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EXECUTIVE SUMMARY 

 

PRE-OCR IMAGE OPTIMIZATION  

BY REINFORCEMENT LEARNING 

 

Cihan Tektunalı 

 

 

Advisor: Prof. Dr. Muhittin Gökmen 

 

 

SEPTEMBER, 2018, 25 pages 

 

 

 

Optical Character Recognition technology usage in digital transformation of 

documents is steadily growing by the help of new hardware and software technologies. 

However digital image optimization for more accurate OCR results continues to be a 

problem. In this study, we propose a reinforcement learning based model that learns optimal 

set of actions to increase OCR accuracy in computer screenshot images. Model input images 

are identified by their grayscale histogram distributions. An unprocessed base image having 

100% OCR accuracy is taken initially. The correlation between the grayscale histograms of 

base image and input image is used for comparison. We implemented reinforcement 

learning’s random (or optimal) action and reward approach for creating a Q-table. For 

measuring image to text conversion success, Tesseract OCR software is used. The 

introduced approach can improve OCR accuracy especially in bulk image to document 

conversion jobs. By using optimal actions for single image or bulk images, it can also 

decrease computational load and time-consumption in image processing.  
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ÖZET 

 

TAKVİYELİ ÖĞRENME İLE OPTİK KARAKTER  

TANIMA ÖNCESİ GÖRÜNTÜ OPTİMİZASYONU 

 

Cihan Tektunalı 

 

 

Tez Danışmanı: Prof. Dr. Muhittin Gökmen 

 

 

EYLÜL, 2018, 25 sayfa 

 

 

 

Metinsel dokümanların sayısal ortama aktarılmasında optik karakter tanıma 

teknolojisinin kullanımı donanım ve yazılım alanındaki gelişmelerin yardımıyla giderek 

artmaktadır. Bununla birlikte karakter tanımanın daha yüksek başarıyla yapılabilmesi için 

sayısal görüntü optimizasyonu bir problem olmaya devam etmektedir. Bu çalışmada 

bilgisayar ekran görüntülerinden karakter tanıma başarısının arttırılması için sayısal görüntü 

optimizasyonu yapan ve takviyeli öğrenme yöntemini kullanan bir model öne sürülmüştür. 

Modele girdi olarak verilen sayısal görüntülerin gri ton dağılımları görüntü durumlarını 

tanımlamak için kullanıldı. Ham haliyle tam başarılı karakter tanıma yapılabilen bir görüntü 

baz alındı. Verilen yeni görüntüler ile baz alınan görüntünün gri ton dağılımı arasındaki 

korelasyon değeri görüntüleri karşılaştırmak için kullanıldı. Takviyeli öğrenme ile 

uygulanan rastgele veya optimal aksiyon dizileri ve sonuç olarak elde edilen ödül değerleri 

kullanılarak Q-tablosu oluşturuldu. Görüntünün metne çevrilme başarısının ölçümü için 

Tesseract OCR yazılımı kullanıldı. Oluşturulan bu model ile özellikle sayısal ortama toplu 

aktarım işlemlerinde karakter tanıma verimi arttırılabilir. Ayrıca görüntü bazında veya tüm 

görüntü kümesinde optik karakter tanıma iyileştirmesi sağlayacak optimal aksiyonlar 

kullanılarak toplamdaki hesaplama yükünün ve görüntü işlemede kaybedilen zamanın 

azaltılması sağlanabilir.        

 

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler:  Optik karakter tanıma başarım optimizasyonu, takviyeli 

öğrenme, Q-tablosu ile öğrenme, çoklu görüntülerin optik karakter tanıma başarımının 

arttırılması   
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1. INTRODUCTION 

Identification of machine printed text which is named as Optical Character 

Recognition (OCR) technology and its conversion process to digital medium has been 

increasing its significance by the help of improvements in the computer hardware and 

software industry, even it has been around for more than 10 years. In order to acquire 

successful results in digital conversion of printed texts by OCR, image parameter 

optimizations are generally required. Because character recognition in the digital medium 

requires image processing knowledge and expertise (such as defining scope, order and 

parameters of image filters being applied), this process still needs an expert’s intervention at 

least in some stages, making it demanding and time consuming especially if there is a bulk 

conversion scenario with tens of thousands of documents. At this point, reinforcement 

learning techniques that is a branch of machine learning, come to rescue for creating a self-

learning model to optimize image processing steps for conversion before the application of 

OCR software. In this study, we used reinforcement learning’s Q table approach to create a 

software that tries to find the best image processing options for the given images to increase 

the character recognition accuracy of OCR software. To measure image to text conversion 

accuracy, we used the recognized outputs of Tesseract Open Source OCR software (version: 

3.05.02).   

