
 ii

MEF UNIVERSITY

BENCHMARKING OF RECOMMENDATION

MODELS FOR AN ON-LINE FAST FASHION

RETAILER

Capstone Project

Mustafa TİLKAT

İSTANBUL, 2018

 iii

 iv

MEF UNIVERSITY

BENCHMARKING OF RECOMMENDATION

MODELS FOR AN ON-LINE FAST FASHION

RETAILER

Capstone Project

Mustafa Tilkat

Advisor: Hande KÜÇÜKAYDIN

İSTANBUL, 2018

 v

MEF UNIVERSITY

Name of the project: Benchmarking of Recommendation Models for an On-line

Fast Fashion Retailer

Name/Last Name of the Student: Mustafa TİLKAT

Date of Thesis Defense: 10/09/2018

I hereby state that the graduation project prepared by Your Name (Title Format) has

been completed under my supervision. I accept this work as a “Graduation Project”.

10/09/2018

Hande KÜÇÜKAYDIN(Asst. Prof)

I hereby state that I have examined this graduation project by Mustafa Tilkat which

is accepted by his supervisor. This work is acceptable as a graduation project and the

student is eligible to take the graduation project examination.

10/09/2018

Director

of

Big Data Analytics Program

We hereby state that we have held the graduation examination of __________ and

agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE

Committee Member Signature

1. Hande KÜÇÜKAYDIN ………………………..

2. ………………………….. ………………………..

 vi

Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help,

and not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and

that I have neither given nor received inappropriate assistance in preparing it.

Name Date Signature

Mustafa Tilkat 10/09/2018

 vii

EXECUTIVE SUMMARY

BENCHMARKING OF RECOMMENDATION MODELS FOR AN ON-LINE FAST

FASHION RETAILER

Mustafa TİLKAT

Advisor: Hande KÜÇÜKAYDIN

SEPTEMBER, 2018, 54 pages

This project studies the usage of the recommendation engines to improve the sales

in an online fashion retailer. Fashion retailers sale variety of products throughout their

online channels. Since the number of products can be huge compared to an in-line shop,

customers may miss some of them while shopping online. Hence, it is crucial to display

products that are more likely to be purchased by a customer when the customer is surfing

on the website. Our problem is motivated by practice at an online fashion retailer in

Turkey. Four collaborative filtering-based algorithms and a random recommender are

utilized to design a recommendation engine. 80% of the data is used for training while the

other 20% is to used test the designed method. Based on our experiments, User Based

Collaborative Filtering (UBCF) using Pearson correlation outperform the other algorithms

based on Receiver Operating Characteristic (ROC) curve.

Key Words: Online Fashion Retailer, Recommendation engine, User Based

Collaborative Filtering, Item Based Collaborative Filtering, Collaborative Filtering.

 viii

ÖZET

BİR ONLINE HAZIR GİYİM MODA PERAKENDECİSİNDE ÖNERİ

SİSTEMLERİNİN KARŞILAŞTIRILMASI

Mustafa TİLKAT

Tez Danışmanı:Hande KÜÇÜKAYDIN

EYLÜL, 2018, 54 sayfa

Bu projede, bir online moda perakendecisinde satışları iyileştirmek için öneri

sistemlerinin nasıl uygulanacağı anlatılmıştır. Moda perakendecilerinin online kanallarında

ürün çeşitliliği oldukça fazla olabilmektedir. Ürünlerin sayısı normal bir mağazayla

karşılaştırıldığında çok büyük olabileceğinden, müşteriler online alışveriş yaparken bazı

modelleri gözden kaçırabilmekte veya aradıkları ürünleri kolayca bulamayabilmektedirler.

Bu nedenle, müşteri bir web sitesinde gezinirken bir müşteri tarafından satın alınma

olasılığı daha yüksek olan ürünleri müşteriye sunabilme kabiliyeti oldukça önemlidir.

Problemimiz, Türkiye'de bir online moda perakendecisi dataları üzerinde uygulama

yaparak tatmin edici sonuçlar bulmak üzerine motive edilmiştir. Bir öneri motoru

tasarlamak için dört farklı işbirlikçi filtreleme (Collaborative filtering) tabanlı algoritma ve

rastgele çeşitli öneriler sunabilecek arı bir baz model kullanılmaktadır. Verilerin% 80'i

eğitim seti,% 20'si ise tasarlanan yöntemi test etmek için kullanılmıştır. Deneylerimize

dayanarak, Pearson korelasyonunu kullanan Kullanıcı Tabanlı İşbirlikli Filtreleme (User

Based Collaborative Filtering) modelinin, ROC eğrisine bakıldığında diğer algoritmalara

göre daha iyi bir performans ortaya koyduğu gözlemlenmiştir.

