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EXECUTIVE SUMMARY 

 

CREDIT CARD CHURN PREDICTION WITH MACHINE LEARNING ALGORITHMS 

 

Serap Konuksal 

 

 

Advisor: Semra Ağralı 

 

 

AUGUST, 2018, 40 pages 

 

 

 

Credit card is one of the main products in banking sector and there is a big 

competition in credit card business. This competition makes retention of customers critical. 

To retain the customers, it is very important to interpret the customers that may churn. 

Targeting right customers with right offer is the main aim of Customer Relationship 

Management (CRM) in marketing. When the churn probability of customers is predicted, it 

is easier to retain the customers by proposing the retention offers directly to the ones with 

high churn probability. This will allow banks to manage their marketing budgets 

efficiently. In this project, a private bank’s credit card customer data is used. Data includes 

many different types of features of customers, such as number and type of transactions, 

credit card limits, feature usage, credit bureau information and demographic information. 

We develop a set of churn prediction models by implementing different machine learning 

algorithms. We compare these algorithms to find the best model with highest accuracy to 

be offered to the bank. We also share the main indicators that affect churn so that the bank 

can use them in retention activities. 
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ÖZET 

 

MAKİNE ÖĞRENME ALGORİTMALARI İLE KREDİ KARTI MÜŞTERİ KAYBI 

TAHMİNİ 

 

Serap Konuksal 

 

 

Tez Danışmanı: Semra Ağralı 

 

 

AĞUSTOS, 2018, 40 sayfa 

 

 

 

Bankacılık sektöründe kredi kartı en temel ürünlerden biridir ve bankalar arasında 

rekabet yüksektir. Bu kadar rekabetin olduğu bir ortamda müşterilerin tutundurması kritik 

bir hal alıyor. Müşterileri tutundurabilmek için hangi müşterilerde kayıp yaşanacağının 

önden bilinmesi önemlidir. Pazarlamada müşteri ilişki yönetiminde en temel amaç doğru 

müşteriye doğru teklif yapılmasıdır. Müşteri kayıp ihtimali önden bilindiği taktirde, bu 

müşterilere ikna teklifleri sunularak gitmeleri engellenebilir. Hedef kitlenin doğru 

belirlenmesi pazarlama bütçelerinin etkili yönetilmesini sağlayacaktır, yanlış müşteriler 

hedeflenerek oluşacak ek maliyetler engellenmiş olur. Bu projede özel bir bankanın kredi 

kartı müşteri datası kullanılmıştır. Datada işlem bilgileri, ürün limit bilgileri, ürün 

kullanımları, Kredi Kayıt Bürosu bilgileri ve demografik bilgiler bulunmaktadır. Farklı 

makina öğrenme algoritmaları kullanılarak müşteri gitme olasılğı tahmin edilmeye 

çalışılmış ve modeller birbirleri ile karşılaştırılmıştır. En iyi tahmin eden algoritma 

seçilerek banka ile paylaşılacaktır. Ayrıca müşteri kaybını etkileyen önemli değişkenler 

tespit edilerek, tutundurma faaliyetlerinde kullanılması için banka ile paylaşılacaktır. 
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1. INTRODUCTION 

Customer Relationship Management (CRM) is the most important strategic 

marketing action for companies. If a company does not know the shopping habits of their 

customers, then their marketing activities will not serve the company. The main objective 

of the marketing is to understand customers and their needs, and then provide relevant 

solutions to customers. CRM helps companies to learn about customers’ needs and 

behaviors, so that they can set a proper relationship with their customers. CRM is an 

analytical process. With data mining methods, it is easier to learn about customers. 

Farquad et al.(2014) state that CRM is a method that is used for understanding the 

customer behavior and building strong relationship with them. 

Data gives us lots of information about customers, such as the customer’s 

demographic information, things that the customers like, the locations that the customers 

live, etc. Collecting the data and extracting information from data are very important for 

CRM activities. Bolton et al. (2000) state that understanding the purchase behavior of 

customers and then targeting them with this insight, helps organizations to develop loyalty 

programs and strong relationship with customers. 

Mainly banking and telecommunication sectors are the leading sectors where CRM 

is successfully applied. They have huge amount of data, which is called big data in recent 

years. By applying different data analytics methods on this big data, they can use the 

power of CRM.  These companies can prepare strategies for each point of life cycle of the 

customers such as activation, usage increase, upsell, cross sell or churn. 

In these customer life cycle points, churn is the most important one since 

acquisition of a new customer is much expensive than retaining the customer.  Colgate and 

Danaher(2000) state that acquiring of a new customer is 5 more times expensive than 

retaining an existing customer. This makes retention activities more important. In banking 

sector, all banks have similar products and services and they all try to survive at a highly 

competitive environment. In order to survive in this environment and become a leading 

company, they need powerful tools to identify the customers that may churn and take 

effective retention actions. Marketing budgets are limited; and therefore, finding the right 

customer and making anti churn offers to right customers improve the efficiency and help 

banks to increase their profitability. Gordini and Veglio(2016) show that customer churn 
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prediction helps marketing decision, and this represents hundreds of thousands of euro in 

B2B industry. Since predicting churn is a difficult problem, companies should use 

prediction models to find these customers. There exist many methods for prediction in 

literature; however, it is important to find the best method that suits the company. 

Remaining of this project report is organized as follows. Section 2 provides the 

literature review. Credit card data and churn data set are explained in Section 3. Credit card 

churn problem is defined in Section 4. In section 5, the methodology used in building 

churn prediction is explained. All results are provided in Section 6. Section 7 concludes the 

project. 
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2. LITERATURE REVIEW 

There are many definitions of churn for different sectors. Some companies define 

churn as not logging into a web page or stop using a product or ending the contract 

between the customer and the company. Glady et al. (2009) define a churned customer as 

the one whose Customer Lifetime Value (CLV) is decreased over a period. CLV or income 

margin of customers show the value of each customer for companies. Some companies 

focus on high value customers and take action only for them. In this case, the churn 

probability of high value customers becomes more important. Bolton (1998) states that 

companies in service sector should be proactive to understand the customer needs before 

they churn. 

