MEF UNIVERSITY

PREDICTING FACEBOOK AD IMPRESSIONS & CPM
VALUES

Capstone Project

Semih Tekten

ISTANBUL, 2018

MEF UNIVERSITY

PREDICTING FACEBOOK AD IMPRESSIONS & CPM
VALUES

Capstone Project

Semih Tekten

Adyvisor: Prof. Dr. Ozgiir Ozliik

ISTANBUL, 2018

MEF UNIVERSITY

Name of the project: Predicting Facebook Ad Impressions & CPM Values
Name/Last Name of the Student: Semih Tekten
Date of Thesis Defense:

I hereby state that the graduation project prepared by Semih Tekten has been
completed under my supervision. I accept this work as a “Graduation Project”.

Prof. Dr. Ozgiir Ozliik

I hereby state that I have examined this graduation project by Semih Tekten which is
accepted by his supervisor. This work is acceptable as a graduation project and the student is
eligible to take the graduation project examination.

Director
of
Big Data Analytics Program
Prof. Dr. Ozgiir Ozliik

We hereby state that we have held the graduation examination of Semih Tekten and
agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE
Committee Member Signature

1. Prof Dr. Ozgiir Ozlik .

ACADEMIC HONESTY PLEDGE

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that [

have neither given nor received inappropriate assistance in preparing it.

Name Date Signature

SEMIH TEKTEN

EXECUTIVE SUMMARY

PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES

Semih Tekten

Advisor: Prof. Dr. Ozgiir Ozliik

DECEMBER, 2018, 168 pages

It is estimated that there are more than two billion active users on Facebook as of the
first quarter of 2018 and social media has tremendous opportunities for advertisers in terms of
performance and measurability. However, for marketing managers, it is very difficult to
manage all the campaigns on different marketing channels and optimize for better results. For
that reason, Facebook Marketing Partners or other optimization solutions emerged in the
ad-tech market. In order to improve existing optimization solutions in the market, ad
impression costs will be predicted in this study by using different machine learning techniques
and different algorithms. The main goal of this study is to generate a robust model for
predicting CPM values on Facebook, and to use that model as an input for the existing
optimization solution Adphorus offers for its clients. Adphorus is one of the Facebook
Marketing Partners in the market.

Key Words: facebook ad delivery, cpm prediction, cpm forecasting, impression
prediction, impression forecasting

6

OZET

FACEBOOK REKLAM GOSTERIM ADET VE MALIYETLERINI TAHMIN ETME

Semih Tekten

Tez Danismani: Prof. Dr. Ozgiir Ozliik

ARALIK, 2018, 168 sayfa

2018’in ilk ceyregi itibariyle Facebook aktif kullanici sayisinin 2 milyarin {izerinde
oldugu tahmin ediliyor ve sosyal medya reklam verenler i¢in performans ve &lgiimleme
anlaminda sayisiz firsatlar sunuyor. Ancak pazarlama yoneticileri i¢in bu ayn1 zamanda daha
iyi sonu¢ almak amaciyla farkli kanallarda ¢ok sayida kampanya yonetmek anlamina da
gelmekte ve yorucu olmaktadir. Bu sebeplerle “ad-tech” sektoriinde “Facebook Marketing
Partners” ve optimizasyon ¢oziimleri sunan sirketler dogmustur. Bu ¢alismada, piyasadaki
optimizasyon ¢Oziimlerini gelistirmek i¢in farkli makine 6grenim teknikleri ve algoritmalari
kullanilarak Facebook reklam gosterim maliyetleri (CPM) tahmin edilecektir. Bu projenin
amac1 Facebook CPM degerlerini gii¢lii bir sekilde tahmin ederek, bu tahminleri Adphorus’un
halihazirda miisterilerine sundugu optimizasyon algoritmast igerisinde kullanmaktir.
Adphorus, Tiirkiye merkezli Facebook Marketing Partner sirketidir.

Anahtar Kelimeler: facebook reklam dagitimi, reklam gdsterimi tahminleme, reklam
gosterim maliyeti tahminleme

TABLE OF CONTENTS

ACADEMIC HONESTY PLEDGE
EXECUTIVE SUMMARY
TABLE OF CONTENTS

1. INTRODUCTION

2. PROBLEM DEFINITION
2.1. Auto-Correlation
2.2. CPM Prediction as a Classification Problem
2.3. Predictive vs. Explanatory Models
2.4. CPM Prediction as a Regression Problem

3. LITERATURE REVIEW
3.1. Web-Scale Bayesian CTR Prediction for Sponsored Search Advertising
3.2. Ad Impression Forecasting for Sponsored Search

3.3. Forecasting User Visits for Online Display Advertising

8

11

16
16
17
19
20

22
22
23
24

3.4. Applying Bayesian Bandits For Solving Optimal Budget Allocation In Social Media

Marketing

4. DATA PREPARATION
4.1. Initial Preprocessing
4.2. Filtering
4.3. Clustering
4.4. Storing the Processed Dataset

5. DATA VISUALIZATION

6. FEATURE ENGINEERING & MODELLING
6.1. Benchmark
6.2. Filtering and Choosing Observations
6.2.1. Significant Changes
6.2.2. Campaign Runtime
6.2.3. Budget / Bid Ratio
6.2.4. Bias in Spend Change
6.2.5. Bias in Bid Change
6.3. Filtering and Choosing Features
6.3.1. Campaign Structure
6.3.2. PCA
6.3.3. Correlation with Target

25

28
28
31
33
34

35

41
43
44
44
45
46
47
48
49
49
50
51

6.3.4. Correlation with Other Features
6.4. Outliers

6.5. Scaling

6.6. Normalizing

6.7. Final Model

7. CONCLUSION
8. REFERENCES

APPENDIX A: BDA 502 Final Report

APPENDIX B: Presentation For MeasureCamp Istanbul

APPENDIX C: Code Base

10

52
53
54
54
55

58
59
61
68
80

1. INTRODUCTION

It is estimated that there are more than two billion active users on Facebook as of the
first quarter of 2018 and social media has tremendous opportunities for advertisers in terms of
performance and measurability. However, for marketing managers, it is very difficult to
manage all the campaigns on different marketing channels and optimize for better results. For
that reason, Facebook Marketing Partners or other optimization solutions emerged in ad-tech

market.

Facebook Marketing Partners (FMP) are tech companies or agencies authorized by
Facebook in helping advertisers to get the most efficient results from their advertisement
campaigns. FMPs are experts on managing hundreds of ads, achieving more scale on

campaigns, reaching new audiences, optimizing budget allocation and hitting higher metrics'.

In ad-tech market, optimization solutions refer to controlling budgets, bids and
monitoring campaigns’ performance to ensure the best results on advertising spending. Best
results may refer to, but are not limited to, maximizing number of desired user actions or
amount of revenue. The main target of optimization solutions in the market is to improve
return on ad spend while controlling advertising costs and spending. It is challenging to
manage thousands of campaigns and control performance metrics at the same time. When
companies do not have sufficient resources or know-how, they are able to partner up with

FMPs or Google Partners and then utilize “optimization solutions” from such companies®.

11

Duopoly vs. Amazon Share of Total US Digital Ad
Spending, 2018 & 2020
% of total digital ad spending

Duopoly
(Facebook

Duopoly
(Facebook

& Google)
55.9%

& Google)
57.7%

Amazon
4.1%

Amazon
7.0%

2018 2020

Note: includes advertising that appears on desktop and laptop computers
as well as mobile phones, tablets and other internet-connected devices,
and includes all the various formats of advertising on those platforms; net
ad revenues after paying traffic acquisition costs (TAC) to partner sites;
numbers may not add up to 100% due to rounding; *includes US digital ad
spending outside Amazon, Facebook and Google

Source: eMarketer, Sep 2018

241077 www eMarketer.com

Market Share of Digital ad spending’

There is a clear duopoly of Facebook & Google in the digital ad spending market
according to eMarketer report. Any improvement in optimization and performance increase in
Google or Facebook ad delivery will have a significant impact in the market. Ad delivery is
Facebook delivery system that determines to whom Facebook shows the ads, and when and
where to show them. An advertiser needs to choose a target audience and an optimization
event (e.g. an app install, click or purchase). Facebook tries to show ads to users in that target

audience who are likely to perform that optimization event®.

Facebook Marketing Partners or Google Partners have a huge opportunity for three

reasons:

1. They can develop black-box algorithms with scarce resources without Google or
Facebook needing to know the details of the algorithms.

2. Their headquarters may be anywhere in the world.

3. These companies are able to target 58% of the total digital ad spending market in spite

of not being large corporations.

Optimization solutions are not only beneficial to advertiser companies, but also

employees in those companies. For marketing managers, it is very difficult and tedious to

12

manage all the campaigns on different marketing channels and optimize for better results.
Managing campaigns is repetitive and requires manual work, mental capacity, number
crunching and concentration. Since optimization solutions also offer automation, which
reduces digital advertising efforts and labor force needed to run digital campaigns, they do

reduce labor needed for managing campaigns and optimization.

By the time this project was prepared, | was working as a data analyst for Adphorus

(https://www.adphorus.com/). Adphorus is an Istanbul based Facebook Marketing Partner

owned by US based Sojern Inc (https://www.sojern.com/). Both companies focus on travel

industry and intend to solve the problems in the travel-marketing area.

Adphorus offers its clients the tools to manage their Facebook campaigns and
automated optimization solutions in order to maximize their ad spend returns. Adphorus’
optimization engine, Marvin, makes necessary changes for thousands of campaigns each
night. These changes may be, but are not limited to, adjusting bids and setting budgets for

each campaign.

What Marvin attempts to solve is defined as an optimization problem. Given the
campaign budget (Constraint), this engine targets to maximize the number of conversions.
Conversion is an action that a person takes on an advertiser’s website or mobile app, such as
adding an item to the shopping basket, purchasing it, filling a subscription form or just
visiting a product page. These actions are “desired actions” for advertisers. In other words,

conversions are the actions that advertisers want their users to perform.

Advertisers may also add another constraint to Marvin, which is Target Cost per
Conversion. With Target Cost per Conversion, advertisers feed Marvin how much they want
to pay for a single conversion on average. The ultimate aim of Marvin is to increase the
efficiency and performance of advertiser’s Facebook campaigns through increasing campaign

spend as much as possible while keeping the cost per conversion at or below advertiser’s

13

Target Cost per Conversion. In other words, advertisers like to have the maximum amount of

conversions with a limited budget and with a unit cost under a target threshold.

The idea and/or question behind this project can be summarized as follows:

“If we had a chance to have information regarding ad impression costs for the next

day, could we improve Marvin optimization?”

Impression, sometimes called a view, an ad view or ad impression, is a term that refers
to the point in which an ad is viewed once by a user, or displayed once on a web page.
Impression is a common metric used by the online marketing industry. Impressions measure

how often advertisers’ ads were on their target audience’s screen”.

For the reasons explained above, ad impression costs are going to be predicted by
using different machine learning techniques and different algorithms with the help of the past
campaign history and Adphorus data. The main goal of this project is to generate a robust
model for predicting CPM values on Facebook, and to use that model as an input for the

existing optimization solution Adphorus offers for its clients.

Cost per Thousand (CPM):

“Cost per thousand (CPM) is a marketing term used to denote the price of 1,000
advertisement impressions on one webpage. If a website publisher charges $2.00 CPM,
that means an advertiser must pay $2.00 for every 1,000 impressions of its ad. The "M"

in CPM represents the Roman numeral for 1,000.”

The ads which will be shown on Facebook to its users are decided by auction
mechanism. Advertisers are bidders and they compete for the ad impression. In other saying,
Facebook does not set prices for ads on its platform. Therefore CPM prices can be considered

as continuous variable such as stock prices and CPM prices always change.

14

In addition to CPM, advertisers monitor and consider another metric called “Cost per
Thousand People Reached”. CPM counts number of impressions in the cost calculation. On
the other hand, Cost per Thousand People Reached counts the number of people that saw an

ad in the cost calculation. It is the average cost to reach 1,000 people’.

15

2. PROBLEM DEFINITION

In this study Facebook CPM values are going to be predicted on a daily basis. There
are multiple ways to define this problem. During the project, various problem definitions,
different target values and features have been utilized. The reason behind the approach is to
find the best results and performing model. In the end, a single problem and target has been

taken into consideration.

2.1. Auto-Correlation

Before moving on with different approaches, it is necessary to explain what
“predicting CPM values” mean. Users never stop visiting Facebook, there is always an
opportunity for ad impressions, and advertisers (or bidders in this case) always compete for
these. CPM can be considered as a continuous variable according to its definition and
Facebook auction mechanism. There can be a comparison between CPM and stock prices.
Both of them are continuous and highly affected from their previous value. For that reason,
Auto-Correlation between CPM value and its previous values in time-series data can be

assumed.

The question of “How does Auto-Correlation effect the model?” can be asked in this
case. At first, CPM value was predicted using its previous values with a linear regression
model. The R-Squared score, not surprisingly, was above 0.9. It can be said that the model has
a huge success for predicting CPM values, but actually what was accomplished is just to

prove that the target is highly auto-correlated.
If CPM is highly correlated, today’s CPM value would probably be around yesterday’s

CPM value. Most of the time, change in CPM value is between [-0.3, +0.4], when the

campaign bid and/or budget does not change more than 25%. Therefore, any prediction within

16

that range would be reasonable and that is why high R-Squared score was obtained. The lack

of the model is the “direction” of change.

If CPM prediction model was going to be used in Marvin optimization, the “error”
term must be defined for Adphorus’ specific use case. It has been decided that there are two

types of errors in this case:

1. The direction of CPM value (whether it will increase/decrease tomorrow)

2. The amount of change

Without considering the first error, it is natural to have a high score due to the reason
explained above. The direction of change is more important than the amount of change; if it is
assumed that costs will be lower tomorrow- but actually it will not be, then our bid/budget
algorithm results will be suboptimal. Marvin algorithm may falsely assume that the campaign
will have a lower cost, thereby spending more money on that specific campaign; yet actually
what it will accomplish is to increase the costs even more by spending more on a campaign

that will have higher CPM.

To sum up, it was not beneficial to target CPM values. Instead of this, “Logarithmic
CPM Change compared to yesterday” was used in the regression model. Logarithmic returns

are highly used in finance. Thus, the same logic is applied in this study.

2.2. CPM Prediction as a Classification Problem

At first, the problem was defined as a “Supervised Classification Problem”. As
discussed above, finding the direction of CPM change is more important and vital. For that
reason, the distribution of percentage changes was divided into groups (0,-1,1,2.. etc.) and

different classification algorithms were executed using these groups as target categories.

17

Approaching CPM value prediction as a classification problem was part of MEF Big

Data Analytics Program BDA 502 Course Final Project. Here is the brief summary of

classification results:

After some trials, three categories were used:
o If CPM will decrease more than 25% => -1
o If CPM will stay between -25% & 25% =>0

o If CPM will increase more than 25% => 1

Around 60 features have been generated and then that number has been reduced to 16

in the end.

At first, train accuracy scores were above 95% and test scores were around 60% which

seemed to be a clear overfitting.

After reducing features and dimensions, the gap between the test and train scores

decreased. (Around 1-2% percent.)

Train and test scores were reduced around 55% when the dimensions were reduced.

Best scores were observed with Random Forest algorithm.

After manual-parameter tuning, test accuracy score increased to 70.5%.

CPM change with a rule-based model was predicted in order to have a benchmark and

decide whether newly developed model brings an uplift in accuracy.
Rule-based model predicted for the next day’s CPM value by calculating weighted

average of past 7 days’ CPM values, and grouped them according to the thresholds

above.

18

e Weighted model had an accuracy of 47%.

e Manually tuned Random Forest algorithm performed better compared to the weighted

model.

All the details of classification project and the report itself can be found in Appendix A.

2.3. Predictive vs. Explanatory Models

There is a significant difference between two models: In CPM prediction as a
regression problem, any forward-looking feature was not applied. However, in Classification
problem for BDA 502 course, “spend change of last day” was used as a feature while
predicting the CPM change. Normally, that information was not available when predicting
CPM change of tomorrow. In that sense, the former can be categorized as a “predictive”

model and the latter as an “explanatory” model.

Since CPM values are time-series data, in order to predict tomorrow’s CPM value or
CPM change, the available information at the time of prediction should be used. In other
words, the information at point ¢ should only be used, when ¢ + [is predicted. To use the
information from ¢ + / at point £ would be cheating the algorithm. Back-test results will be
biased and will not be accurate. Besides, it would be impossible to make a forward-test, as the
information of next day’s spend change did not exist. However, insights can be generated by

using ¢ +1/ deliberately.

For the reasons above, BDA 502 CPM Change Classification Project can be
considered as an explanatory model. The benefit of explanatory models with time-series data
i1s to understand which forward-looking features have a correlation or impact on the target
values. In this case, it has been observed that spend levels of last day have an impact on CPM
values. As a result, predictive model with the input from explanatory model may be

restructured in the future.

19

2.4. CPM Prediction as a Regression Problem

After BDA 502 Course Final Project, the problem was redefined as “Supervised
Regression” in order to understand whether predicting numerical values bring an uplift or not.
Different target values were used during the project. Cost value itself, cost change in
percentage and logarithmic cost change are three different target types. Combination of these
three with CPM and Cost per Thousand People Reached generates six different targets for

modelling:

e Cost per Thousand People Reached value (in US Dollars)

e Cost per Thousand People Reached change, compared to yesterday

e [ogarithmic Cost per Thousand People Reached change, compared to
yesterday

e (Cost per Thousand value (in US Dollars)

e (CPM change, compared to yesterday

e Logarithmic CPM change, compared to yesterday

Due to the reasons related to Auto-Correlation explained above, values in US Dollars
were not used as target values. R-Squared scores were high, yet have no use for Marvin

algorithm and could lead to suboptimal results.

Cost per Thousand People Reached is very similar to CPM as well as model results.
Since there was no significant uplift with Cost per Thousand People Reached as a target

value, CPM was used instead.

Although the results were very similar between percentage changes and logarithmic
changes, the latter was chosen to be used. Logarithmic returns are highly used in finance, so
the same logic was used in this project as well. Because of these reasons, the target value was

“Logarithmic CPM Change compared to yesterday” in the regression model.

20

Having multiple target values and multiple regression models in order to find a robust
model may have seemed promising, however this was not the case. From this point on, the

target is referred to “Logarithmic CPM Change compared to yesterday”.

21

3. LITERATURE REVIEW

Literature related to Facebook ad delivery, campaign optimization is scarce. This can

be attributed to three important factors:

e TFacebook announced its Marketing Partner Program in 2015%, which shows that
optimization solutions are relatively new in the market. At the most digital marketing
has a history of 30 years. There is still more time needed for more research and

experimentation.

o Google is relatively old compared to Facebook and some advertisers and researchers
give more credit to performance of Google Adwords. Ad optimization on Google

Adwords have significantly more academic research compared to Facebook.

e Facebook does not share personal and auction level data with advertisers which makes

collecting granular data, conducting experiments and optimization more difficult.

The following articles have some relation to the problem in this project.

3.1. Web-Scale Bayesian CTR Prediction for Sponsored Search Advertising’

The algorithm used in the paper (Graepel, Candela, Borchert & Herbrich, 2010)
describes a new Bayesian online learning algorithm for binary prediction based on a
generalised linear model with a probit (cumulative Gaussian) function. Estimating CPM
values is crucial for Adphorus as CTR prediction in the digital marketing business. CTR is a

metric calculated by “clicks/impressions” and the abbreviation of Click-Through Rate.

22

Estimated click-through rate plays a critical role in deciding both allocation and
payments, and has significant effect on the user experience, advertiser and income of the ad
marketplace (Graepel, Candela, Borchert & Herbrich, 2010, 2). Similar to the prediction of
the CPM change, the learning algorithm in this paper tries to map the set of ad impressions as
represented by their feature descriptions, and the intervals represent the set of possible CTRs,

in other words, the probabilities of clicks.

3.2. Ad Impression Forecasting for Sponsored Search'’

Another study (Nath, Mukherjee, Jain, Goyal & Laxman, 2013) focuses on the ad
impressions forecasting in order to optimize return on investment for sponsored search

advertising.

Sponsored search is a dynamic process where advertisers and ads fluctuate, and the
query traffic shows seasonal or geographic variations which may cause changes in traffic
volumes. As a result, advertisers get confused about how to set bid values to achieve their
goals. For example, advertisers may want to maximize the number of impressions for a given
budget. This confusion about bid-budget trade-off leaves advertisers with ineffective bids,
they may bid either too much or too little, and sometimes end up with leftover budgets (Nath,

Mukherjee, Jain, Goyal & Laxman, 2013, 943).

The model in this study addresses the problem that the majority of the existing
forecasting models ignore or overfit to the query traffic information which has a crucial
impact on the probability of winning an ad auction. In the project, ad auctions are holistically
modelled using a Bayes net model that captures the correlation between competitors’ scores
and query traffic features. The reason why this model is preferred to others is that most of the
auction features are categorical, thus Bayes net can be easily trained and sampled to generate

artificial auctions.

23

Another advantage of Bayes net is that it allows for feature targeting. For example, if
the advertiser has a certain geographical area to which they would like to advertise, fixing the
corresponding nodes in the Bayes net makes the model be able to generate the traffic

corresponding to the targeting (Nath, Mukherjee, Jain, Goyal & Laxman, 2013, 952).

3.3. Forecasting User Visits for Online Display Advertising"

Another study (Cetintas, Chen & Si, 2012) points out an important problem in online
advertising that makes it difficult for advertisers to forecast the number of user visits for a
web page. One of the major contributions of this study is the discovery of existing models
addressing the same problem that have been utilized by traditional time-series forecasting
techniques on historical data of user visits. In other words, previous models used a single
regression model for forecasting that was based on historical data for all web pages. Existing
models ignore the fact that various types of web pages and timestamps have different patterns
of user visits. However, in this study, a set of probabilistic latent class models are used as the
learning algorithm automatically captures the underlying user visit patterns among multiple

web pages and multiple timestamps.

Compared to a single regression model, the proposed probabilistic latent class model
is more flexible in identifying various latent classes for web pages and timestamps with
similar user visit trends, as well as learning a separate forecasting model for each class of web
pages and timestamps (Cetintas, Chen & Si, 2012). Thus, unlike the traditional regression
models, the probabilistic latent class model is shown to be more capable of differentiating the
importance of various types of information across different classes of web pages and

timestamps.

24

3.4. Applying Bayesian Bandits For Solving Optimal Budget Allocation In Social Media
Marketing'?

There is limited amount of research regarding CPA value prediction in the social
media marketing literature. However, a great amount of study can be found on optimal budget
allocation in digital marketing. One of them focuses on the bayesian approach applied on

multi-armed bandit problems for solving optimal budget allocation in social media marketing.

The Bayesian bandit method in the study (Ahonen, 2017) is actually based on the
multi-armed bandit problem. Multi-armed bandit problem is a kind of sequential resource
allocation problem in probability theory. There are two main challenges to this problem;
exploitation and exploration. The former accounts for using resources on alternative options
based on the current knowledge that gives the best results, the latter refers to seeking out for
better alternatives at the risk of losing some gains from current budget allocation. Specifically,
it is a sequential resource allocation problem where one tries to maximize the expected
returns. It is very difficult for companies to allocate marketing budget on various advertising
campaigns in real time since expected returns change in real time as well. Thus, multi-armed

budget allocation decisions are usually made periodically.

Multi-armed bandit problems can be solved using sophisticated parameter tuning
methods but heuristics are generally preferred (Ahonen, 2017). One of them is Bayesian
statistics and it is called “random probability matching”. Random probability matching is

derived from the Thompson Sampling approach to solving multi-armed bandit problems.

Facebook has launched its own automated solution for real time budget allocation for
the online auction mechanism as of late 2018. This brand new algorithm is in its infancy, yet
poses a great threat for Facebook Marketing Partners, like Adphorus, who are also struggling

to design the best optimal budget allocation tools for online auctions.

25

Another point in the work of Ahonen is the modelling of CPA value change. (Cost per
Conversion is also referred as Cost per Action. CPA is a commonly used abbreviation of Cost
per Action in the marketing industry.) Ahonen’s work on modelling CPA change is parallel
with this project. However, the author keeps details of the algorithm as a trade-secret.

Therefore, only a limited amount of details was mentioned in Ahonen’s work.

In this study (Ahonen, 2017), an algorithm for budget constraint Bayesian bandits is
formulated in order to measure what happens to CPM when the budget is changed. In the
Facebook ad delivery mechanism when the budget is increased, the competing bid is also
increased, thus CPM rises. This mechanism gets complicated when the advertisers raise their
competing bids and then Facebook adjusts its algorithm with its own competing bid.

Therefore, it can be assumed that the CPM and then CPA increase as the budget increases.

Similar to this project, Ahonen executes various algorithms to solve the optimal
budget allocation problem when CPA changes as a function of budget. In each step, the
learning rate is iteratively updated. Afterwards, the change in CPA of each campaign is
calculated and then the CPA samples are updated accordingly. After each iteration, a new
estimate of the optimal allocation is calculated with the new CPA samples and existing budget

constraints. The iteration is performed until the optimal budget allocation is obtained.