As data inputs to our self-learning model, we created arbitrary cropped samples of 

computer screenshot images. For simplification purposes, these images included one to 

seven words that needed to be recognized by OCR software. The content language of words 

is in either English or Turkish. 

 

1.1. What is Reinforcement Learning? 

 

Reinforcement learning can be defined as learning to reach a specific target by 

interacting with the medium that the learner (named agent) is in and gathering a reward (or 

punishment) back as a result of this interaction. By this way, the learner finds out which 

actions to take to maximize the reward and which actions not to take to minimize the 

punishment. Apart from other machine learning branches, named as supervised learning 

(function estimation using previously labeled data) and unsupervised learning (estimating 
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groups using unlabeled data), reinforcement learning differs in terms of learning method, 

which aims at maximizing the long-term reward, by taking various actions. To explore the 

action space and deal with local minimum problem in machine learning, the action selection 

is made either randomly or based on the maximum reward, adjusted by a threshold value. 

As Sutton and Barto (2017) described in a general sense, six members can be defined as part 

of a reinforcement learning system:  

 Agent (the learner)  

 Environment 

 Policy  

 Reward signal  

 Value function  

 Model of the environment (optional)   

 

In this study, a specialized method called Q-learning is selected for our optimization 

problem.  

 

 

Figure 1: Diagram for basic Q learning procedure 

 

Q-learning is an algorithm used in reinforcement learning space which provides a 

solution to Markov Decision Process model. It uses an action – value function to define the 

value (reward) of an action applied to each state of the agent (Figure 1). It is simply an off-

policy algorithm, which means that the optimal action-value function estimation is 

unrestricted by the policy in use. As Maini (2017) mentioned, the action-value function is 

defined as: 
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𝑄(𝑠𝑡 , 𝑎𝑡) ←  𝑄(𝑠𝑡 , 𝑎𝑡)⏟    
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

 + 𝛼⏟
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

. ( 𝑟𝑡⏟
𝑟𝑒𝑤𝑎𝑟𝑑

+ 𝛾⏟
𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

 . max
𝑎
 𝑄(𝑠𝑡+1 , 𝑎)⏟          

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

⏞                                  − 𝑄(𝑠𝑡, 𝑎𝑡)⏟    
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

).      (1) 

 

Here Q is the calculated value after taking action a at state s and time t,  

α is the learning rate,  

rt is the reward at time t, 

and γ is the discount factor. 

We try to find the optimal action that maximizes Q value for current state. Before Q-table is 

updated, the weight of new reward value is adjusted by its previous value, discount factor, 

optimal future value and learning rate. 

1.2. Literature Review 

To enable more accurate text conversion results in OCR, different approaches are 

used. As El Harraj and Raissouni (2015) stated, some of these techniques depend on 

correcting character or word based errors by comparing with a dictionary or using the scope 

of corresponding text to find the true version of the inaccurate part. In the case of digital 

camera-based OCR, Ezaki et al. (2004) created a system that tries to find the regions with 

tiny characters in image and then zooms to the selected region for character recognition. 