Churn can be predicted from the customer’s past behaviors and transactions. 

Coussement et al. (2016) state that the customer churn prediction assigns a probability to 

each customer by using the signs that shows churn from the customer’s historical 

behaviors. Churned customers and loyal customers differ from each other since some of 

them decide to end the relationship with the company and others  stay as being customers. 

There should be patterns that affect churn. Larivière and Poel (2004) identify churn periods 

in two ciritical parts; the first one covers the early years after acquisition, and the second 

one covers the period that includes 20 years and more after being customer. In addition, 

Hadden et al.(2008) show that the complaint types and the number of complaints are the 

most significant variables that affect churn. Bolton (1998) states that tenure that shows the 

time period of being a customer and customer experience affect churn probability. 

Moreover, Ballings and Poel (2012) show that in churn prediction, reducing the length of 

period of being customer can have a decreasing effect on predictive performance.  

Defining all parameters that may affect churn and predicting the churn potential 

help companies to build right offers in CRM strategies; and hence, they can avoid attrition 

of customers and build strong relationship with their customers. Burez and Poel (2007) 

state that when customers are ranked according to the probability of ending the relationship 

with the company, companies can offer campaigns to customers who have high propensity 

of churn; and hence, double the profits of retention campaigns. 
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3. ABOUT THE DATA 

Credit card is the most popular product of banks, and there is a high competition in 

this area. Credit cards are highly regulated products by the government in Turkey. All 

interest rates, most fees and the number of installments of each purchasing sectors are 

capped by the government . Moreover, credit card limits are capped with sector limits due 

to the income of customers. In this highly regulated environment, keeping the profitabilty 

of credit card is very difficult. Therefore, the credit card churn is one of the main problems 

of banks that needs to be considered urgently.  

Lower churn means keeping more existing customers.In this project, a private 

bank’s credit card data is used.The data includes the customers who have at least one 

active credit card  in  April 2018. The customers who churned voluntarily during previous2 

months period are flagged. Churn is defined as customer that does not want to use the 

credit card and deactivates all credit cards him/herself. There is a decision made by the 

customer. Bank should know this decision and try to change it, and convince the customer 

for not closing the credit card. 

In the data set, for all customers we have purchasing behaviors, payments,  limits, 

tenure information, demographic information, credit bureau information, feature usages 

and churn flag as churned/not churned. We give the variable groups present in the data set 

in Table 1. The bank has millions of credit card customers, so churn ratio is high due to 

this portfolio. There are some actions that prevent churn, but these actions are not included 

in the data set. Although the retention actions are applied, there are still many churned 

customers. 

 

Table 1. Variable groups in data 

Variable Groups Variable Definitions 

Transactions 
Monthly transaction amounts 
Sector Based Transactions in last 3 or 6 months 
Min, max, mean amount of transactions in last 12 months 

Demographic Information 
Gender 
Age 
Marital Status 

Credit Bureau Information 
Product based limits 
Product based balances 
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Product based tenures 

Credit Card Limit 

Credit card limit 
Days passed since limit increase date 
Days passed since limit decrease date 
Limit Increase Channel 

Feature Usage 
Activeness 
Credit card feature usage 

Annual Fee 
Exemptions 
Next annual fee date 
Last annual fee charged/cancelled 

Churn Flag Churned/Live flag 
 

The dataset comprises of 272 variables, with 276 predictor variables and 1 class 

variable. It includes182,934 customers of which 136,232 customers are loyal customers 

and 46,702 customers represent churned customers. Thus,there are 74% loyal customers 

and 26 % churned customers. 
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4. PROJECT DEFINITION 

4.1. Problem Statement 

In banking sector, credit card is the main product for retaining customers. So 

detecting credit card customers with high churn probability is important to offer 

appropriate solutions to the right customers. CRM helps us to take actions to right 

customer with right offer. Before customers churn, banks should know the churn 

probability and take action immediately.  In this project, we aim to propose methods that 

will determine the credit card customers who will churn voluntarily. 

4.2. Project Objectives 

For the project we have a sample of credit card data that contains anonymously 

credit card usage, transaction counts and sums, payments, limits, demographic information 

for open credit card customers and flags that show which customers still have active credit 

card and which customers deactivated their credit card in the previous two months period. 

By using this data, we predict the customers who may churn during next 2 months. At the 

end of this project, for the high churn potential customers, there will be a time for taking 

anti-churn actions in these 2 months period. 

4.3. Project Scope 

In the project, since business customers have different payment and usage 

behaviors than individuals, business credit cards are excluded from the data set.  Also 

involuntarily churn, which are the closures by bank, are also excluded from the project. 

Banks close the credit cards due to delinquency, risk issues, operational or delivery 

problems. These closures are out of scope of this project. In this project, we focus on the 

voluntary churn of individual customers, which are the closures made by customers. The 

customer behavior and information will be used to predict the voluntary churn. 
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5. METHODOLOGY 

Banks have a huge amount of data, which can be called as big data. All kind of data 

is held in the data warehouse (DWH). From DWH environment, the data is prepared with 

using SQL. SQL is very useful for data preparation. After data is prepared, randomly 

181,548 customers are selected as sample and exported to a csv file. For building machine 

learning algorithms, Python programming language is used. Python helps to process big 

sized data, and it is easier to build and develop prediction models using Python. 

