MEF UNIVERSITY

PREDICTING THE RESPONSIBLE DEPARTMENTS
FOR THE HUMAN RESOURCES RELATED
QUESTIONS BY USING THE TEXT
CLASSIFICATION ALGORITHMS

Capstone Project

Yavuz Sanci

ISTANBUL, 2018

i

MEF UNIVERSITY

PREDICTING THE RESPONSIBLE DEPARTMENTS
FOR THE HUMAN RESOURCES RELATED
QUESTIONS BY USING THE TEXT
CLASSIFICATION ALGORITHMS

Capstone Project

Yavuz Sanci

Adyvisor: Prof. Dr. Ozgiir Ozliik

ISTANBUL, 2018

il

MEF UNIVERSITY

Name of the project: Predicting the Responsible Departments for the Human
Resources Related Questions by Using the Text Classification Algorithms
Name/Last Name of the Student: Yavuz Sanci

Date of Thesis Defense: 10/09/2018

I hereby state that the graduation project prepared by Yavuz Sanct has been
completed under my supervision. | accept this work as a “Graduation Project”.

10/09/2018
Prof. Dr. Ozgiir Ozliik

I hereby state that I have examined this graduation project by Yavuz Sanct which is
accepted by his supervisor. This work is acceptable as a graduation project and the student
is eligible to take the graduation project examination.

10/09/2018

Director
of
Big Data Analytics Program

We hereby state that we have held the graduation examination of Yavuz Sanci and
agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE
Committee Member Signature
1. Prof Dr. Ozgiir Ozlik

v

Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help,

and not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and

that [have neither given nor received inappropriate assistance in preparing it.

Yavuz Sanci 10/09/2018 Signature

EXECUTIVE SUMMARY

PREDICTING THE RESPONSIBLE DEPARTMENTS FOR THE HUMAN
RESOURCES RELATED QUESTIONS BY USING THE TEXT CLASSIFICATION
ALGORITHMS

Yavuz Sanci

Advisor: Prof. Dr. Ozgiir Ozliik

SEPTEMBER, 2018, 26 pages

The employees of Yap1 Kredi Bank use a help desk system to ask their Human
Resources related questions to the employees of the Human Resources departments. The
questions are assigned automatically to the relevant departments by the system according
to the subjects of the questions. In some cases, the mismatches between the contents and
the subjects of the questions may cause the wrong Human Resources department
assignments of the questions. Even though the application allows Human Resources
employees to redirect the questions to the appropriate Human Resources departments,
which are responsible for answering, the response time of these questions lasts longer. This
project aims to analyze the content of the Human Resources related questions by using the
text classification algorithms to predict the responsible Human Resources departments.
Thus, it is aimed to respond to the questions in a much shorter time.

Key Words: Text Classification, Human Resources, Predicting

vi

OZET

METIN SINIFLANDIRMA TEKNIKLERI KULLANARAK INSAN KAYNAKLARI
ILE ILGILI SORULAR ICIN SORUMLU EKiPLERIN TAHMINLENMES]

Yavuz Sanci

Tez Damismani: Prof. Dr. Ozgiir Ozliik

EYLUL, 2018, 26 sayfa

Yap: ve Kredi Bankasi calisanlar1 Insan Kaynaklar ile ilgili sorularini bir talep
yonetimi sistemi kullanarak Insan Kaynaklari ¢alisanlarina iletmektedir. Sorularin hangi
Insan Kaynaklar1 ekibine sistem tarafindan yonlendirilecegi; calisanin sorusunu sorarken
sececegi konu bashigina gore belirlenmektedir. Baz1 durumlarda; segilen konu bashigiyla
sorunun igerigi birbiriyle Ortiismedigi igin uygulama bir takim sorulari yanhs Insan
Kaynaklar1 ekiplerine ydnlendirmektedir. Her ne kadar; Insan Kaynaklari calisanlart
kendilerinin onayma diisen bu sorular1 yanitlamakla sorumlu olan diger insan Kaynaklar
ekiplerine yonlendirebiliyor olsalar da; bu durum sorularin ¢éziim siirelerinin uzamasina
sebep olmaktadir. Bu galigma; metin siniflandirma teknikleri kullanarak Insan Kaynaklar:
ile ilgili sorularin metin igeriklerinin analiz edilmesini ve sorulara cevap vermekle sorumlu
Insan Kaynaklar1 departmanlarinin tahminlenmesini kapsamaktadir. Bu sayede, banka
calisanlarinin Insan Kaynaklari’na ilettigi sorulara ¢ok daha kisa siire igerisinde yanit
verilmesi hedeflenmektedir.

Anahtar Kelimeler: Metin Siniflandirma, Insan Kaynaklari, Tahminleme

vii

TABLE OF CONTENTS

Academic HONesty PIedgeccoeoiieiiiiiieieeeee ettt e v
EXECUTIVE SUMMARY ..ottt ettt vi
OZET oo vii
TABLE OF CONTENTS ..ottt viii
1. INTRODUCGCTION ...ttt ettt bbbt be b 1
2. ABOUT THE DATA ...ttt ettt e 3
2.1, About Yapt Kredi.....c.oooviiiiiiiieiiecieeeeeeeeee ettt et s e 4
3. PROJECT DEFINITION ...ttt 5
3.1. Problem Statement..........coc.coieviiriiniiieiertere et 5
3.2. ProJECt ODJECIVES ..ottt ettt ettt et 6
3.2, PrOJECE SCOPE ..veeuviiiiieiiecieeeteeteeste ettt et et e et esteestaeesbeesseesabeesaessneesseenseesssesnseenens 6
4. LITERATURE REVIEWociiiiiiiiiiiiiiictetc ettt 7
4.1. Text Classification Methodsc..cccccoieriiiiniiiiiiinecececeseeeeeeseee e 7
4.2. The Impact of Machine Learning in Human Resourcescccccceeiieieeneenenn. 8
5. METHODOLOGY ..ottt ettt sttt 9
5.1. Using Bag of Words with TF-IDF Weightsccccccceeeieiieiiieiieciececeeee e 9
5.2. Multinomial Naive Bayesccceecierieriiieieiie ettt 10
5.3. Stochastic Gradient DESCENTcceevuiriiriiiiriiiiriee et 11
5.4, RANAOM FOT@ST.....oiuiiiiiiiiiiiiieiec ettt sttt 12
6. RESULTS ...ttt ettt h et b et b et e et e ebeese bt eaeeneeseeneeneees 13
7. DELIVERED VALUE AND FURTHER STEPSccccceoiiiniininnneeenceee 17
REFERENCES ...ttt sttt 18
APPENDIX ..ottt ettt sttt st 20

