
 ii

MEF UNIVERSITY

PRE-OCR IMAGE OPTIMIZATION

BY REINFORCEMENT LEARNING

Capstone Project

Cihan Tektunalı

İSTANBUL, 2018

 iii

 iv

MEF UNIVERSITY

PRE-OCR IMAGE OPTIMIZATION

BY REINFORCEMENT LEARNING

Capstone Project

Cihan Tektunalı

Advisor: Prof. Dr. Muhittin Gökmen

İSTANBUL, 2018

 v

MEF UNIVERSITY

Name of the project: Pre-OCR Image Optimization By Reinforcement Learning

Name/Last Name of the Student: Cihan Tektunalı

Date of Thesis Defense: 10/9/2018

I hereby state that the graduation project prepared by Cihan Tektunalı has been

completed under my supervision. I accept this work as a “Graduation Project”.

10/9/2018

Prof. Dr. Muhittin Gökmen

I hereby state that I have examined this graduation project by Cihan Tektunalı which

is accepted by his supervisor. This work is acceptable as a graduation project and the student

is eligible to take the graduation project examination.

10/9/2018

Prof. Dr. Özgür Özlük

Director

of

Big Data Analytics Program

We hereby state that we have held the graduation examination of __________ and

agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE

Committee Member Signature

1. Prof. Dr. Muhittin Gökmen …………………

2. Prof. Dr. Özgür Özlük …………………

 vi

Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that

I have neither given nor received inappropriate assistance in preparing it.

Name Date Signature

 vii

EXECUTIVE SUMMARY

PRE-OCR IMAGE OPTIMIZATION

BY REINFORCEMENT LEARNING

Cihan Tektunalı

Advisor: Prof. Dr. Muhittin Gökmen

SEPTEMBER, 2018, 25 pages

Optical Character Recognition technology usage in digital transformation of

documents is steadily growing by the help of new hardware and software technologies.

However digital image optimization for more accurate OCR results continues to be a

problem. In this study, we propose a reinforcement learning based model that learns optimal

set of actions to increase OCR accuracy in computer screenshot images. Model input images

are identified by their grayscale histogram distributions. An unprocessed base image having

100% OCR accuracy is taken initially. The correlation between the grayscale histograms of

base image and input image is used for comparison. We implemented reinforcement

learning’s random (or optimal) action and reward approach for creating a Q-table. For

measuring image to text conversion success, Tesseract OCR software is used. The

introduced approach can improve OCR accuracy especially in bulk image to document

conversion jobs. By using optimal actions for single image or bulk images, it can also

decrease computational load and time-consumption in image processing.

Key Words: OCR accuracy optimization, reinforcement learning, q-table learning,

increasing bulk image OCR accuracy

 viii

ÖZET

TAKVİYELİ ÖĞRENME İLE OPTİK KARAKTER

TANIMA ÖNCESİ GÖRÜNTÜ OPTİMİZASYONU

Cihan Tektunalı

Tez Danışmanı: Prof. Dr. Muhittin Gökmen

EYLÜL, 2018, 25 sayfa

Metinsel dokümanların sayısal ortama aktarılmasında optik karakter tanıma

teknolojisinin kullanımı donanım ve yazılım alanındaki gelişmelerin yardımıyla giderek

artmaktadır. Bununla birlikte karakter tanımanın daha yüksek başarıyla yapılabilmesi için

sayısal görüntü optimizasyonu bir problem olmaya devam etmektedir. Bu çalışmada

bilgisayar ekran görüntülerinden karakter tanıma başarısının arttırılması için sayısal görüntü

optimizasyonu yapan ve takviyeli öğrenme yöntemini kullanan bir model öne sürülmüştür.