The optimization algorithm is presented in the image below (Ahonen, 2017):

26

Algorithm 3: Iterative budget allocation

Calculate prior from data;
Calculate conversion rate samples;
Convert conversion rate samples to CPA samples;
Calculate budget limits;
Initialize budget allocations with current budget proportions;
while Iteration limit not reached do
Calculate step;
Calculate optimal budget allocation with budget limits;
Change budget proportions towards the optimal allocation by the
step;
Calculate squared difference between between optimal and current
budget proportion;
if squared difference 1s low enough then
| break loop;

return Ad sets budget proportions;

27

4. DATA PREPARATION

During the project, Python 2.7 programming language and Pandas, Numpy,

Scikit-learn packages have been used. For encoding ‘UTF-8’ has been chosen. Dataset used in

the project was obtained from Adphorus & Sojern databases. 10 CSV files, summing up to

1.87GB 1n disk size, were read as Pandas DataFrames and merged into one single DataFrame.

Each row of the dataset had values of a campaign’s metrics for a specific date.

4.1. Initial Preprocessing

After generating initial DataFrame, the following methods were applied:

e Metrics related to spending were in clients’ local currency. The rates table was then

converted into DataFrame, and if there were any missing days in the rates, the

previous day’s currency value was filled with Pandas’ ‘forward-fill’ method. Lastly,

currency rates were joined to master DataFrame and metrics related to spending were

converted to USD currency. The following columns were converted to USD and saved

as a new column:

o

o

o

Cost per Thousand Reach
CPM

Spend

Target

Budget

Bid

Weighted CPM

e The shape of the DataFrame at the initial step was [877790, 72].

28

e Some of the metrics had NA values that had a meaning. Target Cost per Conversion is
an example of such a case. If Target Cost per Conversion value is NA, then it means
the campaign has “no target”. NA values in such metrics are filled with meaningful

values. (In the case above, ‘infinity’ is the meaningful value.)

e Since excessive amount of dummy features were going to be generated, a Python
function for dummy feature generation was defined. Dummy features are based on the
values of the following columns:

o Advertiser time-zone

o Billing event

o Optimization Goal

o Campaign Objective

o Promoted Object

o Campaign Attribution Window
o Pacing Type

o Health Status

o DAO

o Dynamic Ads

o Cost/ Revenue Optimization

o Target

e Features related to time were generated:
o Day of week
o Day of year
o Month

o Quarter
e Feature related to spending, delivery and costs were generated:

o CTR
o Social CTR

29

o Social Reach Ratio

o Frequency

o Absorption rate

o CPM

o Cost per Thousand Reach
o Budget Ratio

o Spend / Budget Ratio

o Budget / Bid ratio

e Metric columns were shifted in order to find the previous days’ metrics for each
campaign by applying the following steps:
o Reindexing DataFrame rows using campaign IDs and dates
o Finding starting day of each campaign
o Shifting columns for each campaign

o Reindexing master DataFrame back to original state

e Weekly weighted CPM was calculated. The more recent the date, the more weight it
was given. Thus, the weights were ordered as follows with 0.36 being the most recent
of the dates:

o [0.36,0.24,0.16, 0.10, 0.07, 0.04, 0.03]

e Metric percentage changes compared to previous days were calculated. Metric change
features would have string values of [‘Ovs1’, ‘1vs2’, ..., ‘6vs7, ‘1vs7’] located in the
end of its name while the numbers refer to the relevant day. Changes were calculated
based on the following columns:

o CTR

o Social CTR

o Social Reach Ratio
o Bid

o Spend

30

o Budget

o Absorption Rate

o CPM

o Frequency

o Cost per Thousand Reach
o Budget Ratio

o Spend / Budget Ratio

o Budget / Bid ratio

e New features were generated based on metric changes:
o bidchange*spendchange yesterday
o bidchange*budgetchange yesterday
o spendchange*budgetchange yesterday'

e Infinity values were replaced with zero in the following columns:
o CTR
o Social ctr

o Social Reach Ratio

4.2. Filtering

e For continuuity, campaigns that were not observed for more than seven days
adjacently were omitted. Otherwise null values would be fed to the regression
algorithm which would end up with a Python error. There were 18,046 campaigns that

had at least eight adjacent days in the DataFrame.
e Filters were applied to the rows. Before the filters were applied, there were 844,845

rows and 566 columns. In order to apply filters, a Python function was prepared. The

following filters were applied:

31

Days should be adjacent and campaign should be running for at least 8 days.
(As explained above.)

Campaign budget should be greater than 0.

CPM should be greater than 0.

Weighted CPM should be greater than 0.

Cost per Thousand Reach should be greater than 0.

Frequency should be greater than 0.

Bid should be greater than 0.

Spend should be greater than 0.

Impressions should be greater than 99. (CPM calculation should be based on
significant amount of ad impressions.)

There should be no campaign schedule.

e In addition to the filters above, filters related to campaign structure were also applied.

If there is a change in the campaign structure, Facebook ad delivery and CPM is also

affected. For that reason, campaign structure changes were detected and omitted. The

following filters were applied in order to detect observations with structure changes:

o

o

o

Campaign budget change should be 0.
Client currency should not change.

Client timezone should not change.

Billing event should not change.
Optimization goal should not change.
DAO status should not change.

Dynamic ad status should not change.
Campaign objective should not change.
Promoted object should not change.
Attribution window should not change.
Optimize revenue status should not change.
Targeting specifications should not change.

Target should not change.

32

o Pacing should not change, and be equal to ‘standard’.
o Health status should not change, and be equal to ‘GOOD”’.
o Campaign status should not change, and be equal to ‘ACTIVE’.

e After the steps above, there were not any rows with an NA value. The shape of the

master DataFrame was 141,775 rows and 470 columns at this point..

e The columns that did not contain any information were omitted. If a column falls into
the following criteria, then it is assumed that it does not contain any information:
o It has only one unique value.
o It contains client-specific information, like client name or user name.
o It contains long text like a description.
o It contains infrastructure specific value, like ID.
o It contains values that Facebook will not share in the future.
o It is generated during preprocessing and only used in filtering.
o It has forward-looking values, and is not any target variable.
o It contains date related values, and is not convenient to be fed into regression
function.

o Itis an exact duplicate of another column.

® 258 columns were renamed and reordered for better comprehension.

4.3. Clustering

e Various clusters were generated from campaign structure features in order to use in the
model.

e K-Means Clustering algorithm in Scikit-learn package was utilized.

e Number of clusters was chosen to be dynamic and were in a range of [2,20].

o 19 more columns that contain clusters of each observation added.

33

4.4. Storing the Processed Dataset

There were 141,775 rows, 277 columns at the final step. Master DataFrame was saved

to disk for future use. GZIP compression method was used in order to reduce the file size.

Without utilizing Pandas built-in functions, data preprocessing script took more than
six hours. The reason for this was multiple nested ‘for’ loops in the script were used. After
converting these parts into Pandas built-in functions, data preprocessing duration decreased

significantly to only 15 minutes, saving five hours and forty-five minutes.

34

5. DATA VISUALIZATION

Visualizations in this section contain only the target and 13 features used in the last
model. After data preparation and multiple trials in order to find the best performing model, a
major part of the observations was filtered. Following visualizations were generated from 14

columns and 141,775 rows. matplotlib, scipy and seaborn packages were used for data

visualization.

Following visualization is from MEF Big Data Analytics Program BDA 502 Course

Final Project and contains histogram of CPM Change, the target variable:

CPM Daily Change Distribution

14000 +

12000

10000

8000 +

Frequency

G000 +

4000

2000

-1.0-0.9-0.8-0.7-06-05-04-03-02-01 00 01 02 03 04 05 06 07 08 09 10

After plotting the target variable, the question of “To which statistical distribution
observations in this study fit best?” can be asked. Seaborn histogram function has fit

parameter, which accepts continuous random distributions in scipy package. 70 histograms,

35

each containing fitted distribution from scipy.stats, were generated. 18 of them were found to

fit better ocularly.
beta
25
20
15
1.0
o5
oo
-1.00 -0.75 —0.50 -0.25 oo 025 050 ovs 100
cpm_change(Ovs1)_log
Logarithmic daily CPM change, fitted to Beta Distribution
norm
25
20
15
10
(18]
oo
-1.00 -0.75 —0.50 -0.25 oo 025 050 075 1.00

cpm_change(0vs1)_log

Logarithmic daily CPM change, fitted to Normal Distribution

36

iehnsonsu

20

05

00
-1.00 075 -0.50 -0.25 000 025 050 oFs 1.00

cpm_change(0vs1)_log

Logarithmic daily CPM change, fitted to Johnson's SU Distribution

Kolmogorov-Smirnov"® test was applied to 18 distributions in order to find which
distribution fits best', and Johnsons SU distribution fit best compared to others.
Supportively, seaborn histogram visualization for Jonhnson’s SU distribution above is very

clear and shows the resemblance.

Best fitting distribution: johnsonsu
Best p value: 0.3439750123259282

Parameters for the best fit: (0.0048928698851670345, 0.9735257590501925, 0.0013939443593146712, @.14600510233690264)

Output of Kolmogorov-Smirnov test on the console

37

10000

8000

G000

4000

2000

1400

1200

1000

G000

5000

4000

3000

2000

1000

35000

30000

25000

20000

15000

10000

5000

Following visualization shows the histogram of all variables:

absorption_r(t-1)

cpm_change(1vs2)

or_change(1vs2)

social_ctr_change({1vs2)

bid_change(0vs1 mit-1)_usd
100000 _change() cpmit-1)_i
1600
EO000 1400
1200
o000 1000
00
40000
00
20000 00
200
o o _ L
-02 oo o2 ki
cpm_change{1vsT) cpm_change(3vsd)
1200 1400
000 1200
200 000
00
00
00
400
400
200 200
Ll i o -
-10 05 Q0 05 10 15 -1.0 0.5 oo 05 10
or_change(1vs7) frequency_change(1vs2)
3500
G000
3000
S000
2500
4000
2000
3000
1500
2000 1000
1000 ' 50
1] o 1]
-1 1] 1 2 -02 oo o2
social_ctr_change({1vsT)
35000
30000
25000
20000
15000
0000
S000
0 ——e—

Histogram of 13 Features & Target

38

1400

1200

1000

4000

3000

2000

1000

3500

3000

2500

2000

1500

1000

000

cpm_change({Ovs1)_log

ooz

004

006

frequency_change(1vs7T)

04

02

00

02

008

These 13 features were chosen as,

e They were the most correlated features with the target.
e They were not inter-correlated more than 50%.
e Using other features in addition to these 13 features did not increase

performance significantly.

Following visualization depicts correlation heatmap of 13 features and target:

opm_changs(ive1)_log

dr_change{1vsT)

social_ctr_change(1vs2)

m_changs(3vs4)
075

e . .
050
i ...
social_ctr_change(ivsT) .

opm_changs(1vsT)

oo
absorplion_rit-1} 02 it

gpm_change(ivs2)

dr_change{1va2) 0.34

-0.085 [Eikx]

g ¥ ¥ % &% T ¥ § § T § § § +¢§
TR
a3 g g c g T g g = E 5 g g
E5 5 b5 85 g i 5 B 8
A LI SR B
5 i i £

Correlation Heatmap

39

Most correlated features are frequency change(lvs2) and frequency change(1vs7) by
0.35. Most correlated feature to target variable is cpm_change(1vs2) by -0.25. Following

visualizations depict these feature combinations and fit a regression line.

pearsonr =035, p=0

frequency_change{1vs7)

frequency_change(1vs2)

L I

50 ™ pearsonr = -0.25, p=0

cpm_change(0vs1)_log

-10.0

i} o 20 3 40 a5
pm_change(1vs2)

40

6. FEATURE ENGINEERING & MODELLING

During feature engineering and modelling, Scikit-learn package was used. Pandas
DataFrame that was used in the modelling had 141,775 observations and 277 features.
Features and observations were filtered based on different criteria, model results were
obtained and compared with benchmark. Benchmark values were obtained from Random
Forest Regressor. By filtering features and observations, uplift in model results was sought.

There were no NA value in the DataFrame.

Various target variables were used in the model. However, the results below refers to
“Logarithmic CPM change, compared to yesterday” for the reasons explained. “674” was

used for seed value wherever possible.

Since regression model was formed multiple times during the project, a Python
function was defined. The function expects features, a single target, an algorithm to use in the
model, parameters for algorithm, a seed number and a text description as arguments. Number
of observations should be equal for features and the target. The function splits the
observations to 10 folds for cross-validation and searches for the best parameters generating
the highest R? using GridSearch. After that, the function fits train data using the algorithm,
predicts target values using both train and test data, and generates average scores which are
adjusted R? and Root-Mean-Square-Error (RMSE). Lastly, the model returns following
dictionary:

to return = { 'target'itarget.name,
'avg train_r2":np.mean(score train_list),
'avg test r2":np.mean(score_test list),
'avg train_rmse':np.mean(rmse_train_list),
'avg test rmse':np.mean(rmse_test list),
'predictions":np.concatenate(prediction_list, axis=0),
'actuals":np.concatenate(actual list, axis=0),

'algorithm':algorithm,

41

'params':reg.best params_,
'description':description,

'Seed":seed }

Scikit-learn package does not have a built-in function that calculates adjusted R?. For
that reason, another function to calculate adjusted R* was defined. The formula for adjusted R?
is:
adjusted r=1-(1-rs) *m-1)/(n-p-1)
in which,
rs: r-squared
n: number of observations

p: number of independent variables

There are multiple algorithms to form a regression model in Scikit-Learn. The
regression function expects a single algorithm as an argument, however performance of
various machine learning algorithms were sought. For that reason, a new modelling function
was defined. The aim of the function is to try each algorithm with the regression function,
collect results and report them back. Machine learning algorithms that were used in the

modelling function are as follows:

e Linear Regression Algorithms
o Linear Model
o Ridge
o Lasso
o Bayesian Ridge
o Lasso Lars

o Lars

e Tree Regression Algorithms

o Random Forest Regressor

42

o Decision Tree Regressor

Various parameters were fed into GridSearch function for tuning. Scikit-Learn
documentation indicates which parameters have importance in tuning for most algorithms.
Parameters for Random Forest Regressor were taken from MEF Big Data Analytics Program

BDA 502 Course Final Project.

6.1. Benchmark

Benchmark scores were generated with Random Forest Regressor. The DataFrame was
fed into the modelling function, and results for different “max features” parameters were
obtained. Thereafter different algorithms, filtering options were utilized and their results were
compared with benchmark scores. If different scenarios brought significant uplift, then they

were used in the final model.

Case Avg. Train RMSE | Avg. Train R? | Avg. Test RMSE | Avg. Test R*
Features: 14 | 0.2288 0.2948 0.2339 0.1967
Features: 25 0.2229 0.3307 0.2294 0.2267
Features: 40 | 0.2197 0.3495 0.2273 0.2409
Features: 80 | 0.2173 0.3638 0.2258 0.2513

Results for Benchmark Modelling

With 80 features, the algorithm generates the minimum error and can explain 25,13%
of the distribution variance. As the number of the features increases, RMSE scores decrease
and R? scores increase. Although the test R? score with 80 features is more than the score with
14 features, the latter was used in the benchmark comparison if Random Forest Regressor

Algorithm was chosen. The reason is computation takes more than 30 minutes with 80

43

features. Following scores were obtained either with Random Forest Regressor or Linear
Regression algorithm, since the other algorithms generated similar results and did not bring
significant uplift. Both train and test R? values are adjusted in the tables that show model

SCOres.

6.2. Filtering and Choosing Observations

By filtering observations and feeding them into the model, subset of all observations
were tested if it will bring better results. Different scenarios were chosen based on business

knowledge.

6.2.1. Significant Changes

If Facebook metrics change significantly, they may affect ad delivery. For that reason,
various thresholds were chosen and features related to change only below that threshold were

fed into the model. These features were:

e Absorption_r change
e bid change(Ovsl)
e 'bid change(1vs2)
e 'budget change(Ovsl)
e budget change(1vs2)
e 'ctr change(1vs2)

e spend change(1vs2)

The threshold was a parameter to select rows and results were collected for following

threshold values: [0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.8] Absolute changes were considered.

44

Case Avg. Train RMSE | Avg. Train R?* | Avg. Test RMSE | Avg. Test R?
Threshold: 0.1 | 0.1244 0.1900 0.1326 -0.2968
Threshold: 0.2 | 0.1445 0.1932 0.1516 0.0069
Threshold: 0.3 | 0.1647 0.1902 0.1706 0.0541
Threshold: 0.4 | 0.1769 0.1960 0.1821 0.0830
Threshold: 0.5 | 0.1890 0.2063 0.1944 0.0990
Threshold: 0.6 | 0.1969 0.2204 0.2024 0.1164
Threshold: 0.7 | 0.2027 0.2394 0.2081 0.1355
Threshold: 0.8 | 0.2080 0.2660 0.2135 0.1587

When threshold for significant change increases, both average train & test R?
increases. When threshold for significant change increases, RMSE also increases. All

thresholds bring less RMSE, but their R? is also less than benchmark. Filtering for significant

Results for Significant Changes

change will not be used in the final model, since the results were mixed.

6.2.2. Campaign Runtime

Facebook has its own ad delivery optimization so that advertisers will get the most
from their Facebook marketing efforts. It is already known that Facebook requires a learning

phase so that its optimization engine will have significant results. Thresholds for various

campaign runtimes in days were tested. Threshold values were [0,9,13,19,29].

45

Case Avg. Train RMSE | Avg. Train R?* | Avg. Test RMSE | Avg. Test R?
Threshold: 0 0.2288 0.2948 0.2339 0.1967
Threshold: 9 0.2289 0.2982 0.2342 0.2003
Threshold: 13 | 0.2308 0.2998 0.2361 0.1994
Threshold: 19 | 0.2328 0.3047 0.2377 0.1973
Threshold: 29 | 0.2369 0.3079 0.2427 0.2010

Campaign Runtime in Days Test Results

Results are similar. It seems campaign runtime in days has trivial effect on target
variable. Campaign runtime in days filter will not be used in the final model, since the results

were insignificant

6.2.3. Budget / Bid Ratio

Bid defines how much money does an advertiser value for a single conversion on
Facebook. Campaign budget divided by bid represents how many conversions an advertiser
wants to have from Facebook. If Budget / Bid Ratio is low, it means that conversions expected
are also low. With budget and bid so low, Facebook optimization engine may not reach a
confidence level in order to find the right audience that are most likely to convert. For these

reasons, conversions expected were tested in the model. Thresholds were [5,10,15,20,50]

46

Case Avg. Train RMSE | Avg. Train R?* | Avg. Test RMSE | Avg. Test R?
Threshold: 5 0.2462 0.3225 0.2507 0.2068
Threshold: 10 | 0.2513 0.3274 0.2569 0.2088
Threshold: 15 | 0.2542 0.3320 0.2599 0.2122
Threshold: 20 | 0.2563 0.3339 0.2625 0.2109
Threshold: 50 | 0.2647 0.3461 0.2719 0.2191

Conversions expected has a trivial impact on increasing test R? score. If conversions
expected were going to be used in the final model, half of the observations should be

sacrificed for 1% increase in the score. Conversions expected will not be used in the final

model.

Test Results of Conversions Expected

6.2.4. Bias in Spend Change

CPM and CPA tend to be higher when budget and campaign spending increase
according to literature about Facebook ad delivery. Since campaigns have different spend

change levels, bias may affect model results. If number of observations in each spend change

level range are similar, then it may remove the bias and increase the model performance.

Following bins were used for spend change level calculations:

[-1.0,-0.9,-0.8,-0.7,-0.6, -0.5, -0.4, -0.3, -0.2, -0.1,

0,

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1]

47

Various thresholds for maximum number of observations were set. These thresholds
were [650,2000,3000,6500,9000]. That means, if a bin has more observations than the
threshold, observations were dropped randomly until the bin has the maximum number of

observations allowed.

Case Avg. Train RMSE | Avg. Train R* | Avg. Test RMSE | Avg. Test R?
Threshold: 650 | 0.2588 0.4259 0.2780 0.1058
Threshold: 2000 | 0.2525 0.3942 0.2652 0.2174
Threshold: 3000 | 0.2456 0.3801 0.2570 0.2262
Threshold: 6500 | 0.2375 0.3340 0.2458 0.2100
Threshold: 9000 | 0.2325 0.3213 0.2396 0.2068

Test Results of Spend Change Bias Control

When threshold decreases, train R* increases but the opposite holds true for test
dataset which leads to clear overfitting. Converting dataset to unbiased one in terms of spend

change did not help and it will not be used in the final model.

6.2.5. Bias in Bid Change

Advertisers have more chance to win more auctions and to exhaust their campaign
budget, if their bid is higher. Different campaigns may have different bid changes and
different number of observations in each level. The same logic behind bias control in spend
change levels was applied to bid changes. Thresholds for maximum number of observations

were [6500, 3000].

Following bins were used for bid change level calculations:

48

[-np.inf, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,
0,
0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, np.inf]

Case Avg. Train RMSE | Avg. Train R? | Avg. Test RMSE | Avg. Test R?
Threshold: 6500 | 0.2294 0.3503 0.2452 0.1818
Threshold: 3000 | 0.2335 0.3694 0.2534 0.1346

Test Results of Bid Change Bias Control

Test results are similar to spend change bias control. There is a clear overfitting, and
results are not better than benchmark. Bias control in terms of bid change will not be used in

the final model.

6.3. Filtering and Choosing Features

By filtering features and feeding them into the model, subset of all features were tested

if it will bring better results. Different scenarios were chosen based on business knowledge.

6.3.1. Campaign Structure

Each campaign has a different structure on Facebook. Variables related to campaign
structure are mostly categorical, and they were converted to dummy features. These dummy
variables start with “ is” and they were tested whether they bring an uplift or not. In addition
to campaign structure, clusters generated for each observation in preprocessing phase were

also tested.

49

Case Avg. Train RMSE | Avg. Train R? | Avg. Test RMSE | Avg. Test R?
Dummy + No Clusters 0.2279 0.3004 0.2330 0.2032
Dummy + Clusters 0.2280 0.2998 0.2332 0.2021
No Dummy + No Clusters | 0.2269 0.3068 0.2328 0.2087
No Dummy + Clusters 0.2269 0.3070 0.2324 0.2110

Test Results of Campaign Structure

All train and test RMSE and R? scores are very similar. There is 0.01 point increase in

test R* with option four: “No Dummy + Clusters”. Option four suggests not to use campaign

structure features, but best clusters. By not using campaign structure features, the complexity

will be decreased, also the score increases by 1 point. Only clusters will be used in the final

model.

6.3.2. PCA

There were more than two hundred features, and it was questioned whether reducing

dimensions with PCA increase performance of the model. Various number of components

were tested in the model. Number of components were [3, 5, 10, 20]

Case Avg. Train RMSE | Avg. Train R* | Avg. Test RMSE | Avg. Test R?
n_components: 3 | 0.2716 0.0085 0.2652 -0.0006
n_components: 5 | 0.2714 0.0104 0.2651 -0.0006
n_components: 10 | 0.2677 0.0371 0.2649 0.0018
n_components: 20 | 0.2646 0.0587 0.2640 0.0076

Test Results of the model formed with PCA components

50

PCA did not help with the scores as clearly shown in the table. Test R? values are
negative because of adjusted R? formula. Dimensionality reduction will not be used in the

final model.

6.3.3. Correlation with Target

Features were selected based on their correlation with the target variable and
performance results were obtained. Number of features tested were [10, 20, 50, 100, 200] The

features that are most correlated to the target variable were selected.

Case Avg. Train RMSE | Avg. Train R?> | Avg. Test RMSE | Avg. Test R?
of feature: 10 0.2537 0.1348 0.2474 0.1262
of feature: 20 0.2512 0.1515 0.2460 0.1329
of feature: 50 0.2509 0.1536 0.2461 0.1307
of feature: 100 0.2503 0.1575 0.2562 0.0303
of feature: 200 | 0.2470 0.1784 0.4794 -4.0478

Test Results of the most correlated features

Because of computational speed in the test linear regression model was used instead of
Random Forest Regressor. The top 20 correlated features generated the maximum test R* and
minimum RMSE. After 50 features test R? dropped significantly. Top 20 features will be used

in the final model.

51

6.3.4. Correlation with Other Features

After selecting top 20 features from previous section, the same features were also
filtered based on their correlation with each other. Features that are correlated more than 0.5
were detected, and only the features that has higher correlation with the target variable were
selected. Then these features were fed into the model and compared with performance of the

features decided in the former tests. After running Python script, 13 features out of 20 were

detected.
Case Avg. Train RMSE | Avg. Train R* | Avg. Test RMSE | Avg. Test R?
13 features 0.2535 0.1360 0.2472 0.1279
Features selected | 0.2512 0.1515 0.2460 0.1329
in former tests

Test Results of the most correlated features

Because of computational speed in the test linear regression model was used instead of
Random Forest Regressor. Although features selected in former tests have slightly higher test
R? score, the final model will utilize 13 features that were selected in this test. The reasons are

explained below:

e Overfitting seems to be less with the features selected in this test.
e R?and RMSE scores are similar.

e Less features mean less complexity.