viii

1. INTRODUCTION

The Human Resources help desk applications are essential for delivering the HR
services of an organization efficiently to its employees in a digital environment. The
implementation of a centralized help desk application across the organization provides
handling the questions, requests with transparency and helps HR to classify the category of
these questions and requests. The service level agreement (SLA) metrics, which can be
gathered by the help desk applications, can also measure the performance of each HR
department according to the responsiveness and the response time. The responsiveness of
the help desk applications can be optimized by establishing an automated triage system
which sorts the incoming requests by priority. [1] The performance rating of the
departments can be reviewed periodically in order to make decisions for the improvement
of their performance scores.

The employees of an organization can make any HR related request and receive
feedbacks from HR easily by using the self-service screens of a centralized HR help desk
application. If the employees get their answers on time with the sufficient and clear
explanations which are consistent with the culture and the business objectives of the
company, the employees can stay more organized. Moreover, if the HR services, which are
delivered through the help desk application channel, are appreciated by the majority of the
employees; this will also increase the employee engagement which is a priority for most of
the companies.

In Yap1 Kredi, an HR help desk application is available for the employees of the
entire company. When an employee wants to make a request by using the application; first
an appropriate subject should be selected from a list of subjects and then a text field, which
contains information about the question, should be filled in by the employee. After the
creation of the record, the application assigns it to the relevant HR department according to
the subject which is previously selected by the employee.

In some cases, the employees may select the wrong subjects for their questions or
requests. These will cause inappropriate assignments. Despite the fact that the application
allows HR employees to transfer the questions to the appropriate HR departments, the

response time of these records lasts longer.

The aim of this project is to work on predicting the responsible HR departments
according to the content of the questions by using text classification algorithms in a help

desk application.

2. ABOUT THE DATA

The dataset of the project is retrieved from the database which stores the data of

Human Resources help desk application of Yap1 Kredi Bank. It consists of the HR related

questions and requests which were created by the employees of the bank in the first half of

2018. The personal information of the employees and any HR sensitive information were

eliminated during the preparation of the dataset. The dataset has 6389 rows and 5 columns

in total. The columns of the dataset and their descriptions are stated below:

e Requestld

e Department
e Subject

e Description

e RequestDate

: The creation date of the question

: It contains a unique value for each record of the dataset.
: The department responsible for answering the question
: The subject of the question selected by the employee

: The content of the question defined by the employee

A sample row, which is extracted from the dataset, is stated below. (Figure 1) In

this example, an employee requests the salary slips of the last three months in order to

deliver them to the Netherlands Consulate. Since the subject of the request is selected as

“Bordro Talepleri” by the employee; the request is automatically assigned to the

department of “Kurumsal IK Y6netimi/Bordro Islemleri”.

Figure 1: A Sample Row Which is Extracted from the Dataset

Requestld| Department Subject Description RequestDate
Merhaba,
K}'lrunilsa.l 1K Bordro Hollanda Konsoloslugu'na 11.04.2018
12584 Y 6netimi/Bordro . .
. . Talepleri sunulmak {izere son 3 ay 09:21:44
Islemleri
bordrolarimin tarafima
gonderilmesini rica ederim.

In the analysis of the dataset, Department column is selected as the target variable

and Description column, which contains the detailed explanations of the questions, is taken

into consideration for extracting the new features of tokens.

2.1. About Yap1 Kredi

Yap1 Kredi, which is the fourth largest bank in Turkey as of 2017 due to the
number of assets, is one of 10 most valuable brands in Turkey. The customer-centric core
banking and innovative banking technologies are the main focus of Yapi Kredi for
achieving profitable and sustainable growth together with increasing customer satisfaction.
The Bank’s main shareholder is Kog¢ Financial Services (KFS) with 81.8% ownership. KFS
is a 50%-50% joint venture between Ko¢ Group and UniCredit Group. The remaining
18.2% is publicly traded on Borsa Istanbul.

Yap1 Kredi has 866 branches and 18839 employees in total. All these employees
have access to HR help desk application for making their HR related requests by using the
intranet of the bank. Therefore, the HR help desk system, which is used in Yap1 Kredi, is

an important interaction channel between the employees and HR departments.

3. PROJECT DEFINITION

3.1. Problem Statement

The assignment of a question to an HR department which is not responsible for
answering is a severe problem which increases the response time. The assignments of the
questions are made automatically by the HR help desk application according to the subject
which the employees choose from a list box during the creation of the question records. A
wrong assignment occurs when there is a mismatch between the selected subject and the
content of the question. Approximately 15% of all questions are assigned to the HR
departments which are not responsible for answering due to the employees’ wrong choices
of the subjects. The HR employees, who encounter these problems, should transfer the
questions to the departments which should be responsible for responding to them. In some
cases, there may still be an incorrect assignment because the assignment is determined
according to one’s own initiative.

As shown in the following flowchart (Figure 2); the process of responding to a
question lasts longer when there is a wrong department assignment of the related question.
For a question which is assigned to an HR department; the related HR department is
expected to reply to the question within 3 working days according to the SLA policies
which are implemented in Yap1 Kredi. If the question is not related to the HR department;
the HR department should transfer the question to the appropriate department within 1
working day. If the department, to which the question is transferred, is responsible for
answering the question, the maximum response time is extended from 3 working days to 4

working days.

Figure 2: The Flow Chart of HR Help Desk Application in Yap1 Kredi

~

Creation of the question by the user

I

Automatic assignment of the question to the relevant HR
department according to the topic title

I

Is the HR department
responsible for answering
the question?