In churn prediction many methods can be used in the project. Decision Tree (DT), 

Logistic regression (LR) and Random Forest (RF) algorithms will be applied and then their 

results, accuracy and other parameters will be compared. All algorithms will use the same 

data set. With cross validation, over fit is avoided. 

In the data set, churned customers are flagged. This flag is the target variable, so 

supervised learning methods will be used. For tenure and customer age, grouping can help 

to classify the customers. The target variable has two values; 0 shows live customers, 1 

shows churned customers. From 0 to 1, any predicted value shows the probability of churn. 

Data has numeric and categorical variables. For categorical variables, they are turned into 

binary variables. Dates are turned into days between the date variable and current date. So 

that DT and LR models can have more prediction power.  

5.1. Decision Tree 

Decision Tree (DT) algorithms are tree shaped diagrams that show statistically 

classification of the data. These algorithms are more understandable than other methods. In 

each leaf of a DT, there are some simple rules so that the model can be easily explained to 

the management. This model helps us to draw the conclusion diagram, which is complex. 

In the model, the number of leaves can be limited or the observation number can be fixed 

to a specific number. With these arrangements, the accuracy of the model can change in a 

good/bad way. 

5.2. Logistic Regression 

Logistic regression (LR) is a regression method when the target variable is binary. 

The target variable has only two values, if churned, then 1; else, 0. The model aims to find 
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out the probability of being 1 or 0. The model predicts the maximum likelihood between 

independent and dependent (target) variables. It uses linear regression like coefficients but 

predictions are transformed into a logistic function. Outliers have big effects in LR models; 

so all outliers should be cleaned from the data set. Moreover, if there are highly correlated 

variables, LR may over fit.ROC curves and accuracy of thresholds are the main parameters 

to evaluate the model. 

5.3. Random Forest 

Random Forest (RF) is a supervised machine learning algorithm that can be used 

for classifications and regressions. In churn prediction, there are only two groups churned 

and not churned customers. RF algorithm builds random multiple DTs, and combines them 

into one model. Model can be tuned with parameters like; number of estimators, maximum 

tree depth, and maximum number of features used in tree, min sample leaf for internal 

nodes, etc 

5.4. Exploratory Data Analysis 

In data, there are 181,548 customers with 145 variables. We applied an EDA to the 

main variables such as voluntary churned, customer age, tenure, credit card limit, and the 

last month’s transaction amount. We found that the churn ratio is 49%; and hence,51% of 

customers are loyal in the data set. The data is balanced for the target variable. 

While importing data, there is no missing value in the data. All cleaning data 

process is completed in SQL, where the data is prepared. We checked for the outliers in the 

data. In last month expenditure variable, there were some negative values that show the 

customers have cash back transactions. We excluded these customers. Also, there were 

some outliers in the credit card limit, total sector credit card limit and customer age. We 

excluded these outlier customers from data. 

 When we look at the age of customers in Figure 1, the median age of churned 

customers are lower than not churned customers. This graph shows that churned customers 

are younger. 
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Figure 1. Churn based age distribution of customers 

  

In tenure, churned customer are mostly new customers, first quartile is approximately 25 

months and third quartile is 100 months, while live customers’ first quartile is 40 months 

and third quartile is 160 months. Also the median of churned customer tenure is lower than 

50 months, while live customer’s tenure is 90 months (see Figure 2). 

 

Figure 2. Churn based customer age (tenure) distribution 

 

The customer limit has a big range in data, so we restrained the customer limit 

between 1 and 35,000 TL. It is seen that churned customer have lower customer limits than 

live customers (see Figure 3). 
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Figure 3. Churn based customer limit distribution 

 

When we look at the activation distribution of customers, churn ratio is lower than 

active customers (see Figure 4). Inactive customers’ churn ratio is two times bigger than 

active customers’ churn ratio. 

 

Figure 4. Activation vs. churned customers 
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6. RESULTS 

In the Project, we aim to predict customer’s churn probability. When we performa 

Exploratory Data Analysis, we realize that there are some outliers in the data set, especially 

in “Total Other Banks Limit”, “Credit card limit” and “Age” variables. Also, the last 

month’s purchase volume column has negative values, which shows that some customers 

have only charge back and, do not have any purchase transaction. We extracted these 

outlier customers. Data set has 145 variables and 181.247 customers. The target label is the 

voluntary churn in 3 months period. This label shows if the customer is churned or stays 

live. Therefore, we flagged 89.437 customers as churned (49% of the data), 91.810 

customers as live (51% of the data). The data is separated into 144 Features and 1 label. 

We analyze data in 3 different ways. First, we use original data and build the 

models using all features. Second, we perform Component Analysis (PCA) and try to 

select minimum number of features with high information value. After PCA, we build 

models on this data. Third, we first scale all features and then apply PCA and select again 

minimum number of features with high information value. The models are built in this data 

again. Before building models, we split randomly 70% of data as training and 30% of data 

as testing. 

When we try different number of components, they have different explained 

variance ratio. 100 components out of 144 variables have 98% explained variance ratio. 

This means with 100 components approximately have the all information of the data to us. 

In data, to compare different models, we build models by using 3 different numbers of 

components, 70, 85 and 100. 

Table 2. Number of components and explained variance ratio in PCA 

PCA Explained Variance Ratio 

25 63% 

45 77% 

70 90% 

75 92% 

80 93% 

85 95% 

100 98% 
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First, we build Logistic regression to predict the churn, which is a binary label. 

There are no difference in using different C values for penalty. Also, train and test scores 

are almost the same. However, the accuracy score is increased with increasing the number 

of components in PCA. The maximum score is 63,3% with scaled and PCA data with 100 

components. 

Table 3. Accuracy scores of Logistic Regression in train and test data 

 

Then, we build Decision Tree models. To find the best max depth, we draw ROC 

chart for different max depth  values. While the tree depth increases, the difference of 

AUC score between train and test data increases. As it is seen in Figure 5, 6 is the 

maximum scored max depth both train and test data set. 