Modele girdi olarak verilen sayısal görüntülerin gri ton dağılımları görüntü durumlarını

tanımlamak için kullanıldı. Ham haliyle tam başarılı karakter tanıma yapılabilen bir görüntü

baz alındı. Verilen yeni görüntüler ile baz alınan görüntünün gri ton dağılımı arasındaki

korelasyon değeri görüntüleri karşılaştırmak için kullanıldı. Takviyeli öğrenme ile

uygulanan rastgele veya optimal aksiyon dizileri ve sonuç olarak elde edilen ödül değerleri

kullanılarak Q-tablosu oluşturuldu. Görüntünün metne çevrilme başarısının ölçümü için

Tesseract OCR yazılımı kullanıldı. Oluşturulan bu model ile özellikle sayısal ortama toplu

aktarım işlemlerinde karakter tanıma verimi arttırılabilir. Ayrıca görüntü bazında veya tüm

görüntü kümesinde optik karakter tanıma iyileştirmesi sağlayacak optimal aksiyonlar

kullanılarak toplamdaki hesaplama yükünün ve görüntü işlemede kaybedilen zamanın

azaltılması sağlanabilir.

Anahtar Kelimeler: Optik karakter tanıma başarım optimizasyonu, takviyeli

öğrenme, Q-tablosu ile öğrenme, çoklu görüntülerin optik karakter tanıma başarımının

arttırılması

 ix

TABLE OF CONTENTS

Academic Honesty Pledge .. vi

EXECUTIVE SUMMARY ... vii

ÖZET ... viii

TABLE OF CONTENTS ... ix

1. INTRODUCTION ... 1

1.1. What is Reinforcement Learning .. 1

1.2. Literature Review .. 3

2. EMPIRICAL DATA ... 4

3. PROJECT DEFINITION ... 5

3.1. Project Objectives .. 5

3.2. Project Scope ... 5

4. METHODOLOGY .. 6

5. RESULTS ... 9

6. FUTURE RESEARCH .. 11

REFERENCES.. 12

APPENDIX A ... 14

APPENDIX B ... 16

APPENDIX C ... 22

.

 1

1. INTRODUCTION

Identification of machine printed text which is named as Optical Character

Recognition (OCR) technology and its conversion process to digital medium has been

increasing its significance by the help of improvements in the computer hardware and

software industry, even it has been around for more than 10 years. In order to acquire

successful results in digital conversion of printed texts by OCR, image parameter

optimizations are generally required. Because character recognition in the digital medium

requires image processing knowledge and expertise (such as defining scope, order and

parameters of image filters being applied), this process still needs an expert’s intervention at

least in some stages, making it demanding and time consuming especially if there is a bulk

conversion scenario with tens of thousands of documents. At this point, reinforcement

learning techniques that is a branch of machine learning, come to rescue for creating a self-

learning model to optimize image processing steps for conversion before the application of

OCR software. In this study, we used reinforcement learning’s Q table approach to create a

software that tries to find the best image processing options for the given images to increase

the character recognition accuracy of OCR software. To measure image to text conversion

accuracy, we used the recognized outputs of Tesseract Open Source OCR software (version:

3.05.02).

As data inputs to our self-learning model, we created arbitrary cropped samples of

computer screenshot images. For simplification purposes, these images included one to

seven words that needed to be recognized by OCR software. The content language of words

is in either English or Turkish.

1.1. What is Reinforcement Learning?

Reinforcement learning can be defined as learning to reach a specific target by

interacting with the medium that the learner (named agent) is in and gathering a reward (or

punishment) back as a result of this interaction. By this way, the learner finds out which

actions to take to maximize the reward and which actions not to take to minimize the

punishment. Apart from other machine learning branches, named as supervised learning

(function estimation using previously labeled data) and unsupervised learning (estimating

 2

groups using unlabeled data), reinforcement learning differs in terms of learning method,

which aims at maximizing the long-term reward, by taking various actions. To explore the

action space and deal with local minimum problem in machine learning, the action selection

is made either randomly or based on the maximum reward, adjusted by a threshold value.

As Sutton and Barto (2017) described in a general sense, six members can be defined as part

of a reinforcement learning system:

 Agent (the learner)

 Environment

 Policy

 Reward signal

 Value function

 Model of the environment (optional)

In this study, a specialized method called Q-learning is selected for our optimization

problem.