Features that were selected in this test:

e 'ctr_change(lvs7),

e 'social ctr change(lvs2)',

52

6.4. Outliers

'frequency change(1vs7)',
'cpm_change(3vs4)',
'ctr(t-1)",

'cpm(t-1) usd',

'social_ctr change(1vs7)',
'cpm_change(1vs7)',
'absorption_r(t-1)',
'bid_change(Ovsl)',
'frequency change(1vs2)',
'cpm_change(1vs2)',
‘ctr_change(1vs2)’

Although impossible or problematic cases were filtered out in preprocessing phase,

effect of removing outliers from observations was tested. z-Score and IQR were used for

outlier removal. z-Score threshold was 3.0 and IQR thresholds were [0.25 - 0.75].

Case Avg. Train RMSE | Avg. Train R? | Avg. Test RMSE | Avg. Test R?
z-Score removal | 0.1770 0.2206 0.1828 0.1536
IQR removal 0.1252 0.1872 0.1328 0.0771
Without outlier 0.2250 0.3191 0.2296 0.2415
removal

Outlier Removal Test Results

Removing outliers surprisingly decreased test R? score by almost 10%. This may also

show that outlier cases contribute more to CPM change. Outlier observations will not be

filtered in the final model.

53

6.5. Scaling

Various scaling algorithms were used on the features in the hope of increasing model

performance.

Case Avg. Train RMSE | Avg. Train R? | Avg. Test RMSE | Avg. Test R?
MinMaxScaler 0.2535 0.1360 0.2472 0.1279
MaxAbsScaler 0.2535 0.1360 0.2472 0.1279
StandardScaler 0.2535 0.1360 0.2472 0.1279
RobustScaler 0.2535 0.1360 0.2472 0.1279
No Scaling 0.2535 0.1360 0.2472 0.1279

Feature Scaling Test Results

Feature scaling has no effect on the performance with the linear regression model.

6.6. Normalizing

Linear regression models assume the dataset is normally distributed. The effect of

normalizing the features was observed.

Case Avg. Train RMSE | Avg. Train R* | Avg. Test RMSE | Avg. Test R?
With Normalizing 0.2501 0.1591 0.2443 0.1425
Without Normalizing | 0.2535 0.1360 0.2472 0.1279

Normalizing Test Results

54

Normalizing the features increases both train and test R? scores and decreases RMSE.

The dataset will be normalized in the final model.

6.7. Final Model

During the feature engineering and modelling phase, various assumptions and
scenarios were tested against the benchmark. These results were applied to the final model

and are as follows:

e About observations:
o Observations will not be filtered based on significant changes.
o Observations will not be filtered based on campaign runtime.
o Observations will not be filtered based on conversions expected.
o Observations will not be filtered based on spend changes.

o Observations will not be filtered based on bid changes.

e About features:
o PCA will not be utilized.
o Outliers will not be removed.
o Features will not be scaled.
o Features will be normalized.

o 13 features will be fed into the model.

After applying the above methods to the final model, the following results were

obtained:

55

Case Avg. Train RMSE | Avg. Train R* | Avg. Test RMSE | Avg. Test R?
Final Model 0.2295 0.2920 0.2350 0.2086
Benchmark with 14 | 0.2288 0.2948 0.2339 0.1967
features
Benchmark with 25 | 0.2229 0.3307 0.2294 0.2267
features
Benchmark with 40 | 0.2197 0.3495 0.2273 0.2409
features
Benchmark with 80 | 0.2173 0.3638 0.2258 0.2513
features

Final Model vs. Benchmark Scores

The final model uses Random Forest Regressor with selected 13 features in order to

predict “Logarithmic CPM Change compared to yesterday”. Scores with SVR algorithm

produced 1% more test R* score, but it took several hours to generate the model. Since SVR

algorithm is costly and does not bring significant uplift, Random Forest Regressor was

chosen.

Random Forest Regressor with 80 features increases test R? score to 0.25, however as

with the SVR algorithm, it is too costly to form the model. Consequently, best scores

generated in this study and best parameters are mentioned below:

56

Case Avg. Train RMSE | Avg. Train R* | Avg. Test RMSE | Avg. Test R?
Final Model 0.2295 0.2920 0.2350 0.2086
Final Model Results

n_estimators = 50,
max_features = 13,
max_depth = 10,
min_samples_split =5,
n_jobs =-1,
min_samples leaf = 20,
oob_score = True,

random_state = 674

Parameters used in the Random Forest Regressor

57

7. CONCLUSION

Facebook with more than 2 billion active users seems to continue its part in the digital
ad spending duopoly. In this study, changes in Facebook CPM values were predicted and
various model results were shown. Although the model results are not satisfactory, the study
will be a basis for future researches. Predicting campaign CPM does not seem to be a simple
task, yet the returns will cover the endeavor as an outstanding competitive advantage in the

ad-tech market.

The following issues from this project may be utilized in future studies:

e Predictive model structure may use insights from explanatory models.

e In addition to CPM and Cost per Thousand People Reached, conversion
numbers, Cost per Conversion and features related to conversion may be
generated.

e Features related to currency and rates may be generated.

e Facebook started to share various performance metrics about campaign
delivery, the dynamics of ad marketplace and their relation, which Facebook
coined “Delivery Insights”. Information from Delivery Insights may be used in
the future researches.

e New features related to campaign structure may be generated and fed into the
model.

e New features about the audience targeted in the campaigns may be generated.

58

8. REFERENCES

1. Edmundson,T. & Redman, R. (2018, March 6). 4 Reasons Why You Need a Facebook
Marketing Partner. Retrieved from
https://steelhouse.com/social/4-reasons-need-facebook-marketing-partner/

2. Getchell, B. (2015, September 30). The Five Questions Every Company Should Ask A
Facebook Marketing Partner. Retrieved from
https://www.ampush.com/blog/5-questions-to-evaluate-a-potential-fmp/

3. Perrin, N. (2018, September 19). Amazon Is Now the No. 3 Digital Ad Platform in the
US. Retrieved from
https://www.emarketer.com/content/amazon-is-now-the-no-3-digital-ad-platform-in-th

€-us

4. Facebook Business. Ad delivery and optimisation. About Ad Delivery. (n.d.).
Retrieved from https://www.facebook.com/business/help/1000688343301256

5. Brick Marketing. What is An Impression ?. (n.d.). Retrieved from
https://www.brickmarketing.com/define-impression.htm

6. Kenton, W. (2018, May 12). What is a Cost Per Thousand - CPM. Retrieved from
https://www.investopedia.com/terms/c/cpm.asp

7. Facebook Business. Analyse Results. Cost per 1,000 people reached. (n.d.). Retrieved
from https://www.facebook.com/business/help/146171832742994 1

8. AdParlor. (n.d). What Every Marketer Should Know About Facebook’s New
Marketing Partner Program. Retrieved from
https://adparlor.com/blog/facebook-marketing-partner-program/

9. Graepel,T., Candela, J.Q., Borchert, T., Herbrich, R. (2010, June). Web-Scale
Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in
Microsoft Bing’s Search Engine. Retrieved from

https://www.microsoft.com/en-us/research/wp-content/uploads/2010/06/AdPredictor-I
CML-2010-final.pdf

10. Nath, A., Mukherjee, S., Jain, P., Goyal, N., Laxman,S. (2013, May). Ad Impression
Forecasting for Sponsored Search. Retrieved from
http://www2013.w3c.br/proceedings/p943.pdf

59

I1.

12.

13.

14.

Cetintas, S., Chen, D., S1, L. (2013). Forecasting User Visits for Online Display
Advertising. Information Retrieval, 16(3), pp 369-390. doi:
10.1007/s10791-012-9201-4

Ahonen, N.P. (2017, May 22). Applying Bayesian Bandits For Solving Optimal
Budget Allocation In Social Media Marketing (Doctoral dissertation). Retrieved from
https://aaltodoc.aalto.fi/bitstream/handle/123456789/26743/master_Ahonen Niko-Pett
eri_2017.pdf?sequence=1&isAllowed=y

Kolmogorov—Smirnov Test. (1970, January 01). Retrieved from
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-32833-1 214

cardelling. (2016). How to find probability distribution and parameters for real data?
(Python 3). [Blog comment]. Retrieved from
https://stackoverflow.com/questions/37487830/how-to-find-probability-distribution-an
d-parameters-for-real-data-python-3

60

APPENDIX A: BDA 502 Final Report

Following final report was prepared for BDA 502 Course in MEF Big Data Analytics
Program, held in second part of 2018 Spring Term. The lecturer was Tuna Cakar. BDA 502
Final Report is the basis for this study. The problem was defined as a classification problem,

instead of regression.

BDA 502
Final Project
Semih Tekten

Introduction:

In this project | tried to forecast CPM change ranges for given Facebook ads. Let me explain
the term CPM:

Cost per Thousand (CPM):

“Cost per thousand (CPM) is a marketing term used to denote the price of 1,000
advertisement impressions on one webpage. If a website publisher charges $2.00 CPM, that
means an advertiser must pay $2.00 for every 1,000 impressions of its ad. The "M" in CPM
represents the Roman numeral for 1,000.”

Source: https://www.investopedia.com/terms/c/cpm.asp

On Facebook which ads are shown to users are decided by auction mechanism. For that
reason, campaign dynamics on Facebook are very dynamic and CPM values are changing
frequently.

Our company, Adphorus, offers its clients a service to optimize their Facebook campaigns so
that they will get maximum amount of returns from their campaigns.

Problem to Solve & Research Question:

Our optimization engine, Marvin, sets bids and budgets for every campaign each night for our
clients. My object is to find a model for CPM values, so that we will enhance our optimization.
We need to find CPM values for given campaign history, bid, spend and budget.

| wanted to narrow down my question to classification problem. For that reason, | set my

target labels so that they will correspond to CPM change ranges. After testing for multiple
times, | decided to set my labels as follows:

61

e [f CPM will decrease more than 25% => -1
e |f CPM will stay between -25% & 25% =>0
e [f CPM will increase more than 25% => 1

Data Preprocessing & Feature Generation:
I've collected my dataset from Adphorus Databases. Total size of CSV files is more than

1GB. There were 825233 rows and 40 columns. Corresponding files are:
“2_preprocess_1.py” and “3_preprocess_2.py”".

Since Adphorus is owned by an American company called Sojern, | can’t share my dataset. If
dataset is needed for grading purposes, | can show how my code works on my own business
computer. Below you can find screenshot of my features dataframe:

python File Edit Search Source Run Debug Consoles Projects Tools View Help %24 (4> Sun3Jun 22:39 Q
L oK | features - DataFrame
Index Jcture _feature_pe bid_change(0vs1) bid_change_mean bid_change sd send_change(Ovs rption_r_change.r orption_r_change ctr_change_mean ctr_change std :pm_change_mear cpm change_std 1dget_change_me: wudget_change_sti
o ~1.23993 -0.108696 0.0350877 0.085947 -0.607383 1.36491 3.62718 6.0205438 0.262475 0.149191 0.603685 0.0382455 0.111359
11 -1.23993 [} 0.0169718 0.104315 -0.376068 1.36823 3.62503 0.0666098 0.269155 0.163856 0.592198 -0.00676054 0.0781842
12 ~1.23993] 0.0169718 9.104315 -0.308219 1.19505 3.68854 -0.0268361 0.287907 0.0227815 0.577576 0.00609728 0.0628349
13 ~1.23993] 0.0169718 0.104315 0.148515 1.25319 3.65566 6.0383376 0.308595 0.145388 0.545205 0.00463347 0.0618625
17 -1.23993) -0.0144928 0.8354999 -0.648649 —8.0449054 9.513003 8.08336245 0.204518 0.824702 0.315427 0.00800113 0.0544647
19 ~-1.23993] -0.0144928 ©.8354999 8.24466 9.0536655 1.85304 0.231236 0.635121 8.265415 2.831054 -0.00136288 ©.8415606
10 ~-1.23993] -0.0144928 0.0354999 -0.296412 0.138688 1.04034 0.134057 0.678215 0.12321 0.865849 -0.000626708 ©0.0419463
114 ~1.32459 [} 0.0530899 0.124282 -0.381166 1.10775 2.32207 0.0788444 0.570789 0.248089 0.6283 0.000128618 9.041391
117 ~1.32459 [} 0.0679442 0.8835967 1.14179 0.566283 1.33224 0.0712836 0.63914 0.332871 1.01976 0.0199368 0.174075
120 -1.32459 (] 0.0479096 0.0528016 -0.213777 0.425002 9.719768 -9.8137001 0.218992 0.0227501 0.244344 0.0147468 0.23194
121 -1.32459 2] -0.000652842 ©.110311 -0.0280313 0.328097 1.85762 8.0561986 0.333046 0.0622807 0.319909 -0.00231665 ©.8352277
124 ~1.32459] 0.0166667 ©.0983192 -0.344468 9.396879 9.965466 0.0205476 0.246043 0.852445 0.252762 0.0154166 0.0543983
127 ~1.32459] -0.08331695 0.051673 -0.341657 -8.089096 9.379875 -0.0577734 0.110535 -0.0512633 0.177861 -8.0113903 0.08241947
134 —-1.32459 e [Q 2.0163399 7.71186e-07 9.80136046 -0.00235064 0.0287296 -0.0267143 @.0705001 ©.00396666 0.0157297
135 ~1.32459 @] Q -0.9176849 7.71186e-07 0.00136046 0.0119409 0.0492484 ©.0408035 0.158715 0.00766545 0.0155673
137 ~1.32459))] 0.424528 0.351107 1.28811 6.0514196 0.299801 0.060725 0.288146 0.0221344 0.367803
138 -1.32459 0) [} -0.580645 -0.0560558 0.601579 0.0688656 0.44371 0.240067 .736995 0.00772914 0.0946412
140 ~-1.32459]]) -0.537037 9.124983 9.752774 0.123324 0.605927 0.554691 1.22988 0.058018 0.0898412
141 ~1.32459) [o 1.36 0.0332668 0.804897 8.0838906 0.636857 0.471539 1.29995 0.0383166 0.0673037
145 ~1.32459)] @ 0.269836 9.965175 2.49318 -0.08319978 0.581585 8.172662 1.20813 L) @
146 ~1.32459]]) 8.128 1.14507 2.37561 0.0186834 0.564443 8.424525 1.10678 []
147 ~1.32459] [o 0.0815603 9.285092 1.23708 0.0588945 0.56874 0.08555524 0.554852 o]
150 ~1.32459] [] [}]) 0.0795465 0.179916 -0.000574598 | 0.0923089 0 [}
Format Resize Background color Column minjmax Cancel [ok]

)@PEEE s 98K

62

Name A Type Size Value
X_test DataFrame (9049, 16) Column names: day_of_week, structure_feature_pcal, structure_feature_p ...
X_train DataFrame (36200, 16) Column names: day_of_week, structure_feature_pcal, structure_feature_p ...
current_split int 1 6
df DataFrame (45249, 17) Column names: day_of_week, structure_feature_pcal, structure_feature_p ...
end_time float 1 1528058768.775165
features DataFrame (45249, 16) Column names: day_of_week, structure_feature_pcal, structure_feature_p ...
kf_splits int 1 5
list_scores list 5 [0.6968, ©.7001, 0.7087, 0.7052, 0.712]
listof_clf list 1 [['Random Forest', RandomForestClassifier, {...}]]
listof_reg list 1 [['Lasso Regression', Lasso, {...}]1]
model list 3 ['Random Forest', RandomForestClassifier, {'n_jobs':[...], 'min_sample ...
output list 6 [['label_or_value', 'category', 'model', 'train_score', 'test_score', ...
path str 1 /Users/tektensemih/Documents/Scripts/CPM_502
score_test float64 1 0.7120123770582385
score_train float64 1 0.7476795580110497
start_time float 1 1528058681.988677
targets Series (45249,) Series object of pandas.core.series module
test_indices int64 (9049,) array([4, 10, 16, ..., 45235, 45245, 45247])
testy_predict float64 (9049,) array([1., 0., 1., ..., 0., 0., 1.1)
train_indices int64 (36200,) array([o, i, 2, ..., 45244, 45246, 45248])
trainy_predict @ float64 (36200,) array([-1., @o., ©., ..., 0., -1., 1.])
y_test Series (9049,) Series object of pandas.core.series module
v Frain Cariac 2e7°0m \ Cariac nhiart Af nandac rava cariac madila

Data preparation part took most of my time, since | needed to calculate features for each
campaign. Generating features took more than 8 processor hours. (I needed to commute
with my Macbook open & on my hand. :))

I've generated around 60 features more and then reduced that number to 16 at the end of my
work. (I'll explain that later.) I tried to fill NA’'s with meaningful values.

Features that | generated from raw datasets fall into two categories:
e Features related to campaign structure (Mostly binary, dummy variables)
e Features related to campaign past performance (Mostly continuous variables)

After generating features, | chose only campaigns with:
e No campaign structure changes

e Only adjacent 7 days (prevent any breaks/paused campaigns)

| used Python 2.7, since our backend developers in our company use this version instead of
Python3. | also used packages that we learnt in our lectures like Scikit Learn, Numpy,

63

Pandas. The IDE that | developed my code is Spyder. All of my environment is based on
Anaconda.

Target Visualization:

CPM Daily Change Distribution

i

14000 —

12000

10000

8000 +

Frequency

G000

SR

-1.0-0.9-0.8-0.7-06-05-04-03-02-01 00 01 02 03 04 05 06 07 08 09 10

4000

L

ik,
Ik
1

2000 ~

Above you can find CPM daily change distribution that | generated in my code after cleaning.
(Such a beauty!)

Modelling:

I've divided this part into two. Related files are: “5 featuresn_modelling.py” and
“5_featuresn_modelling2.py” In the former I've used all the features that | generated without
any limit and overfit my model. In the latter I've reduced number of features, but get very
similar test score results but reduced overfitting. As a result, | could manage to decrease
complexity in my features and improve scores.

In both of the files I've used following methods:
e I've removed outliers that have more than 3 Z-Scores.
e [I've used K-Fold cross-validation and calculated average accuracy scores
e |'ve set different percentage changes for labels so that | could understand for which
target label | got the maximum accuracy scores. (Thus, decided on 25% change.)

64

For different labels, | might have unbalanced dataset. In order to prevent bias, I've
dropped a random fraction of rows so that all labels are represented equally. In my
experience, | observed that balance in the dataset affects the outcomes and the
scores significantly. | could see 50% and both 90% accuracy for the same dataset
between biased and unbiased datasets. :)

In second file I've also used following methods:

Since campaign structures have lots of dummy binary variables, I've reduced their
numbers using PCA method. | know PCA doesn’t work well with binary data, but it
helped me reduce dimensions.

Former file uses campaigns’ past performance metrics for each day. (t-1 to t-7).
Instead of using all days’ metrics individually, I've calculated standard deviation and
means for related features. Results stayed same, but I've managed to reduce
complexity.

Since I've reduced dimensions, | could have a chance to observe each feature’s
effect on the outcome and manually optimize.

In order to have a benchmark, I've also calculated weighted averages of CPM values. My
purpose was to have a very simple model to compare my results. Related file’s name is:
“4_simple_model_weight.py”

I've used following machine learning algorithms from Scikit Learn package:

Random Forest

K Nearest [Never had a chance to finish algorithm]

R Nearest [Never had a chance to finish algorithm]
Gaussian Naive Bayes

Decision Tree [Never had a chance to finish algorithm]
Neural Network

Logistic Regression Classifier

Support Vector [Never had a chance to finish algorithm]

Bagging

As you can see for some of the algorithms, | couldn’t even manage to finish the algorithm.
The reason is my computer is a little bit old and takes hours for some of the algorithms. As a
result I've cancelled the execution. The same slowness goes to GridSearch. | couldn’t benefit
from GridSearch, since adding different parameters increased execution time significantly.
That’'s why | tuned parameters manually.

Summary:

At first, my train accuracy scores were above 95% and test scores were around 60%. That
seemed to be a clear overfitting. In order to reduce memorizing, I've reduced features and
dimensions in the second file as | explained above. After that, | managed to have a small gap
between test and train scores. (Around 1-2% percent.)

65

After manually optimizing and tuning parameters, I've decided that best algorithm is Random
Forest for my case. (The speed of Random Forest has also an effect on my decision.) Train
& test scores were reduced to 55% when | reduced dimensions in the second file. But after
tuning parameters manually, I've managed to increase my test accuracy score to 70.5%. It
may not seem such a big success, but since this is the first real-life problem that | try to solve
using Data Science, it means a lot for me. | was expecting around 30-40% accuracy.

Lastly, 've mentioned a simple weighted model for benchmark above. Simple weighted
model had an accuracy of 47%. It seems manually tuned Random Forest algorithm performs
better compared to simple weighted model.

Following pictures were taken after executing Random Forest algorithm:

Started for Random Forest, and for 1th split.
[[1067 706 113]

[351 3968 482]

[124 968 127111
Ended for Random Forest, and for 1th split.
Started for Random Forest, and for 2th split.
[[1072 685 145]

[300 3918 504]

[113 967 1346]]
Ended for Random Forest, and for 2th split.
Started for Random Forest, and for 3th split.
[[1146 658 125]

[312 3938 491]

[122 928 133011
Ended for Random Forest, and for 3th split.
Started for Random Forest, and for 4th split.
[[1661 633 139]

[319 3975 499]

[123 955 13461]
Ended for Random Forest, and for 4th split.
Started for Random Forest, and for 5th split.
[[1103 671 127]

[316 4032 465]

[97 930 1308]]
Ended for Random Forest, and for 5th split.
Score for this algorithm:
0.70456
——— 86.7864880562 seconds ——-

66

@® o @& output - List (6 elements) 3

de A Type Size Value |
2 list |7 ['label_or_value', 'category', 'model', 'train_score', 'test_score', ' ...
1 list |7 [*label', 'included', 'Random Forest', '@.7497', '@.6968', '{'n_jobs': ...
2 list |7 [*label', 'included', 'Random Forest', '@.7491', '@.7001', '{'n_jobs': ...
3 list |7 ['label', 'included', 'Random Forest', '®8,7494', '©.7087', '{'n_jobs': ...

4 list |7 [*label', 'included', 'Random Forest', '®.7488', '@.7052', '{'n_jobs': ...

5 list |7 [*label', 'included', 'Random Forest', '@.7477', '©.712', '{'n_jobs': ...

Cancel (LS

Further Developments:

New features to be considered:

Reach metrics

Delivery Insights metrics

Client information

Targeting Audience Specifications
Suggested bids

Market & Auction change information
Audience overlap rates

Refine the problem as follows:
e Forecast CPM value (Regression), instead of change range (Classification)
e Find the highest & lowest values that CPM can have next day

Optimize coding & feature engineering:
e Use Pandas built-in solutions for Time Series data
e Use Pandas Rolling & Shifting methods
e Use Scikit Learn algorithms’ own class_weight parameter, instead of manually
dropping random fraction of rows
e Use other solutions instead of PCA in order to feed Campaign Structure into features

67

APPENDIX B: Presentation For MeasureCamp Istanbul

MeasureCamp is an unconference, and the schedule is created on the day and speakers

are fellow attendees. (http://istanbul.measurecamp.org/) As a concept, unconferences are

designed to encourage discussions and exchange of ideas. They provide an alternative to the
traditional one-way conferences through a more collaborative social framework for
knowledge sharing. Attendees are encouraged to discuss and participate in sessions, even to

lead sessions themselves.

MeasureCamp in its own words:

“MeasureCamp is an open, free-to-attend unconference, different to any other web

analytics conference held around the world.”

As a part of the MeasureCamp conference held on Saturday 10 Nov 2018, in Altinbas
University Campus, “Predicting Facebook Ad Impressions & CPM Values” project was
presented. Attendees were mostly from marketing industry. Following images are pages from

the presentation.

68

Predicting

Facebook CPM

Prepared for MeasureCamp
10.11.2018

Meet Adphorus & Marvin

®° "R X,
L] L] @
d 0 o
2 2 :
m '~ ’
¢ S

69

Marvin

Adphorus' proprietary predictive optimization engine
Uses machine learning and predictive models to manage bids and allocate
budget to optimize the performance of Facebook campaigns

-2 Automates running, managing and optimizing loads of campaigns

Saves time and energy

Makes work more feasible and productive

Goal of Marvin

= Toincrease the efficiency and performance of Facebook
campaigns through increasing ad spend as much as possible
while keeping the cost per action at or below Target CPA

70

Why predict Facebook CPM?

= Improve Marvin optimization

= Improve campaign performance

=> Increase Marvin dependency

Where to start?

