALUES='+4str(noDataValue)
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options = [opt string, opt string2]
foptions = ['NODATA=0', 'VALUES=0"']

gdal.ComputeProximity(srcBand, proxInBand, options)

proxIn = gdalnumeric.BandReadAsArray (proxInBand)
proxOut = gdalnumeric.BandReadAsArray (proxBand)

proxTotal = proxIn.astype(float) - proxOut.astype(float)
proxTotal = proxTotal*metersIndex
proxTotal *= dist mult

# clip array
proxTotal = np.clip(proxTotal, -l*vmax dist, l*vmax dist)

if npDistFileName != '':
# save as numpy file since some values will be negative
np.save (npDistFileName, proxTotal)
#cv2.imwrite (npDistFileName, proxTotal)

#return proxTotal
Return

Data Preparation

import json

from shapely.geometry import Polygon, shape, Point
import gdal

import numpy as np

import os

import cv2

# Set parameters
MAX UINT8 = 255.0
MAX UINT16 = 65535.0

# Original Size
ORIG XDIM = 438
ORIG YDIM = 406

# Expected Dimension in this case 512*512
EXPECTED DIM = 512

XFACTOR
YFACTOR

EXPECTED DIM / float (ORIG XDIM)
EXPECTED DIM / float(ORIG YDIM)

ds3
ds8

gdal.Open('3band AOI 1 RIO img6931.resized.tif')
gdal.Open('8band AOI 1 RIO img6931.resized.tif')

geo_trans = ds3.GetGeoTransform()

borders = np.zeros ([EXPECTED DIM, EXPECTED DIM])
building = np.zeros ([EXPECTED DIM, EXPECTED DIM])

# Creates points list
def convert points(points, geo trans):
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converted points = []

for p in points:
cp = Point(world 2 pixel(geo_trans, p[0], p[1]))
converted points.append([cp.x, cp.yl)

return converted points

def draw polygon(polygon, geo_trans, buildings, borders):
points = polygon.exterior.coords]|[:]
converted points = convert points(points, geo_ trans)
cv2.drawContours (buildings,

[np.array(converted points, dtype=np.int32)],
-1, 1, thickness=-1)

cv2.drawContours (borders,

[np.array(converted points, dtype=np.int32)],
-1, 1, thickness=2)

if polygon.interiors:
for inner polygon in polygon.interiors:

points

= inner polygon.coords]|:]

converted points = convert points(points, geo_ trans)
cv2.drawContours (buildings,

dtype=np.int32)

1,

[np.array(converted points,

-1, 0, thickness=-1)

cv2.drawContours (borders,

dtype=np.int32)

1,

[np.array(converted points,

-1, 1, thickness=2)

def convert points(points, geo trans):
converted points = []
for p in points:

geo_trans[0]

geo_trans[3]

= geo_trans[1]

= geo_trans[5]

x pix = (p[0] - ul x) / x dist

(p[1] - ul y) / y dist
cp = Point(round(x pix), round(y pix))
converted points.append([cp.x, cp.yl)

return converted points

ul x =
ul y =
x_dist
y dist

y pix =

with open('Geo AOI 1 RIO img6931.geojson', 'r') as f:
js = json.load(f)
for feature in js['features']:

polygon

shape (feature['geometry'])

if polygon.type == 'Polygon':
draw_polygon(polygon, geo trans, building, borders)
elif polygon.type == 'MultiPolygon':
draw_polygon(polygon[0], geo trans, building, borders)

# save target files
building -= borders
building = np.clip(building, 0, 1)
street = np.zeros([EXPECTED DIM, EXPECTED DIM])

street.fill (1)
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street =-= building

target = np.zeros( [EXPECTED_DIM, EXPECTED DIM, 21)

target[:, :, 0] = street

target[:, :, 1] = building

target = np.reshape(target, (EXPECTED DIM * EXPECTED DIM, 2))
np.save('target AOI 1 RIO img6931l.resized', target)

inputs = np.zeros ([EXPECTED DIM, EXPECTED DIM, 3 + 8])

input idx = 0

for i in range(l, 4):
channel = np.array(ds3.GetRasterBand(i).ReadAsArray()) / MAX UINTS
inputs[:, :, input idx] = channel
input idx += 1

for i in range(l, 9):
channel = np.array(ds8.GetRasterBand (i) .ReadAsArray()) / MAX UINT16
inputs[:, :, input idx] = channel
input idx += 1

inputs = inputs[:, :, [0, 1, 2, 10]]
np.save('in AOI 1 RIO img6931.resized',inputs)