— Dealing with the question by the HR department

l

Sending the answer of the question for the user’s
approval

No

Does the user approve the
given answer?

[The process of responding to the question is completed.]

3.2. Project Objectives

Transfer of the question to another HR department by
HR user

Is the HR department,
which the question is
transferred to, responsible
for answering the
question?

The main objective of the project is to develop a precise algorithm that labels the

responsible HR departments according to the content of the questions. Measuring the

performance of the different algorithms, which are used for classifying the questions, is

another objective of this project.

3.2. Project Scope

The scope of the project covers constructing a precise model which classifies the

questions according to their relevant HR departments. First, the feature extraction methods

are applied to the text contents of the questions to form the bag-of-words presentations.

After the process of feature extraction, this study covers the implementation of the

different classification algorithms to the final version of the dataset and compares the

performance of each classification algorithm.

4. LITERATURE REVIEW

4.1. Text Classification Methods

Text classification is an essential topic in Natural Processing Language, in which
the pre-defined categories should be labeled to the text documents. It is used in many
applications such as web search, information retrieval, ranking and document
classification.

Today, choosing the best possible machine learning classifiers for text
classification is one of the popular research topics. The performance of Neural Network
approaches is better than the performance of the traditional Bag-of-Words models for text
classifications since Neural Networks focus on the semantic relation between the words
and their order in a sentence. [2] Character-Level Convolutional Networks perform well on
the large datasets without the need for the words for text classification. Character-Level
Convolutional Networks can also identify the misspellings, which are generated by the
users, to conduct better text classifications than the traditional models such as the Bag of
Words models with their TF-IDF weights. [3]

On the other hand, FastText; which is a non-deep learning model, performs faster
than the Character-Level Convolutional Networks and has the same accuracy scores as
Character-Level Convolutional Networks. FastText maps each word into a bag of n-grams
features with an additional hashing algorithm and averages the features of the all words to
get a good representation of sentences. [4]

Hierarchical neural network, which is another method for text classification, uses
the word-level and the sentence-level attention mechanisms to weight the importance of
the words in the sentences and the importance of the sentences in the documents
respectively. [5]

Paragraph vectors can predict the next word in a context by benefiting from the
semantics which is captured by themselves. Since the word order and the semantics of
words in a paragraph are taken into consideration, paragraph vector can be an alternative

method for text classification. [6]

4.2. The Impact of Machine Learning in Human Resources

In Human Resources, several machine learning algorithms have been used to
analyze the employee turnover such as Naive Bayes, Random Forest, and Support Vector
Machine. [7] Today, employee turnover is a significant problem which the companies
should deal with. It is a measurement of how long the employees work for a company and
how often the company has to replace them. The companies should hire and train new
employees instead of the ones who leave the job so they can fill the vacancy positions.
Leaving of the employees can also change the organizational structure of a company
because there may be changes in the job responsibilities for some employees. If a
company has a high employee turnover rate, much workforce loss and cost occur. Even
worse, the reputation of the company can be negatively affected. Therefore, it is crucial for
the companies to discover the most important reasons affecting the employee turnover. It
can be achieved by predicting the employees, who are more likely to leave the company.

The model of Intelligent Human Resources Systems predicts the employees who
might leave in the future by using the Support Vector Machine algorithms. [8] The
Random Forest model, which was constructed by Dilip Singh Sisodia et. Al, has a good
performance in predicting the employees who may leave the company. This model can also
give insights about the most critical reasons affecting the employee turnover. According to
the model; the employees, who cannot get promotions for a long time, and the employees,

who work for longer periods of time, are more likely to leave. [9]

5. METHODOLOGY

The first step of this study is to analyze the distribution of the questions according
to their related Human Resources Department in order to check the existence of
imbalanced class distribution. In the case of the presence of the imbalanced data; the
resampling method, Smote, is planned to be applied to the dataset to avoid overfitting by
equalizing the number of the minority classes to the number of the majority class. The
second step is to extract new numerical feature vectors by transforming the text content of
the questions into the bag-of-words models. Each word, which resides in a question, is
presented by a feature and the importance of each word is calculated by using the term
frequency-inverse document frequency (TF-IDF) weighting. In the third step, the different
machine learning algorithms are executed to predict the relevant HR department of the
questions. Naive Bayes, Stochastic Gradient Descent and Random Forest classification
algorithms are constructed, and the total accuracy score of each algorithm is compared
with each other to find the one which has the best accuracy score. For each algorithm; the
test accuracy and the train accuracy scores of the related algorithm are also compared to
check whether an overfitting exists. The K-Fold cross-validation techniques are also used
to evaluate the performance of each algorithm by reducing the variance and bias of the
models. The parameters of the algorithm, which performs better than the other ones
according to the test accuracy score, are tuned by using the grid search method to improve
the accuracy. Finally, a confusion matrix of the best algorithm is constructed to see the
discrepancies between predicted and actual labels. All these steps are executed on the

JetBrains PyCharm Community Edition platform by using the Python programming
language.

5.1. Using Bag of Words with TF-IDF weights

In machine learning algorithms, the text data should be converted into a bag-words
model which encodes its meaning as much as possible. In this study, the Bag of Words
model is constructed with TF-IDF weights.

TF-IDF is the abbreviation of term frequency-inverse document frequency. It is a
statistical measure to evaluate how important a word is to a document in a collection. The
term frequency refers to the number of times in which a word occurs in a document. The

inverse document frequency is a measure of how much information is provided by the

word according to its frequency within all the documents. The inverse document frequency
is calculated by taking the logarithm of the inverse fraction of the documents that contain
the word, which is the ratio of the total number of documents to the number of documents
containing the term. TF-IDF weight of a word is equal to the product of the term frequency
and the inverse document frequency of the related word. [10]

According to the TF-IDF weighting; as the number of times, which a word appears
in a question, increases; the importance of the word increases. On the other hand; the
importance of the word decreases as the number of times, which the word appears in all
questions, increases. For example; the following two sentences can be considered:

Sentence 1: “Are you doing what he is doing?”

Sentence 2: “He is doing a good job.”