¥

Adphorus’ past campaign database
Database stores all Adphorus’ past campaign history

878K rows, 49 columns
10 csv files

Total 2GB

Python 2.7

Packages used:
Numpy
Scikit-learn

L2 2 2 2

Pandas

71

Pre-Processing

Drop columns which contain no information or non-usable data
Fill NA values with meaningful values

Find columns with mixed dtype

Rename columns

Remove campaigns if they don't contain 8 days

Calculate continuity

Convert money related columns to USD currency

2 200 200 20 70 2

Pre-Processing

Filter observations based on multiple criterias:

Criteria for theoretically impossible cases (CPM = 0O, Reach = Q)
Criteria for campaign structure updates

Criteria for continuity

Criteria for significant changes (Modelling)

AR R

72

Pre-Processing

= |t took 8 minutes to run the code, but 15 minutes to save the
outcome as pickle.

=> Previously 6 hours with for-loops instead of pandas builtin
functions!

Features

= Generate dummy features

=> Features calculated by metric changes

-> Features related to date

-> Features related to spend & delivery

= Shape: 141775 observations, 259 features

73

Target: CPM Daily Change (I/0 CPM)

CPM Daily Change Distribution

Frequency

1.0-09-08-07-06-05-0.4-03-02-01 00 01 02 03 04 05 06 07 08 05 10

Modeling

L 20 2

Regression problem

K-Fold Cross Validation

GridSearchCV

Adjusted R-Squared, R-Squared, RMSE for Test & Train

74

Modeling

Algorithms used:

Linear Regression
Random Forest Regressor
Support-Vector Machine
Ridge

Lasso

Bayesian Ridge

720 720 Z00 20 7 7

Modeling

Scores at first trial used for tuning Benchmark:

Random Forest Regressor, max_features: 14
Average Train RMSE: 0.23

Average Train R2: 0.30

Average Test RMSE: 0.23

Average Test R2: 0.20

L2 2 2 2

75

Modeling

Filtering observations did not help:

Significant metric changes
o thresholds = [0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.8]
Adset run time
o thresholds = [0,9,13,19,29]
Conversions wanted from Facebook
o thresholds = [5,10,15,20,50]
Unbiased spend or bid change levels

o thresholds = [650,2000,3000,6500,9000]
o thresholds = [6500, 3000]

Modeling

L 20 2

Filtering features helped a little:

Filtering campaign structure features

PCA for dimensionality reduction

Choosing features correlated to target
Dropping features correlated within themselves

76

Modeling

=> Qutlier Handling
=> Feature Scaling
= Normalizing

Modeling

Features used in the regression:

=> 'ctr_change(lvs?7)' => 'cpm_change(lvs/)'

=> 'social_ctr_change(1lvs2)' => 'absorption_r(t-1)'

=> 'frequency_change(lvs?/)' => 'bid_change(Ovs1)'

= 'cpm_change(3vs4)' = 'frequency_change(lvs2)'
= lctr(t-1)' = 'cpm_change(lvs2)'

=2 'cpmit-1)_usd' => 'ctr_change(lvs2)'

>

'social_ctr_change(1lvs7)'

77

Modeling

Explanatory Modeling
VS.

Predictive Modeling

78

Lessons Learned

=> Errors may lead to new explanations and discoveries
-> Need to investigate same day spend levels more

=> You need meaningful features to get meaningful results

Semih Tekten

semih@adphorus.com

VEL

UNIVERSITY

79

APPENDIX C: Code Base

Following Python files and codes have been used for preparing data, generating features and

executing models.

preprocess.py:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

nmn

Created on Sun Jul 8 13:42:59 2018

@author: tektensemih

nmn

HHHHHHEHHHHHEH
CAPSTONE PROJECT, MEF BIG DATA ANALYTICS MASTER PROGRAM
#2017 - 2018

SEMIH TEKTEN

PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES

HHHHH B R R R R R R
#HHH PREPROCESSING #HHHHHHHHHHEHHHHHHHH IR
HHHHHHHHHH

import libraries

import pandas as pd

import numpy as np

import glob, os

import time

from datetime import datetime, timedelta

Start timer
start_time = time.time()

Change path

path = os.path.expanduser("~/Documents/Scripts/CPM/Capstone/")
os.chdir(path)

80

Read all CSV files into list
allFiles = glob.glob(path + "/raw_dataset/*.csv")
allFilesList =[]

for csv_file in allFiles:
df = pd.read_csv(csv_file,index col=None, header=0)
allFilesList.append(df)

del df, csv_file

Merge dataframes
db_df = pd.concat(allFilesList)
del allFilesList

Drop columns which contain no information or non-usable data
cols to drop = ['adset budget type',

'brand id',

'brand name',

'campaign_auto_optimization_action',

'campaign custom_event type',

'campaign_fb id',

'campaign_health_details',

'campaign pacing_type',

'campaign_sf opp_id',

'changes',

'company _id',

'company name',

'tbid',

'meta_run_id',

'meta_save time',

'nonattr_run_id',

'nonattr_save time',

'‘predicted _attr',

'‘predicted metric',

'predicted_revenue metric',

'targeting_size',

'user_id',

'user_name',

'suggested bid min',

'suggested bid median',

'suggested bid max']
db_df.drop(cols to drop, axis=1, inplace = True)
del cols_to_drop

81

Remove rows with zero reach. It's theoretically impossible.
db df=db_df[db_df['reach'|>0]

Read rates table into dataframe & save rates to adset rows

rates = pd.read_csv(path + "/rates/rates.csv",index_col=None, header=0)
rates['date_pd'] = pd.to_datetime(rates['date'], format='%Y-%m-%d")
rates.drop('date’, axis=1, inplace = True)

rates.drop_duplicates(subset=['date pd','currency'], keep="last', inplace=True)

Fill missing days with previous days' values

rates.set_index(['date_pd','currency'], inplace=True)

rates = rates.unstack('currency')

rates = rates.reindex(pd.date range('2017-01-20', '2018-07-08', freq='D")).fillna(value=None,
method="fill', axis=0)

rates = rates.stack('currency').reset index().rename(columns={'level 0':'date pd'},
inplace=False)

Join currency rates

db_df.rename(columns={'adaccount currency':'currency'}, inplace=True)
db_dff'date pd'] = pd.to_datetime(db_df['day'], format='%Y-%m-%d")
db_dff'date pd 7db'l =db_df['date pd'] - pd.Timedelta(7, unit='d")
db_df['date pd 30db']=db dfl'date pd'] - pd. Timedelta(30, unit='d")

db df = pd.merge(db df, rates, left index=True, how='left', on=['date pd', 'currency'],
suffixes=("_0db', '0db"))

db_df.rename(columns={'rate":'rate_Oday'}, inplace=True)

rates.rename(columns={'date pd':'date pd 7db'}, inplace=True)

db_df = pd.merge(db_df, rates, left index=True, how='left', on=['date pd 7db', 'currency'],
suffixes=("_7db',' 7db"))

db_df.rename(columns={'rate':'rate_7day'}, inplace=True)

rates.rename(columns={'date pd 7db'":'date pd 30db'}, inplace=True)

db_df = pd.merge(db_df, rates, left index=True, how="left', on=['date_pd 30db', 'currency'],
suffixes=("_30db',"' 30db"))

db_df.rename(columns={'rate":'rate 30day'}, inplace=True)

db_df.rename(columns={'currency':'adaccount_currency'}, inplace=True)
cols to drop = ['date pd','date pd 7db', 'date pd 30db']

db_df.drop(cols_to drop, axis=1, inplace = True)
del cols to drop, rates

82

Transfer db_df to raw_df
raw_df = db_df.copy()
del db_df

Get summary info of raw_df
print(raw_df.info())

Fill NA values with meaningful values

fillings = {
'campaign_attribution window':'actions',
'campaign_marvin_target cpa':0.,
'campaign_marvin_target roas"0.,
'adset optimization goal':'thisvalueneverexists',
'campaign_promoted object':'thisvalueneverexists',
'campaign_is_dynamic ad':False,
'adset pacing type':"['standard']",
'campaign_health status:'GOOD/,
'campaign_spend_cap":0,
'campaign_schedule':'no_schedule',
'rate_Oday":-1.,
'rate_7day":-1.,
'rate_30day':-1.
h

for column, fillwith in fillings.iteritems():
raw_df[column].fillna(fillwith, inplace=True)
del fillwith

Get summary info of raw_df, again
print(raw_df.info())

Find columns with mixed dtype
for col in raw_df.columns:
weird = (raw_df[[col]].applymap(type) !=raw_dfJ[col]].iloc[0].apply(type)).any(axis=1)
if len(raw_df[weird]) > 0:
print(col)
del col, weird

nmn

Returns:
None
So none of the columns has mixed dtype or Null value.

83

nmn

Function for dummy feature generating
def dummy generator(df, new col, base col, searched_str):
df[new_col] = np.where(df[base col].str.contains(searched_str, case=False), 1, 0)

Generate dummy features

dummyfeature list=[# Time zone
[raw_df, 'is_tz asia', 'adaccount timezone', 'Asia'],
[raw_df, 'is_tz_america', 'adaccount timezone', 'America'],
[raw_df,'is_tz europe', 'adaccount timezone', 'Europe'],
[raw_df, 'is_tz atlantic', 'adaccount timezone', 'Atlantic'],
[raw_df, 'is_tz australia', 'adaccount timezone', 'Australia'],
[raw_df, 'is_tz pacific', 'adaccount_timezone', 'Pacific'],

Billing

[raw_df, 'is_billing_impressions', 'adset billing_event', TIMPRESSIONS'],
[raw_df, 'is_billing_clicks', 'adset billing_event', 'LINK CLICKS'],

[raw df, 'is billing likes', 'adset billing event', 'PAGE LIKES'],

[raw_df, 'is_billing_mai', 'adset_billing_event', 'APP_INSTALLS'],
[raw_df, 'is_billing_video', 'adset billing event', 'VIDEO VIEWS'],
[raw_df, 'is_billing post', 'adset billing event', ' POST ENGAGEMENT],

Optimization Goal
[raw_df, 'is_optgoal appinstall', 'adset optimization_goal', 'APP INSTALLS'],
[raw_df, 'is_optgoal eventresponse', 'adset optimization goal',
'EVENT_RESPONSES'],
[raw_df, 'is_optgoal impression', 'adset optimization goal', TMPRESSIONS'],
[raw_df, 'is_optgoal leadgeneration', 'adset optimization goal',
'LEAD GENERATION'],
[raw_df, 'is_optgoal click', 'adset optimization goal', 'LINK CLICKS'],
[raw_df, 'is_optgoal offsiteconversion', 'adset optimization goal',
'OFFSITE_ CONVERSIONS'],
[raw_df, 'is_optgoal pagelike', 'adset optimization goal', 'PAGE LIKES'],
[raw_df, 'is_optgoal postengagement', 'adset optimization goal',
'POST_ENGAGEMENT"],
[raw_df, 'is_optgoal reach', 'adset optimization goal','REACH'],
[raw_df, 'is_optgoal videoview', 'adset optimization goal', "VIDEO VIEWS'],

Campaign Objective
[raw_df, 'is campobjective appinstall’, 'campaign_objective',

'APP_INSTALLS'],

84

[raw_df, 'is_campobjective brandawareness', 'campaign _objective',
'BRAND AWARENESS'],
[raw_df, 'is campobjective conversion', 'campaign_objective',
'CONVERSIONS'],
[raw_df, 'is_campobjective eventresponse', 'campaign_objective',
'EVENT_RESPONSES'],
[raw_df, 'is_campobjective leadgeneration', 'campaign_objective',
'LEAD GENERATION'],
[raw_df, 'is_campobjective click', 'campaign_objective', 'LINK CLICKS'],
[raw_df, 'is_campobjective appengagement', 'campaign_objective',
'"MOBILE _APP_ENGAGEMENT],
[raw_df, 'is campobjective _mobileappinstall', 'campaign_objective',
'MOBILE _APP INSTALLS'],
[raw_df, 'is_campobjective pagelike', 'campaign objective', PAGE LIKES'],
[raw_df, 'is_campobjective_postengagement', 'campaign_objective',
'POST_ENGAGEMENT"],
[raw_df, 'is campobjective pcs', 'campaign objective',
'PRODUCT _CATALOG SALES'],
[raw_df, 'is_campobjective reach', 'campaign objective', 'REACH'],
[raw_df, 'is_campobjective videoview', 'campaign_objective',
'VIDEO VIEWS'],

Promoted Object
[raw_df, 'is_promotedobject catalog', 'campaign promoted object’,
'product_catalog_id'],
[raw_df, 'is_promotedobject pixel', 'campaign_promoted object’, 'pixel id'],
[raw_df, 'is_promotedobject page', 'campaign promoted object', 'page id'],
[raw_df, 'is_promotedobject objectstoreurl', 'campaign promoted object’,
'object_store url'],
[raw_df, 'is_promotedobject customeventtype', 'campaign promoted object’,
'custom_event_type'l],
[raw_df, 'is promotedobject application', 'campaign_promoted object’,
'application_id'],

Campaign Attribution Window

[raw_df, 'is_attr 28dc', 'campaign_attribution window', 28d_click'],
[raw_df, 'is_attr 7dc', 'campaign_attribution window', '7d_click'],
[raw_df, 'is_attr 1dc', 'campaign attribution window', '1d click'],
[raw_df, 'is_attr 28dv', 'campaign_attribution window', '28d_view'],
[raw_df, 'is_attr 7dv', 'campaign_attribution window', '7d_view'],
[raw df, 'is_attr 1dv', 'campaign_attribution window', '1d_view'],
[raw_df, 'is_attr default', 'campaign_attribution window', 'actions'],

85

Adset Pacing Type
[raw_df, 'is_nopacing', 'adset pacing_type', "['no_pacing']"],

Campaign Health Status
[raw_df, 'is_camphealth good', 'campaign health status', 'GOOD'],
[raw_df, 'is_camphealth_crit', 'campaign health_status', 'CRITICAL'],

for feature in dummyfeature list:
dummy_generator(*feature)
del feature

Features related to date

raw_df['date pd']| = pd.to_datetime(raw_df]'day'], format="%Y-%m-%d")
raw_df['day of week'] =raw df['date pd'].dt.dayofweek
raw_df['day of year']| =raw_dfJ'date pd'].dt.dayofyear

raw_df['month'] = raw_df['date pd'].dt.month

raw_df['quarter'] = raw_df['date pd'].dt.quarter

Features related to DAO, Dynamic Ads, Cost/Revenue and Target

raw_df['is_dao'] = np.where(raw_df['campaign da optimizer status'| == True, 1, 0)
raw_df['is_dynamicad'] = np.where((pd.isna(raw_df['campaign_is dynamic ad']))
(raw_df]'campaign_is dynamic ad'] == False), 0, 1)

raw_df['is_revenue'] = np.where(raw_df['campaign_optimize revenue'] == True, 1, 0)
raw_df['is target'l] = np.where((raw_df['campaign marvin_ target cpa'] > 0)
(raw_df['campaign_marvin_target roas'| > 0), 1, 0)

Features related to spend & delivery

raw_df['ctr(t-0)"] = raw_df]'clicks'] / raw_df'impressions']
raw_df]'social_ctr(t-0)'] =raw_df['social clicks'] / raw_df['impressions']
raw_df]'social _reach ratio(t-0)'] = raw_df]'social reach'] / raw_df]'reach']
raw_df['frequency(t-0)'] = raw_df['impressions'] / raw_df['reach']
raw_df['absorption r(t-0)'] = raw_df['spend'] / raw_df['adset budget']
raw_df['cpm(t-0)'] = raw_df['spend'] / raw_df['impressions'] * 1000.
raw_df['cp_thousand reach(t-0)'] = raw_df['spend'] / raw_df['reach'] * 1000.
raw_df['budget/camp_budget(t-0)'] = raw_df['adset budget'] / raw_df['campaign budget']
raw_df'spend/camp budget(t-0)'] = raw_df]'spend'] / raw_df'campaign_budget']
raw_df['budget/bid(t-0)"] = raw_df['adset budget'] / raw_dfJ'adset bid amount']

Rename columns
raw_df.rename(columns={# Features to be shifted, not related to spend and/or currency

86

'date_pd':'date(t-0)',

'adaccount timezone':'adaccount timezone(t-0)',
'adset_billing_event':'adset billing_event(t-0)',

'adset optimization goal':'adset optimization goal(t-0)',
'campaign_da_optimizer status':'campaign da optimizer status(t-0)',
'campaign_is_dynamic_ad':'campaign_is dynamic_ad(t-0)',
'campaign_objective':'campaign_objective(t-0)',
'campaign_promoted object':'campaign _promoted object(t-0)',
'targeting_spec':'targeting_spec(t-0)',
'campaign_attribution_window':'campaign_attribution window(t-0)',
'campaign_optimize revenue':'campaign_optimize revenue(t-0)',
'adset_pacing_type':'adset pacing_type(t-0)',

'campaign health status':'campaign health_status(t-0)',
'campaign_status':'campaign_status(t-0)',
'adset_status':'adset_status(t-0)',

Features to be shifted, related to spend and/or currency

'adset_bid amount':'bid(t-0)',

'spend':'spend(t-0)',

'adset budget':'budget(t-0)',
'campaign_budget':'campaign_budget(t-0)',
'adaccount_currency':'adaccount_currency(t-0)’,

'campaign marvin_target cpa':'campaign marvin_target cpa(t-0)',
'campaign _marvin_target roas':'campaign marvin_target roas(t-0)'
}, inplace=True)

Remove adsets if they don't contain 8 days

raw_df =raw_df.groupby(‘adset_id').filter(lambda x: len(x) >= 8).reset_index()
print('Count of adsets with at least 7 previous observation days:")
print(raw_df['adset id'].nunique())

Reindex main dataframe using adset IDs and dates

raw_df.set index(['adset id', 'date(t-0)'], drop=False, append=False, inplace=True,
verify integrity=False)

raw_df.sort index(axis=0, level=[0,1], ascending=[True,True], inplace=True)

Find starting day of each adset

adset min_date =
raw_df.groupby(level=0)['date(t-0)'].min().reset_index().rename(columns={'date(t-0)":'min_da
te'}, inplace=False)

Generate function to shift columns
def shifter(df, column):

87

Column should be string
for preday in range(1,8):

dffcolumn+'(t-"+str(preday)+')'] = df.groupby(level=0)[column+'(t-0)"].shift(preday)
print('Finished shifting for column %s.") % (column)

Shift columns for each adset

cols to shift =
['bid','spend','budget’,'absorption_r','cpm','ctr','social ctr','social reach ratio','date','campaign
budget', \

'adaccount_currency','adaccount timezone','adset billing event','adset optimization goal', \

'campaign da optimizer status','campaign is dynamic ad','campaign objective','campaign p
romoted_object', \
'targeting_spec','campaign_attribution window','campaign marvin_target cpa', \
'campaign marvin_target roas',
'campaign_optimize revenue','adset pacing type','campaign health status', \
'campaign_status', 'adset_status', 'frequency’, 'cp_thousand_reach', \
'budget/camp_budget', 'spend/camp budget', 'budget/bid’, \
]

for shiftcolumn in cols_to_shift:
shifter(raw_df, shiftcolumn)
del shiftcolumn

Reindex main dataframe back to integer values
raw_dfireset index(drop=True, inplace=True)
raw_df.drop(‘index', axis=1, inplace = True)

Store starting day of each adset
raw_df = pd.merge(raw_df, adset min_date, how='left', on="adset id')
del adset min_date

Calculate adset run time
raw_df['adset run time'] = (raw_df]'date(t-0)'] - raw_df['min_date']).dt.days + 1

Transfer raw dataframe into half-clean dataframe
half clean df=raw_df.copy()
del raw_df

Calculate weekly weighted CPM
week weights =[0.36,0.24,0.16,0.10,0.07,0.04,0.03]

88

half clean_df['weighted cpm lastweek'] = half clean df['cpm(t-7)'] * week weights[6] +\
half clean dff'cpm(t-6)'] * week weights[5] + \
half clean dff'cpm(t-5)"] * week weights[4] + \
half clean df['cpm(t-4)'] * week weights[3] +\
half clean dff'cpm(t-3)'] * week weights[2] + \
half clean_ dff'cpm(t-2)'] * week weights[1] + \
half clean df['cpm(t-1)'] * week weights[0]

def change calculator(df, column):
for i in range(0,7):
dffcolumn+'_change'+'("+str(i)+'vs'+str(i+1)+")'] = (df[column+'(t-"+str(i)+')'] -
dffcolumn+'(t-"+str(i+1)+')']) / df[column+'(t-"+str(i+1)+")']
dffcolumn+' change(1vs7)'] = (dffcolumn+'(t-1)'] - df[column+'(t-7)']) / df[column+'(t-7)']

cols to calcchange = ['ctr', 'social ctr', 'social reach ratio', 'bid', 'spend’, \
'budget’, 'absorption_r', 'cpm’, 'frequency’, 'cp_thousand reach', \
'budget/camp_budget', 'spend/camp budget', 'budget/bid', \
]

for col in cols_to calcchange:
change calculator(half clean df, col)

Features calculated by metric changes

half clean df['bidchange*spendchange yesterday'| = half clean df['bid change(1vs2)']
half clean_ df['spend change(1vs2)']

half clean df['bidchange*budgetchange yesterday'| = half clean df['bid change(1vs2)'] *
half clean df['budget change(1vs2)']

half clean_df['spendchange*budgetchange yesterday'] =
half clean df['spend change(1vs2)'] * half clean df['budget change(1vs2)']

*

print('Finished calculating changes.")
Replace infinity values with zero.
def infinity fixer(df, column):
for i in range(0,7):
df[column+' change+'("+str(i)+'vs+str(i+1)+")'].replace(np.inf, 0, inplace=True)
dffcolumn+' change(1vs7)'].replace(np.inf, 0, inplace=True)
cols_to_infinityfix = ['ctr','social ctr','social reach ratio',]

for col in cols_to_infinityfix:

89

infinity fixer(half clean_df, col)
print('Finished replacing infinity values.")

Calculate continuity

half clean df['date(t-0)-date(t-1)'] = (half clean dff'date(t-0)"] -
half clean_df['date(t-1)']).dt.days
half clean df['date(t-1)-date(t-2)'] = (half clean dff'date(t-1)"] -
half clean_df['date(t-2)']).dt.days
half clean df['date(t-2)-date(t-3)'] = (half clean_df]'date(t-2)"] -
half clean_ df['date(t-3)']).dt.days
half clean df['date(t-3)-date(t-4)'] = (half clean dff'date(t-3)"] -
half clean_ df['date(t-4)']).dt.days
half clean df['date(t-4)-date(t-5)'] = (half clean dff'date(t-4)"] -
half clean_ df['date(t-5)']).dt.days
half clean df['date(t-5)-date(t-6)'] = (half clean_df]'date(t-5)"] -
half clean_ df['date(t-6)']).dt.days
half clean df['date(t-6)-date(t-7)'] = (half clean dff'date(t-6)"] -

half clean df['date(t-7)']).dt.days

half clean df['campaign_budget(t-0)-campaign budget(t-1)'] =
(half clean dff'campaign budget(t-0)'] - half clean df['campaign budget(t-1)'])
half clean df['campaign_budget(t-1)-campaign budget(t-2)'] =
(half clean df['campaign_budget(t-1)'] - half clean df['campaign budget(t-2)'])
half clean df['campaign_budget(t-2)-campaign budget(t-3)'] =
(half clean dff'campaign budget(t-2)'] - half clean df]'campaign budget(t-3)'])
half clean df['campaign_budget(t-3)-campaign budget(t-4)'] =
(half clean df['campaign budget(t-3)'] - half clean_df['campaign_budget(t-4)'])
half clean_df['campaign_budget(t-4)-campaign budget(t-5)'] =
(half clean df['campaign budget(t-4)'] - half clean df['campaign_budget(t-5)"])
half clean df['campaign_budget(t-5)-campaign _budget(t-6)'] =
(half clean dff'campaign budget(t-5)'] - half clean df['campaign budget(t-6)'])
half clean df['campaign_budget(t-6)-campaign budget(t-7)'] =
(half clean df['campaign budget(t-6)'] - half clean df['campaign budget(t-7)'])

def samevalue sevendays(df, col):
pastseven_list =[]
for 1 in range(0,8):
pastseven_list.append(col+'(t-"+str(i)+")")
dffcol+' 8values'] = df[pastseven_list].values.tolist()
df[col+' 8uniquecount'] = df[col+' 8values'].apply(lambda cell value: len(set(cell value)))

90

samevaluecols = [
'adaccount_currency',
'adaccount_timezone',
'adset_billing_event',
'adset_optimization_goal',
'campaign da_optimizer_ status',
'campaign_is_dynamic ad',
'campaign_objective',
'campaign promoted object',
'targeting_spec',
'campaign_attribution_window',
'campaign marvin_target cpa',
'campaign_marvin_target roas',
'campaign_optimize revenue',
'adset pacing_type',
'campaign_health_status',
'campaign_status',
'adset status',

for column in samevaluecols:
samevalue sevendays(half clean df, column)

print('Finished calculating continuity.")
Convert money features to USD currency

def converter(df, col):
for preday in range(0,8):
dffcol + '(t-' + str(preday) + ') usd'] = df[col + '(t-' + str(preday) +")'] / df]'rate_7day']
return df
del col

cols to conv = ['cp _thousand reach','cpm','spend','campaign_marvin_target roas', \
'campaign_marvin_target cpa','’campaign _budget','budget','bid', \

]

for column in cols_to conv:
converter(half clean df, column)
del column

91

half clean df['weighted cpm lastweek usd'] = half clean df['weighted cpm lastweek'] /
half clean df['rate 7day']

print('Finished converting currency.")