Anahtar Kelimeler: İşbirlikçi Filtreleme, Collaborative Filtering, Online Moda

Perakendesi, Öneri Sistemleri

 ix

TABLE OF CONTENTS

Academic Honesty Pledge .. vi

EXECUTIVE SUMMARY ... vii

ÖZET .. viii

TABLE OF CONTENTS .. ix

1. INTRODUCTION ... 1

1.1.About the Company .. 2

1.2. Literatur Review .. 2

2. PROJECT DEFINITION .. 5

3. ABOUT THE DATA .. 6

4. METHODOLOGY .. 20

4.1. Item Based Collaborative Filtering .. 20

4.2. User Based Collaborative Filtering .. 20

4.3. Similarity Calculation .. 21

4.3.1. Cosine Similarity ... 21

4.3.2. Pearson Correlation Similarity ... 21

4.4. Neighborhood Selection .. 22

4.5. Why We Use Collaborative Filtering? ... 23

5. EXPERIMENTAL RESULTS .. 23

5.1. Results of Item Based Collaborative Filtering Models .. 23

5.2. Results of User Based Collaborative Filtering Models ... 26

5.3. Comparing the Models ... 28

6. CONCLUSION & DISCUSSION ... 30

7. REFERENCES .. 32

APPENDIX A .. 33

APPENDIX B .. 37

.

 1

1. INTRODUCTION

Recommendation engine is becoming very popular in many domains specifically in

online shops like Amazon, Facebook, Google and ect (Suchal and Navrat 2010).

Recommendation systems are based on web usage mining to obtain meaningful knowledge

about user to use this knowledge in order to respond to the user's interests (Nasraoui and

Petenes 2003).

Characteristics of the items that a user likes determine the items that a user may

like, or other users’ likes and dislikes. Similarity index between users and recommend

items are computed according to them.

Both methods can be combined in order to create more robust recommendation

engine. On the other hand, it is fundamental to select an algorithm that fits the problem.

Today, as people emphasis on fashion, outfit select difficulty became a serious

problem in daily life and as massive amounts of fashion items are available in markets and

online, needs for efficient recommendation services has grown significantly.

Recommender systems bolster clients in customized way for the identification of product

based on the history of the user. In on-line retail sector, since customer can only see a

limited number of products on the screen, it is crucial to recommend products which fit the

customers the best. Since huge data is available for any given customer (e.g., which

products s/he visited, how long s/he spent on each page, prices, etc), it is desirable for the

retailers to recommend products to customers. Currently, this retailer uses rule of thumb to

find the best solution for the recommendation engine. However, this solution can be

improved by the state of art available in the literature.

Because of the difficulty to dress people on-line with their lifestyles and budgets

and to make them feel good, recommending new products is a very challenging category

for fast fashion retailing. Every retailer aims to increase the amount of products it sells and

increase its profits.

 In off-line, retailers can make product recommendations through sales

representatives (sometimes it can be a disadvantage) but in on-line there is no possibility to

do. Even there is no possibility to use sales representatives, there is a huge amount of data

to use on on-line retail which is a very strong advantage to use. So in on-line retail every

 2

customer’s historical sales are being tracked and with using this data retailers can

recommend their products with helping of the very powerful algorithms.

To solve the recommendation problem on on-line retail, one of most powerful

model called collaborative filtering mothods which is used by Amazon and Netflix,

utilized to reach more accurate results for the recommendation engine which can company

use it on their current online site. In this project this method is utilized to obtain a solution

for the recommendation engine

1.1. About the Company

The fashion retailer whose data we use for the project aims to consolidate its

leading position within apparel and footwear specialist retailers and to become one of the

three most successful apparel and footwear specialist retailers across Europe, through new

outlet openings and increasing its total sales area through the opening of new, larger

flagship outlets within Turkey. By 2023 the company plans to reach turnover of 10 billion

USD, to reach 500 outlets in Turkey and 1,000 outlets outside of Turkey, with an

investment of 2 billion USD.