 

Figure 5. Max depth ROC curve. 

We build decision trees with 6 max depth value. We compare models by changing 

decision criteria with entropy and gini. Although in building models, PCA helps to 

decrease the number of features, in original data, decision tree has the highest scores with 

63%. In Table 4, it is seen that there is a small difference (0.3%) between gini  and entropy 

models. 

 

 

train test train test train test train test train test

default 57,8% 58,0% 56,9% 57,0% 60,6% 60,6% 62,8% 62,8% 63,2% 63,3%

c=0.01 57,8% 58,0% 56,9% 57,0% 60,6% 60,6% 62,8% 62,8% 63,2% 63,3%

c=100 57,7% 57,9% 56,9% 57,0% 60,6% 60,6% 62,8% 62,8% 63,2% 63,3%

Scaled and Pca 

Data (n=70)

Scaled and Pca 

Data (n=85)
Pca data (n=45)Logistic 

regression

Original Data
Scaled and Pca 

Data (n=100)
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Table 4. Accuracy scores of Decision Tree in train and test data 

 

As the third algorithm, we build Random Forest Algorithms. First, we try different 

models with changing the parameters and compare them between original data, PCA data 

and scaled & PCA data with different number of components. Table 5 shows that accuracy 

scores are higher in original data and scaled & PCA data with 100 components. Also, the 

accuracy score difference betweeen traind and test data decreases when max depth value 

become smaller. 

Table 5. Accuracy scores of Random Forest in train and test data 

For the purpose to tune the parameters and find the best ones in Random Forest, we use 

GridSearch. In GridSearch, we define many different values for the parameters such as 

max tree depth, number of estimator, min samples leaf, max features. The best parameters 

found in GridSearch are as in Table 6.Table 6. Best random forest parameters in 

GridSearch. 

Parameter Value 

Max_features ‘sqrt’ 

n_estimators 145 

Min_samples_leaf 5 

Max_depth 20 

train test train test train test train test train test

criterion="gini

", 

max_depth=6

64,0% 63,5% 58,1% 57,4% 59,7% 58,9% 61,3% 60,7% 61,1% 60,6%

criterion="entr

opy", 

max_depth=6

63,7% 63,2% 58,3% 57,6% 59,6% 58,9% 61,1% 60,4% 60,8% 60,5%

Scaled and Pca 
Decision Tree

Original Data Pca data (n=45) Scaled and Pca Scaled and Pca 

train test train test train test train test train test

n_estimators=100 99,8% 64,6% 99,8% 58,6% 99,8% 61,0% 99,8% 62,5% 99,8% 62,9%

max_depth=20, 

n_estimators=100
95,8% 65,2% 95,5% 59,5% 98,0% 61,5% 97,9% 63,1% 97,7% 63,4%

max_depth=10, 

n_estimators=100
69,3% 64,9% 69,3% 63,4% 67,6% 61,6% 69,4% 63,2% 69,3% 63,6%

max_depth=6, 

n_estimators=100
63,6% 63,0% 62,9% 62,2% 61,1% 60,5% 62,9% 62,2% 63,0% 62,3%

Scaled and Pca Scaled and Pca 
Random Forest

Original Data Pca data (n=45) Scaled and Pca 
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In Random Forest, we apply the parameters shown in Table 6. Although the 

accuracy of train data is 94,2%, which is the highest accuracy, the accuracy score of test 

data is 65,1%. There is a huge difference in accuracy score between test and train, which 

means the model is over fitted. So, we try to tune the parameters again to avoid over 

fitting. In Table 7, it is seen that when we decrease the max depth again, over fitting 

problem is not totally solved. The gap between test and train accuracy score becomes 

smaller but still there is a small gap. As we increase the value of minimum samples leaf 

parameter, the accuracy score difference between train and test data decreases. While 

changing maximum depth parameter, we should tune minimum sampled leaf parameter 

too. Then, we use cross validation with 5 random parts and run this model again. Mean 

scores of all the scores after cross validation is 64%, which is very close to the model. 

Table 7. Accuracy scores of Random Forest in train and test data 

Random Forest 
Original Data 

Train test 

max_depth=30, n_estimators=145, min_samples_leaf=5, 
max_features='sqrt' 

94,2% 65,1% 

max_depth=25, n_estimators=145, min_samples_leaf=5, 
max_features='sqrt' 

93,6% 65,4% 

max_depth=20, n_estimators=145, min_samples_leaf=5, 
max_features='sqrt' 

90,8% 65,2% 

max_depth=15, n_estimators=145, min_samples_leaf=5, 
max_features='sqrt' 

81,5% 65,2% 

max_depth=12, n_estimators=145, min_samples_leaf=5, 
max_features='sqrt' 

73,3% 65,0% 

max_depth=10, n_estimators=145, min_samples_leaf=50, 
max_features='sqrt' 

67,2% 64,6% 

max_depth=10, n_estimators=145, min_samples_leaf=40, 
max_features='sqrt' 

67,4% 64,6% 

max_depth=8, n_estimators=145, min_samples_leaf=40, 
max_features='sqrt' 

65,5% 64,1% 

max_depth=7, n_estimators=145, min_samples_leaf=40, 
max_features='sqrt' 

64,5% 63,6% 

max_depth=7, n_estimators=145, min_samples_leaf=50, 
max_features='sqrt' 

64,5% 63,5% 

max_depth=12, n_estimators=145, min_samples_leaf=50, 
max_features='sqrt' 

68,8% 64,8% 

max_depth=12, n_estimators=145, min_samples_leaf=40, 
max_features='sqrt' 