After removing the stop words, which are often functional words that contribute to
the meaning of the sentence through grammar; the remaining each word is weighted

according to TF-IDF as shown below. (Figure 3)

Figure 3: Distribution of Words According to TF-IDF Weighting

doing good job
Sentence 1 1 0 0
Sentence 2| 0,44943642 | 0,6316672 | 0,6316672

As the TF-IDF weights of the words, which reside in two sentences, are compared;
we can see that the word “doing”, which occurs in both of the sentences, is penalized in the

second sentence because it appears twice in the first sentence.

5.2. Multinomial Naive Bayes

Multinomial Naive Bayes is a customized version of the Naive Bayes algorithm
which can be used for classification with discrete features such as the word counts of the
documents. In text classification; a simple Naive Bayes algorithm only classifies a
document according to the presence or the absence of the specific words and the frequency
information of the words isn’t considered. On the other hand, the frequency information of
the words, which occurs in a document, is considered in Multinomial Naive Bayes to make
better classifications. [11] Multinomial Naive Bayes algorithm assumes that each feature is

independent of each other given the class. The separate learning of the parameters of each

10

feature eases the training process especially when the dataset, which is analyzed, has a
large number of the attributes. Most of the real-world datasets, which the text classification
methods are implemented, have more accurate results if they have vocabularies of huge
numbers of the words. Therefore, Multinomial Naive Bayes is widely used in many studies
which involve text classification. The disadvantages of using this algorithm are that the
semantic relation between the words in a document are ignored and poor weights are
selected for the decision boundary if a particular class has more records than the other

classes in a dataset.

5.3. Stochastic Gradient Descent

The objective of the gradient descent algorithm is to minimize a cost function
which is calculated by summing up the cost function of each sample of the training set.
The gradient descent becomes a computationally very expensive procedure in the case of
the existence of a huge training set. A modified version of the gradient descent algorithm,
which is called Stochastic Gradient Descent, is more appropriate to be implemented for
much bigger training sets.

In a Basic Gradient Descent algorithm; the cost function is equal to the sum of the
one half of the average square error of the hypothesis on the m training examples. As we
run different iterations of the gradient descent from an initialization point by updating the
values of the parameters, the parameters will be directed to a global minimum. If the value
of m, which is the total number of training examples, is too large, the computation of the
gradients will be very expensive because the total number of training examples will be
used to calculate the gradient in a single iteration. The total number of the training
examples, which are used to calculate the gradient, is also called as “batch”.

In contrast to basic Gradient Descent algorithm; Stochastic Gradient Descent
doesn’t need to look at the total number of examples in each iteration to calculate the
gradient. [12] In order to reach to the global minimum; a single training example, which is
randomly selected, will be enough for calculating the gradient on each iteration. The
algorithm will scan through all the training examples and on each iteration; a gradient
descent step is taken by looking at each example with respect to its cost. When the
scanning through all training examples is completed, it may be necessary to repeat the

entire scanning operation for n times depending on the size of the training set.

11

Since the Stochastic Gradient Descent algorithm has an efficient performance of
scaling up extensive datasets, it is successfully applied for text classification methods
which analyze vast amounts of text contents. Dealing with the several hyperparameters and
the sensitiveness to feature scaling can be considered as the main disadvantages of the

Stochastic Gradient Descent.

5.4. Random Forest

Random Forest is a supervised learning algorithm which can be used both for
regression and classification problems. The ease of use and the flexibility of the algorithm
has made Random Forest as one of the most widely used Machine Learning techniques. As
compared to the Stochastic Gradient Descent algorithm, which is one of the Machine
Learning techniques which are used in this study; hyperparameter tuning is not necessary
for Random Forest. It is an ensemble of the decision trees which are combined to get more
accurate results. Unlike the decision trees; Random Forest searches for the best feature
from a randomly selected subset of features instead of choosing the most important feature
in the node splits. This randomness provides diversity which produces better results than
the decision trees. In Random Forest models, the relative importance of each feature can be
analyzed after the prediction of the classes. The insignificant features can be removed by
observing the relative importance values of the features to avoid overfitting. The main
disadvantage of the Random Forest algorithm is that a large number of trees makes the
algorithm to perform slowly despite the fact that more decision trees allow Random Forest

to make more accurate predictions. [13]

12

6. RESULTS

The distribution of the questions is displayed according to their related HR
departments in the following chart. It is evident that there is an imbalanced distribution of
the classes in the dataset. According to the chart; Kurumsal IK Y8netimi/Ozliik islemleri is
responsible for most of the questions (45%) followed by Yap1 Kredi Bankacilik Akademisi
(23,5%) and Kurumsal IK Y®&netimi/Bordro Islemleri (16%). The other departments are

only responsible for 15,5 % of the total questions.

Figure 4: The Distribution of the Questions According to HR Departments

Kurumsal IK Yonetimi/Ozluk islemleri

Yapi Kredi Bankacilik Akademisi

Kurumsal K Yonetimi/Bordro islemleri

Kariyerim Sube

Ise Alim ve K Geligtirme

Kariyerim Bankacilik Ussii

Kurumsal K Yonetimi/Ucret ve Yan Haklar

Kariyerim Genel Mudurlik

T T T T
0 500 1000 1500 2000 2500 3000
count

The train and test accuracy scores of the Machine Learning algorithms, which are
applied to the original dataset before applying Smote function, are stated below. (Figure 4)
According to these accuracy results; the differences between the initial test accuracy scores
and the initial train accuracy scores are large for all the algorithms except Multinomial
Naive Bayes before applying K-Fold cross-validation techniques. The probability of an
overfitting problem is very high, especially for the Random Forest. The main reason for
overfitting can be the imbalanced classes. 10 folds cross-validations are applied to each

algorithm to overcome the overfitting problem. Although these cross-validation techniques

13

decrease the accuracy scores of each algorithm, the overfitting problem is avoided by the

decrease in the difference between the train accuracy score and the test accuracy score for

each algorithm.