This retailer launched its online shop in March 2011, and since then sales through

its online store have been registering significant growth, as the company heavily invested

in service improvements such as payment and delivery systems. The company invested in

its online operations to supplement its store-based sales, and also to bolster its overall

sales. The company provides over 10,000 products through its online shopping channel.

The company opened its mobile online store in 2013, which also supports its sales through

non-store retailing.

This fashion retailer continued to actively use social media in 2016. The company

has 115,000 followers on Twitter and 485,000 followers on Instagram. The company is

also highly popular on Facebook, which is the most popular social media platform in the

country. Many low- and middle-income consumers use Facebook extensively, and also

constitute the main target segments for the company.

1.2. Literature Review

In the literature, there are continuously growing number of papers which use

different techniques in different places for different purposes. Whilst reviewing the

literature, we have used some papers which is to mention fundamental features of

 3

recommender systems. In this part of my research, two papers drew my attention. The first

one explains and shows the stages of developing a recommender system and demonstrates

technical sides of them which are useful for stronger understanding of the system design

(Isinkaye, Folajimi, & Ojokoh, 2015).

Secondly, we intended to read a paper and benefit from it in order to see how the

information we get from the first one can be implemented on and to notice the differences

between items-based system like first paper referred and user-based system analyzed in the

latter. In the second paper, social network recommender system design is evaluated to

present calculations for generalized models (Hemant Kumar & Jeysree, 2014). In the

paper, Kumar et al. (2014) modelled two different system and these models are deployed a

specific social network website as a medium, namely Facebook. In the study, to determine

relationships, they defined two different trust metrics, global trust metrics and local trust

metrics. By local trust metrics, researchers purposed to find out the close friends of the

person, who is the target and they are called as ego person in the paper. Why the authors

aimed to figure out the people’s closeness to the ego is that if ego’s preferences and close

relations’ are learnt then a super recommender system can be developed since the factors

which affect the ego’s preferences and habits may be much more revealed. First trust

calculation is based on the rate of ego user and friends’ of his/her activity on ego’s activity.

The other is based on friends’ activities and users’ activities ratio.

When calculations and formulations are provided, they targeted to determine best

criteria to understand achievement of study and their total set is combination of four:

“1. A: Set of all recommendations on social networks Sar: this is the set of the all

product and services which is liked by users on social networks frequently.

2. B: Set of products liked in closed group Sg1: This is the product and services

which is being liked frequently by the ego user’s friends group

3. C: Set of products liked by closest friend Scl: These are the product and services

which are recommended by ego user’s close friends.

4. D: Set of ego user’s preferences Sel: These are the products and services which

the ego user like most.”

(Hemant Kumar & Jeysree, 2014)

 4

They concluded the paper by mentioning two main problems, problem of trust

metrics calculation of a person who is not directly connected to ego user, and how to make

recommender system more efficient if there are conflicting facts.

After a general aspect and a case study are inspected, we got our attention onto

usage of recent improvements. As an example of usage of technology and predict tech

consumers’ behaviors, first of all, the paper which investigates Netflix’s contest on

developing a recommendation system to recommend users the movie they mostly like

(Hallinan & Striphas, 2016). In this paper, they analyzed the novel contest in tech culture

the conceptual and semantic work required to render algorithmic information processing

systems, as they stated. To dive deeper into recommender use with novel technologies, we

reviewed a paper named as “Deep Learning based Recommender System: A Survey and

New Perspectives” (Shuai Zhang, 2017) which aims to provide a comprehensive review of

recent research efforts on deep learning-based recommender systems towards fostering

innovations of recommender system research. In this paper, authors recognized newer

artificial neural network architectures for recommender systems.

At the end of reviewing, we studied on a paper in which mathematical formulations

and approaches evaluated. In this earlier study, authors try to improve performance of RSs

by dimensionality reduction techniques (Badrul, George, Joseph, & Riedl, 2000). They

used main techniques to reduce dimensions like Singular Value Decomposition or

Principal Component Analysis and used basic metrics to calculate success of these

methods. The paper argues that SVD is a useful technique to reduce the filtering systems.

The use of dimension reduction needed because of three limitations of systems developed

for raw data, sparsity, scalability and synonymy of data and implementation. Sparsity

occurs because of to find a relationship between two customers, at least two products are

necessary in common. Since more recent recommender systems are applied to commercial

areas which have large domain of products. In practice, most of data becomes sparse as

data grows. Therefore, to avoid such problem, dimension reduction is useful technique.