69,3% 64,9% 
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max_depth=15, n_estimators=145, min_samples_leaf=40, 
max_features='sqrt' 

71,4% 65,1% 

max_depth=15, n_estimators=145, min_samples_leaf=50, 
max_features='sqrt' 

70,3% 65,1% 

max_depth=15, n_estimators=145, min_samples_leaf=60, 
max_features='sqrt' 

69,8% 65,1% 

max_depth=15, n_estimators=145, min_samples_leaf=70, 
max_features='sqrt' 

69,2% 65,0% 

max_depth=20, n_estimators=145, min_samples_leaf=70, 
max_features='sqrt' 

69,1% 65,1% 

max_depth=25, n_estimators=145, min_samples_leaf=70, 
max_features='sqrt' 

69,1% 65,0% 

max_depth=15, n_estimators=145, 
min_samples_leaf=100, max_features='sqrt' 

68,0% 64,8% 

 

In conclusion, for churn prediction problem, we clean data, make feature selection 

and apply three different algorithms; Logistic regression, Decision tree and Random forest. 

We tune many parameters to find the best model. At the end, the best algorithm is Random 

forest in original data, with these parameters; max depth value is 20, number of estimator 

value is 145, min sampled leaf value is 70 and max feature selection is ‘sqrt’. 

Figure 5. Confusion matrix of 

final model 
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7. CONCLUSION 

In literature, it is seen that Principal Component Analysis and scaling are the main 

steps before building a machine learning algorithm. However, in this project, the scores are 

the highest in original data. In random forest algorithm, there are many trees for the target 

and also the number of features is defined in the model, so there is no need for scaling and 

feature selection again. In the project, we aim to predict the customers whom will churn. In 

data 41% of customers churned, with the Random Forest models, we predict 65% of 

customers who will churn. This is good prediction score. Bank can use this model for 

retention activities. In project, Support Vector Machine and Gradient boosting methods are 

tried but the results are not better than the RF models, so they are excluded. For the aim of 

increasing score, the data can be enriched more and we can add some other variables. After 

this point, again same models or other algorithms can be tried and more accuracy scores 

may be found. 
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APPENDIX A 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

import codecs 

from sklearn import preprocessing 

from sklearn.decomposition import PCA 

from sklearn.svm import SVC 

from sklearn import linear_model 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.linear_model import LogisticRegression 

from sklearn import metrics 

from sklearn import cross_validation 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import cross_val_score, StratifiedKFold, LeaveOneOut 

from sklearn import tree 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import accuracy_score 

from sklearn.tree import DecisionTreeClassifier 

 

tag_file = "ss_proje_analiz_data_v4_180k.txt" 

with codecs.open(tag_file, encoding='utf-8', errors='replace') as fh: 
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analiz = pd.read_csv(fh, header="infer", sep=";") 

 

### EDA 

analiz.describe() 

# Churn based age distribution of customers 

import seaborn as sns 

sns.boxplot(x=analiz["VOLUNTARY_CLOSED"],y=analiz ["AGE"],data=analiz ) 

 

# Churn based tenure distribution of customers 

sns.boxplot(x=analiz["VOLUNTARY_CLOSED"],y=analiz["CUSTOMER_AGE"],data=a

naliz) 

 

# Churn based customer limit distribution 

sns.boxplot(x=analiz["VOLUNTARY_CLOSED"],y=analiz["CUSTOMER_LMT"],data=

analiz) 

 

#Activation vs. churned customers 

churn1 = pd.crosstab(analiz['AKTIVATION'],data['VOLUNTARY_CLOSED']) 

print(churn1) 

churn_rate1 = churn1.div(churn1.sum(1).astype(float), 

axis=0) # normalize the value 

churn_rate1.plot(kind='barh', stacked=True) 

 

data_new = analiz[(analiz.PREV_01_MONTH_SUM>=0) & 

(analiz.TOPLAM_KKB_LIMIT<200000) & 

(analiz.NUMBER_OF_OPEN_ACCOUNTS>0) & (analiz.AGE > 17)& (analiz.AGE<81) 

&( analiz.TOPLAM_YKB_LIMIT<75000) ] 
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data_new.describe() 

data_new.dtypes 

#### Original Data Codes 

X=data_new.drop('VOLUNTARY_CLOSED_3M',axis=1) 

y=data_new['VOLUNTARY_CLOSED_3M'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=20) 

# Logistic Regression 

logreg = LogisticRegression() 

logreg.fit(X_train, y_train) 

y_pred = logreg.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred),2)) 

#0,6 accuracy score 

score_train = logreg.score(X_train, y_train) 

score_test = logreg.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

logreg2 = LogisticRegression(C = 100,random_state = 0) 

logreg2.fit(X_train, y_train) 

y_pred = logreg2.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred),2)) 

#0,6 accuracy score 

score_train = logreg2.score(X_train, y_train) 

score_test = logreg2.score(X_test, y_test) 
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print(score_train) 

print(score_test) 

 

conf = (metrics.confusion_matrix(y_test, y_pred)) 

cmap = sns.cubehelix_palette(50, hue=0.05, rot=0, light=0.9, dark=0, as_cmap=True) 

sns.heatmap(conf,cmap = cmap,xticklabels=['0','1'],yticklabels=['0','1'],annot=True, 

fmt="d",) 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

# Cross Validation 

scores = cross_val_score(logreg, X, y, cv=5, scoring='accuracy') 

print('Logistic regression of each partition\n',scores) 

print('Mean score of all the scores after cross validation =',round(scores.mean(),2)) 

conf = (metrics.confusion_matrix(y_test, y_pred)) 

FP = conf[1][0] 

FN = conf[0][1] 

TP = conf[0][0] 

TN = conf[1][1] 

print('False Positive ',FP) 

print('False Negative ',FN) 

print('True Positive ',TP) 

print('True Negative ',TN) 