Save dataframe to disk for future use

half clean df.to pickle("df/half clean df.gzip", compression = 'gzip')

It takes 8 minutes to run the code, but 15 minutes to save the outcome as pickle.
I decided to execute filtering in this script file also.

A
CAPSTONE PROJECT, MEF BIG DATA ANALYTICS MASTER PROGRAM
#2017 - 2018

SEMIH TEKTEN

PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES

HHHHH B R R R R R R
i FILTERING #HHHHHHHH A
HHHHHHHH

Change path

df beingcleaned = half clean_df.copy()
df beingcleaned with XXXXXXXX rows, YYYYYYY columns
del half clean df

col list = list(df beingcleaned.columns)

def value picker(df, col, operator, val, explanation):
start row = df.shape[0]
if operator == 'greater":
df = df.loc[dfcol] > val]
elif operator == 'smaller":

pass

elif operator == 'greater e":
pass

elif operator == 'smaller e'":
pass

elif operator == 'equal:
df = df.loc[df[col] == val]

92

elif operator == 'not_equal'":
pass
end row= df.shape[0]

print(‘HHHHHBHIH B R
print('Column filtered: ' + str(col))

print('Operator: ' + str(operator))

print('Value: ' + str(val))

print('Cause: ' + str(explanation))

print('Current dimensions: ' + str(df.shape))
print('Rows dropped: ' + str(start_row-end row))
print(‘HHEHHBHIH IR
return df

value pick list=[
['date(t-0)-date(t-1)", 'equal’, 1, 'Days should be adjacent.'],
['date(t-1)-date(t-2)', 'equal’, 1, 'Days should be adjacent.'],
['date(t-2)-date(t-3)', 'equal’, 1, 'Days should be adjacent.'],
['date(t-3)-date(t-4)", 'equal’, 1, 'Days should be adjacent.'],
['date(t-4)-date(t-5)', 'equal’, 1, 'Days should be adjacent.'],
['date(t-5)-date(t-6)', 'equal’, 1, 'Days should be adjacent.'],
['date(t-6)-date(t-7)", 'equal’, 1, 'Days should be adjacent.'],

['campaign_budget(t-0)-campaign_budget(t-1)', 'equal’, 0, 'Campaign budget
change should be 0.'],

[‘campaign_budget(t-1)-campaign budget(t-2)', 'equal’, 0, 'Campaign budget
change should be 0.'],

['‘campaign_budget(t-2)-campaign_budget(t-3)', 'equal’, 0, 'Campaign budget
change should be 0.'],

[‘campaign_budget(t-3)-campaign _budget(t-4)', 'equal’, 0, 'Campaign budget
change should be 0."],

[‘campaign budget(t-4)-campaign budget(t-5)', 'equal’, 0, 'Campaign budget
change should be 0.'],

['campaign_budget(t-5)-campaign_budget(t-6)', 'equal’, 0, 'Campaign budget
change should be 0.'],

[‘campaign_budget(t-6)-campaign _budget(t-7)', 'equal’, 0, 'Campaign budget
change should be 0.'],

['budget(t-0)', 'greater', 0, 'Adset budget should be greater than 0.'],
['budget(t-1)', 'greater’, 0, 'Adset budget should be greater than 0.'],
['budget(t-2)', 'greater’, 0, 'Adset budget should be greater than 0.'],
['budget(t-3)', 'greater', 0, 'Adset budget should be greater than 0.'],

93

['budget(t-4)', 'greater’, 0, 'Adset budget should be greater than 0.'],
['budget(t-5)', 'greater’, 0, 'Adset budget should be greater than 0.'],
['budget(t-6)', 'greater’, 0, 'Adset budget should be greater than 0.'],
['budget(t-7)', 'greater’, 0, 'Adset budget should be greater than 0.'],

[‘campaign_budget(t-0)', 'greater', 0, 'Campaign budget should be greater than
[‘campaign_budget(t-1)', 'greater’, 0, 'Campaign budget should be greater than
[‘campaign_budget(t-2)', 'greater’, 0, 'Campaign budget should be greater than
[‘campaign_budget(t-3)', 'greater', 0, 'Campaign budget should be greater than
[‘campaign_budget(t-4)', 'greater’, 0, 'Campaign budget should be greater than
[‘campaign_budget(t-5)', 'greater’, 0, 'Campaign budget should be greater than
[‘campaign_budget(t-6)', 'greater', 0, 'Campaign budget should be greater than

[‘campaign_budget(t-7)', 'greater', 0, 'Campaign budget should be greater than

['cpm(t-0)', 'greater’, 0, 'CPM should be greater than 0."],
['cpm(t-1)', 'greater’, 0, 'CPM should be greater than 0."],
[‘cpm(t-2)", 'greater’, 0, 'CPM should be greater than 0."],
['cpm(t-3)', 'greater’, 0, 'CPM should be greater than 0."],
['cpm(t-4)', 'greater’, 0, 'CPM should be greater than 0."],
['cpm(t-5)", 'greater’, 0, 'CPM should be greater than 0."],
['cpm(t-6)', 'greater’, 0, 'CPM should be greater than 0."],
['cpm(t-7)', 'greater’, 0, 'CPM should be greater than 0."],

['cp_thousand reach(t-0)', 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-1)', 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-2)', 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-3)', 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-4), 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-5)', 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-6)', 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],
['cp_thousand reach(t-7)", 'greater’, 0, 'CP 1000 Reach should be greater than 0.'],

['frequency(t-0)', 'greater’, 0, 'Frequency should be greater than 0.'],
['frequency(t-1)', 'greater’, 0, 'Frequency should be greater than 0.'],

94

['frequency(t-2)', 'greater’, 0, 'Frequency should be greater than 0."],
['frequency(t-3)', 'greater’, 0, 'Frequency should be greater than 0."],
['frequency(t-4)', 'greater’, 0, 'Frequency should be greater than 0."],
['frequency(t-5)', 'greater’, 0, 'Frequency should be greater than 0."],
['frequency(t-6)', 'greater’, 0, 'Frequency should be greater than 0."],
['frequency(t-7)', 'greater’, 0, 'Frequency should be greater than 0.'],

['bid(t-0)', 'greater’, 0, 'Bid should be greater than 0.'],
['bid(t-1)", 'greater’, 0, 'Bid should be greater than 0."],
['bid(t-2)", 'greater’, 0, 'Bid should be greater than 0.'],
['bid(t-3)', 'greater’, 0, 'Bid should be greater than 0.'],
['bid(t-4)', 'greater’, 0, 'Bid should be greater than 0."],
['bid(t-5)", 'greater’, 0, 'Bid should be greater than 0.'],
['bid(t-6)', 'greater’, 0, 'Bid should be greater than 0.'],
['bid(t-7)', 'greater', 0, 'Bid should be greater than 0."],

['spend(t-0)', 'greater’, 0, 'Spend should be greater than 0.'],
['spend(t-1)', 'greater’, 0, 'Spend should be greater than 0.'],
['spend(t-2)', 'greater’, 0, 'Spend should be greater than 0."],
['spend(t-3), 'greater’, 0, 'Spend should be greater than 0.'],
['spend(t-4)', 'greater’, 0, 'Spend should be greater than 0.'],
['spend(t-5)', 'greater’, 0, 'Spend should be greater than 0."],
['spend(t-6), 'greater’, 0, 'Spend should be greater than 0.'],
['spend(t-7)', 'greater’, 0, 'Spend should be greater than 0.'],

['adaccount currency 8uniquecount, 'equal’, 1, 'Ad account currency should not

change.'],
['adaccount timezone 8Suniquecount', 'equal’, 1, 'Ad account timezone should not

change.'],
['adset billing_event 8uniquecount', 'equal’, 1, 'Billing event should not

change.'],

['adset optimization goal 8uniquecount', 'equal’, 1, 'Optimization goal should
not change.'],
[‘campaign_da optimizer status 8uniquecount’, 'equal’, 1, 'DAO status should
not change.'],
[‘campaign_is dynamic ad 8uniquecount', 'equal’, 1, 'Dynamic ad status should
not change.'],
[‘campaign_objective 8uniquecount', 'equal’, 1, 'Campaign objective should not
change.'],
[‘campaign_promoted object 8uniquecount', 'equal’, 1, 'Promoted object should
not change.'],
[‘campaign_attribution window_8uniquecount', 'equal’, 1, 'Attribution window

95

should not change.'],
[‘campaign_optimize revenue Suniquecount’, 'equal’, 1, 'Optimize revenue status

should not change.'],
['targeting spec 8uniquecount', 'equal’, 1, 'Targeting specifications should not

change.'],
[‘campaign_marvin target cpa 8uniquecount', 'equal’, 1, "TCPA should not
change.'],
'campaign marvin target roas Suniquecount', 'equal’, 1, "TROAS should not
paign _larget_roas_ouniq q
change.'],
['impressions', 'greater’, 99, 'Impressions should be significant.'],
['adset pacing type 8uniquecount', 'equal’, 1, 'Pacing should not change.'],
['adset pacing type(t-0)', 'equal’, "['standard']", 'Pacing should be standard."],
['campaign_health status 8uniquecount', 'equal’, 1, 'Health status should not
change.'],
[‘campaign_health status(t-0)', 'equal’, 'GOOD', 'Health status should be
GOOD."],
['campaign_status 8uniquecount', 'equal’, 1, 'Campaign status should not
change.'],
['campaign_status(t-0)', 'equal’, 'ACTIVE', 'Campaign status should be
ACTIVE."],
['adset status 8uniquecount', 'equal’, 1, 'Adset status should not change.'"],
['adset status(t-0)', 'equal', '"ACTIVE', 'Adset status should be ACTIVE."],
['weighted cpm_lastweek', 'greater', 0, 'Weighted CPM should be greater than
0.1,

['adset run_time', 'greater’, 7, 'Adset should be running for at least 8 days.'"],

[‘campaign_schedule', 'equal’, no_schedule', "There should be no schedule.'],

]
for val pick in value pick list:
df beingcleaned = value picker(df beingcleaned, *val pick)
del val pick

Drop columns that carry no information

96

df beingcleaned =
df beingcleaned[df beingcleaned.columns[~df beingcleaned.columns.str.endswith(' 8unique
count')]]

df beingcleaned =
df beingcleaned[df beingcleaned.columns[~df beingcleaned.columns.str.endswith('8values')]

]

no_info cols =[]
for column in df beingcleaned:
if df beingcleaned[column].nunique(dropna=True) <= 1:
no_info_cols.append(str(df beingcleaned[column].name))
del column

df beingcleaned.drop(no_info_cols, axis=1, inplace=True)

Find out columns with any NaN value

cols with nan = df beingcleaned.columns[df beingcleaned.isna().any()].tolist() # Only
change metrics have Null value.

df beingcleaned|[cols with nan] = df beingcleaned[cols with nan].fillna(value=0,
inplace=False)

cols_with nan = df beingcleaned.columns[df beingcleaned.isna().any()].tolist() # No metric
has any Null value.

Drop NA rows

df beingcleaned = df beingcleaned.dropna(axis='index', how='any', thresh=None,
subset=None, inplace=False)

df beingcleaned with 141775 rows, 470 columns.

Drop columns that have no use from now on

cols to drop =]
'adaccount currency(t-0)',
'adaccount_currency(t-1)',
'adaccount_currency(t-2)',
'adaccount currency(t-3)',
'adaccount_currency(t-4)',
'adaccount currency(t-5)',
'adaccount_currency(t-6)',
'adaccount_currency(t-7)',
'adaccount id',
'adaccount_name’',
'adaccount_timezone(t-0)',
'adaccount_timezone(t-1)',

97

'adaccount timezone(t-2)',
'adaccount_timezone(t-3)',
'adaccount _timezone(t-4)',
'adaccount_timezone(t-5)',
'adaccount_timezone(t-6)',
'adaccount_timezone(t-7)',

'adset billing_event(t-0)',
'adset_billing_event(t-1)',
'adset_billing_event(t-2)',

'adset billing_event(t-3)',
'adset_billing_event(t-4)',
'adset_billing_event(t-5)',

'adset billing_event(t-6)',
'adset_billing_event(t-7)',

'adset_id',

'adset optimization goal(t-0)',
'adset_optimization goal(t-1)',
'adset_optimization goal(t-2)',

'adset optimization goal(t-3)',
'adset_optimization_ goal(t-4)',
'adset_optimization goal(t-5)',
'adset_optimization_goal(t-6)',

'adset optimization goal(t-7)',
'campaign_attribution_window(t-0)',
'campaign_attribution window(t-1)',
'campaign_attribution window(t-2)',
'campaign_attribution_window(t-3)',
'campaign_attribution window(t-4)',
'campaign_attribution window(t-5)',
'campaign_attribution_window(t-6)',
'campaign_attribution_window(t-7)',
'campaign da optimizer status(t-0)',
'campaign_da optimizer status(t-1)',
'campaign_da_optimizer status(t-2),
'campaign _da optimizer status(t-3)',
'campaign_da_optimizer_ status(t-4),
'campaign_da_optimizer status(t-5),
'campaign da optimizer status(t-6)',
'campaign_da_optimizer_ status(t-7),
'campaign_id',

'campaign is dynamic_ad(t-0)',
'campaign_is_dynamic ad(t-1)',

98

'campaign is_dynamic_ad(t-2)',
'campaign_is_dynamic_ad(t-3),
'campaign_is_dynamic_ad(t-4)',

'campaign _is_dynamic_ad(t-5)',
'campaign_is_dynamic ad(t-6),
'campaign_is_dynamic_ad(t-7),

'campaign marvin_target cpa(t-0)',
'campaign_marvin_target cpa(t-0) usd',
'campaign_marvin_target cpa(t-1)',
'campaign marvin_target cpa(t-1) usd',
'campaign _marvin_target cpa(t-2)',
'campaign_marvin_target cpa(t-2) usd',
'campaign marvin_target cpa(t-3)',
'campaign_marvin_target cpa(t-3) usd',
'campaign_marvin_target cpa(t-4)',
'campaign marvin_target cpa(t-4) usd',
'campaign _marvin_target cpa(t-5)',
'campaign_marvin_target cpa(t-5) usd',
'campaign marvin_target cpa(t-6)',
'campaign_marvin_target cpa(t-6) usd',
'campaign_marvin_target cpa(t-7)',
'campaign_marvin_target cpa(t-7) usd’,
'campaign marvin_target roas(t-0)',
'campaign_marvin_target roas(t-0) usd',
'campaign_marvin_target roas(t-1)’,
'campaign marvin_target roas(t-1) usd',
'campaign_marvin_target roas(t-2)',
'campaign_marvin_target roas(t-2) usd',
'campaign marvin_target roas(t-3)',
'campaign marvin_target roas(t-3) usd',
'campaign_marvin_target roas(t-4)’,
'campaign marvin_target roas(t-4) usd',
'campaign_marvin_target roas(t-5)',
'campaign_marvin_target roas(t-5) usd',
'campaign marvin_target roas(t-6)',
'campaign marvin_target roas(t-6) usd',
'campaign_marvin_target roas(t-7)',
'campaign marvin_target roas(t-7) usd',
'campaign_objective(t-0)',
'campaign_objective(t-1)',
'campaign_objective(t-2)',
'campaign_objective(t-3)',

99

'campaign_objective(t-4)',
'campaign_objective(t-5)',
'campaign_objective(t-6)',
'campaign_objective(t-7)',
'campaign_optimize revenue(t-0)',
'campaign_optimize revenue(t-1)',
'campaign_optimize revenue(t-2)',
'campaign_optimize revenue(t-3)',
'campaign_optimize revenue(t-4)',
'campaign_optimize revenue(t-5)',
'campaign_optimize revenue(t-6)',
'campaign_optimize revenue(t-7)',
'campaign promoted object(t-0)',
'campaign_promoted object(t-1)',
'campaign_promoted object(t-2),
'campaign promoted object(t-3)',
'campaign_promoted object(t-4)',
'campaign_promoted_object(t-5),
'campaign promoted object(t-6)',
'campaign_promoted object(t-7)',
'conversion',

'date(t-0)',

'date(t-1)',

'date(t-2)',

'date(t-3)',

'date(t-4)',

'date(t-5)',

'date(t-6)',

'date(t-7)',

'day’,

'min_date’',

'revenue’,

'targeting_spec(t-0)',
'targeting_spec(t-1)',
'targeting_spec(t-2)',
'targeting_spec(t-3)',
'targeting_spec(t-4)',
'targeting_spec(t-5)',
'targeting_spec(t-6)',
'targeting_spec(t-7)',

'usergroup id',

'usergroup name',

100

'impressions’,
'clicks',

'reach’,
'social_clicks',
'social impressions',
'social_reach',

'total actions',
'unique_clicks',
'unique_social_clicks',
'rate_Oday',
'rate_30day’,

Forward looking

'absorption_r change(Ovsl)',
'absorption_r(t-0)',

'ctr(t-0)',

'frequency(t-0)',

'social_ctr(t-0)',
'social reach ratio(t-0)',
'spend/camp_budget(t-0)',
'ctr_change(Ovsl)',

'frequency change(Ovsl)',
'social ctr change(Ovsl)',

'social reach ratio change(Ovsl)',
'spend _change(Ovsl)',
'spend/camp_budget change(Ovsl)',
'spend(t-0) usd',

Currency related duplicates
'bid(t-0)',
'bid(t-1)!,
'bid(t-2)!,
'bid(t-3)',
'bid(t-4)',
'bid(t-5)',
'bid(t-6)',
'bid(t-7)',
'‘budget(t-0)',
'‘budget(t-1)',
'‘budget(t-2)',
'‘budget(t-3)',
'‘budget(t-4)',

101

'budget(t-5)',
'‘budget(t-6)',
'‘budget(t-7)',
'campaign_budget(t-0)',
'campaign_budget(t-1)',
'campaign_budget(t-2)',
'campaign_budget(t-3)',
'campaign_budget(t-4)',
'campaign_budget(t-5)',
'campaign_budget(t-6)',
'campaign_budget(t-7)',
'cp_thousand reach(t-0)',
'cp_thousand reach(t-1)',
'cp_thousand reach(t-2)',
'cp_thousand reach(t-3)',
'cp_thousand reach(t-4)',
'cp_thousand reach(t-5)',
'cp_thousand reach(t-6)',
'cp_thousand reach(t-7)',
'cpm(t-0)',

'cpm(t-1)',

'cpm(t-2)',

‘cpm(t-3)',

'cpm(t-4)',

'cpm(t-5)',

‘cpm(t-6)',

'cpm(t-7)',

'spend(t-0)',

'spend(t-1)',

'spend(t-2)',

'spend(t-3)',

'spend(t-4)',

'spend(t-5)',

'spend(t-6)',

'spend(t-7)',

'weighted cpm_lastweek',

]

df beingcleaned.drop(columns=cols to drop, inplace=True, errors="raise")

Select & reorder columns
cols_order =

102

Targets
'cp_thousand reach change(Ovsl)',
'cpm_change(Ovsl)',

'cp_thousand reach(t-0) usd',
'cpm(t-0) usd',

Ratios

'absorption_r(t-1)',
'absorption_r(t-2)',
'absorption_r(t-3)',
'absorption_r(t-4)',
'absorption_r(t-5)',
'absorption_r(t-6)',
'absorption_r(t-7)',

'‘budget/bid(t-0)',
'‘budget/bid(t-1)',
'‘budget/bid(t-2)',
'‘budget/bid(t-3)',
'‘budget/bid(t-4)',
'budget/bid(t-5)',
'‘budget/bid(t-6)',
'budget/bid(t-7)',

'ctr(t-1)",
'ctr(t-2)",
‘ctr(t-3)',
'ctr(t-4)',
'ctr(t-5)',
‘ctr(t-6)',
‘ctr(t-7)",

'frequency(t-1)',
'frequency(t-2)',
'frequency(t-3)',
'frequency(t-4)',
'frequency(t-5)',
'frequency(t-6)',
'frequency(t-7)',

'social ctr(t-1)',
'social_ctr(t-2)',

103

'social_ctr(t-3)',
'social_ctr(t-4)',
'social_ctr(t-5)',
'social_ctr(t-6)',
'social _ctr(t-7)',

'budget/camp_budget(t-0)',
'‘budget/camp budget(t-1)',
'budget/camp_budget(t-2)',
'budget/camp_budget(t-3)',
'budget/camp budget(t-4)',
'budget/camp_budget(t-5)',
'‘budget/camp_budget(t-6)',
'budget/camp budget(t-7)',

'social reach ratio(t-1)',
'social reach_ratio(t-2)',
'social reach_ratio(t-3)',
'social reach ratio(t-4)',
'social_reach_ratio(t-5)',
'social reach_ratio(t-6)',
'social reach ratio(t-7)',

'spend/camp_budget(t-1)',
'spend/camp_budget(t-2)',
'spend/camp_budget(t-3)',
'spend/camp_budget(t-4)',
'spend/camp_budget(t-5)',
'spend/camp_budget(t-6)',
'spend/camp_budget(t-7)',

Changes

'absorption r change(1vs2),
'absorption_r change(1vs7),
'absorption_r change(2vs3)',
'absorption_r change(3vs4)',
'absorption r change(4vs5)',
'absorption_r change(5vs6)',
'absorption_r change(6vs7)',

'bid_change(Ovsl)',
'bid_change(1vs2)',

104

'bid_change(1vs7)',
'bid_change(2vs3)',
'bid_change(3vs4)',
'bid_change(4vs5)',
'bid_change(5vs6)',
'bid_change(6vs7),

'bidchange*budgetchange yesterday',
'bidchange*spendchange yesterday’',
'spendchange*budgetchange yesterday',

'budget change(Ovsl)',
'budget change(1vs2)',
'budget change(1vs7)',
'budget change(2vs3)',
'budget change(3vs4)',
'budget change(4vsS5)',
'budget change(5vs6)',
'budget change(6vs7)',

'budget/bid_change(Ovsl)',
'budget/bid_change(1vs2)',
'budget/bid_change(1vs7)',
'budget/bid_change(2vs3)',
'budget/bid_change(3vs4)',
'budget/bid_change(4vs5)',
'budget/bid_change(5vs6)',
'budget/bid_change(6vs7)',

'budget/camp budget change(Ovsl)',
'budget/camp budget change(1vs2)',
'‘budget/camp budget change(1vs7)',
'budget/camp budget change(2vs3)',
'budget/camp_budget change(3vs4)',
'‘budget/camp_budget change(4vsS)',
'budget/camp budget change(5vs6)',
'budget/camp budget change(6vs7)',

'cp_thousand reach change(1vs2)',
'cp_thousand reach change(1vs7)',
'cp_thousand reach change(2vs3)',
'cp_thousand reach change(3vs4)',

105

'cp_thousand reach change(4vs5)',
'cp_thousand reach change(5vs6)',
'cp_thousand reach change(6vs7)',

'cpm_change(1vs2)',
'cpm_change(1vs7)',
'cpm_change(2vs3)',
'cpm_change(3vs4)',
'cpm_change(4vsS5)',
'cpm_change(5vs6)',
'cpm_change(6vs7)',

'ctr_change(1vs2)',
'ctr_change(1vs7)',
'ctr_change(2vs3)',
'ctr_change(3vs4)',
'ctr_change(4vs5)',
'ctr_change(5vs6)',
'ctr_change(6vs7)',

'frequency change(1vs2)',
'frequency change(1vs7)',
'frequency change(2vs3)',
'frequency change(3vs4)',
'frequency change(4vs5)',
'frequency change(5vs6)',
'frequency change(6vs7)',

'social_ctr change(1vs2)',
'social_ctr change(1vs7)',
'social ctr change(2vs3)',
'social ctr change(3vs4)',
'social_ctr change(4vsS5)',
'social_ctr _change(5vs6)',
'social ctr change(6vs7)',

'social reach ratio change(1vs2),
'social reach ratio change(1vs7)',
'social reach ratio change(2vs3)',
'social reach ratio change(3vs4),
'social _reach ratio change(4vs5)',
'social_reach ratio change(5vs6)',

106

'social _reach ratio change(6vs7)',

'spend_change(1vs2)',
'spend_change(1vs7)',
'spend_change(2vs3)',
'spend _change(3vs4)',
'spend_change(4vs5)',
'spend_change(5vs6)',
'spend_change(6vs7)',

'spend/camp _budget change(1vs2)',
'spend/camp_budget change(1vs7)',
'spend/camp budget change(2vs3)',
'spend/camp_budget change(3vs4)',
'spend/camp _budget change(4vs5)',
'spend/camp budget change(5vs6)',
'spend/camp _budget change(6vs7)',