Figure 5: The Accuracy Scores of the M.L. Algorithms Before Applying Smote

Train
. Test Accuracy
Train Accuracy .
. Test Accuracy . Score with 10
Algorithm Accuracy Score with 10
Score Folds Cross
Score Folds Cross Validations
Validations
Multinomial Naive Bayes 0,7455 0,7147 0,6903 0,675
Stochastic Gradient Descent 0,9088 0,8378 0,8238 0,8237
Random Forest 0,9917 0,7887 0,7907 0,7512
Stochastic Gradient Descent with Grid Search | 0,9917 0,8753 0,8647 0,8466

In order to construct an equal distribution of the classes; the resampling method,

Smote, is applied to the dataset. This method equalizes the number of each minority class

to the number of the majority class by generating the new instances of the minority classes.

The majority class, which is presented by Kurumsal K Y&netimi/Ozliik islemleri, has

2872 records. After the oversampling process, the total number of records increases from

6389 to 22996 because the number of the records of each of the other 7 minority classes

also increases to 2872. The train and test accuracy scores of the Machine Learning

algorithms, which are applied to the dataset after the process of oversampling, are stated

below. (Figure 4)

Figure 6: The Accuracy Scores of the M.L. Algorithms After Applying Smote

Algorithm

Train Accuracy

Test Accuracy

Train Accuracy
Score with 10

Test Accuracy
Score with 10

Score Score Folds Cross Folds Cross
Validations Validations
Multinomial Naive Bayes 0,9734 0,953 0,9538 0,9272
Stochastic Gradient Descent 0,9624 0,9433 0,9478 0,9366
Random Forest 0,9987 0,9502 0,9553 0,9219
Multinomial Naive Bayes with Grid Search | 0,9949 0,9806 0,9787 0,961

After the resampling process, the performance of all algorithms increased

significantly. All of the constructed models have very high accuracy scores and the

14

difference between the train accuracy score, and the test accuracy score is acceptable for
each of the algorithms.

The confusion matrix of the Multinomial Naive Bayes with Grid Search model,
which has the best test accuracy score, is displayed below. (Figure 5) The true positive rate
(recall) of all of the classes have high values. Only, “Kurumsal 1K Yoénetimi/Ozliik
Islemleri” class has a slightly lower recall than the recall of the other classes. The false
predictions of this class are mostly the actual members of Kariyerim Sube, Kurumsal 1K

Y &netimi/Bordro Islemleri, and Yap1 Kredi Bankacilik Akademisi.

Figure 7: Confusion Matrix of Multinomial Naive Bayes with Grid Search

Actual

Predicted

The classification report, which shows the values of the primary classification
metrics of the Multinomial Naive Bayes model with Grid Search, is listed below. (Figure

8) Since we get an equal distribution of classes by applying the oversampling process, the

15

support value of each class is close to each other. The high values of precision, recall, and

F1-score are the main indicators of the excellent performance of the model.

Figure 8: The Classification Report for Naive Bayes with Grid Search

Class Fl-
Precision | Recall| Score |Support
Kariyerim Bankacilik Ussii 0,99 1,00 |1,00 841
Kariyerim Genel Midiirliik 1,00 1,00 (1,00 841
Kariyerim Sube 0,96 1,00 10,98 853
Kurumsal K Yo6netimi/Bordro Islemleri 0,97 098 10,98 845
Kurumsal K Yonetimi/Ozliik Islemleri 0,97 0,89 10,93 869
Kurumsal K Yénetimi/Ucret ve Yan Haklar | 1,00 1,00 |[1,00 879
Yapi Kredi Bankacilik Akademisi 0,96 098 10,97 894
1§e Alim ve K Gelistirme 1,00 1,00 |1,00 871
avg / total 0,98 0,98 10,98 6893

The precision-recall curve for each class is represented in the diagram which is
displayed below. (Figure 9) Having a large area under the curve represents both high recall
and high precision. Since all of the classes have large areas under their related precision-
recall curves in the Naive Bayes model with Grid Search, it can be concluded that the

model performs well in the prediction of the classes.

Figure 9: Precision-Recall Curves of Naive Bayes with Grid Search

Precision-Recall Curve

1.0+

0.8

0.6

Precision

f1=0.6
0.4 1
iso-f1 curves
micro-average Precision-recall (area = 1.00) f1=04
02 - —— Precision-recall for class Kariyerim Bankacilik Ussii (area = 1.00) Eii

Precision-recall for class Kariyerim Bankacilik Ussi (area = 1.00)
Precision-recall for class Kariyerim Sube (area = 1.00)
0.—— Precision-recall for class Kurumsal iK Yonetimi/Bordro islemleri (area = 0.99) 10
—— Precision-recall for class Kurumsal iK Yénetimi/Ozlik islemleri (area = 0.98)

—— Precision-recall for class Kurumsal iK Yonetimi/Ucret ve Yan Haklar (area = 1.00)
Precision-recall for class Yapi Kredi Bankacilik Akademisi (area = 1.00)

Precision-recall for class ise Alim ve iK Gelistirme (area = 1.00)

16

7. DELIVERED VALUE AND FURTHER STEPS

In this study, the accurate predictions of the Human Resources departments, which
are responsible for answering the Human Resources related questions through a channel of
Human Resources help desk application, were achieved by using the text classification
methods. The resampling process made all of the three different machine learning
algorithms of this study to have very high overall accuracy scores. In the next step, the
accurate model of this study can be integrated to the existing help desk application in order
to assign the questions to the related responsible Human Resources department
automatically by analyzing the content of the questions. The possible integration of the
model will also eliminate the need for selecting a subject during the creation phase of the
question in the help desk application.

The Human Resources help desk application, which is used in Yapi1 Kredi, was
developed on Microsoft’s .NET Framework by using the C# programming language.
Microsoft's .NET Framework can invoke Python methods within a C# code by using
IronPython, which is an open-source implementation of Python programming language on
NET framework. IronPython uses the advantage of .NET’s dynamic language runtime
(DLR) feature which provides a set of services to the static programming languages for
supporting dynamic programming languages. Many programming functionalities are
executed at runtime for dynamic programming languages such as Python and R. On the
other hand, static programming languages such as C# and Java perform these
functionalities in the compilation phase. On the .NET Framework, the Python code of this
study can be accessed from the C# code of the help desk application by using the necessary
libraries of IronPython.