# Sensitivity, hit rate, recall, or true positive rate 

TPR = TP/(TP+FN) 

print('\nTrue Positive Rate :',round(TPR,2)) 
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# Specificity or true negative rate 

TNR = TN/(TN+FP) 

print('\nTrue Negative Rate :',round(TNR,2)) 

# Precision or positive predictive value 

PPV = TP/(TP+FP) 

print('\nPositive Predictive Value :',round(PPV,2)) 

# Negative predictive value 

NPV = TN/(TN+FN) 

print('\nNegative Predictive Value :',round(NPV,2)) 

# Fall out or false positive rate 

FPR = FP/(FP+TN) 

print('\nFalse Positive Rate :',round(FPR,2)) 

# False negative rate 

FNR = FN/(TP+FN) 

print('\nFalse Negative Rate :',round(FNR,2)) 

# False discovery rate 

FDR = FP/(TP+FP) 

print('\nFalse Discovery Rate :',round(FDR,2)) 

# Overall accuracy 

ACC = (TP+TN)/(TP+FP+FN+TN) 

print('\nOverall accuracy :',round(ACC,2)) 

 

# Decision Tree 

clf_tree=tree.DecisionTreeClassifier(criterion="gini", max_depth=6) 
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clf_tree.fit(X_train, y_train) 

predicted=clf_tree.predict(X_test) 

print(confusion_matrix(y_test, predicted)) 

print(accuracy_score(y_test,predicted)) 

score_train = clf_tree.score(X_train, y_train) 

score_test = clf_tree.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

clf_tree=tree.DecisionTreeClassifier(criterion="gini", max_depth=12) 

clf_tree.fit(X_train, y_train) 

predicted=clf_tree.predict(X_test) 

print(confusion_matrix(y_test, predicted)) 

print(accuracy_score(y_test,predicted)) 

score_train = clf_tree.score(X_train, y_train) 

score_test = clf_tree.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

clf_tree1=tree.DecisionTreeClassifier(criterion="entropy",random_state=100, 

max_depth=12) 

clf_tree1=clf_tree1.fit(X_train, y_train) 

tree.export_graphviz(clf_tree1, out_file='tree.dot') 

 

predicted1=clf_tree1.predict(X_test) 
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print(confusion_matrix(y_test, predicted1)) 

print(accuracy_score(y_test,predicted1)) 

score_train = clf_tree1.score(X_train, y_train) 

score_test = clf_tree1.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

from sklearn.ensemble import RandomForestClassifier 

# Random Forest 

forest=RandomForestClassifier(n_estimators=100, random_state=0) 

forest.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest.score(X_test, y_test))) 

 

forest2=RandomForestClassifier(max_depth=20, n_estimators=100, random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 

 

 

forest2=RandomForestClassifier(max_depth=20, n_estimators=110, random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 
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forest2=RandomForestClassifier(max_depth=6, n_estimators=100, random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 

 

from sklearn.model_selection import GridSearchCV 

rfc = RandomForestClassifier(n_jobs=-1,  oob_score=True) 

# Use a grid over parameters of interest 

param_grid = { 

"n_estimators": [45, 90, 120, 145], 

'max_features': ['auto', 'sqrt', 'log2']} 

 

CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=2) 

CV_rfc.fit(X_train, y_train) 

print(CV_rfc.best_params_) 

 

forest2 = RandomForestClassifier(max_depth=12, n_estimators=145, 

min_samples_leaf=5, max_features='sqrt', random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 

 

forest3 = RandomForestClassifier(max_depth=12, n_estimators=120, 

min_samples_leaf=3, max_features='sqrt', random_state=0) 
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forest3.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest3.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest3.score(X_test, y_test))) 

 

from sklearn.model_selection import GridSearchCV 

# Create the parameter grid based on the results of random search 

param_grid = { 

'bootstrap': [True], 

'max_depth': [80, 90, 100, 110], 

'max_features': [2, 3], 

'min_samples_leaf': [3, 4, 5], 

'min_samples_split': [8, 10, 12], 

'n_estimators': [100, 200, 300, 1000] 

} 

 

# Create a based model 

rf = RandomForestRegressor() 

# Instantiate the grid search model 

grid_search = GridSearchCV(estimator = rf, param_grid = param_grid, 

cv = 3, n_jobs = -1, verbose = 2) 

forest2 = RandomForestClassifier(max_depth=12, n_estimators=145, 

min_samples_leaf=5, max_features='sqrt', random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 
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forest3 = RandomForestClassifier(max_depth=20, n_estimators=145, 

min_samples_leaf=70, max_features='sqrt', random_state=0) 

forest3.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest3.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest3.score(X_test, y_test))) 

y_pred = forest3.predict(X_test) 

conf = (metrics.confusion_matrix(y_test, y_pred)) 

cmap = sns.cubehelix_palette(50, hue=0.05, rot=0, light=0.9, dark=0, as_cmap=True) 

sns.heatmap(conf,cmap = cmap,xticklabels=['0','1'],yticklabels=['0','1'],annot=True, 

fmt="d",) 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

 

 

# Cross Validation 

scores = cross_val_score(forest3, X, y, cv=5, scoring='accuracy') 

print('Random Forest of each partition\n',scores) 

print('Mean score of all the scores after cross validation =',round(scores.mean(),2)) 

conf = (metrics.confusion_matrix(y_test, y_pred)) 

FP = conf[1][0] 

FN = conf[0][1] 

TP = conf[0][0] 

TN = conf[1][1] 

print('False Positive ',FP) 
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print('False Negative ',FN) 

print('True Positive ',TP) 

print('True Negative ',TN) 