Campaign Structure

'is_attr 1dc',

is_attr_1dv',

"is_attr 28dc',

'is_attr 7dc',

'is_attr_7dv',

'is_attr_default',

'is_billing_clicks',

'is_billing impressions',
'is_billing_likes',

'is_billing_mai',

'is_billing_video',
'is_campobjective appinstall',
'is_campobjective click’,
'is_campobjective conversion',
'is_campobjective leadgeneration',
'is_campobjective mobileappinstall',
'is_campobjective pagelike',
'is_campobjective pcs',
'is_campobjective postengagement',
'is_campobjective reach’,
'is_campobjective videoview',
'is_dao',

'is_dynamicad',

107

'is_optgoal appinstall’,
'is_optgoal click’,

'is_optgoal impression’,
'is_optgoal leadgeneration',
'is_optgoal offsiteconversion',
'is_optgoal pagelike',
'is_optgoal postengagement',
'is_optgoal reach',

'is_optgoal videoview',
'is_promotedobject application',
'is_promotedobject catalog',
'is_promotedobject customeventtype',
'is_promotedobject objectstoreurl’,
'is_promotedobject page',
'is_promotedobject pixel',
'is_revenue',

'is_target',

'is_tz_america',

'is_tz asia',

'Is_tz_atlantic',

'is tz_australia’,

'is_tz_europe',

Currency Related
'bid(t-0) usd',
'bid(t-1) usd',
'bid(t-2) usd',
'bid(t-3) usd',
'bid(t-4) usd',
'bid(t-5) usd',
'bid(t-6) usd',
'bid(t-7) usd',

'‘budget(t-0) usd',
'‘budget(t-1) usd',
'‘budget(t-2) usd',
'‘budget(t-3) usd',
'‘budget(t-4) usd',
'budget(t-5) usd',
'‘budget(t-6) usd',
'budget(t-7) usd',

108

'campaign_budget(t-0) usd',
'campaign_budget(t-1) usd',
'campaign_budget(t-2) usd',
'campaign_budget(t-3) usd',
'campaign_budget(t-4) usd',
'campaign_budget(t-5) usd',
'campaign_budget(t-6) usd',
'campaign_budget(t-7) usd',

'cp_thousand reach(t-1) usd',
'cp_thousand reach(t-2) usd',
'cp_thousand reach(t-3) usd',
'cp_thousand reach(t-4) usd',
'cp_thousand reach(t-5) usd',
'cp_thousand reach(t-6) usd',
'cp_thousand reach(t-7) usd',

'cpm(t-1) usd',
'cpm(t-2) usd',
'cpm(t-3) usd',
'cpm(t-4) usd',
'cpm(t-5) usd',
'cpm(t-6) usd',
'cpm(t-7) usd',

'spend(t-1) usd',
'spend(t-2) usd',
'spend(t-3) usd',
'spend(t-4) usd',
'spend(t-5) usd',
'spend(t-6) usd',
'spend(t-7) usd',

'weighted cpm_lastweek usd',

Other

'adset run_time',
'campaign_spend cap',
'day of week',
'day of year',

'month’,

'quarter’,

109

'rate_7day’,
]

df beingcleaned = df beingcleaned[cols order]

Save dataframe to disk for future use

df beingcleaned.to pickle("df/df.gzip", compression = 'gzip")
del df beingcleaned

End timer
end time = time.time()

Calculate execution time
print("--- %s seconds ---" % (end_time - start_time))

110

clustering.py:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

nmn

Created on Thu Aug 2 01:57:14 2018

@author: tektensemih

nmn

R
CAPSTONE PROJECT, MEF BIG DATA ANALYTICS MASTER PROGRAM
#2017 -2018

SEMIH TEKTEN

PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES
HHHHHHHEHHHHHEH
it CLUSTERING HHIHIHEHHHHRHIHHEHHHHR
HHHHH

import libraries
import pandas as pd
import numpy as np
import glob, os
import time

Scikit Learn Libraries
from sklearn.cluster import KMeans

Start timer
start_time = time.time()

Change path
path = os.path.expanduser('~/Documents/Scripts/CPM/Capstone/')
os.chdir(path)

df = pd.read_pickle('df/df.gzip', compression='gzip")
df with 141775 rows, 258 columns

Check if NaN exists
df = df.dropna(axis="index', how='"any', thresh=None, subset=None, inplace=False) # No NaN

111

Find campaign structure features
str_features = list(df filter(like='is_').columns)

K-Means Clustering
seed = 674

for n in range(1,20):
kmeans = KMeans(random_state=seed, n_init=20, max_iter=500, n_jobs=-1,

n_clusters=n+1)

kmeans = kmeans.fit(df[str features])

cluster name = 'adset _seg '+ str(n+1)

df[cluster name] = kmeans.predict(df[str_features])

print('Finished for the ' + str(n+1) + 'th algorithm.")
del n

Save dataframe to disk for future use
df.to_pickle("df/df clustered.gzip", compression = 'gzip")
del df

End timer
end time = time.time()

Calculate execution time
print("--- %s seconds ---" % (end_time - start_time))

112

modelling.py:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

nmn

Created on Sun Jul 22 14:22:01 2018

@author: tektensemih

nmn

HHHHHHHHH

CAPSTONE PROJECT, MEF BIG DATA ANALYTICS MASTER PROGRAM
#2017 - 2018

SEMIH TEKTEN

PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES
R
i MODELLING #HHHH
HHHH B B R R R R R R R R

import libraries

import pandas as pd

import numpy as np

import glob, os

import time

from datetime import datetime, timedelta
import matplotlib.pyplot as plt

import seaborn as sns

from math import sqrt

from scipy import stats

Scikit Learn Libraries

from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge

from sklearn.linear model import Lasso

from sklearn.linear model import ARDRegression
from sklearn.linear model import BayesianRidge
from sklearn.linear model import HuberRegressor
from sklearn.linear model import LassoLars

from sklearn.linear model import Lars

113

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import Normalizer

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import KFold

from sklearn.metrics import mean squared error, r2_score
from sklearn.model_selection import GridSearchCV

from sklearn import decomposition

Start timer
start_time = time.time()

Change path
path = os.path.expanduser('~/Documents/Scripts/CPM/Capstone/")
os.chdir(path)

df = pd.read pickle('df/df clustered.gzip', compression='gzip")
df with 141775 rows, 277 columns

Check if NaN exists
df = df.dropna(axis="index', how='any', thresh=None, subset=None, inplace=False) # No NaN

Log transformation of CPM Change

dff'cpm_change(Ovs1) log'l = np.log(df['cpm_change(Ovs1)']+1)
df['cp_thousand reach change(Ovsl) log'] =
np.log(dff'cp_thousand reach change(Ovsl)']+1)

Put Log columns to beginning

cols = df.columns.tolist()

cols.insert(2, cols.pop(cols.index('cpm_change(Ovs1) log")))

cols.insert(1, cols.pop(cols.index('cp thousand reach change(Ovsl) log")))
df = df.reindex(columns = cols)

Correlation Matrix
corr_matrix = df.corr()
corr_matrix_abs = df.corr().abs()

Visualize Correlation Matrix

114

plt.matshow(corr matrix_abs)

Visualize CPM Change Values, if no metric has significant change
threshold = 0.25
no_sig change = df (df['absorption_r change(1vs2)'].abs() <= threshold) &
(df]'bid_change(0vs1)'].abs() <= threshold) &
(df'bid_change(1vs2)'].abs() <= threshold) &
(dfl'budget change(0Ovs1)'].abs() <= threshold) &
(dff'budget change(1vs2)'].abs() <= threshold) &
(dff'ctr_change(1vs2)'].abs() <= threshold) &
(df]'spend_change(1vs2)'].abs() <= threshold)
]

no_sig change = no_sig change['cpm_change(Ovsl)'].sort values(axis=0,
ascending=True).reset_index()

no sig change =no sig change['cpm change(Ovsl)']

drop 5 = int(no_sig_change.shape[0] * 0.025)

no_sig change =no_sig_change.iloc[drop 5:]

no sig change =no_sig change.head(no sig change.shape[0]-drop 5)

no_sig_change.hist()

del no_sig change, drop 5, threshold

T R R R R R R R R R R R
HtHH#

What is CPM change range distribution, when there is no significant change?

Without any significant changes, CPM change value ranges from -0.3 to 0.4.
R
HitiH

HHHHHHHHHHHH
IR
#i##H REGRESSION HHHHE

HHHHHHHHHHHH
HHHHHHHHHIH

seed = 674
Regression Function

def adjusted rsqu(rs,n,p):
rs: r-squared

115

n: number of observations

p: number of independent variables
print(‘HHHHHFHIH I
print('R_Squared: ' + str(rs))
print('Observations: ' + str(n))
print('Variables: ' + str(p))

adjusted_r = 1-(1-rs)*(n-1)/(n-p-1)
print('Adjusted R: ' + str(adjusted r))
print(‘HHHHHHIHHHHHEHHH)
return adjusted r

def regression(features, target, algorithm, params, seed, description):

K-Fold splits
kf splits =10
kf = KFold(n_splits=kf splits, shuffle=False, random_state=seed).split(features)

score_train_list =[]
score test list =[]
rmse_train_list = []
rmse_test list =[]
prediction_list =[]
actual list =[]

for train_indices, test_indices in kf:
X_train = features.iloc[train_indices]
X test = features.iloc[test_indices]
y_train = target.iloc[train_indices]
y_test = target.iloc[test indices]

reg = GridSearchCV (algorithm, params,scoring="r2")
reg = reg.fit(X_train, y train)

trainy predict = reg.predict(X_train)
testy predict = reg.predict(X _test)

score_train_list.append(adjusted rsqu(r2_score(y_train,
trainy predict),trainy predict.size,len(features.columns)))
score_test list.append(adjusted rsqu(r2_score(y_test,
testy predict),testy predict.size,len(features.columns)))

rmse_train_list.append(sqrt(mean_squared error(y_train, trainy predict)))

116

rmse_test list.append(sqrt(mean_squared error(y_test, testy predict)))

prediction_list.append(testy predict)
actual list.append(y_test)

to_return = {'target':target.name,
'avg train_r2":np.mean(score train list),
'avg test r2":np.mean(score test list),
'avg train_rmse":np.mean(rmse_train_list),
'avg test rmse':np.mean(rmse _test list),
'predictions":np.concatenate(prediction_list, axis=0),
'actuals':np.concatenate(actual _list, axis=0),
'algorithm':algorithm,
'params’:reg.best params |,
'description':description,
'seed":seed

}

return to_return

def modelling(features, target, description, seed):
models = [
Linear Regression Algorithms

Linear Model
[LinearRegression(),

{'n_jobs"[-1]}],

Ridge Model
#[Ridge(random_state=seed),
{'alpha':[1.0]}],

Lasso Model
#[Lasso(random_state=seed),
{alpha:[1.0]}],

Bayesian Ridge Model
#[BayesianRidge(),
#U0

Lasso Lars Model
#[LassoLars(),
{alpha:[0.01]}],

117

Lars Model
#[Lars(),
{n_nonzero coefs:[1]}],

Tree Regression Algorithms

#[RandomForestRegressor(n_estimators = 50, max_features = 13, \

max_depth = 10, min_samples_split=5,\
n_jobs =-1, min_samples_leaf = 20, \

oob_score = True, random_state = seed),
{3

],

]

Decision Tree Regression
Various parameters

func results =[]

for model in models:
func_results.append(regression(features,target,model[0],model[1],seed,description))

return func_results

Targets & Features

features

targets

= df[df.columns.difference(['cp_thousand reach(t-0) usd',
'cp_thousand reach change(Ovsl)',
'cp_thousand reach change(Ovsl) log',
'cpm(t-0) usd',
'cpm_change(Ovsl)',
'cpm_change(Ovs1) log'
DI

= df[['cp_thousand reach(t-0) usd',
'cp_thousand reach change(Ovsl)',
'cp_thousand reach change(Ovsl) log',
'cpm(t-0) usd',
'cpm_change(Ovsl)',
'cpm_change(Ovsl) log'
1]

118

features_cols = list(features.columns)
targets cols = list(targets.columns)

Cases
df backup = df.copy()

default result = modelling(dfffeatures cols], df['cpm change(Ovsl) log'], 'Default result',
seed)

nmn

Scores of default dataset:

max_features: 14

Average Train RMSE: 0.22882540779754917
Average Train R2: 0.2948863064898627
Average Test RMSE: 0.23390752740619963
Average Test R2: 0.1967944827157384

max_features: 25

Average Train RMSE: 0.22293444038854077
Average Train R2: 0.3307816881070299
Average Test RMSE: 0.2294464401721604
Average Test R2: 0.22679395887852385

max_features: 40

Average Train RMSE: 0.21978561091089116
Average Train R2: 0.3495413666074792
Average Test RMSE: 0.2273921648766361
Average Test R2: 0.24095141754046895

max_features: 80

Average Train RMSE: 0.21735614876533188
Average Train R2: 0.3638359850458821
Average Test RMSE: 0.22585352408859322
Average Test R2: 0.25135911955940393

Review:

We'll continue with '14' features, considering the accuracy & computational speed.
nmn

119

R

Choose rows

Case 1: Significant changes

Option 1: Use no case with significant change, 'change' threshold:
CPTR change)

Option 2: Use no case with significant change, 'change' threshold:
CPTR change)

Option 3: Use no case with significant change, 'change' threshold:
CPTR change)

Option 4: Use no case with significant change, 'change' threshold:
CPTR change)

Option 5: Use no case with significant change, 'change' threshold:
CPTR change)

Option 6: Use no case with significant change, 'change' threshold:
CPTR change)

Option 7: Use no case with significant change, 'change' threshold:
CPTR change)

Option 8: Use no case with significant change, 'change' threshold:
CPTR change)

Option 9: Use all cases

results =[]
df case = df.copy()

thresholds = [0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.8]

for threshold in thresholds:

+/- 0.10 (Exclude CPM,
+/- 0.20 (Exclude CPM,
+/- 0.30 (Exclude CPM,
+/- 0.40 (Exclude CPM,
+/- 0.50 (Exclude CPM,
+/- 0.60 (Exclude CPM,
+/- 0.70 (Exclude CPM,

+/- 0.80 (Exclude CPM,

df case =df case[(df case['absorption r change(1vs2)'].abs() <= threshold) &

(df case['bid_change(Ovs1)'].abs() <= threshold) &
(df case['bid_change(1vs2)'].abs() <= threshold) &
(df case['budget change(0Ovsl)'].abs() <= threshold) &
(df case['budget change(1vs2)'].abs() <= threshold) &
(df case['ctr_change(1vs2)'].abs() <= threshold) &

(df case['spend change(1vs2)'].abs() <= threshold)

]

results.append(modelling(df case[features cols], df case['cpm change(Ovsl) log'],

'Significant change test', seed))

120

df case = df.copy()

print 'Significant Change Test Results for target column CPM Change Ovs1 Log, Seed: 674"
for 1 in range(len(results)):

print 'For threshold: ' + str(thresholds([i])

print 'Average Train RMSE: ' + str(results[i][0]['avg_train rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train 12'])

print 'Average Test RMSE: ' + str(results[i1][0]['avg_test rmse'])

print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Significant Change Test Results for target column CPM Change Ovs1 Log, Seed: 674:

For threshold: 0.1

Average Train RMSE: 0.12440986218790287
Average Train R2: 0.19008153087560836
Average Test RMSE: 0.13267132123307132
Average Test R2: -0.2968232613575119

For threshold: 0.2

Average Train RMSE: 0.14456060134961174
Average Train R2: 0.19322744801623606
Average Test RMSE: 0.15164783582686397
Average Test R2: 0.00690866738794278

For threshold: 0.3

Average Train RMSE: 0.16477676008243541
Average Train R2: 0.19020627869602383
Average Test RMSE: 0.17062932333323955
Average Test R2: 0.054137263786468215

For threshold: 0.4

Average Train RMSE: 0.17693001112861098
Average Train R2: 0.1960034472147269
Average Test RMSE: 0.18213284169914284
Average Test R2: 0.08300376954184555

For threshold: 0.5

Average Train RMSE: 0.18901330578140244
Average Train R2: 0.20634503386943423
Average Test RMSE: 0.19447148810831702

121

Average Test R2: 0.0990436607379319

For threshold: 0.6

Average Train RMSE: 0.19695027525820769
Average Train R2: 0.22042913861287278
Average Test RMSE: 0.20240130791173022
Average Test R2: 0.11649305400315746

For threshold: 0.7

Average Train RMSE: 0.2027384362601079
Average Train R2: 0.23948828371404987
Average Test RMSE: 0.2081901065883122
Average Test R2: 0.13557409595423225

For threshold: 0.8

Average Train RMSE: 0.20807937907528457
Average Train R2: 0.26603164840403953
Average Test RMSE: 0.21350303154579692
Average Test R2: 0.15874604075714846

Review:

When threshold for significant change increases, both average train & test R2 increases.
When threshold for significant change increases, RMSE also increases.

All thresholds bring less RMSE, but their R2 is also less than default.

No filtering for significant change will be used.

nmn

del df case, results

Case 2: Adset run time

Option 1: Adset run time above 29
Option 2: Adset run time above 19
Option 3: Adset run time above 13
Option 4: Adset run time above 9
Option 5: All cases

results = []
df case = df.copy()

122

thresholds =[0,9,13,19,29]

for threshold in thresholds:
df case =df case[(df case['adset run time'] >= threshold)]

results.append(modelling(df case[features_cols], df case['cpm_change(Ovsl) log'], 'Adset
run time test', seed))

df case = df.copy()

print 'Adset Run Time Test Results for target column CPM Change Ovs1l Log, Seed: 674
for 1 in range(len(results)):

print 'For threshold: ' + str(thresholds[i])

print 'Average Train RMSE: ' + str(results[i][0]['avg_train rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])

print 'Average Test RMSE: ' + str(results[i][0]['avg_test rmse'])

print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Adset Run Time Test Results for target column CPM Change Ovsl Log, Seed: 674:

For threshold: 0

Average Train RMSE: 0.22882540779754917
Average Train R2: 0.2948863064898627
Average Test RMSE: 0.23390752740619963
Average Test R2: 0.1967944827157384

For threshold: 9

Average Train RMSE: 0.228948515586391
Average Train R2: 0.29826357309878115
Average Test RMSE: 0.23420119726105018
Average Test R2: 0.20030548457207967

For threshold: 13

Average Train RMSE: 0.23082139665679433
Average Train R2: 0.2998692677621351
Average Test RMSE: 0.23611052961041729
Average Test R2: 0.1994730390322385

For threshold: 19
Average Train RMSE: 0.23282327698686242
Average Train R2: 0.3047183690890668

123

Average Test RMSE: 0.23772238440339297
Average Test R2: 0.19735846130469784

For threshold: 29

Average Train RMSE: 0.2369909709563236
Average Train R2: 0.3079032611346693
Average Test RMSE: 0.2427339254985604
Average Test R2: 0.20107366361491721

Review:

Adset run time has little/no impact on both Train&Test RMSE & R2.
I decided not to include adset run time filter in my model.

nmn

del df case, results

Case 3: Conversions wanted from Facebook

Option 1: Use conversions wanted (Adset Budget / Adset Bid) threshold > 4
Option 2: Use conversions wanted (Adset Budget / Adset Bid) threshold > 9
Option 3: Use conversions wanted (Adset Budget / Adset Bid) threshold > 14
Option 4: Use conversions wanted (Adset Budget / Adset Bid) threshold > 19
Option 5: Use conversions wanted (Adset Budget / Adset Bid) threshold > 49
Option 6: Use no conversions wanted information

results = []
df case = df.copy()

thresholds =[5,10,15,20,50]
for threshold in thresholds:
threshold = 50
df case = df case[(df case['budget/bid(t-0)'] >= threshold)]

results.append(modelling(df case[features cols], df case['cpm change(Ovsl) log'],
'Conversions wanted test', seed))

df case = df.copy()

124

print 'Conversions Wanted Test Results for target column CPM Change Ovs1 Log, Seed: 674:'
for 1 in range(len(results)):

print 'For threshold: ' + str(thresholds[i])

print 'Average Train RMSE: ' + str(results[i][0]['avg_train_rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])

print 'Average Test RMSE: ' + str(results[i][0]['avg test rmse'])

print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Conversions Wanted Test Results for target column CPM Change Ovs1 Log, Seed: 674:

For threshold: 5

Average Train RMSE: 0.24623905258377898
Average Train R2: 0.3225085117333603
Average Test RMSE: 0.250765542004317
Average Test R2: 0.2068910103153972

For threshold: 10

Average Train RMSE: 0.25130971895485205
Average Train R2: 0.3274162598713405
Average Test RMSE: 0.256995101666384
Average Test R2: 0.2088076662547167

For threshold: 15

Average Train RMSE: 0.2542120836477324
Average Train R2: 0.3320525587219921
Average Test RMSE: 0.2599277854345284
Average Test R2: 0.2122799399279673

For threshold: 20

Average Train RMSE: 0.2563430083621602
Average Train R2: 0.3339301254976247
Average Test RMSE: 0.2625540990480219
Average Test R2: 0.21095520701367892

For threshold: 50

Average Train RMSE: 0.26473659839536057
Average Train R2: 0.34614303037504357
Average Test RMSE: 0.2719576150837061
Average Test R2: 0.2191745489084341

125

Review:

Conversions wanted has little impact on Test R2.

If T want to use this filter, I need to drop 75K of observations, which is half of the cases, for
%1 increase in R2.

For that reason, I decided not to use Conversions wanted for filtering.

nmn

del df case, results

Case 4: Unbiased Spend Levels

Option 1: Calculate spend change levels with 0.1 and drop random rows in order to have
balanced spend change levels

Option 2: Use all spend levels

results =[]
df case = df.copy()

df case =df case[df case['spend change(1vs2)'] < 1.0]

df case['spend change level'] = pd.cut(df case['spend change(1vs2)'],
bins=[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,
0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1])

df case['spend change level'].value counts()

nmn

(-0.1,0.0] 22013
(0.0,0.17 20007
(-0.2,-0.17 13268
(0.1,0.2] 10726
(-0.3,-02] 9762
(-0.4,-0.3] 7856
(0.2,0.3] 6900

(-0.5,-0.4] 5768
(0.3,04] 5175

(-0.6,-0.5] 4560
0.4,0.5] 4127

(-0.7,-0.6] 3223

126

(0.5,0.6] 3084
(0.6,0.7] 2535
(-0.8,-0.7] 2194
(0.7,0.8] 2146
(0.8,0.9] 1807
0.9,1.0] 1429
(-0.9,-0.8] 1377
(-1.0,-0.9] 650

Action points:

1. Drop rows until each category has 650 or less observations
2. Drop rows until each category has 2000 or less observations
3. Drop rows until each category has 3000 or less observations
4. Drop rows until each category has 6500 or less observations
5. Drop rows until each category has 9000 or less observations

nmn

unique_changelevel 1= list(df case['spend change level'].unique())
thresholds = [650,2000,3000,6500,9000]
df case backup = df case.copy()

for threshold in thresholds:
for level in unique changelevel 1:
drop_count = df case[df case['spend change level']l == level].shape[0] - threshold
if drop _count <= 0:
continue
df case.drop(df case[df case['spend change level'l] ==
level].sample(n=drop count).index, inplace=True)

results.append(modelling(df case[features cols], df case['cpm change(Ovsl) log'],
'Unbiased spend level test', seed))
df case =df case backup.copy()

print 'Unbiased Spend Level Test Results for target column CPM Change Ovsl Log, Seed:
674:'
for 1 in range(len(results)):

print 'For threshold: ' + str(thresholds[i])

print 'Average Train RMSE: ' + str(results[i][0]['avg_train rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train 12'])

print 'Average Test RMSE: ' + str(results[i][0]['avg_test rmse'])

print 'Average Test R2: ' + str(results[1][0]['avg_test 12'])

127

nmn

Unbiased Spend Level Test Results for target column CPM Change Ovs1 Log, Seed: 674:

For threshold: 650

Average Train RMSE: 0.2588506276101789
Average Train R2: 0.42591004402587557
Average Test RMSE: 0.2780724217405783
Average Test R2: 0.10580988671788519

For threshold: 2000

Average Train RMSE: 0.25253197474243166
Average Train R2: 0.3942124510349339
Average Test RMSE: 0.265273190140986
Average Test R2: 0.21743982321098243

For threshold: 3000

Average Train RMSE: 0.24561012309752317
Average Train R2: 0.38017422569007275
Average Test RMSE: 0.25706558601312507
Average Test R2: 0.2262279778074649

For threshold: 6500

Average Train RMSE: 0.2375299090755974
Average Train R2: 0.3340856655127354
Average Test RMSE: 0.2458517935346752
Average Test R2: 0.21004661113794731

For threshold: 9000

Average Train RMSE: 0.23251609275486912
Average Train R2: 0.32136358282631583
Average Test RMSE: 0.23969571172477688
Average Test R2: 0.20689190349952927

Review:

Converting our dataframe into an unbiased dataframe in terms of spend change(1vs2) has
little/no impact on Test R2 & RMSE.