The questions of the dataset of this study were in Turkish. Therefore, the future use
of a Turkish vocabulary will be beneficial for stemming, semantic reasoning and

specifying the stop words in Turkish to make better text classifications.

17

REFERENCES

[1] Engelhard, M., et al. (2018). Optimising mHealth helpdesk responsiveness in South
Africa: towards automated message triage. BMJ global health, 3(Suppl 2), e000567.

[2] Lai, Siwei, et al. Recurrent Convolutional Neural Networks for Text Classification.
AAAL Vol. 333. 2015.

[3] Zhang, X., et al. (2015). Character-level convolutional networks for text classification.
In Advances in neural information processing systems (pp. 649-657).

[4] Joulin, A., et al. (2016). Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759.

[5] Yang, Z., et al. (2016). Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (pp. 1480-1489).

[6] Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences and
documents. In International Conference on Machine Learning (pp. 1188-1196).

[7] Ajit, P. (2016). Prediction of employee turnover in organizations using machine
learning algorithms. algorithms, 4(5), C5." algorithms 4.5 (2016): C5.

[8] Cahyani, A. D., & Budiharto, W. (2017, February). Modeling Intelligent Human
Resources Systems (IRHS) using Big Data and Support Vector Machine (SVM). In
Proceedings of the 9th International Conference on Machine Learning and Computing (pp.
137-140). ACM.

[9] Sisodia, D. S., et al. (2017, November). Evaluation of machine learning models for
employee churn prediction. In Inventive Computing and Informatics (ICICI), International
Conference on (pp. 1016-1020). IEEE.

[10] Hackeling, G. (2014). Mastering Machine Learning with Scikit-learn. Packt
Publishing Ltd.

[11] McCallum, A., & Nigam, K. (1998, July). A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization (Vol.
752, No. 1, pp. 41-48).

[12] Brownlee, J. (2018). Gradient Descent For Machine Learning. Retrieved from

https://Machinelearningmastery.com/Gradient-Descent-for-Machine-Learning/

18

[13] Donges, N. (2018). The Random Forest Algorithm — Towards Data Science. Retrieved
from https://towardsdatascience.com/the-random-forest-algorithm-d457d499tfcd

19

APPENDIX

import numpy as np

import pandas as pd

from sklearn.model selection import train test split
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.naive bayes import MultinomialNB

from sklearn.linear model import SGDClassifier

from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import GridSearchCV
from sklearn.metrics import confusion matrix

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy score

from imblearn.over_ sampling import SMOTE

from sklearn.metrics import classification report
from sklearn.model selection import cross val predict
from sklearn import metrics

dataset = pd.read excel('IKya Sor Talepler.xls') #read from excel to data
frame

dataset.info () #show summary of dataset

dataset.describe ()

dataset.head (10) #return first 10 rows

dataset.isnull () .any () #check if there is any null value in dataset
df x = dataset['DESCRIPTION']

df mainGroup = dataset['DEPARTMENT']

df label = pd.DataFrame (df mainGroup)

codes = pd.Categorical (df label['DEPARTMENT']) .codes

df label ["CATEGORYCODE"] = pd.Categorical (df label['DEPARTMENT']) .codes
cat columns = df label.select dtypes(['category']).columns

df label[cat columns] = df label[cat columns].apply(lambda x:
x.cat.codes)

df y = df label ["CATEGORYCODE"]

TF-IDF

tfidf vect = TfidfVectorizer()

df x tfidf = tfidf vect.fit transform(df x)

Resampling process to prevent imbalance between classes

sm = SMOTE (random state=42)

X res, y res = sm.fit sample(df x tfidf, df y)

Plot number of departments before resampling

fig = plt.figure(figsize = (8,6))

descending order =

df mainGroup.value counts().sort values (ascending=False) .index
ax =

sns.countplot (data=pd.DataFrame (df mainGroup), y="DEPARTMENT", order=descen
ding order)

plt.show ()

#Construction of models without applying SMOTE

#train-test split

x_train, x_test, y train, y test = train test split(df x tfidf, df y,
test size = 0.3, random state = 0)

#Multinominal Naive Bayes

clf NB = MultinomialNB().fit(x train, y train)
predictions NB test=clf NB.predict(x_ test)

print ("Test Accuracy score of Multinomial Naive Bayes before applying
Smote is " +

20

str (round(accuracy score(y test, predictions NB test),4)))
cv_predicted test = cross val predict(clf NB, x test, y test, cv=10)
print ("Test Accuracy score of Multinomial Naive Bayes with 10 folds cross
validation before applying Smote is " +

str (round(metrics.accuracy score(y test, cv _predicted test),4)))
predictions NB train=clf NB.predict (x train)

print ("Train Accuracy score of Multinomial Naive Bayes before applying
Smote is " +

str (round(accuracy_score(y_train, predictions NB train),4)))
cv_predicted train = cross val predict(clf NB, x train, y train, cv=10)
print ("Train Accuracy score of Multinomial Naive Bayes with 10 folds
cross validation before applying Smote is " +

str (round(metrics.accuracy score(y train, cv_predicted train),4)))