# Sensitivity, hit rate, recall, or true positive rate 

TPR = TP/(TP+FN) 

print('\nTrue Positive Rate :',round(TPR,2)) 

# Specificity or true negative rate 

TNR = TN/(TN+FP) 

print('\nTrue Negative Rate :',round(TNR,2)) 

# Precision or positive predictive value 

PPV = TP/(TP+FP) 

print('\nPositive Predictive Value :',round(PPV,2)) 

# Negative predictive value 

NPV = TN/(TN+FN) 

print('\nNegative Predictive Value :',round(NPV,2)) 

# Fall out or false positive rate 

FPR = FP/(FP+TN) 

print('\nFalse Positive Rate :',round(FPR,2)) 

# False negative rate 

FNR = FN/(TP+FN) 

#### Pca and Scaled Data 

pca = PCA(n_components=100) 

# fit PCA model to data 

pca.fit(X) 
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# transform data onto the first two principal components 

X_pca = pca.transform(X) 

print("Original shape: {}".format(str(X.shape))) 

print("Reduced shape: {}".format(str(X_pca.shape))) 

print(pca.explained_variance_ratio_) 

 

 

pca2=PCA(n_components=85) 

pca2.fit(X) 

X_pca2 = pca2.transform(X) 

print(pca2.explained_variance_ratio_) 

 

pca3=PCA(n_components=70) 

pca3.fit(X) 

X_pca3 = pca3.transform(X) 

print(pca3.explained_variance_ratio_) 

 

pca4=PCA(n_components=45) 

pca4.fit(X) 

X_pca4 = pca4.transform(X) 

print(pca4.explained_variance_ratio_) 

pca5=PCA(n_components=25) 

pca5.fit(X) 

X_pca5 = pca5.transform(X) 
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print(pca5.explained_variance_ratio_) 

 

scaler = preprocessing.StandardScaler() 

X_Scaled = scaler.fit_transform(X) 

# keep the first two principal components of the data 

pca = PCA(n_components=100) 

# fit PCA model to data 

pca.fit(X_Scaled) 

# transform data onto the first two principal components 

X_pca = pca.transform(X_Scaled) 

print("Original shape: {}".format(str(X_Scaled.shape))) 

print("Reduced shape: {}".format(str(X_pca.shape))) 

 

print(pca.explained_variance_ratio_) 

 

 

 

X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.30, 

random_state=20) 

# Logistic Regression 

logreg = LogisticRegression() 

logreg.fit(X_train, y_train) 

y_pred = logreg.predict(X_test) 

##print('Logistic regression score train=',round(metrics.accuracy_score(y_train, 

y_pred),2)) 
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print('Logistic regression score test=',round(metrics.accuracy_score(y_test, y_pred),2)) 

score_train = logreg.score(X_train, y_train) 

score_test = logreg.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

logreg2 = LogisticRegression(C = 100,random_state = 0) 

logreg2.fit(X_train, y_train) 

y_pred = logreg2.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred),2)) 

#0,6 accuracy score 

score_train = logreg2.score(X_train, y_train) 

score_test = logreg2.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

logreg3 = LogisticRegression(C = 0.001,random_state = 0) 

logreg3.fit(X_train, y_train) 

y_pred3 = logreg3.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred3),2)) 

#0,57 accuracy score 

score_train = logreg3.score(X_train, y_train) 

score_test = logreg3.score(X_test, y_test) 

print(score_train) 
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print(score_test) 

 

conf = (metrics.confusion_matrix(y_test, y_pred)) 

cmap = sns.cubehelix_palette(50, hue=0.05, rot=0, light=0.9, dark=0, as_cmap=True) 

sns.heatmap(conf,cmap = cmap,xticklabels=['0','1'],yticklabels=['0','1'],annot=True, 

fmt="d",) 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

 

 

# Cross Validation 

scores = cross_val_score(logreg, X, y, cv=5, scoring='accuracy') 

print('Logistic regression of each partition\n',scores) 

print('Mean score of all the scores after cross validation =',round(scores.mean(),2)) 

 

# SVM Classifier 

clf = SVC(kernel='linear',C=10) 

clf.fit(X_train,y_train) 

scoretrain = clf.score(X_train,y_train) 

scoretest  = clf.score(X_test,y_test) 

print("Linear SVM value of C:{}, training score :{:2f} , Test Score: {:2f} 

\n".format(scoretrain,scoretest)) 

 

 

# Cross Validation 
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clf1 = SVC(kernel='linear', C=20).fit(X_train, y_train) 

scores = cross_val_score(clf1, X_train, Y_train, cv=5) 

print("The Cross Validation Score :" + str(scores)) 

print("The Average Cross Validation Score :" + str(scores.mean())) 

 

# Decision Tree 

clf_tree=tree.DecisionTreeClassifier(criterion="gini", max_depth=6) 

clf_tree.fit(X_train, y_train) 

predicted=clf_tree.predict(X_test) 

print(confusion_matrix(y_test, predicted)) 

print(accuracy_score(y_test,predicted)) 

score_train = clf_tree.score(X_train, y_train) 

score_test = clf_tree.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

clf_tree1=tree.DecisionTreeClassifier(criterion="entropy",random_state=100, 

max_depth=6) 

clf_tree1=clf_tree1.fit(X_train, y_train) 

tree.export_graphviz(clf_tree1, out_file='tree.dot') 

 

predicted1=clf_tree1.predict(X_test) 

print(confusion_matrix(y_test, predicted1)) 

print(accuracy_score(y_test,predicted1)) 

score_train = clf_tree1.score(X_train, y_train) 
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score_test = clf_tree1.score(X_test, y_test) 

print(score_train) 

print(score_test) 