They propose that the success rate of various techniques is connected with the dimension of 

characters. They also listed the order of the best performing operations as Sobel edge 

detection, Otsu binarization, connected component extraction and rule-based connected 

component filtering with the emphasis on the bigger characters. Some of the further 

procedures used in image optimization includes image processing techniques such as 

greyscaling, scaling, blurring, denoising, erosion, dilation, histogram equalization, adaptive 

thresholding, edge detection etc. as Mordvintsev and Abid (2017) listed in the 

documentation of OpenCV library. The list of actions we used in this study is generated from 

a subset of essential processes applied in pre-processing step of reviewed projects about 

Optical Character Recognition (Alginahi, 2010; Chiatti et al., 2018; El Harraj & Raissouni, 

2015; Hamad & Kaya, 2016; Huang et al., 2014; Janvalkar et al., 2014; Taylor & Wolf, 

2004). 
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2. EMPIRICAL DATA 

As our dataset, we created 211 small sized color images in Portable Network 

Graphics (png) format, cropped from computer screenshots. The screenshots were taken 

from Windows and Linux operating systems. Image sizes differ from 29 to 334 pixels in 

width and 20 to 216 pixels in height. Training set is created with roughly half of the set (106 

images) by random sampling. The rest of the set is used for testing. We decided to represent 

each image by its histogram values. Histograms represented the features in our design. In 

order to simplify the feature set and also as an OCR best practice, we preferred to use 

grayscale histograms. No pre-processing is applied to images before they are fed into our Q-

learning algorithm. Some of the samples that we used are displayed in Figure 2. 

 

Figure 2: Sample Input Images 
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3. PROJECT DEFINITION 

3.1. Project Objectives 

Image to text conversion by OCR is a time-consuming process. Furthermore, OCR 

software accuracy is not stable and can change according to image parameters like quality, 

resolution, character size, or scale. This may lead to human intervention for problematic 

images at multiple stages for correction.    

The main objective of this study was to create a self-learning system that optimizes 

cropped screenshot images before sending to OCR software for acquiring more successful 

results. By using Q-learning approach, we created a model that calculates OCR accuracy 

using Tesseract software and tried to increase the accuracy by applying different processes 

selected from predefined actions list. The second objective was to fine-tune processing 

actions or parameters to further increase OCR accuracy of the whole test set. 

3.2. Project Scope 

Because computer printed text existing in screenshot images have no background 

noise compared to other digital image sources like scanner or digital camera, our 

optimization scenario does not consider background noise reduction operation. Also there 

were no document orientation problem which may require skewness correction as in the 

scanned document cases.  

During data preparation step, since image processing demands high computational 

power, sample image sizes were limited to maximum 300 pixels in width and 50 pixels in 

height. In addition to that, preparing cropped images from computer screenshots and listing 

image file names along with their content strings was a time-consuming process. This led to 

a limited training data size. Our source data consisted of 106 images (out of 211 images in 

total). Thus the resulting trained Q-table model has a limited variability. That can be 

considered as a negative effect in the way of gaining more accurate results with this model. 

 At implementation stage, we decided to use grayscale histogram correlations with 

the base image as state values in Q-table approach. Only the initial correlation value is used 

for each image in updating Q-table. As a result, number of states are limited to unique 

correlation values of input images with the base image.  
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4. METHODOLOGY 

For a self-learning system, we adapted Q-learning algorithm from the group of 

reinforcement learning techniques. Python code is written for implementing Q-table 

approach, applying image processing functions, training and testing image data (see 

Appendices A, B and C). We used a base image as a reference point at model (Q-table) 

training. The basic members required by Q-learning are mapped as follows: 

 

 Environment: Base image and Input images 

 Agent: Python code 

 States: Correlation coefficient between the base image and the input image 

that ranges between -1 and 1 with 0.01 intervals   

 Actions: Image processing operations (like scaling, black and white 

conversion, denoising etc.) defined as a list 

 

The set of actions in our model with their weighted selection probability p in probability 

distribution is as follows: 

 

 Scale image width and height by 2 times, p = 4/14 

 Scale image width and height by 4 times, p = 2/14 

 Black and white conversion, p = 2/14 

 Denoising, p = 2/14 

 Erosion, p = 1/14 

 Dilation, p = 1/14 

 Histogram equalization, p = 2/14 

 

The probabilities we defined above were the initial values during model training and test. 

After test results observed, as a fine-tuning attempt the action set was narrowed down to 4 

actions that rewards the most.  