In our classification model in BDA 502 Course, spend has an impact on CPM change.

In our case, we can't use Spend change (Ovsl) since it's a forward looking feature.

For that reason, I will also try balanced bid change (Ovs1) in the next section.

I won't use balanced Spend change in my model.

nmn

128

del unique changelevel 1, thresholds, df case backup, results, df case

Case 5: Unbiased Bid Change Levels

Option 1: Calculate bid change levels with 0.1 and drop random rows in order to have
balanced spend change levels

Option 2: Use all bid change levels

results = []
df case = df.copy()

df case['bid change level']l = pd.cut(df case['bid change(Ovsl)'],
bins=[-np.inf, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,
0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, np.inf])

df case['bid change level'].value counts()

nmn

(-0.1,0.0] 116746
(-0.2,-0.11 6320
(0.1,02] 6026
(0.0,0.1] 4908
(0.2,0.3] 3874
(0.3,0.4] 1496
(-0.3,-0.2] 1290
(-0.4,-03] 501
(0.4,0.5] 193
(-0.5,-04] 192
(-0.6,-0.5] 56
(0.5, 0.6] 39
(0.6, 0.7] 36
(1.0, inf] 27
(-0.7,-0.6] 20
(0.7, 0.8] 12
(0.8, 0.9] 10
(-0.8,-0.7] 10

(0.9, 1.0] 7
(-09,-08] 7
(-1.0,-09] 5
(-inf,-1.0] 0

129

There is a clear bias towards (-0.1, 0.0].

nmn

unique changelevel 1= list(df case['bid change level'].unique())
thresholds = [6500, 3000]
df case backup = df case.copy()

for threshold in thresholds:
for level in unique changelevel 1:
drop_count = df case[df case['bid change level'| == level].shape[0] - threshold
if drop_count <= 0:
continue
df case.drop(df case[df case['bid change level'] ==
level].sample(n=drop count).index, inplace=True)

results.append(modelling(df case[features _cols], df case['cpm_change(Ovsl) log'],
'Unbiased bid change level test', seed))
df case =df case backup.copy()

print 'Unbiased Bid Change Level Test Results for target column CPM Change Ovsl Log,
Seed: 674!
for 1 in range(len(results)):

print 'For threshold: ' + str(thresholds[i])

print 'Average Train RMSE: ' + str(results[i][0]['avg_train_rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])

print 'Average Test RMSE: ' + str(results[i][0]['avg test rmse'])

print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Unbiased Bid Change Level Test Results for target column CPM Change Ovsl Log, Seed:
674:

For threshold: 6500

Average Train RMSE: 0.22941100676132428
Average Train R2: 0.350330991365721
Average Test RMSE: 0.2452606765517483
Average Test R2: 0.18181726318724836

For threshold: 3000

Average Train RMSE: 0.23357002943467015
Average Train R2: 0.369453546461928
Average Test RMSE: 0.25344862281564573

130

Average Test R2: 0.13463327065091346
Review:

It seems in parallel to spend change filtering, bid change filtering also has no impact on CPM
change.
I won't use bid change filtering in my model.

nmn

del unique changelevel 1, thresholds, df case backup, results, df case

G e e e e e e e
Choose columns

Case 1: Campaign structure features
Option 1: Use campaign structure dummy features, starting with ' is

'

, without best

segmentation
Option 2: Use campaign structure dummy features, starting with ' is', with best
segmentation
Option 3: Don't use campaign structure dummy features, starting with ' is', without best
segmentation

Option 4: Don't use campaign structure dummy features, starting with ' is', with best
segmentation

results = []
df case = df.copy()

all features = features cols
str_features = [col for col in df case if col.startswith('is ')]
seg_features = [col for col in df case if col.startswith('adset seg')]

corr_matrix_abs = df case.corr().abs()

corr_matrix_abs = corr_matrix_abs[['cpm_change(Ovs1) log']]

corr_matrix_abs = corr_matrix_abs.reset_index()

corr_matrix_abs =
corr_matrix_abs[corr _matrix abs['index'].str.contains('adset _seg')].sort values(by='cpm_chan
ge(Ovsl) log', ascending=False)

Adset Segmentation with 10 Clusters is the correlated segmentation feature.

131

Option 1
all features w_str wout segment = list(set(all features) - set(seg_features))

Option 2
all features w_str w_segment = list(set(all features) - set(seg_features))
all features w_str w_segment.append('adset seg 10"

Option 3
all features wout str wout segment = list(set(all features) - set(seg_features))
all features wout str wout segment = list(set(all features wout str wout segment) -

set(str_features))

Option 4
all features wout str w_segment = list(set(all features) - set(seg_features))
all features wout str w_segment = list(set(all features wout str w_segment) -

set(str_features))
all features wout str w_segment.append('adset seg 10"

results.append(modelling(df case[all features w_str wout segment],
df case['cpm_change(Ovsl) log'],
'all features w_str wout segment’,
seed))

results.append(modelling(df case[all features w str w_segment],
df case['cpm change(Ovs1) log'],
'all features w_str w_segment',
seed))

results.append(modelling(df case[all features wout str wout segment],
df case['cpm_change(Ovsl) log'],
'all features wout str wout segment',
seed))

results.append(modelling(df case[all features wout str w_segment],
df case['cpm change(Ovsl) log'],
'all features wout str w_segment’,
seed))

print 'Campaign Structure & Segment Information Test Results for target column CPM
Change Ovsl Log, Seed: 674
for 1 in range(len(results)):

print 'For option: ' + str(i+1)

132

print 'Average Train RMSE: ' + str(results[1][0]['avg_train rmse'])
print 'Average Train R2: ' + str(results[i][0]['avg_train 12'])

print 'Average Test RMSE: ' + str(results[i][0]['avg_test rmse'])
print 'Average Test R2: ' + str(results[1][0]['avg_test 12'])

nmn

Campaign Structure & Segment Information Test Results for target column CPM Change
Ovsl Log, Seed: 674:

Option 1: Use campaign structure dummy features, starting with ' is', without best
segmentation

Average Train RMSE: 0.22795171923374574

Average Train R2: 0.30043021439686696

Average Test RMSE: 0.23309810847575946

Average Test R2: 0.203221359084972

Option 2: Use campaign structure dummy features, starting with ' is', with best segmentation
Average Train RMSE: 0.2280545942271978

Average Train R2: 0.29982341293029563

Average Test RMSE: 0.23322790153874137

Average Test R2: 0.2021590791937312

Option 3: Don't use campaign structure dummy features, starting with ' is', without best
segmentation

Average Train RMSE: 0.22694318920666073

Average Train R2: 0.30681967024179063

Average Test RMSE: 0.23288077888245096

Average Test R2: 0.20874681207043916

Option 4: Don't use campaign structure dummy features, starting with ' is', with best
segmentation

Average Train RMSE: 0.22690727460534613

Average Train R2: 0.30705444030414153

Average Test RMSE: 0.23249544980148462

Average Test R2: 0.21107646711490896

Review:

All Train RMSE & R2 are very similar.

All Train RMSE & R2 are very similar.

There is 1 point increase in Test R2 with Option4.

Option 4 suggests not to use campaign structure features, but to use best segmentation feature.

133

By not using campaign structure we decrease complexity in our model and also increase the
accuracy by 1 point.
We will proceed with Option 4: all features wout str w_segment

nmn

del all features, str_features, seg features, corr matrix_abs, results, df case
del all features w_str w_segment, all features w_str wout segment

best features = all features wout str w_segment[:]
del all features wout str w_segment, all features wout str wout segment

Case 2: PCA

Option 1: Use PCA, if better than best columns from Case 1, n_components = 3
Option 2: Use PCA, if better than best columns from Case 1, n_components = 5
Option 3: Use PCA, if better than best columns from Case 1, n_components = 10
Option 4: Use PCA, if better than best columns from Case 1, n_components = 20
Option 5: Don't use PCA, instead use best columns from Case 1

results = []

Option 1: PCA, n_components = 3

df case = df.copy()

pca = decomposition.PCA(n_components=3)

pca.fit(df case[best features])

X = pca.transform(df case[best features])

df case pca = pd.DataFrame(X)

df case pca['cpm change(Ovsl) log']l = df case['cpm_change(Ovsl) log'].reset index(drop =
True).copy()

results.append(modelling(df case pca.drop(['cpm_change(Ovsl) log'], axis=1),
df case pca['cpm_change(Ovsl) log'],
'PCA, n_components=3',
seed))

del X, df case pca, df case, pca

134

Option 2: PCA, n_components = 5

df case = df.copy()

pca = decomposition.PCA(n_components=5)

pca.fit(df case[best features])

X = pca.transform(df case[best features])

df case pca = pd.DataFrame(X)

df case pca['cpm change(Ovsl) log']l = df case['cpm_change(Ovsl) log'].reset index(drop =
True).copy()

results.append(modelling(df case pca.drop(['cpm_change(Ovsl) log'], axis=1),
df case pca['cpm_change(Ovsl) log'],
'PCA, n_components=5',
seed))

del X, df case pca, df case, pca

Option 3: PCA, n_components = 10

df case = df.copy()

pca = decomposition.PCA(n_components=10)

pca.fit(df case[best features])

X = pca.transform(df case[best features])

df case pca = pd.DataFrame(X)

df case pca['cpm_change(Ovsl) log'l =df case['cpm_change(Ovsl) log'].reset index(drop =
True).copy()

results.append(modelling(df case pca.drop(['cpm_change(Ovsl) log'], axis=1),
df case pca['cpm_change(Ovsl) log'],
'PCA, n_components=10',
seed))

del X, df case pca, df case, pca

Option 4: PCA, n_components = 20

df case = df.copy()

pca = decomposition.PCA(n_components=20)

pca.fit(df case[best features])

X = pca.transform(df case[best features])

df case pca = pd.DataFrame(X)

df case pca['cpm_change(Ovsl) log'l =df case['cpm_change(Ovsl) log'].reset index(drop =
True).copy()

results.append(modelling(df case pca.drop(['cpm_change(Ovsl) log'], axis=1),

135

df case pca['cpm_change(Ovsl) log'],
'PCA, n_components=20",
seed))

del X, df case pca, df case, pca

Option 5: No PCA, instead best features

df case = df.copy()

results.append(modelling(df case[best features],
df case['cpm change(Ovsl) log'],
'Best Features, without PCA',
seed))

del df case

print 'PCA Test Results for target column CPM Change Ovs1 Log, Seed: 674"
for 1 in range(len(results)):

print 'For option: ' + str(i+1)

print 'Average Train RMSE: ' + str(results[i][0]['avg_train rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train 12'])

print 'Average Test RMSE: ' + str(results[i1][0]['avg_test rmse'])

print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

PCA Test Results for target column CPM Change Ovs1 Log, Seed: 674:

For option: 1, n_components: 3

Average Train RMSE: 0.27166416635077134
Average Train R2: 0.00858998073446926
Average Test RMSE: 0.2652159952912888
Average Test R2: -0.0006940098167486974

For option: 2, n_components: 5

Average Train RMSE: 0.2714088629922835
Average Train R2: 0.010447269384867397
Average Test RMSE: 0.2651886394452006
Average Test R2: -0.0006835313126161591

For option: 3, n_components: 10

Average Train RMSE: 0.2677190537102853
Average Train R2: 0.03716663353250475
Average Test RMSE: 0.2649224939094136

136

Average Test R2: 0.0018782163614055381

For option: 4, n_components: 20

Average Train RMSE: 0.2646851336392976
Average Train R2: 0.058757115614457386
Average Test RMSE: 0.26405469560859934
Average Test R2: 0.007626193139637738

For option: 5, No PCA

Average Train RMSE: 0.22387304477967457
Average Train R2: 0.32545440408390897
Average Test RMSE: 0.23026933020187643
Average Test R2: 0.22585182230712633

Review:
PCA did not help improving R2.

nmn

Case 3: Features correlated to target

Option 1: Choose top 10 features, correlated to target
Option 2: Choose top 20 features, correlated to target
Option 3: Choose top 50 features, correlated to target
Option 4: Choose top 100 features, correlated to target
Option 5: Choose top 200 features, correlated to target
Option 6: Choose all features, regardless of correlation

results = []

df case = df.copy()

corr_table = df case.corr().ix['cpm_change(Ovsl) log', :-1]
corr_table = corr_table.abs().sort_values(axis=0, ascending=False)

corr_table = corr_table.drop(labels=['cp thousand reach(t-0) usd',

'cp_thousand reach change(Ovsl)',
'cp_thousand reach change(Ovsl) log',

137

'cpm(t-0) usd',
'cpm_change(Ovs1)',
'cpm_change(Ovs1) log'])

Option 1: Choose top 10 features, correlated to target
corr_features = list(corr_table.index[range(0,10)])
results.append(modelling(df case[corr features],

df case['cpm_change(Ovsl) log'],

'10 correlated features',

seed))

Option 2: Choose top 20 features, correlated to target
corr_features = list(corr_table.index[range(0,20)])
results.append(modelling(df case[corr features],

df case['cpm_change(Ovsl) log'],

'20 correlated features',

seed))

Option 3: Choose top 50 features, correlated to target
corr_features = list(corr_table.index[range(0,50)])
results.append(modelling(df case[corr features],

df case['cpm_change(Ovsl) log'],

'50 correlated features',

seed))

Option 4: Choose top 100 features, correlated to target
corr_features = list(corr_table.index[range(0,100)])
results.append(modelling(df case[corr features],

df case['cpm change(Ovsl) log'],

'100 correlated features',

seed))

Option 5: Choose top 200 features, correlated to target
corr_features = list(corr_table.index[range(0,200)])
results.append(modelling(df case[corr features],

df case['cpm_change(Ovsl) log'],

'200 correlated features',

seed))

Option 6: Choose all features, regardless of correlation
corr_features = list(corr_table.index[range(0,len(corr table))])
results.append(modelling(df case[corr features],

138

df case['cpm_change(Ovsl) log'],
'200 correlated features',
seed))

print '"Number of features used in Linear Regression, decided by correlation to target, Seed:
674:'
for 1 in range(len(results)):

print 'For option: ' + str(i+1)

print 'Average Train RMSE: ' + str(results[1][0]['avg_train rmse'])

print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])

print 'Average Test RMSE: ' + str(results[1][0]['avg_test rmse'])

print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Number of features used in Linear Regression, decided by correlation to target, Seed: 674:

For option: 1

Average Train RMSE: 0.25375969732516157
Average Train R2: 0.1348723841573915
Average Test RMSE: 0.24749586273522994
Average Test R2: 0.12626433541067952

For option: 2

Average Train RMSE: 0.25128357592559447
Average Train R2: 0.15158465175272334
Average Test RMSE: 0.2460733419295122
Average Test R2: 0.1329372189228998

For option: 3

Average Train RMSE: 0.2509490433788367
Average Train R2: 0.15364742482237728
Average Test RMSE: 0.24612720160776416
Average Test R2: 0.13071400860009197

For option: 4

Average Train RMSE: 0.2503219194947005
Average Train R2: 0.1575418295507221
Average Test RMSE: 0.2562521818873632
Average Test R2: 0.030388450352519258

139

For option: 5

Average Train RMSE: 0.247090694488108
Average Train R2: 0.17849608714200074
Average Test RMSE: 0.4794876785297985
Average Test R2: -4.047825260493367

For option: 6

Average Train RMSE: 0.24681855482206067
Average Train R2: 0.17984423254182408
Average Test RMSE: 0.653816316483946
Average Test R2: -11.411021251202612

Review:

Using top 20 correlated features generated the maximum Test R2 and minimum RMSE.
After 50 features, Test R2 dropped significantly.
We will continue our modelling with top 20 best features.

Note: Used linear regression, instead of Random Forest.
nmn

Check if top 20 correlated feature is a subset of best features
set(corr_features).issubset(best features)

nmn

What are the top 20 most correlated features?
'cpm_change(1vs2)',
'cpm_change(1vs7)',
'cp_thousand reach change(1vs2)',
'cp_thousand reach change(1vs7)',
'bid_change(Ovsl)',
'ctr_change(1vs7)',
'ctr_change(1vs2)',

'cpm(t-1) usd',

'cp_thousand reach(t-1) usd',
‘ctr(t-1)',

'frequency change(1vs7)',
'social ctr change(1vs2)',
'social ctr change(1vs7)',
'weighted cpm_lastweek usd',
'social_ctr(t-1)',

'frequency change(1vs2)',

140

'cpm(t-2) usd',
'cpm_change(3vs4)',
'cp_thousand reach change(3vs4)',
'absorption_r(t-1)'

nmn

del df case, corr_features, corr table

Case 4: Features correlated within themselves

Option 1: Drop correlated features

Option 2: Do not drop correlated features

Option 3: Choose all feaures, regardless of correlation

results =[]
df case = df.copy()

corr_table = df case.corr().ix['cpm_change(Ovsl) log', :-1]
corr_table = corr_table.abs().sort_values(axis=0, ascending=False)

corr_table = corr_table.drop(labels=['cp thousand reach(t-0) usd',
'cp_thousand reach change(Ovsl)',
'cp_thousand reach change(Ovsl) log',
'cpm(t-0) usd',
'cpm_change(Ovs1)',
'cpm_change(Ovsl) log'])

corr_features = list(corr_table.index[range(0,20)])

df corr =df case[corr features].corr().abs()

df corr = pd.melt(df corr.reset index(), id vars = ['index'], var_name = ['var_2'], value_name
="corr")

df corr =df corr.sort values(by='corr', ascending=False)

141

df corr =df corr[df corr['corr'] < 1.0]
df corr =df corr[df corr['corr'] > 0.50]
df corr =df corr.drop duplicates(subset=['corr'], keep='first')

nmn

index var 2
153 weighted cpm lastweek usd cpm(t-1) usd
276 cpm(t-2) usd weighted cpm_lastweek usd
156 cpm(t-2) usd cpm(t-1) usd
167 cpm(t-1) usd cp_thousand reach(t-1) usd
268 cp _thousand reach(t-1) usd weighted cpm_lastweek usd
176 cpm(t-2) usd c¢p thousand reach(t-1) usd

Only one of them should stay.
Stay: cpm(t-1) usd

Drop:

cp_thousand reach(t-1) usd

weighted cpm_lastweek usd

cpm(t-2) usd

2 cp_thousand reach change(1vs2) cpm_change(1vs2)
Only one of them should stay.

Stay: cpm_change(1vs2)

Drop: ¢p _thousand reach change(1vs2)

358 cp_thousand reach change(3vs4) cpm_change(3vs4)
Only one of them should stay.

Stay: cpm_change(3vs4)
Drop: cp thousand reach change(3vs4)

61 cpm_change(1vs7) cp thousand reach change(1vs7)
Stay: cpm_change(1vs7)
Drop: ¢p_thousand reach change(1vs7)

289 ctr(t-1) social_ctr(t-1)
ctr(t-1) should stay, since Facebook will deprecate social_ctr metric.

nmn

142

Choose correlated features to drop

corr_drop = ['cp_thousand reach(t-1) usd',
'weighted cpm_lastweek usd',
'cpm(t-2) usd',
'cp_thousand reach change(1vs2)',
'cp_thousand reach change(3vs4)',
'cp_thousand reach change(1vs7)',
'social_ctr(t-1)']

Recalculate correlations between features after dropping correlated features
df case = df.copy()

corr_features = list(corr_table.index[range(0,20)])
corr_features = list(set(corr_features) - set(corr_drop))

df corr = df case[corr features].corr().abs()

df corr = pd.melt(df corr.reset index(), id vars = ['index'], var_ name = ['var_2'], value name
="corr")

df corr =df corr.sort values(by='corr', ascending=False)

df corr =df corr[df corr['corr'] < 1.0]

df corr =df corr[df corr['corr'] > 0.50]

df corr =df corr.drop duplicates(subset=['corr'], keep='first')

nmn

Review:

13 features are not correlated between themselves and most correlated with Target.

nmn

Option 1: Drop correlated features
results.append(modelling(df case[corr features],
df case['cpm change(Ovsl) log'],
'Drop correlated features',
seed))

Option 2: Do not drop correlated features, choose top 20
corr_features = corr_features + corr_drop
results.append(modelling(df case[corr features],

df case['cpm_change(Ovsl) log'],

'Do not drop correlated features',

seed))

143

Option 3: Choose all feaures, regardless of correlation
results.append(modelling(df case[best features],

df case['cpm_change(Ovsl) log'],

'All best features',

seed))

print 'Dropping correlated features vs. using all best features, Seed: 674:'
for 1 in range(len(results)):
print 'For option: ' + str(i+1)
print 'Average Train RMSE: ' + str(results[1][0]['avg_train _rmse'])
print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])
print 'Average Test RMSE: ' + str(results[1][0]['avg_test rmse'])
print 'Average Test R2: ' + str(results[1][0]['avg_test 12'])

nmn

Dropping correlated features vs. using all best features, Seed: 674:

For option: 1

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.1360374221400082
Average Test RMSE: 0.2472706658680021
Average Test R2: 0.12799108112032526

For option: 2

Average Train RMSE: 0.25128357592559447
Average Train R2: 0.15158465175272337
Average Test RMSE: 0.2460733419295122
Average Test R2: 0.13293721892289975

For option: 3

Average Train RMSE: 0.24711139688621436

Average Train R2: 0.1782983506424713

Average Test RMSE: 0.28742430655811124

Average Test R2: -0.478683778687537

Review:

We are going to use first 13 features, since their RMSE & R2 are higher than best_features.

Features that are going to used in the regression:

144

'ctr_change(1vs7)',
'social_ctr _change(1vs2)',
'frequency change(1vs7)',
'cpm_change(3vs4)',
‘ctr(t-1)',

'cpm(t-1) usd',
'social ctr change(1vs7)',
'cpm_change(1vs7)',
'absorption_r(t-1)',
'bid_change(Ovs1)',
'frequency_change(1vs2)',
'cpm_change(1vs2)',
'ctr_change(1vs2)'

nmn

corr_features = list(set(corr_features) - set(corr_drop))
corr_features_target = corr features|:]

corr_features target.append('cpm_change(Ovsl) log")
del df corr, df case, corr_drop, corr table

Case 4: Outlier Handling

Option 1: Remove outliers - z-Score

Option 2: Remove outliers - IQR-Score
Option 3: Do-not Remove outliers

results =[]

Option 1: Remove outliers - z-Score
df case = df.copy()

df case =df case[corr features target]
z = np.abs(stats.zscore(df case))

df case =df case[(z < 3).all(axis=1)]

145

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'Drop outliers based on z > 3,
seed))

Option 2: Remove outliers - IQR-Score
df case = df.copy()
df case =df case[corr features target]

Q1 =df case.quantile(0.25)
Q3 =df case.quantile(0.75)
IQR=Q3-Ql

df case = df case[~((df case < (Q1 - 1.5 * IQR)) | (df case > (Q3 + 1.5 *
IQR))).any(axis=1)]

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'Drop outliers based on IQR Score',
seed))

Option 3: Do-not Remove outliers
df case = df.copy()
df case =df case[corr features target]

results.append(modelling(df case[corr features],
df case['cpm change(Ovs1) log'],
'Do not drop outliers',
seed))

print 'Removal of outliers, Seed: 674:'

for 1 in range(len(results)):
print 'For option: ' + str(i+1)
print 'Average Train RMSE: ' + str(results[1][0]['avg_train rmse'])
print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])
print 'Average Test RMSE: ' + str(results[i][0]['avg_test rmse'])
print 'Average Test R2: ' + str(results[1][0]['avg_test 12'])

146

nmn

Removal of outliers, Seed: 674:

For option: 1

Average Train RMSE: 0.1770845351511044
Average Train R2: 0.220689187786859
Average Test RMSE: 0.18282674543035077
Average Test R2: 0.15363320618084936

For option: 2

Average Train RMSE: 0.1252493166093948
Average Train R2: 0.1872774194187321
Average Test RMSE: 0.13285313494029521
Average Test R2: 0.07718340672003085

For option: 3

Average Train RMSE: 0.2250880776254756
Average Train R2: 0.31919483121555614
Average Test RMSE: 0.22961616489415362
Average Test R2: 0.2415293015929217

Review:

Since we already cleaned our data, removing the outliers decreased our score.
So we won't remove outliers in this case.