# Converts geo data to pixel
def world 2 pixel(geo trans, i, Jj):
ul x = geo_trans[0]
ul y = geo_trans[3]
x dist = geo trans[1]
y _dist = geo trans[5]
x pix = (1 - ul x) / x dist
y pix = (3 - ul_y) / y_ dist
return[round(x pix), round(y pix)]

#Image Imputing.

in image = np.load('in AOI 1 RIO img6931.resized.npy')
in dimensions = in image.shape

EXPECTED DIM = 512
CROP DIM = 128
OVERLAP = 0.5

pieces = []

start pts = np.linspace(0, EXPECTED DIM,EXPECTED DIM / (OVERLAP *
CROP_DIM) + 1)

start pts = start pts[:-2]

start pts = [int(x) for x in start pts]

for i in start pts:
for j in start pts:
croped image = in image[i:i+CROP_DIM, J:J+CROP_DIM, :]
pieces.append(croped image)
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name =
os.path.splitext(os.path.basename('in AOI 1 RIO img6931.resized.npy')) [0
]

for idx in range(len(pieces)):
piece = pieces[idx]
np.save(os.path.join('%s %d' % (name, idx)), piece)

#To target

tg image = np.load('target AOI 1 RIO img6931.resized.npy")
tg dimensions = tg_ image.shape

tg _image = np.reshape(tg _image, (EXPECTED DIM, EXPECTED DIM,
tg dimensions[1]))

EXPECTED DIM = 512
CROP_DIM = 128
OVERLAP = 0.5

pieces = []

start pts = np.linspace(0, EXPECTED DIM,EXPECTED DIM / (OVERLAP *
CROP DIM) + 1)

start pts = start pts[:-2]

start pts = [int(x) for x in start pts]

for i in start pts:
for j in start pts:
croped image = tg image[i:i+CROP_DIM, J:Jj+CROP DIM, :]
pieces.append(croped image)

name =
os.path.splitext(os.path.basename('target AOI 1 RIO img6931.resized.npy'
)) [0]

for idx in range(len(pieces)):
piece = pieces[idx]
np.save(os.path.join('%s %d' % (name, idx)), piece)

Create Model

model = Sequential ()

# first convolutional block

model.add(Convolution2D(32, 3, 3, input shape=(DIM, DIM, CHANNELS),
border mode='same'))

model.add (Activation('relu'))

model.add(Convolution2D(32, 3, 3, border mode='same'))

model.add (Activation('relu'))

model.add (MaxPooling2D(pool size=(2, 2)))

# second convolutional block
model.add(Convolution2D (64, 3, 3, border mode='same'))
model.add (Activation('relu'))
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model.add(Convolution2D (64, 3, 3, border mode='same'))
model.add (Activation('relu'))
model.add (MaxPooling2D(pool size=(2, 2)))

# third convolutional block
model.add(Convolution2D (128, 3, 3, border mode='same'))
model.add (Activation('relu'))
model.add(Convolution2D (128, 3, 3, border mode='same'))
model.add (Activation('relu'))

model.add (MaxPooling2D(pool size=(2, 2)))

# back to the original dim
model.add (Convolution2D (1024, 5, 5,
border mode='same'))
model.add (Activation('relu'))
model.add(Convolution2D (128, 1, 1,
border mode='same'))
model.add (Deconvolution2D (CLASSES, 16, 1o,
output shape=(BATCHSIZE, DIM, DIM,
CLASSES),
subsample=(8, 8), Dborder mode='same'))
model.add (Reshape ((DIM * DIM, CLASSES)))
model.add (Activation('softmax'"))
optmzr = adam(lr=LEARNING RATE)
model.compile(loss='categorical crossentropy', optimizer=optmzr,
metrics=['accuracy'])
print (model.summary())
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