General strategy of the model is as follows: The agent first reads base image which 

represents default state value (the correlation of the base image with itself calculated from 

grayscale histogram equals 1). An empty Q-table is created and updated with default state 
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value. The agent then starts iterating through the input image set and calculates the 

correlation between base image and input image. At the next step, it tries random actions (or 

the optimal action set if exists) from the list of image processing options. At each iteration 

it updates the table with state, action set and adjusted reward value using OCR accuracy from 

Tesseract software’s image to text conversion result. As the original text content is known, 

OCR accuracy A for the current state of the image is calculated by: 

 

A = N / T          (2) 

 

Here, N is the number of correctly recognized characters and T is the total number 

of characters in the image.  

At the end of all iterations, we acquire a table of image states (rounded correlation 

values relative to base image) and corresponding ordered actions list applied so far, along 

with the reward values calculated by action-value formula.  
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Figure 3: Diagram for Q learning procedure adapted to image optimization 

  

We trained our Q-table by the adapted procedure (Figure 3) using 100, 500, 1000, 

2500 iterations per image with training image set (see Appendix B). At next step, we exposed 

each image in test set to trained Q-tables and collected accuracy values (see Appendix C). 

Since the algorithm is able to choose random actions even if there is an optimal action set 

having the maximum reward, we preferred to average the accuracy scores after 100 iterations 

per image to reach more stable results.          
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5. RESULTS 

In the final part of this study, we compared average OCR accuracy values of images 

in test set (Table 1). Raw accuracy values were obtained by direct exposure to Tesseract 

software without any image processing. Other results were taken after making use of Q-

tables trained with different number of iterations. The same Q-table algorithm was employed 

for acquiring accuracy value. 

 

Table 1 

Average OCR Accuracies of Images in Test Set 

Raw 
Q-table 

100 iterations 

Q-table 

500 iterations 

Q-table 

1000 iterations 

Q-table 

2500 iterations 

0.296 0.345 0.348 0.352 0.351 

 

The results show that the average OCR accuracy of all images in test set has risen 

approximately 5% with 100 times iterated Q-table model. The iterations over 100 brings 

slight additional improvements to the model. The model results seem to converge between 

500 to 1000 iterations. Comparison with raw accuracies is shown in Figure 4. 

 

Figure 4: Average OCR Accuracy Distribution of Test Images Before and After Q-table 

Exposure  
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The bar plot in Figure 4 displays the effect of iteration groups on accuracy values 

grouped in 0.1 intervals. Trained Q-table exposure brings significant increases in image 

groups with 0.6, 0.7 and 0.8 accuracy values whereas there is a steep fall in all iteration 

groups compared with raw accuracy value in 0.9 interval. This implies that some images 

which already have high OCR accuracies in unprocessed states need to be treated differently. 

To provide with an additional improvement to current algorithm, all raw image accuracies 

can be checked and treated accordingly before Q-table exposure. 

 

As a tuning attempt to this model, we reviewed top 5 highest rewarded actions from 

each Q-table and selected the most significant 4 actions. We just applied these single 

processes to all test set instead of random selection from a pool. The results are shown in 

Table 2.  

  

Table 2 

Average OCR Accuracies of Images in Test Set - After Single Process Applied 

Action Scale 2x 
Black and White 

Conversion 
Denoising 

Histogram 

Equalization 

Accuracy 0.378 0.296 0.285 0.143 

 

As seen in Table 2, even a single action like scaling can boost OCR accuracy scores 

more than an entire trained Q-table. The strategy for further optimization of this model may 

consider searching the best single actions from a much broader set of actions and apply as 

few of them as possible. As the number of actions increase, the minimum number of 

iterations required for convergence will rise. So this should also be taken into consideration 

for optimization attempts. 
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6. FUTURE RESEARCH 

In this project, we targeted to increase optical character recognition accuracy of a set 

of screenshot images by incorporating a self-learning model. For the sake of limited 

resources, we defined some constraints in our machine learning model. These can be 

summarized as the number of images used to train and test, source of images (computer 

screenshots or scanned images etc.), image width – height ranges, number of words in image 

texts, number of image processing actions, probability weights of actions, iteration counts in 

terms of training model and averaging test results, parameters of Q-learning model and 

reward calculation formula. In future improvements to this model, these constraints can be 

redesigned according to related scenario. Besides that, new approaches can be adapted to Q-

learning algorithm for a more robust image accuracy control. 
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APPENDIX A 