Note: Outlier cases may also contribute more to CPM change.

nmn

del z, df case, IQR, Q3, Q1

Case 5: Feature Scaling
Option 1: MinMaxScaler
Option 2: MaxAbsScaler
Option 3: StandardScaler
Option 4: RobustScaler

147

Option 5: No Scaling
results =[]

Option 1: MinMaxScaler

df case = df.copy()

df case =df case[corr features target]

scaler = MinMaxScaler()

df case[corr_features] = scaler.fit_transform(df case[corr features])

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'MinMaxScaler',
seed))

Option 2: MaxAbsScaler

df case = df.copy()

df case =df case[corr features target]

scaler = MaxAbsScaler()

df case[corr_features] = scaler.fit_transform(df case[corr features])

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'MaxAbsScaler',
seed))

Option 3: StandardScaler

df case = df.copy()

df case =df case[corr features target]

scaler = StandardScaler()

df case[corr_features] = scaler.fit_transform(df case[corr_ features])

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'StandardScaler’,
seed))

Option 4: RobustScaler

df case = df.copy()

df case =df case[corr features target]

scaler = RobustScaler()

df case[corr_features] = scaler.fit_transform(df case[corr features])

148

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'RobustScaler’,
seed))

Option 5: No Scaling
df case = df.copy()
df case =df case[corr features target]

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'No Scaling',
seed))

print 'Scaling vs. No-Scaling, Seed: 674:'

for 1 in range(len(results)):
print 'For option: ' + str(i+1)
print 'Average Train RMSE: ' + str(results[i][0]['avg_train rmse'])
print 'Average Train R2: ' + str(results[i][0]['avg_train 12'])
print 'Average Test RMSE: ' + str(results[i][0]['avg_test rmse'])
print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Scaling vs. No-Scaling, Seed: 674:

For option: 1

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.1360374221400082
Average Test RMSE: 0.2472706658680021
Average Test R2: 0.12799108112032523

For option: 2

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.1360374221400082
Average Test RMSE: 0.2472706658680021
Average Test R2: 0.12799108112032515

For option: 3

149

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.1360374221400082
Average Test RMSE: 0.24727066586800212
Average Test R2: 0.127991081120325

For option: 4

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.13603742214000816
Average Test RMSE: 0.2472706658680021
Average Test R2: 0.12799108112032526

For option: 5

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.1360374221400082
Average Test RMSE: 0.2472706658680021
Average Test R2: 0.12799108112032526

Review:

Scaling has no effect on the performance.

nmn

Case 6: Normalizing
Option 1: Normalizer
Option 2: No-Normalizer

results =[]

Option 1: Normalizer

df case = df.copy()

df case =df case[corr features target]

scaler = Normalizer()

df case[corr_features] = scaler.fit_transform(df case[corr features])

150

results.append(modelling(df case[corr features],
df case['cpm change(Ovs1) log'],
'Normalizer',
seed))

Option 2: No Normalizer
df case = df.copy()
df case =df case[corr features target]

results.append(modelling(df case[corr features],
df case['cpm_change(Ovsl) log'],
'No Normalizer',
seed))

print 'Normalizer vs. No-Normalizer, Seed: 674:'

for 1 in range(len(results)):
print 'For option: ' + str(i+1)
print 'Average Train RMSE: ' + str(results[i][0]['avg_train rmse'])
print 'Average Train R2: ' + str(results[i][0]['avg_train r2'])
print 'Average Test RMSE: ' + str(results[i][0]['avg_test rmse'])
print 'Average Test R2: ' + str(results[i][0]['avg_test 12'])

nmn

Normalizer vs. No-Normalizer, Seed: 674:

Normalizer vs. No-Normalizer, Seed: 674:
For option: 1

Average Train RMSE: 0.2501655642972066
Average Train R2: 0.1591278015943398
Average Test RMSE: 0.2443652197705811
Average Test R2: 0.1425599275042521

For option: 2

Average Train RMSE: 0.2535864868677269
Average Train R2: 0.1360374221400082
Average Test RMSE: 0.2472706658680021
Average Test R2: 0.12799108112032526

Review:

151

Normalizer has improved the performance.
We will use Normalizer.

nmn

Decisions so far:
- If we use Random Forest, max_features: 14
Choose rows:

- No filtering for significant change will be used.

- I decided not to include adset run time filter in my model.
- I decided not to use Conversions wanted for filtering.

- I won't use balanced Spend change in my model.

- I won't use bid change filtering in my model.

Choose columns:

- PCA did not help improving R2.

- So we won't remove outliers in this case.

- Scaling has no effect on the performance.

- We will use Normalizer.

- 13 features are not correlated between themselves and most correlated with Target.

Features that are going to used in the regression:
'ctr_change(1vs7)',
'social ctr change(1vs2)',
'frequency change(1vs7)',
'cpm_change(3vs4)',
‘ctr(t-1)',

'cpm(t-1) usd',
'social ctr change(1vs7)',
'cpm_change(1vs7)',
'absorption_r(t-1)',
'bid_change(Ovsl)',
'frequency change(1vs2)',
'cpm_change(1vs2)',
'ctr_change(1vs2)'

nmn

152

Visualize predictions and actual values

def visualizer(actuals, predictions)
X = actuals
Y = predictions
plt.axhline(y=0, c="red")
plt.axvline(x=0, c="red")
plt.scatter(X, Y, c='blue")
plt.ylabel('Prediction")
plt.xlabel('Actual’)
plt.ylim([0, 10])
plt.xlim([0, 10])
plttext = 'Regression: ' + 'MSE:"' + str(round(mean_squared_error(X,Y),4)) + ', R2:' +
str(round(result['avg_test score'],4))
plt.title(plttext, loc="left')
plt.plot([-1,1],[-1,1], c = 'red")
plt.show()

Array of Errors

errors = result['predictions'] - result['actuals']
plt.hist(errors)

plt.show()

try _models.py:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

R
CAPSTONE PROJECT, MEF BIG DATA ANALYTICS MASTER PROGRAM
#2017 -2018

SEMIH TEKTEN

153

PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES
R
w1 MODELLING H#HHHHHH
HHHHHHHEHHHHHEH

import libraries

import pandas as pd

import numpy as np

import glob, os

import time

from datetime import datetime, timedelta
import matplotlib.pyplot as plt

import seaborn as sns

from math import sqrt

from scipy import stats

Scikit Learn Libraries

from sklearn.linear model import LinearRegression
from sklearn.svm import LinearSVR

from sklearn.svm import SVR

from sklearn.linear model import SGDRegressor
from sklearn.linear model import Ridge

from sklearn.linear model import Lasso

from sklearn.linear model import ARDRegression
from sklearn.linear model import BayesianRidge
from sklearn.linear model import HuberRegressor
from sklearn.linear model import LassoLars

from sklearn.linear model import Lars

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import Normalizer

from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import KFold
from sklearn.metrics import mean_squared_error, r2_score

from sklearn.model selection import GridSearchCV
from sklearn import decomposition

154

Change path
path = os.path.expanduser('~/Documents/Scripts/CPM/Capstone/")
os.chdir(path)

df =pd.read pickle('df/df clustered.gzip', compression='gzip")
df with 141775 rows, 277 columns

Check if NaN exists
df = df.dropna(axis="index', how='"any', thresh=None, subset=None, inplace=False) # No NaN

Log transformation of CPM Change

dff'cpm_change(0Ovs1) log'] = np.log(df['cpm_change(Ovs1)']+1)
df'cp_thousand reach change(Ovsl) log'] =
np.log(dff'cp_thousand reach change(Ovsl)']+1)

Put Log columns to beginning

cols = df.columns.tolist()

cols.insert(2, cols.pop(cols.index('cpm_change(Ovsl) log")))

cols.insert(1, cols.pop(cols.index('cp thousand reach change(Ovsl) log")))
df = df.reindex(columns = cols)

Seed
seed = 674

Regression Function

def adjusted rsqu(rs, n, p):
rs: r-squared
n: number of observations
p: number of independent variables
print(‘HHHHHEHIH I
print('R_Squared: ' + str(rs))
print('Observations: ' + str(n))
print('Variables: ' + str(p))
adjusted r=1-(1-rs)*(n-1)/(n-p-1)
print('Adjusted R: ' + str(adjusted r))
print(‘HHHHHBH)
return adjusted r

def regression(features, target, algorithm, params, seed, description):
K-Fold splits

155

kf splits =10
kf=KFold(n_splits=kf splits, shuffle=False, random_state=seed).split(
features)

score_train_list =[]
score_test list =]
rmse_train list =[]
rmse_test list =[]
prediction_list = []
actual list =[]

for train_indices, test indices in kf:
X _train = features.iloc[train_indices]
X _test = features.iloc[test_indices]
y_train = target.iloc[train_indices]
y_test = target.iloc[test indices]

reg = GridSearchCV (algorithm, params, scoring="r2")
reg = reg.fit(X train, y_train)

trainy predict = reg.predict(X _train)
testy _predict = reg.predict(X_test)

score_train_list.append(
adjusted rsqu(r2 score(y_train, trainy predict),
trainy predict.size, len(features.columns)))
score_test list.append(
adjusted rsqu(r2_score(y_test, testy predict), testy predict.size,
len(features.columns)))

rmse_train_list.append(
sqrt(mean_squared error(y _train, trainy predict)))
rmse_test list.append(sqrt(mean_squared error(y_test, testy predict)))

prediction_list.append(testy predict)
actual list.append(y_test)

to_return = {'target': target.name,
'avg train_r2": np.mean(score train_list),
'avg test r2": np.mean(score test list),
'avg train_rmse': np.mean(rmse_train_list),
'avg test rmse': np.mean(rmse_test list),

156

'predictions': np.concatenate(prediction_list, axis=0),
'actuals': np.concatenate(actual list, axis=0),
'algorithm': algorithm,

'params': reg.best params_,

'description': description,

'seed': seed,

}

return to_return

def modelling(features, target, description, seed):
models = [
Linear Regression Algorithms

Linear Model
#[LinearRegression(),

#{'n_jobs" [-1]}],

Ridge Model
#[Ridge(random_state=seed),
#{'alpha':[1.0]}],

Lasso Model
#[Lasso(random_state=seed),
#{alpha:[1.0]}],

Bayesian Ridge Model
#[BayesianRidge(),
#U1

Lasso Lars Model
#[LassoLars(),
#{alpha:[0.01]}],

Lars Model
#[Lars(),
#{n_nonzero coefs:[1]}],

Tree Regression Algorithms

[RandomForestRegressor(n_estimators = 50, max_features = 13, \
max_depth = 10, min_samples_split =5, \

157

n_jobs = -1, min_samples_leaf = 20, \

oob_score = True, random_state = seed),
{3

1,

Support Vector Machine

Linear SVM

#[LinearSVR(random_state=seed),
#{'epsilon':[0.01, 0.05, 0.10, 0.20, 0.50]}],

SVR
[SVR(kernel="rbf', gamma=0.7, tol=0.01, C=1.0, epsilon=0.2, shrinking=True),
{1,

SGD Regressor

#[SGDRegressor(max_iter=1000, random_state=seed),
#{'loss':['squared_loss','huber’,'epsilon_insensitive','squared epsilon_insensitive'],
'penalty': ['none','12','11",'elasticnet'],

'alpha":[0.0001, 0.001, 0.01, 0.1],

#'l11_ratio':[0, 0.15, 0.25, 0.50, 0.75, 1],

'learning_rate':['constant','optimal','invscaling','adaptive']

#

#1,

]

Decision Tree Regression
Various parameters

func_results =[]
for model in models:

func_results.append(
regression(features, target, model[0], model[1], seed,
description))

return func_results

Backup

df backup = df.copy()

Decisions so far:

158

Choose columns:
- We will use Normalizer.

- 13 features are not correlated between themselves and most correlated with Target.

Features that are going to used in the regression:
'ctr_change(1vs7)',
'social_ctr _change(1vs2)',
'frequency change(1vs7)',
'cpm_change(3vs4)',
‘ctr(t-1)',

'cpm(t-1) usd',

'social_ctr _change(1vs7)',
'cpm_change(1vs7)',
'absorption_r(t-1)',
'bid_change(Ovsl)',
'frequency change(1vs2)',
'cpm_change(1vs2)',
'ctr_change(1vs2)'

nmn

Targets & Features

features = df['ctr_change(1vs7)',
'social_ctr _change(1vs2)',
'frequency change(1vs7)',
'cpm_change(3vs4)',
‘ctr(t-1)",
'cpm(t-1) usd',
'social ctr change(1vs7)',
'cpm_change(1vs7)',
'absorption_r(t-1)',
'bid_change(Ovsl)',
'frequency change(1vs2)',
'cpm_change(1vs2)',
'ctr_change(1vs2)']

features cols = list(features.columns.values)

target = df['cpm_change(Ovs1) log']

159

Normalize
scaler = Normalizer()
features[features cols] = scaler.fit_transform(features|features cols])

features = features.head(10000)
target = target.head(10000)

Results
results = modelling(features, target, 'Default result', seed)

print 'Model results, Seed: 674"

for i in range(len(results)):
print 'Average Train RMSE: ' + str(results[0]['avg_train rmse'])
print 'Average Train R2: '+ str(results[0]['avg train r2'])
print 'Average Test RMSE: ' + str(results[0]['avg_test rmse'])
print 'Average Test R2: ' + str(results[0]['avg_test 12'])
print 'Best parameters: ' + str(results[0]['params'])

nmn

SVR, without parameters, Seed: 674:
Average Train RMSE: 0.24755326224685845
Average Train R2: 0.17660233557677757
Average Test RMSE: 0.24173441733436665
Average Test R2: 0.1632642786693974

SVR, kernel: 'linear’,'rbf','poly','sigmoid', first 10K rows, Seed: 674:
Average Train RMSE: 0.38049688498782036

Average Train R2: 0.20608181464875214

Average Test RMSE: 0.3773640732427654

Average Test R2: 0.18695326143427282

Best parameters: {'kernel': 'tbf'}

SVR, gamma: 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 1., 10., 100., 1000. , first 10K rows,
Seed: 674:

Average Train RMSE: 0.36135035387196146

Average Train R2: 0.28399033480160074

160

Average Test RMSE: 0.37143241660080567
Average Test R2: 0.21197443031255872
Best parameters: {'gamma': 1.0}

SVR, gamma: 0.5, 0.75, 1., 2., first 10K rows, Seed: 674:
Average Train RMSE: 0.3663782734950667

Average Train R2: 0.26387188562026154

Average Test RMSE: 0.3714634353481324

Average Test R2: 0.21179737218413877

Best parameters: {'gamma': 0.75}

SVR, gamma: [0.6, 0.7, 0.8] , first 10K rows, Seed: 674:
Average Train RMSE: 0.36589779892142016

Average Train R2: 0.2658376531134338

Average Test RMSE: 0.3712833815267862

Average Test R2: 0.21257766140926143

Best parameters: {'gamma': 0.7}

SVR, tol: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1., 2.], first 10K rows, Seed: 674:
Average Train RMSE: 0.36568931477172634

Average Train R2: 0.26668675056532265

Average Test RMSE: 0.3710303504080824

Average Test R2: 0.21363303041279186

Best parameters: {'tol': 0.01}

SVR, C:[0.0001, 0.001, 0.01, 0.1, 1., 2., 10., 100., 1000.] , first 10K rows, Seed: 674:
Average Train RMSE: 0.36558924430185563

Average Train R2: 0.2670853029820186

Average Test RMSE: 0.37106946820233366

Average Test R2: 0.21346576116078433

Best parameters: {'C": 1.0}

SVR, 'C"[0.75, 1., 1.25], first 10K rows, Seed: 674:
Average Train RMSE: 0.36636869431959707
Average Train R2: 0.2639512047890122

Average Test RMSE: 0.371184202003894

Average Test R2: 0.21296504449337492

Best parameters: {'C': 1.0}

SVR, 'epsilon':[0.0001, 0.001, 0.01, 0.1, 1., 2., 10., 100., 1000.] , first 10K rows, Seed: 674:

Average Train RMSE: 0.36567345405498586
Average Train R2: 0.2667472537398233

161

Average Test RMSE: 0.3711548987414313
Average Test R2: 0.21310871540339732
Best parameters: {'epsilon': 0.1}

SVR, 'epsilon":[0.05, 0.1, 0.2] , first 10K rows, Seed: 674:
Average Train RMSE: 0.3653082429957336

Average Train R2: 0.26820798927772377

Average Test RMSE: 0.3716927303356901

Average Test R2: 0.21088131272894745

Best parameters: {'epsilon": 0.2}

SVR, 'epsilon":[0.1, 0.2, 0.3, 0.4, 0.5] , first 10K rows, Seed: 674:
Average Train RMSE: 0.3652581486436769

Average Train R2: 0.26840899319253025

Average Test RMSE: 0.3716331236389133

Average Test R2: 0.21113034365175878

Best parameters: {'epsilon': 0.2}

skksk

SVR, best parameters: kernel="rbf, gamma=0.7, tol=0.01, C=1.0,
shrinking=True, Seed: 674:

Average Train RMSE: 0.24179369245332621

Average Train R2: 0.21444941808891502

Average Test RMSE: 0.23833223194944816

Average Test R2: 0.18464607282979686

nmn

visualize.py:

#!/usr/bin/env python2
-*- coding: utf-8 -*-

epsilon=0.2,

TR A
CAPSTONE PROJECT, MEF BIG DATA ANALYTICS MASTER PROGRAM

#2017 - 2018
SEMIH TEKTEN
PREDICTING FACEBOOK AD IMPRESSIONS & CPM VALUES

162

A
A VISUALIZATION HHHHFHHEHHHHRHHHEHH
HHHHHHHHHH

import libraries
import pandas as pd
import numpy as np
import os

import matplotlib.pyplot as plt
import seaborn as sns

from math import sqrt

from scipy import stats

Change path
path = os.path.expanduser('~/Documents/Scripts/CPM/Capstone/")
os.chdir(path)

df vis =pd.read pickle('df vis.gzip', compression='gzip")
df with 141775 rows, 277 columns

Check if NaN exists
df vis = df vis.dropna(axis='index', how='any', thresh=None, subset=None, inplace=False) #
No NaN

Seed
seed = 674

Backup

df vis_backup = df vis.copy()

Features & Target as String List

feature list = list(df vis.columns)

feature list.remove('cpm_change(Ovsl) log')
target = 'cpm_change(Ovs1) log'

nmn
Decisions so far:
Choose columns:

163

- We will use Normalizer.
- 13 features are not correlated between themselves and most correlated with Target.

Features that are going to used in the regression:
'ctr_change(1vs7)',
'social_ctr_change(1vs2)',
'frequency change(1vs7)',
'cpm_change(3vs4)',
‘ctr(t-1)',

'cpm(t-1) usd',
'social ctr change(1vs7)',
'‘cpm_change(1vs7)',
'absorption_r(t-1)',
'bid_change(Ovsl)',
'frequency change(1vs2)',
'cpm_change(1vs2)',
'ctr_change(1vs2)'

nmn

Diagonal correlation matrix (Target vs features)

Compute the correlation matrix
corr = df vis.corr()

Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices from(mask)]| = True

Set up the matplotlib figure
f, ax = plt.subplots(figsize=(13, 11))

Generate a custom diverging colormap
cmap = sns.diverging palette(230, 0, as_cmap=True)

Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=1.0,annot= True,

square=True, linewidths=.7, cbar_kws={"shrink": .5})

Histogram of all features, removing outliers with quantiles
Q1 =df vis.quantile(0.10)

164

Q3 =df vis.quantile(0.90)

IQR=Q3-Q1

df new = df vis[~((df vis <(Q1 - 1.5 * IQR)) | (df vis > (Q3 + 1.5 * IQR))).any(axis=1)]
df new.hist(figsize=(16, 20), bins=500, xlabelsize=10, ylabelsize=10)

Pairplot to show the relationships between the features and the target
sns.pairplot(data=df vis,x_vars=feature list,y vars=target)

Distribution of the target feature 'cpm_change(Ovsl) log
dists = [stats.alpha, stats.anglit, stats.arcsine, stats.argus, stats.beta, stats.betaprime,
stats.bradford, stats.burr, stats.burrl2,
stats.cauchy, stats.chi, stats.chi2, stats.cosine, stats.crystalball, stats.dgamma,
stats.dweibull, stats.erlang, stats.expon,
stats.exponnorm, stats.exponweib, stats.exponpow, stats.f, stats.fatiguelife, stats.fisk,
stats.foldcauchy, stats.foldnorm,
stats.frechet r, stats.frechet |, stats.genlogistic, stats.gennorm, stats.genpareto,
stats.genexpon, stats.genextreme,
stats.gausshyper, stats.gamma, stats.gengamma, stats.genhalflogistic, stats.gilbrat,
stats.gompertz, stats.gumbel r, stats.gumbel 1,
stats.halfcauchy, stats.halflogistic, stats.halfnorm, stats.halfgennorm, stats.hypsecant,
stats.invgamma, stats.invgauss,
stats.invweibull, stats.johnsonsb, stats.johnsonsu]

dists_two = [stats.kappa4, stats.kappa3, stats.kstwobign, stats.laplace,
stats.levy, stats.levy |, stats.logistic, stats.loggamma, stats.loglaplace, stats.lognorm,
stats.lomax,
stats.maxwell, stats.mielke, stats.nakagami, stats.ncx2, stats.nct, stats.norm,
stats.pearson3, stats.powerlaw, stats.powerlognorm, stats.powernorm, stats.rdist,
stats.reciprocal, stats.rayleigh,
stats.rice, stats.recipinvgauss, stats.semicircular, stats.skewnorm, stats.t, stats.trapz,
stats.triang, stats.truncexpon,
stats.truncnorm, stats.uniform, stats.vonmises, stats.vonmises line, stats.wald,
stats.weibull_min,
stats.weibull max, stats.wrapcauchy]

for dist in dists_two:
print("Started for: " + dist.name)
sns.set()
plt.figure(figsize=(12,8))
plt.xlim(-1, 1)
dist plot = sns.distplot(df vis['cpm change(Ovsl) log'], hist=True, bins=500,
fit=dist).set_title(dist.name)

165

fig = dist_plot.get figure()

file name w_path = 'fit_dists/' + dist.name + ' dist.png'
fig.savefig(file name w_path)

print("Ended for: " + dist.name)

def get best distribution(data):

#
https://stackoverflow.com/questions/37487830/how-to-find-probability-distribution-and-para
meters-for-real-data-python-3

dist names = ["norm", "beta", "burr", "burrl2", "cauchy", "crystalball", "dgamma",
"dweibull", "exponnorm", "fisk", "foldcauchy",
"genlogistic", "gennorm", "hypsecant", "johnsonsu", "laplace", "logistic",
"loglaplace", "nct", "t"]
dist results =[]
params = {}
for dist_ name in dist names:
dist = getattr(stats, dist name)
param = dist.fit(data)

params[dist name] = param

Applying the Kolmogorov-Smirnov test

D, p = stats.kstest(data, dist name, args=param)
print("p value for "+dist name+" = "+str(p))
dist_results.append((dist name, p))

select the best fitted distribution
best dist, best p = (max(dist_results, key=lambda item: item[1]))
store the name of the best fit and its p value

print("Best fitting distribution: "+str(best_dist))
print("Best p value: "+ str(best p))
print("Parameters for the best fit: "+ str(params[best_dist]))

return best_dist, best p, params[best dist]

get best distribution(df vis['cpm_change(Ovs1) log'])

nmn

p value for norm = 0.0
p value for beta = 0.0
p value for burr = 1.0376459810115412e-273

166

p value for burr12 =9.036728654232608e-290

p value for cauchy = 2.0304468915802398e-164

p value for crystalball = 0.0

p value for dgamma = 7.24762276632266¢-51

p value for dweibull = 6.693533713472155e-38

p value for exponnorm = 0.0

p value for fisk = 2.9586554796192175e-298

p value for foldcauchy = 2.819678021874141e-193
p value for genlogistic =2.6265027555286723e-263
p value for gennorm = 4.2739427863644434¢-30

p value for hypsecant = 9.5534317451281e-137

p value for johnsonsu = 0.3439750123259282

p value for laplace = 1.559500338283894¢e-59

p value for logistic = 1.9380053713260365e-271

p value for loglaplace = 5.516238303027958e-60

p value for nct = 0.08494587876072554

p value for t =0.05107259990987811

Best fitting distribution: johnsonsu

Best p value: 0.3439750123259282

Parameters for the Dbest fit: (0.0048928698851670345,
0.0013939443593146712, 0.14600510233690264)

(‘johnsonsu’,
0.3439750123259282,
(0.0048928698851670345,
0.9735257590501925,
0.0013939443593146712,
0.14600510233690264))

nmn

Distribution of features that are most correlated with the target.
cpm_change(1vs7)
cpm_change(1vs2)

sns.set()
plt.figure(figsize=(12,8))
ax = sns.distplot(df vis['cpm_change(1vs2)'])

plt.figure(figsize=(12,8))
ax = sns.distplot(df vis['cpm_change(1vs7)'])

167

0.9735257590501925,

Distribution of features that are most correlated with each other.
frequency change(1vs2)
frequency change(1vs7)

sns.set()
plt.figure(figsize=(12,8))
ax = sns.distplot(df vis['frequency change(1vs2)'])

plt.figure(figsize=(12,8))
ax = sns.distplot(df vis['frequency change(1vs7)'])

Jointplot & Regression
sns.set()

sns.jointplot("cpm_change(1vs2)", "cpm_change(Ovs1) log", data=df vis, kind='reg")

sns.set()
sns.jointplot("frequency change(1vs2)", "frequency change(1vs7)", data=df vis, kind="reg')

Violinplot
sns.violinplot(data=df vis, palette="Set3", bw=.2, cut=1, linewidth=1)

168