Figure 1: Diagram for basic Q learning procedure

Q-learning is an algorithm used in reinforcement learning space which provides a

solution to Markov Decision Process model. It uses an action – value function to define the

value (reward) of an action applied to each state of the agent (Figure 1). It is simply an off-

policy algorithm, which means that the optimal action-value function estimation is

unrestricted by the policy in use. As Maini (2017) mentioned, the action-value function is

defined as:

 3

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡)⏟
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

 + 𝛼⏟
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

. (𝑟𝑡⏟
𝑟𝑒𝑤𝑎𝑟𝑑

+ 𝛾⏟
𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

 . max
𝑎
 𝑄(𝑠𝑡+1 , 𝑎)⏟

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

⏞ − 𝑄(𝑠𝑡, 𝑎𝑡)⏟
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

). (1)

Here Q is the calculated value after taking action a at state s and time t,

α is the learning rate,

rt is the reward at time t,

and γ is the discount factor.

We try to find the optimal action that maximizes Q value for current state. Before Q-table is

updated, the weight of new reward value is adjusted by its previous value, discount factor,

optimal future value and learning rate.

1.2. Literature Review

To enable more accurate text conversion results in OCR, different approaches are

used. As El Harraj and Raissouni (2015) stated, some of these techniques depend on

correcting character or word based errors by comparing with a dictionary or using the scope

of corresponding text to find the true version of the inaccurate part. In the case of digital

camera-based OCR, Ezaki et al. (2004) created a system that tries to find the regions with

tiny characters in image and then zooms to the selected region for character recognition.

They propose that the success rate of various techniques is connected with the dimension of

characters. They also listed the order of the best performing operations as Sobel edge

detection, Otsu binarization, connected component extraction and rule-based connected

component filtering with the emphasis on the bigger characters. Some of the further

procedures used in image optimization includes image processing techniques such as

greyscaling, scaling, blurring, denoising, erosion, dilation, histogram equalization, adaptive

thresholding, edge detection etc. as Mordvintsev and Abid (2017) listed in the

documentation of OpenCV library. The list of actions we used in this study is generated from

a subset of essential processes applied in pre-processing step of reviewed projects about

Optical Character Recognition (Alginahi, 2010; Chiatti et al., 2018; El Harraj & Raissouni,

2015; Hamad & Kaya, 2016; Huang et al., 2014; Janvalkar et al., 2014; Taylor & Wolf,

2004).

 4

2. EMPIRICAL DATA

As our dataset, we created 211 small sized color images in Portable Network

Graphics (png) format, cropped from computer screenshots. The screenshots were taken

from Windows and Linux operating systems. Image sizes differ from 29 to 334 pixels in

width and 20 to 216 pixels in height. Training set is created with roughly half of the set (106

images) by random sampling. The rest of the set is used for testing. We decided to represent

each image by its histogram values. Histograms represented the features in our design. In

order to simplify the feature set and also as an OCR best practice, we preferred to use

grayscale histograms. No pre-processing is applied to images before they are fed into our Q-

learning algorithm. Some of the samples that we used are displayed in Figure 2.

Figure 2: Sample Input Images

 5

3. PROJECT DEFINITION

3.1. Project Objectives

Image to text conversion by OCR is a time-consuming process. Furthermore, OCR

software accuracy is not stable and can change according to image parameters like quality,

resolution, character size, or scale. This may lead to human intervention for problematic

images at multiple stages for correction.

The main objective of this study was to create a self-learning system that optimizes

cropped screenshot images before sending to OCR software for acquiring more successful

results. By using Q-learning approach, we created a model that calculates OCR accuracy

using Tesseract software and tried to increase the accuracy by applying different processes

selected from predefined actions list. The second objective was to fine-tune processing

actions or parameters to further increase OCR accuracy of the whole test set.

3.2. Project Scope

Because computer printed text existing in screenshot images have no background

noise compared to other digital image sources like scanner or digital camera, our

optimization scenario does not consider background noise reduction operation. Also there

were no document orientation problem which may require skewness correction as in the

scanned document cases.