Python Code for Creating Train and Test Sets 

 

#Split train-test data by reading data information file 

def TrainTestSplit(): 

    #Read data from file, write to lists and split train-test sets 

    names=[] 

    contents=[] 

    langs=[] 

    count=0 

    with open('list.csv', encoding='ISO-8859-9') as f: 

        data = csv.reader(f) 

        for row in data: 

            #print(row[2]) 

            count+=1 

            if(count>1): 

                names.append(row[1]) 

                contents.append(row[2]) 

                langs.append(row[3]) 

       

    langs=['tur' if l=='tr' else l for l in langs] 

     

    #Create train and test sets 

    train_indexes=random.sample(range(0, 211), 106) 

    #Filename list 

    train_names=[names[i] for i in train_indexes] 

    test_names =[names[i] for i in range(0, 211) if i not in train_indexes] 

    #Text content of files 

    train_contents=[contents[i] for i in train_indexes] 

    test_contents =[contents[i] for i in range(0, 211) if i not in train_indexes] 

    #Text language of files 
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    train_langs=[langs[i] for i in train_indexes] 

    test_langs =[langs[i] for i in range(0, 211) if i not in train_indexes] 

 

    return train_names,train_contents,train_langs,test_names,test_contents,test_langs 

 

 # Split training and test data and write them to separate files 

    #Get split data 

    train_names,train_contents,train_langs,test_names,test_contents,test_langs = 

TrainTestSplit() 

     

    #Write train data to file 

    with open("train.txt","w",encoding='utf-8') as f: 

        for i,n in enumerate(train_names): 

            f.write(n+"\t"+train_contents[i]+"\t"+train_langs[i]+"\r\n") 

     

    #Write test data to file 

    with open("test.txt","w",encoding='utf-8') as f: 

        for i,n in enumerate(test_names): 

            f.write(n+"\t"+test_contents[i]+"\t"+test_langs[i]+"\r\n") 
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APPENDIX B 

Python Code for Training Q-Table Model 

 

#import required libraries 

import random 

import numpy as np 

import pandas as pd 

import cv2 

import pytesseract 

import glob 

import PIL 

import time 

import csv 

import statistics as st 

 

#Set initial values 

iterations=100 

#Greedy Threshold 

GRDT=0.5 

#Discount Factor 

DF=0.9 

#Learning Rate 

LR=0.1 

                        

#Calculate Tesseract accuracy using iamge, groundtruth string and language code                     

def getTesseractAccuracy(image, groundtruth_string, lang_code): 

    tesser_out = pytesseract.image_to_string(image, lang=lang_code) 

    true_prediction_count=0 

    n=0 

    if len(groundtruth_string)< len(tesser_out): 

        n=len(groundtruth_string) 
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    else: 

        n=len(tesser_out) 

         

    for i in range(n): 

        if tesser_out[i]==groundtruth_string[i]: 

            true_prediction_count+=1     

     

    if n>0: 

        return true_prediction_count/n 

    else: 

        return 0 

#Get similarity value(correlation) between two image histograms 

def getSimilarity(source_hist, target_hist): 

    similarity = cv2.compareHist(target_hist, source_hist, cv2.HISTCMP_CORREL) 

    return similarity; 

 

#Generate actionset with randomized actions and weighted probabilities 

def getRandomActions(min,max,n_min,n_max): 

    #select size of actions sample size from distribution with given probabilities 

    a= np.random.choice(list(range(min, max)), np.random.randint(n_min,n_max,1), 

replace=False, p=[4/14, 2/14, 2/14, 2/14, 1/14,1/14,2/14]) 

    a2=''.join(map(str, a)) 

    return a2 

 

#Generate random or best reward action set based on random value and greedy threshold 

value     

def getActionList(state, table): 

    actionset_maxreward=0 

    maxreward=0 

    #Get max reward actionset for given row's correlation value 

    for index, row in table.iterrows(): 

            if table['Correlation'][index]==state: 
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                actionset_maxreward = row[1:].idxmax()            

                maxreward= row[1:].max() 

                 

    #Random actionset or greedy 

    if (np.random.uniform() > GRDT) or (maxreward==0): 

        actionset=getRandomActions(1,8,0,6) 

    else: 

        actionset = actionset_maxreward 

     