#SGD

clf SGD = SGDClassifier (loss='hinge', penalty='l2"', alpha=le-3,

max iter=5, random state=42).fit(x train, y train)
predictions SGD test=clf SGD.predict (x_test)

print ("Test Accuracy score of Stochastic Gradient Descent before applying
Smote is " +

str (round (accuracy score(y test, predictions SGD test), 4)))
cv_predicted test = cross val predict(clf SGD, x test, y test, cv=10)
print ("Test Accuracy score of Stochastic Gradient Descent with 10 folds
cross validation before applying Smote is " +

str (round(metrics.accuracy score(y test, cv_predicted test),4)))
predictions SGD train=clf SGD.predict (x_train)

print ("Train Accuracy score of Stochastic Gradient Descent before
applying Smote is " +

str (round(accuracy score(y train, predictions SGD train), 4)))
cv_predicted train = cross val predict(clf SGD, x train, y train, cv=10)
print ("Train Accuracy score of Stochastic Gradient Descent with 10 folds
cross validation before applying Smote is " +
str(round(metrics.accuracy score(y train, cv_predicted train),4)))
#Random Forest

clf RF = RandomForestClassifier().fit(x train, y train)
predictions RF test=clf RF.predict(x_ test)

print ("Test Accuracy score of Random Forest before applying Smote is " +
str (round(accuracy score(y test, predictions RF test), 4)))
cv_predicted test = cross_val predict(clf RF, x test, y test, cv=10)
print ("Test Accuracy score of Random Forest with 10 folds cross
validation before applying Smote is " +

str (round(metrics.accuracy score(y test, cv_predicted test),4)))
predictions RF train=clf RF.predict(x_train)

print ("Train Accuracy score of Random Forest before applying Smote is " +
str (round(accuracy score(y train, predictions RF train), 4)))
cv_predicted train = cross_val predict(clf RF, x train, y train, cv=10)
print ("Train Accuracy score of Random Forest with 10 folds cross
validation before applying Smote is " +

str (round(metrics.accuracy score(y train, cv_predicted train),4)))

#Grid Search for improving the performance of Stochastic Gradient Descent

sorted(clf SGD.get params () .keys()) #displaying the all possible
parameters of SGD
parameters = {

'loss': ('log', 'hinge'),

'penalty': ['1ll', 'l2', 'elasticnet'],

'alpha': [0.001, 0.0001, 0.00001, 0.000001]
}

gs_clf = GridSearchCV(clf SGD, parameters, n_jobs=-1, scoring='accuracy')
gs_clf = gs clf.fit(x train, y train)
predictions gs=gs_clf.predict (x_test)

21

print ("The best score of Stochastic Gradient Descent with Grid Search
before applying Smote is " + str(round(gs clf.best score ,4)))

print ("Best parameters set found on Stochastic Gradient Descent
algoritm:")

print (gs _clf.best params)

print ("Test Accuracy score of Stochastic Gradient Descent with Grid
Search before applying Smote is " +

str (round(accuracy score(y test,predictions gs),4)))
predictions_gs_train=gs_clf.predict(x_train)

print ("Train Accuracy score of Stochastic Gradient Descent with Grid
Search before applying Smote is " +

str (round(accuracy score(y train,predictions gs train),4)))
cv_predicted train = cross val predict(gs _clf, x train, y train, cv=10)
print ("Train Accuracy score of Stochastic Gradient Descent with Grid
Search and 10 folds cross validation before applying Smote is " +

str (round(metrics.accuracy score(y train, cv_predicted train),4)))
cv_predicted test = cross val predict(gs clf, x test, y test, cv=10)
print ("Test Accuracy score of Stochastic Gradient Descent with Grid
Search and 10 folds cross validation before applying Smote is " +

str (round (metrics.accuracy score(y test, cv_predicted test),4)))
#Construction of models after applying SMOTE

#train-test split

x train, x test, y train, y test = train test split(X res, y res,

test size = 0.3, random state = 0)

#Multinominal Naive Bayes

clf NB = MultinomialNB().fit(x train, y train)
predictions NB test=clf NB.predict(x test)

print ("Test Accuracy score of Multinomial Naive Bayes after applying
Smote is " +

str (round(accuracy score(y test, predictions NB test), 4)))
cv_predicted test = cross val predict(clf NB, x test, y test, cv=10)
print ("Test Accuracy score of Multinomial Naive Bayes with 10 folds cross
validation after applying Smote is " +
str(round(metrics.accuracy score(y test, cv _predicted test),4)))
predictions NB train=clf NB.predict(x train)

print ("Train Accuracy score of Multinomial Naive Bayes after applying
Smote is " +

str (round(accuracy_score(y train, predictions NB train), 4)))
cv_predicted train = cross_val predict(clf NB, x train, y train, cv=10)
print ("Train Accuracy score of Multinomial Naive Bayes with 10 folds
cross validation after applying Smote is " +

str (round (metrics.accuracy score(y train, cv_predicted train),4)))

#SGD

clf SGD = SGDClassifier (loss='hinge', penalty='l2', alpha=le-3,

max iter=5, random state=42).fit(x train, y train)
predictions SGD test=clf SGD.predict (x_ test)

print ("Test Accuracy score of Stochastic Gradient Descent after applying
Smote is " +

str (round(accuracy score(y test, predictions SGD test), 4)))
cv_predicted test = cross val predict(clf SGD, x test, y test, cv=10)
print ("Test Accuracy score of Stochastic Gradient Descent with 10 folds
cross validation after applying Smote is " +
str(round(metrics.accuracy score(y test, cv predicted test),4)))
predictions SGD train=clf SGD.predict(x train)

print ("Train Accuracy score of Stochastic Gradient Descent after applying
Smote is " +

str (round(accuracy score(y train, predictions SGD train), 4)))
cv_predicted train = cross_val predict(clf SGD, x train, y train, cv=10)
print ("Train Accuracy score of Multinomial Stochastic Gradient Descent

22

with 10 folds cross validation after applying Smote is " +

str (round(metrics.accuracy score(y train, cv_predicted train),4)))
#Random Forest

clf RF = RandomForestClassifier().fit(x train, y train)
predictions RF test=clf RF.predict(x test)

print ("Test Accuracy score of Random Forest after applying Smote is " +
str (round(accuracy score(y test, predictions RF test), 4)))
cv_predicted test = cross val predict(clf RF, x test, y test, cv=10)
print ("Test Accuracy score of Random Forest with 10 folds cross
validation after applying Smote is " +

str (round (metrics.accuracy score(y test, cv_predicted test),4)))
predictions RF train=clf RF.predict(x train)

print ("Train Accuracy score of Random Forest after applying Smote is " +
str (round(accuracy_score(y train, predictions RF train), 4)))
cv_predicted train = cross val predict(clf RF, x train, y train, cv=10)
print ("Train Accuracy score of Random Forest with 10 folds cross
validation after applying Smote is " +
str(round(metrics.accuracy score(y train, cv predicted train),4)))
#Grid Search for improving the performance of Multinomial Naive Bayes

sorted(clf NB.get params().keys()) #displaying the all possible
parameters of Multinomial Naive Bayes
parameters NB = {