During data preparation step, since image processing demands high computational

power, sample image sizes were limited to maximum 300 pixels in width and 50 pixels in

height. In addition to that, preparing cropped images from computer screenshots and listing

image file names along with their content strings was a time-consuming process. This led to

a limited training data size. Our source data consisted of 106 images (out of 211 images in

total). Thus the resulting trained Q-table model has a limited variability. That can be

considered as a negative effect in the way of gaining more accurate results with this model.

 At implementation stage, we decided to use grayscale histogram correlations with

the base image as state values in Q-table approach. Only the initial correlation value is used

for each image in updating Q-table. As a result, number of states are limited to unique

correlation values of input images with the base image.

 6

4. METHODOLOGY

For a self-learning system, we adapted Q-learning algorithm from the group of

reinforcement learning techniques. Python code is written for implementing Q-table

approach, applying image processing functions, training and testing image data (see

Appendices A, B and C). We used a base image as a reference point at model (Q-table)

training. The basic members required by Q-learning are mapped as follows:

 Environment: Base image and Input images

 Agent: Python code

 States: Correlation coefficient between the base image and the input image

that ranges between -1 and 1 with 0.01 intervals

 Actions: Image processing operations (like scaling, black and white

conversion, denoising etc.) defined as a list

The set of actions in our model with their weighted selection probability p in probability

distribution is as follows:

 Scale image width and height by 2 times, p = 4/14

 Scale image width and height by 4 times, p = 2/14

 Black and white conversion, p = 2/14

 Denoising, p = 2/14

 Erosion, p = 1/14

 Dilation, p = 1/14

 Histogram equalization, p = 2/14

The probabilities we defined above were the initial values during model training and test.

After test results observed, as a fine-tuning attempt the action set was narrowed down to 4

actions that rewards the most.

General strategy of the model is as follows: The agent first reads base image which

represents default state value (the correlation of the base image with itself calculated from

grayscale histogram equals 1). An empty Q-table is created and updated with default state

 7

value. The agent then starts iterating through the input image set and calculates the

correlation between base image and input image. At the next step, it tries random actions (or

the optimal action set if exists) from the list of image processing options. At each iteration

it updates the table with state, action set and adjusted reward value using OCR accuracy from

Tesseract software’s image to text conversion result. As the original text content is known,

OCR accuracy A for the current state of the image is calculated by:

A = N / T (2)

Here, N is the number of correctly recognized characters and T is the total number

of characters in the image.

At the end of all iterations, we acquire a table of image states (rounded correlation

values relative to base image) and corresponding ordered actions list applied so far, along

with the reward values calculated by action-value formula.

 8

Figure 3: Diagram for Q learning procedure adapted to image optimization

We trained our Q-table by the adapted procedure (Figure 3) using 100, 500, 1000,

2500 iterations per image with training image set (see Appendix B). At next step, we exposed

each image in test set to trained Q-tables and collected accuracy values (see Appendix C).

Since the algorithm is able to choose random actions even if there is an optimal action set

having the maximum reward, we preferred to average the accuracy scores after 100 iterations

per image to reach more stable results.

 9

5. RESULTS

In the final part of this study, we compared average OCR accuracy values of images

in test set (Table 1). Raw accuracy values were obtained by direct exposure to Tesseract

software without any image processing. Other results were taken after making use of Q-

tables trained with different number of iterations. The same Q-table algorithm was employed

for acquiring accuracy value.

Table 1

Average OCR Accuracies of Images in Test Set

Raw
Q-table

100 iterations

Q-table

500 iterations

Q-table

1000 iterations

Q-table

2500 iterations

0.296 0.345 0.348 0.352 0.351

The results show that the average OCR accuracy of all images in test set has risen

approximately 5% with 100 times iterated Q-table model. The iterations over 100 brings

slight additional improvements to the model. The model results seem to converge between

500 to 1000 iterations. Comparison with raw accuracies is shown in Figure 4.

Figure 4: Average OCR Accuracy Distribution of Test Images Before and After Q-table

Exposure

 10

The bar plot in Figure 4 displays the effect of iteration groups on accuracy values

grouped in 0.1 intervals. Trained Q-table exposure brings significant increases in image

groups with 0.6, 0.7 and 0.8 accuracy values whereas there is a steep fall in all iteration

groups compared with raw accuracy value in 0.9 interval. This implies that some images

which already have high OCR accuracies in unprocessed states need to be treated differently.