     

    #if both action 1 (scale 2x) and 2 (scale 4x) exists, remove one of them randomly 

    if '1' in actionset and '2' in actionset: 

        actionset=actionset[actionset!=np.random.randint(1,3,1)[0]] 

     

         

    return str(0) if len(actionset)==0 else ''.join(str(actionset)) 

  

     

#Apply selected processes to image, return OCR accuracy of processed image     

def getFeedback(im, Actions, groundtruth_string,lang_code): 

    im_current=im 

    img_proc=im 

    accuracy=0 

     

    try: 

        for i in Actions: 

         

            if i=='1':#scale 2x 

                img_proc = cv2.resize(im_current,None,fx=2, fy=2, interpolation = 

cv2.INTER_CUBIC) 

            if i=='2':#scale 4x 
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                img_proc = cv2.resize(im_current,None,fx=4, fy=4, interpolation = 

cv2.INTER_CUBIC) 

            if i=='3':#bw 

                (thresh, img_proc) = cv2.threshold(im_current, 128, 255, 

cv2.THRESH_BINARY | cv2.THRESH_OTSU) 

            if i=='4':#denoising 

                img_proc = cv2.fastNlMeansDenoising(im_current,None,10,7,21) 

            if i=='5':#erosion 

                kernel = np.ones((2,2),np.uint8) 

                img_proc = cv2.erode(im_current,kernel,iterations = 1) 

            if i=='6':#dilation 

                kernel = np.ones((2,2),np.uint8) 

                img_proc = cv2.dilate(im_current,kernel,iterations = 1) 

            if i=='7':#histogram eq 

                img_proc = cv2.equalizeHist(im_current) 

            im_current=img_proc 

        #Get OCR accuracy 

        accuracy = getTesseractAccuracy(im_current,groundtruth_string,lang_code) 

    except (RuntimeError, TypeError, NameError): 

        print("err: "+str(Actions)) 

     

    return accuracy 

     

     

     

 

def main(): 

     

    #Read base image 

    img_base = cv2.imread('test.png',0) 

    hist_base=cv2.calcHist([img_base],[0],None,[256],[0,256])   

    groundtruth='Image Processor'    
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    reward=getTesseractAccuracy(img_base,groundtruth,'eng')/len(groundtruth) 

     

    #Create q-table, initialize Correlation and 0 (no action) columns with their values 

    q_table= pd.DataFrame([[1,.0]],columns=['Correlation','0']) 

    #Copy table for loop operations 

    table=q_table.copy() 

       

    #Read image data from file 

    with open('train.txt', 'r',encoding='utf-8') as f: 

        train_data = f.readlines() 

    #read image name, ground truth string in image and language code of ground truth string     

    train_names=[r.replace("\r\n","").split('\t')[0] for r in train_data] 

    train_contents=[r.replace("\r\n","").split('\t')[1] for r in train_data] 

    train_langs=[r.replace("\r\n","").replace("\n","").split('\t')[2] for r in train_data] 

 

    #loop through all images in training list 

    for i,n in enumerate(train_names): 

        #Read current image in training list as grayscale 

        im = cv2.imread(n,0) 

        #Calculate histogram 

        hist=cv2.calcHist([im],[0],None,[256],[0,256]) 

         

        #Compare each image with the base image to calculate current state (correlation) 

        state=round(getSimilarity(hist_base, hist),2) 

        # 

        for it in range(iterations): 

            Actions=getActionList(state,q_table) 

                      

            #apply actions on current image and calculate reward 

            Feedback=getFeedback(im,Actions,train_contents[i],train_langs[i]) 

             

            #Add new row for new correlation value if not exists 
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            if len(q_table[q_table.Correlation == state])==0: 

                table = table.append(pd.Series([state], index=['Correlation']), ignore_index=True) 

            #Add new column for new actionset if not exists             

            if ~pd.Series([str(Actions)]).isin(q_table.columns).all(): 

                try: 

                    table.insert(loc=len(table.columns),  

                                 column=str(Actions),  

                                 value=[0 if x != len(table.index)-1 else 0.0 for x in 

range(len(table.index)) ])  

                except (RuntimeError, TypeError, NameError): 

                    print("err: "+str(Actions))     