 

from sklearn.metrics import roc_curve, auc 

max_depths = np.linspace(1, 32, 32, endpoint=True) 

train_results = [] 

test_results = [] 

for max_depth in max_depths: 

dt = DecisionTreeClassifier(max_depth=max_depth) 

dt.fit(X_train, y_train) 

train_pred = dt.predict(X_train) 

false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_pred) 

roc_auc = auc(false_positive_rate, true_positive_rate) 

# Add auc score to previous train results 

train_results.append(roc_auc) 

y_pred = dt.predict(X_test) 

false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred) 

roc_auc = auc(false_positive_rate, true_positive_rate) 

# Add auc score to previous test results 

test_results.append(roc_auc) 

from matplotlib.legend_handler import HandlerLine2D 

line1, = plt.plot(max_depths, train_results, 'b', label="Train AUC") 

line2, = plt.plot(max_depths, test_results, 'r', label="Test AUC") 
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plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)}) 

plt.ylabel('AUC score') 

plt.xlabel('Tree depth') 

plt.show() 

 

from sklearn.ensemble import RandomForestClassifier 

# Random Forest 

forest=RandomForestClassifier(n_estimators=100, random_state=0) 

forest.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest.score(X_test, y_test))) 

 

forest2=RandomForestClassifier(max_depth=20, n_estimators=100, random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 

 

 

forest3=RandomForestClassifier(max_depth=10, n_estimators=100, random_state=0) 

forest3.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest3.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest3.score(X_test, y_test))) 
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forest4=RandomForestClassifier(max_depth=15, n_estimators=100, min_samples_leaf=5, 

max_features='sqrt', random_state=0) 

forest4.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest4.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest4.score(X_test, y_test))) 

 

#### PCA Data 

data_new = analiz[(analiz.PREV_01_MONTH_SUM>=0) & 

(analiz.TOPLAM_KKB_LIMIT<200000) & (analiz.AGE > 17)& (analiz.AGE<81) &( 

analiz.TOPLAM_YKB_LIMIT<75000)] 

 

X=data_new.drop('VOLUNTARY_CLOSED_3M',axis=1) 

y=data_new['VOLUNTARY_CLOSED_3M'] 

 

pca = PCA(n_components=45) 

# fit PCA model to data 

pca.fit(X) 

# transform data onto the first two principal components 

X_pca = pca.transform(X) 

print("Original shape: {}".format(str(X.shape))) 

print("Reduced shape: {}".format(str(X_pca.shape))) 

print(pca.explained_variance_ratio_) 

X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.30, 

random_state=20) 

 

# Logistic Regression 
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logreg = LogisticRegression() 

logreg.fit(X_train, y_train) 

y_pred = logreg.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred),2)) 

 

logreg2 = LogisticRegression(C = 100,random_state = 0) 

logreg2.fit(X_train, y_train) 

y_pred = logreg2.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred),2)) 

logreg3 = LogisticRegression(C = 0.001,random_state = 0) 

logreg3.fit(X_train, y_train) 

y_pred = logreg3.predict(X_test) 

print('Logistic regression score =',round(metrics.accuracy_score(y_test, y_pred),2)) 

conf = (metrics.confusion_matrix(y_test, y_pred)) 

cmap = sns.cubehelix_palette(50, hue=0.05, rot=0, light=0.9, dark=0, as_cmap=True) 

sns.heatmap(conf,cmap = cmap,xticklabels=['0','1'],yticklabels=['0','1'],annot=True, 

fmt="d",) 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

 

# Cross Validation 

scores = cross_val_score(logreg, X, y, cv=5, scoring='accuracy') 

print('Logistic regression of each partition\n',scores) 

print('Mean score of all the scores after cross validation =',round(scores.mean(),2)) 

# SVM Classifier 
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from sklearn import svm 

model = svm.svc(kernel='linear', c=1, gamma=1) 

model.fit(X_train, y_train) 

model.score(X_test, y_test) 

 

clf = SVC(kernel='linear',C=10) 

clf.fit(X_train,y_train) 

scoretrain = clf.score(X_train,y_train) 

scoretest  = clf.score(X_test,y_test) 

print("Linear SVM value of C:{}, training score :{:2f} , Test Score: {:2f} 

\n".format(scoretrain,scoretest)) 

 

# Cross Validation 

clf1 = SVC(kernel='linear', C=20).fit(X_train, Y_train) 

scores = cross_val_score(clf1, X_train, Y_train, cv=5) 

print("The Cross Validation Score :" + str(scores)) 

print("The Average Cross Validation Score :" + str(scores.mean())) 

 

# Decision Tree 

clf_tree=tree.DecisionTreeClassifier(criterion="gini", max_depth=6) 

clf_tree.fit(X_train, y_train) 

predicted=clf_tree.predict(X_test) 

print(confusion_matrix(y_test, predicted)) 

print(accuracy_score(y_test,predicted)) 
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clf_tree1=tree.DecisionTreeClassifier(criterion="entropy",random_state=100, 

max_depth=6) 

clf_tree1=clf_tree1.fit(X_train, y_train) 

tree.export_graphviz(clf_tree1, out_file='tree.dot') 

predicted1=clf_tree1.predict(X_test) 

print(confusion_matrix(y_test, predicted1)) 

print(accuracy_score(y_test,predicted1)) 

# Random Forest 

forest=RandomForestClassifier(n_estimators=100, random_state=0) 

forest.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest.score(X_test, y_test))) 

 

forest2=RandomForestClassifier(max_depth=20, n_estimators=100, random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest2.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest2.score(X_test, y_test))) 

forest3=RandomForestClassifier(max_depth=6, n_estimators=100, random_state=0) 

forest3.fit(X_train, y_train) 

print("Accuracy on training set: {: .3f}".format(forest3.score(X_train, y_train))) 

print("Accuracy on test set: {: .3f}".format(forest3.score(X_test, y_test)))  
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