To provide with an additional improvement to current algorithm, all raw image accuracies

can be checked and treated accordingly before Q-table exposure.

As a tuning attempt to this model, we reviewed top 5 highest rewarded actions from

each Q-table and selected the most significant 4 actions. We just applied these single

processes to all test set instead of random selection from a pool. The results are shown in

Table 2.

Table 2

Average OCR Accuracies of Images in Test Set - After Single Process Applied

Action Scale 2x
Black and White

Conversion
Denoising

Histogram

Equalization

Accuracy 0.378 0.296 0.285 0.143

As seen in Table 2, even a single action like scaling can boost OCR accuracy scores

more than an entire trained Q-table. The strategy for further optimization of this model may

consider searching the best single actions from a much broader set of actions and apply as

few of them as possible. As the number of actions increase, the minimum number of

iterations required for convergence will rise. So this should also be taken into consideration

for optimization attempts.

 11

6. FUTURE RESEARCH

In this project, we targeted to increase optical character recognition accuracy of a set

of screenshot images by incorporating a self-learning model. For the sake of limited

resources, we defined some constraints in our machine learning model. These can be

summarized as the number of images used to train and test, source of images (computer

screenshots or scanned images etc.), image width – height ranges, number of words in image

texts, number of image processing actions, probability weights of actions, iteration counts in

terms of training model and averaging test results, parameters of Q-learning model and

reward calculation formula. In future improvements to this model, these constraints can be

redesigned according to related scenario. Besides that, new approaches can be adapted to Q-

learning algorithm for a more robust image accuracy control.

 12

REFERENCES

Alginahi, Y. (2010). Preprocessing Techniques in Character Recognition, Character

Recognition Minoru Mori, IntechOpen, DOI: 10.5772/9776. Available from:

https://www.intechopen.com/books/character-recognition/preprocessing-techniques-in-

character-recognition

Chiatti, A., Cho, M. J., Gagneja A., Yang X., Brinberg M., Roehrick K., … Giles C.

L. (2018). Text Extraction and Retrieval from Smartphone Screenshots: Building a

Repository for Life in Media. Retrieved from https://arxiv.org/pdf/1801.01316.pdf

El Harraj, A. and Raissouni, N. (2015). OCR Accuracy Improvement On Document

Images Through a Novel Pre-processing Approach. Signal & Image Processing: An

International Journal (SIPIJ), 6(4). DOI: 10.5121/sipij.2015.6401

Ezaki, N., Bulacu M., and Schomaker, L. Text Detection from Natural Scene Images:

Towards a System for Visually Impaired Persons. In Proc. of 17th. Int. Conf. on Pattern

Recognition (ICPR 2004), IEEE Computer Society, 2004, pp. 683-686, vol. II, 23-26

August, Cambridge, UK

Hamad, K.A., Kaya, M. (2016). A Detailed Analysis of Optical Character

Recognition Technology. International Journal of Applied Mathematics, Electronics and

Computers, 4(Special Issue), 244–249. Retrieved from

http://dergipark.gov.tr/download/article-file/236939

Huang C., Chuang Y., Chang R. & Chen Y. (2014). Enhance Text Recognition by

Image Pre-Processing to Facilitate Library Services by Mobile Devices. In Proceedings of

the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pp.

453-460. DOI: 10.5220/0004818504530460

Janvalkar, S., Manjrekar, P., Pawar, S., & Naik, L. (2014). Text Recognition from an

Image. International Journal of Engineering Research and Applications, Vol. 4, Issue 4

(Version 5), April 2014, pp.149-151. Retrieved from

http://ijera.com/papers/Vol4_issue4/Version%205/Z04405149151.pdf

Maini, V. (2017). Machine Learning for Humans, Part 5: Reinforcement Learning.