                                

            #Replace all NA values with 0 

            table=table.fillna(0) 

            #Calculate previous value of selected state-actionset pair 

            prev_val=table[str(Actions)][(table["Correlation"]== state)] 

            #Update q-table with new value 

            table[str(Actions)][(table["Correlation"]== state) ] = prev_val+((Feedback+DF-

prev_val)*LR) 

            #Update original table 

            q_table=table      

     

    return q_table 

 

#Start program 

q=main() 

q.to_csv("q_100.txt", sep='\t', encoding='utf-8') 
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APPENDIX C 

Python Code for Testing Q-Table Model 

#import required libraries 

import random 

import numpy as np 

import pandas as pd 

import cv2 

import pytesseract 

import glob 

import PIL 

import time 

import csv 

import statistics as st 

 

#Set initial values 

iterations=1 

 

#Greedy Threshold 

GRDT=0.5 

 

#Discount Factor 

DF=0.9 

 

#Learning Rate 

LR=0.1 

 

def test_main(): 

     

    #Define lists for storing Accuracies 

    acc=[] 

    aclist=[] 
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    #Read base image, calculate OCR accuracy 

    img_base = cv2.imread('test.png',0) 

    hist_base=cv2.calcHist([img_base],[0],None,[256],[0,256]) 

    groundtruth='Image Processor'    

    reward=getTesseractAccuracy(img_base,groundtruth,'eng')/len(groundtruth) 

     

   #Read selected q-table file      

    q_table = pd.read_csv('q_100.txt',delimiter='\t',encoding='utf-8',index_col=0) 

    

    #Take a copy of table for comparison 

    table=q_table.copy() 

     

    #Read test image set data from file 

    with open('test.txt', 'r',encoding='utf-8') as f: 

        test_data = f.readlines() 

     #Read test file names, content strings and content language codes for Tesseract    

    test_names=[r.replace("\r\n","").split('\t')[0] for r in test_data] 

    test_contents=[r.replace("\r\n","").split('\t')[1] for r in test_data] 

    test_langs=[r.replace("\r\n","").replace("\n","").split('\t')[2] for r in test_data] 

 

    #loop through test set 

    for i,n in enumerate(test_names): 

        #Iteration each image for averaging accuracy 

        for x in range(100): 

            im = cv2.imread(n,0) 

            hist=cv2.calcHist([im],[0],None,[256],[0,256]) 

 

            #Compare each image with the base image to calculate current state (correlation) 

            state=round(getSimilarity(hist_base, hist),2) 

            

            Actions=getActionList(state,q_table) 
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            #apply actions on current image and calculate reward (and next state (new 

histogram)) 

            Feedback=getFeedback(im,Actions,test_contents[i],test_langs[i]) 

            #Add row for new state if not exists 

            if len(q_table[q_table.Correlation == state])==0: 

                table = table.append(pd.Series([state], index=['Correlation']), ignore_index=True) 

            #Add column for new actionset if not exists 

            if ~pd.Series([str(Actions)]).isin(q_table.columns).all(): 

                try: 

                    table.insert(loc=len(table.columns),  

                                     column=str(Actions),  

                                     value=[0 if x != len(table.index)-1 else 0.0 for x in 

range(len(table.index)) ])  

                except (RuntimeError, TypeError, NameError): 

                    print("err: "+str(Actions))     

 

            #Replace all NA values with 0 

            table=table.fillna(0) 

            #Read previous value 

            prev_val=table[str(Actions)][(table["Correlation"]== state)] 

 

            #Update q-table 

            table[str(Actions)][(table["Correlation"]== state) ] = prev_val+((Feedback+DF-

prev_val)*LR) 

 

            #Update original table 

            q_table=table 

 

            #Add current OCR accuracy to list 

            acc.append(Feedback) 

        #Average accuracy value for current image after all iterations 

        aclist.append(sum(acc) / float(len(acc))) 
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        #Clear list 

        acc=[] 

    #Return list of average accuracy values         

    print(aclist) 

    #return q-table 

    return q_table 

 

#Start test program 

q=test_main() 

 

 

 