'fit prior': ('true', 'false'),

'alpha': [0.001, 0.0001, 0.00001, 0.000001]
}
gs_clf = GridSearchCV(clf NB, parameters NB, n jobs=-1,
scoring="'accuracy')
gs_clf = gs clf.fit(x_train, y train)
predictions gs=gs clf.predict(x test)
print ("The best score of Multinomial Naive Bayes with Grid Search after
applying Smote is " + str(round(gs clf.best score ,4)))
print ("Best parameters set found on Multinomial Naive Bayes algoritm:")
print (gs_clf.best params_)
print ("Test Accuracy score of Multinomial Naive Bayes with Grid Search
after applying Smote is " +
str (round(accuracy_ score(y test,predictions gs),4)))
predictions gs train=gs_clf.predict(x train)
print ("Train Accuracy score of Multinomial Naive Bayes with Grid Search
after applying Smote is " +
str (round(accuracy_score(y_train,predictions_gs_train),4)))
cv_predicted train = cross val predict(gs_clf, x train, y train, cv=10)
print ("Train Accuracy score of Multinomial Naive Bayes with Grid Search

and 10 folds cross validation after applying Smote is " +

str (round(metrics.accuracy score(y train, cv_predicted train),4)))
cv_predicted test = cross _val predict(gs_clf, x test, y test, cv=10)
print ("Test Accuracy score of Multinomial Naive Bayes with Grid Search
and 10 folds cross validation after applying Smote is " +

str (round(metrics.accuracy score(y test, cv_predicted test),4)))

#Confusion Matrix

labels = ['Kariyerim Bankacilik Ussii', 'Kariyerim Genel Miidiirliik',
'Kariyerim Sube', 'Kurumsal IK Yénetimi/Bordro Islemleri',
'"Kurumsal IK Y6netimi/Ozliik i$lemleri','Kurumsal iK

Yonetimi/Ucret ve Yan Haklar',
'Yap1i Kredi Bankacilik Akademisi', 'Ise Alim ve IK Gelistirme',
]

rf cm = confusion matrix(y test, predictions gs)

rf cm plot = pd.DataFrame (rf cm)

fig = plt.figure(figsize = (8,6))

sns.heatmap (rf cm plot, annot=True, vmin=5, vmax=50.5, cbar=False,

23

fmt="g")

ax = fig.add subplot (111)

cax = ax.matshow (rf cm)

ax.set xticklabels([''] + labels, rotation=45, fontsize=8)
ax.set yticklabels([''] + labels, rotation=30, fontsize=8)
plt.xlabel ('Predicted"')

plt.ylabel ('Actual')

plt.show ()

#Classification Report

print(classification report(y test, predictions gs, target names=labels))
#Precision-Recall Curve

y_score = gs clf.predict proba(x test)

rowCount = x test.shapel0]
actualArr = np.zeros((rowCount, len(labels)))
1=0

for y in y test:

actualArr[i] [y] =1

i=i+1
from sklearn.preprocessing import label binarize
Use label binarize to be multi-label like settings
Y = label binarize(df y, classes=[0, 1, 2, 3, 4, 5, 6, 7])
n _classes = Y.shape[l]
print (n_classes)
y _test arr=np.array(y test)
from sklearn.metrics import precision recall curve
from sklearn.metrics import average precision score
precision = dict()
recall = dict()
average precision = dict()
for i in range(n_classes):

precision[i], recall[i], = precision recall curve(actualArr[:, 1],
y scorel[:, 1i])
average_precision[i] = average precision_score (actualArr[:, i],
y_scorel[:, 1i])
A "micro-average'": quantifying score on all classes jointly

precision["micro"], recall["micro"], =
precision recall curve (actualArr.ravel(),

y_score.ravel ())

average precision["micro"] = average precision_ score (actualArr, y score,
average="micro")

from itertools import cycle

setup plot details

colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue',
'teal'])

plt.figure(figsize=(7, 8))

f scores = np.linspace (0.2, 0.8, num=4)

lines = []

labels = []

for f score in f scores:
x = np.linspace(0.01, 1)
y = £ score * x / (2 * x - £ score)
1, = plt.plot(x[y >= 0], yly >= 0], color='gray', alpha=0.2)
plt.annotate ('f1={0:0.1f}'.format (f score), xy=(0.9, y[45] + 0.02))
lines.append (1)
labels.append('iso-£f1l curves')
1, = plt.plot(recall["micro"], precision["micro"], color='gold',K 1lw=2)
lines.append (1)
labels.append ('micro-average Precision-recall (area = {0:0.2f})"

24

''.format (average precision["micro"]))

departmentName=""
for i, color in zip(range(n_classes), colors):
if 1 ==
departmentName='Kariyerim Bankacilik Ussii'
elif i ==
departmentName='Kariyerim Bankacilik Ussii'
elif i ==
departmentName='Kariyerim Sube'
elif 1 ==

fig
fig
plt
plt
plt
plt
plt
plt
plt

departmentName='Kurumsal IK Yénetimi/Bordro Islemleri'’
elif i ==

departmentName='Kurumsal IK Yénetimi/Ozliik Islemleri'
elif i ==

departmentName='Kurumsal IK Yénetimi/Ucret ve Yan Haklar'
elif i ==

departmentName="'Yapi Kredi Bankacilik Akademisi'
else:

departmentName='Ise Alim ve IK Gelistirme'

1, = plt.plot(recall[i], precision[i], color=color, 1lw=2)
lines.append (1)
labels.append ('Precision-recall for class {0} (area = {1:0.2f})"

''.format (departmentName, average precision[i]))
= plt.gcf ()
.subplots_adjust (bottom=0.25)
.x1im([0.0, 1.01)
.ylim([0.0, 1.05])
.xlabel ('Recall')
.ylabel ('Precision')
.title (' Precision-Recall Curve')
.legend(lines, labels, loc=(0, -.38), prop=dict(size=14))
.show ()

25