Retrieved from https://medium.com/machine-learning-for-humans/reinforcement-learning-

6eacf258b265

 13

Mordvintsev, A. & Abid, K. (2017). OpenCV-Python Tutorials Documentation

(Release 1) [PDF file]. Retrieved from https://media.readthedocs.org/pdf/opencv-python-

tutroals/latest/opencv-python-tutroals.pdf

Sutton, R.S. & Barto, A.G. (2017). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Taylor, G.W. & Wolf, C. (2004). Reinforcement learning for parameter control of

text detection in images from video sequences. 2004 International Conference on

Information and Communication Technologies: From Theory to Applications, 517-518.

Retrieved from http://www.uoguelph.ca/~gwtaylor/publications/icict2004.pdf

 14

APPENDIX A

Python Code for Creating Train and Test Sets

#Split train-test data by reading data information file

def TrainTestSplit():

 #Read data from file, write to lists and split train-test sets

 names=[]

 contents=[]

 langs=[]

 count=0

 with open('list.csv', encoding='ISO-8859-9') as f:

 data = csv.reader(f)

 for row in data:

 #print(row[2])

 count+=1

 if(count>1):

 names.append(row[1])

 contents.append(row[2])

 langs.append(row[3])

 langs=['tur' if l=='tr' else l for l in langs]

 #Create train and test sets

 train_indexes=random.sample(range(0, 211), 106)

 #Filename list

 train_names=[names[i] for i in train_indexes]

 test_names =[names[i] for i in range(0, 211) if i not in train_indexes]

 #Text content of files

 train_contents=[contents[i] for i in train_indexes]

 test_contents =[contents[i] for i in range(0, 211) if i not in train_indexes]

 #Text language of files

 15

 train_langs=[langs[i] for i in train_indexes]

 test_langs =[langs[i] for i in range(0, 211) if i not in train_indexes]

 return train_names,train_contents,train_langs,test_names,test_contents,test_langs

 # Split training and test data and write them to separate files

 #Get split data

 train_names,train_contents,train_langs,test_names,test_contents,test_langs =

TrainTestSplit()

 #Write train data to file

 with open("train.txt","w",encoding='utf-8') as f:

 for i,n in enumerate(train_names):

 f.write(n+"\t"+train_contents[i]+"\t"+train_langs[i]+"\r\n")

 #Write test data to file

 with open("test.txt","w",encoding='utf-8') as f:

 for i,n in enumerate(test_names):

 f.write(n+"\t"+test_contents[i]+"\t"+test_langs[i]+"\r\n")

 16

APPENDIX B

Python Code for Training Q-Table Model

#import required libraries

import random

import numpy as np

import pandas as pd

import cv2

import pytesseract

import glob

import PIL

import time

import csv

import statistics as st

#Set initial values

iterations=100

#Greedy Threshold

GRDT=0.5

#Discount Factor

DF=0.9

#Learning Rate

LR=0.1

#Calculate Tesseract accuracy using iamge, groundtruth string and language code

def getTesseractAccuracy(image, groundtruth_string, lang_code):

 tesser_out = pytesseract.image_to_string(image, lang=lang_code)

 true_prediction_count=0

 n=0

 if len(groundtruth_string)< len(tesser_out):

 n=len(groundtruth_string)

 17

 else:

 n=len(tesser_out)

 for i in range(n):

 if tesser_out[i]==groundtruth_string[i]:

 true_prediction_count+=1

 if n>0:

 return true_prediction_count/n

 else:

 return 0

#Get similarity value(correlation) between two image histograms

def getSimilarity(source_hist, target_hist):

 similarity = cv2.compareHist(target_hist, source_hist, cv2.HISTCMP_CORREL)

 return similarity;

#Generate actionset with randomized actions and weighted probabilities

def getRandomActions(min,max,n_min,n_max):

 #select size of actions sample size from distribution with given probabilities

 a= np.random.choice(list(range(min, max)), np.random.randint(n_min,n_max,1),

replace=False, p=[4/14, 2/14, 2/14, 2/14, 1/14,1/14,2/14])

 a2=''.join(map(str, a))

 return a2

#Generate random or best reward action set based on random value and greedy threshold

value

def getActionList(state, table):

 actionset_maxreward=0

 maxreward=0

 #Get max reward actionset for given row's correlation value

 for index, row in table.iterrows():

 if table['Correlation'][index]==state:

 18

 actionset_maxreward = row[1:].idxmax()

 maxreward= row[1:].max()

 #Random actionset or greedy

 if (np.random.uniform() > GRDT) or (maxreward==0):

 actionset=getRandomActions(1,8,0,6)

 else:

 actionset = actionset_maxreward

 #if both action 1 (scale 2x) and 2 (scale 4x) exists, remove one of them randomly

 if '1' in actionset and '2' in actionset:

 actionset=actionset[actionset!=np.random.randint(1,3,1)[0]]

 return str(0) if len(actionset)==0 else ''.join(str(actionset))

#Apply selected processes to image, return OCR accuracy of processed image

def getFeedback(im, Actions, groundtruth_string,lang_code):

 im_current=im

 img_proc=im

 accuracy=0

 try:

 for i in Actions:

 if i=='1':#scale 2x

 img_proc = cv2.resize(im_current,None,fx=2, fy=2, interpolation =

cv2.INTER_CUBIC)

 if i=='2':#scale 4x

 19

 img_proc = cv2.resize(im_current,None,fx=4, fy=4, interpolation =

cv2.INTER_CUBIC)

 if i=='3':#bw

 (thresh, img_proc) = cv2.threshold(im_current, 128, 255,

cv2.THRESH_BINARY | cv2.THRESH_OTSU)

 if i=='4':#denoising

 img_proc = cv2.fastNlMeansDenoising(im_current,None,10,7,21)

 if i=='5':#erosion

 kernel = np.ones((2,2),np.uint8)

 img_proc = cv2.erode(im_current,kernel,iterations = 1)

 if i=='6':#dilation

 kernel = np.ones((2,2),np.uint8)

 img_proc = cv2.dilate(im_current,kernel,iterations = 1)

 if i=='7':#histogram eq

 img_proc = cv2.equalizeHist(im_current)

 im_current=img_proc

 #Get OCR accuracy

 accuracy = getTesseractAccuracy(im_current,groundtruth_string,lang_code)

 except (RuntimeError, TypeError, NameError):

 print("err: "+str(Actions))

 return accuracy

def main():

 #Read base image

 img_base = cv2.imread('test.png',0)

 hist_base=cv2.calcHist([img_base],[0],None,[256],[0,256])

 groundtruth='Image Processor'

 20

 reward=getTesseractAccuracy(img_base,groundtruth,'eng')/len(groundtruth)

 #Create q-table, initialize Correlation and 0 (no action) columns with their values

 q_table= pd.DataFrame([[1,.0]],columns=['Correlation','0'])

 #Copy table for loop operations

 table=q_table.copy()

 #Read image data from file

 with open('train.txt', 'r',encoding='utf-8') as f:

 train_data = f.readlines()

 #read image name, ground truth string in image and language code of ground truth string

 train_names=[r.replace("\r\n","").split('\t')[0] for r in train_data]

 train_contents=[r.replace("\r\n","").split('\t')[1] for r in train_data]

 train_langs=[r.replace("\r\n","").replace("\n","").split('\t')[2] for r in train_data]

 #loop through all images in training list

 for i,n in enumerate(train_names):

 #Read current image in training list as grayscale

 im = cv2.imread(n,0)

 #Calculate histogram

 hist=cv2.calcHist([im],[0],None,[256],[0,256])

 #Compare each image with the base image to calculate current state (correlation)

 state=round(getSimilarity(hist_base, hist),2)

 #

 for it in range(iterations):

 Actions=getActionList(state,q_table)

 #apply actions on current image and calculate reward

 Feedback=getFeedback(im,Actions,train_contents[i],train_langs[i])

 #Add new row for new correlation value if not exists

 21

 if len(q_table[q_table.Correlation == state])==0:

 table = table.append(pd.Series([state], index=['Correlation']), ignore_index=True)

 #Add new column for new actionset if not exists

 if ~pd.Series([str(Actions)]).isin(q_table.columns).all():

 try:

 table.insert(loc=len(table.columns),

 column=str(Actions),

 value=[0 if x != len(table.index)-1 else 0.0 for x in

range(len(table.index))])

 except (RuntimeError, TypeError, NameError):

 print("err: "+str(Actions))

 #Replace all NA values with 0

 table=table.fillna(0)

 #Calculate previous value of selected state-actionset pair

 prev_val=table[str(Actions)][(table["Correlation"]== state)]

 #Update q-table with new value

 table[str(Actions)][(table["Correlation"]== state)] = prev_val+((Feedback+DF-

prev_val)*LR)

 #Update original table

 q_table=table

 return q_table

#Start program

q=main()

q.to_csv("q_100.txt", sep='\t', encoding='utf-8')

 22

APPENDIX C

Python Code for Testing Q-Table Model

#import required libraries

import random

import numpy as np

import pandas as pd

import cv2

import pytesseract

import glob

import PIL

import time

import csv

import statistics as st

#Set initial values

iterations=1

#Greedy Threshold

GRDT=0.5

#Discount Factor

DF=0.9

#Learning Rate

LR=0.1

def test_main():

 #Define lists for storing Accuracies

 acc=[]

 aclist=[]

 23

 #Read base image, calculate OCR accuracy

 img_base = cv2.imread('test.png',0)

 hist_base=cv2.calcHist([img_base],[0],None,[256],[0,256])

 groundtruth='Image Processor'

 reward=getTesseractAccuracy(img_base,groundtruth,'eng')/len(groundtruth)

 #Read selected q-table file

 q_table = pd.read_csv('q_100.txt',delimiter='\t',encoding='utf-8',index_col=0)

 #Take a copy of table for comparison

 table=q_table.copy()

 #Read test image set data from file

 with open('test.txt', 'r',encoding='utf-8') as f:

 test_data = f.readlines()

 #Read test file names, content strings and content language codes for Tesseract

 test_names=[r.replace("\r\n","").split('\t')[0] for r in test_data]

 test_contents=[r.replace("\r\n","").split('\t')[1] for r in test_data]

 test_langs=[r.replace("\r\n","").replace("\n","").split('\t')[2] for r in test_data]

 #loop through test set

 for i,n in enumerate(test_names):

 #Iteration each image for averaging accuracy

 for x in range(100):

 im = cv2.imread(n,0)

 hist=cv2.calcHist([im],[0],None,[256],[0,256])

 #Compare each image with the base image to calculate current state (correlation)

 state=round(getSimilarity(hist_base, hist),2)

 Actions=getActionList(state,q_table)

 24

 #apply actions on current image and calculate reward (and next state (new

histogram))

 Feedback=getFeedback(im,Actions,test_contents[i],test_langs[i])

 #Add row for new state if not exists

 if len(q_table[q_table.Correlation == state])==0:

 table = table.append(pd.Series([state], index=['Correlation']), ignore_index=True)

 #Add column for new actionset if not exists

 if ~pd.Series([str(Actions)]).isin(q_table.columns).all():

 try:

 table.insert(loc=len(table.columns),

 column=str(Actions),

 value=[0 if x != len(table.index)-1 else 0.0 for x in

range(len(table.index))])

 except (RuntimeError, TypeError, NameError):

 print("err: "+str(Actions))

 #Replace all NA values with 0

 table=table.fillna(0)

 #Read previous value

 prev_val=table[str(Actions)][(table["Correlation"]== state)]

 #Update q-table

 table[str(Actions)][(table["Correlation"]== state)] = prev_val+((Feedback+DF-

prev_val)*LR)

 #Update original table

 q_table=table

 #Add current OCR accuracy to list

 acc.append(Feedback)

 #Average accuracy value for current image after all iterations

 aclist.append(sum(acc) / float(len(acc)))

 25

 #Clear list

 acc=[]

 #Return list of average accuracy values

 print(aclist)

 #return q-table

 return q_table

#Start test program

q=test_main()