Scalability is a problem due to as data get larger as it needs more computational power and

to reduce number of data is also a cure for this problem. The meaning of synonymy in the

paper is mostly refers to product groups which have different names and same product

groups. For synonymy, they used Latent Semantic Indexing and then paper demonstrates

how dimension reduction is implemented. They have used Singular Value Decomposition

 5

to have less sparse and scaled data of customer-items matrix and then data is ordered

according to the most likely to be purchased by a specific user and N of them are selected

as best. At the rest of method’s explanations are metrics they have used.

Even though that most of SVD methods implemented on filtering systems were

worse than more traditionally methods, they claim that if it is implemented on dense data,

it can be useful and much faster than others.

As already mentioned, there is numerous works on the RSs, however we tried to get

deeper understanding of fundamental sides, some popular use cases those became efficient

and recognize novel technologies.

2. PROJECT DEFINITION

In this section, the objective and scope of the project will be discussed by

highlighting the business priorities.

2.1. Project Definition

With the popularization of e-commerce, every online retailer is aiming to keep its

customers shopping on their own channels. With increasing competition, online retailers

are having difficulty in providing customer loyalty due to both annual growth and annual

turnover targets. Especially in fast fashion retail, it can be twice as difficult to provide

customer loyalty. The most important reason why it is difficult to provide customer loyalty

in fast fashion retail is that the product variety is very high. Instead of spending most of

their time searching for products, customers often want to find the product they are looking

for quickly. For this reason, the ability of to offer the product which customers looking for

from among many products is a key point for online retailers to provide a significant return

on profit and customer loyalty.

2.2. Project Objective

The objective of the project is to develop a baseline algorithm that recommends the

product types for online users. In the meantime, understanding how the existing

recommendation algorithms works and measuring their performance is another

fundamental objective.

 6

The list of project objectives are as follows:

• Analyzing the dataset provided by an online fast fashion retailer

• Developing a User Based Collaborative Filtering algorithm with default parameters

• Developing an Item Based Collaborative Filtering algorithm with default

parameters

• Comparing the Collaborative Filtering algorithms with different distance

calculation methods.

• Measuring performance of the algorithms and selecting the best one.

The company does not use a recommendation system currently. Hence, there is not a

current success criterion to compare to our solution at the end of the project.

2.2. Project Scope

At the scope of this project, we focus on the question “What kind of product an

online retailer should recommends their customers?”. We use item-based and user-based

recommendation techniques for generating product type recommendations. Our analysis

does not consider all the categories because of the computational time factor. Because of

this situation, our dataset has been created with only a single product category to build a

baseline recommender system for the company. All the other categories remain as areas of

future research.

3. ABOUT THE DATA

At first glance, to see statistical sides and some fundamental patterns and recognize

better the data we have, we made an Exploratory Data Analysis (EDA). Since the retailer

whose data we use for the project has a tremendous rate, we needed to subsample data and

therefore we used different types of apparels which belong to same hierarchal sub-group.

In these groups data has differences according to their colors and ranges, briefly range

means specialties and features of same type of apparel like whether having lines or points

on a shirt. In this EDA, we will introduce the data, then we will demonstrate some

fundamental and statistical results and show visualizations in order to model better

algorithms and implement them.

 7

Firstly, our data consists of a sub-type of adult women clothing and number of

products a customer purchased on a year. Length of data is 769,449 and distinct number of

users is 58,663. Moreover, we had 22 different colors and 53 different ranges at all. Most

of clients purchased once among this group of products, namely the quantity who bought

once is 637,983. Basic statistical numbers of purchase quantities over one are demonstrated

below:

Mean = 3.13

Standard Deviation = 10.44

Median = 2

Max = 1089

As seen above, purchase quantities’ distribution is highly skewed left hand-side

(towards to minimum). For instance, even though the median is two, there were 16

customers who purchased over 500 products. As a result, it is needed to eliminate lots of

data by z-test confidence interval selection. Our 95% confidence interval occurred

between 0.01 and 2.74 so we extracted other values but in this interval. Figure 1 and Figure

2 shows the plot before and after eliminations.

Figure 1: Distribution Plot of Quantity Before Elimination

As graph shows, even if quantity one is eliminated, graph is still left skewed. Thus,

we have grouped data by its color and range. Here is the distribution of color-based group.

 8

Figure 2: Distribution Plot of Quantity After Elimination

Although it is not a Gaussian Normal Distribution shape plot, the x labels limits are

more reasonable shown at Figure 2. At the end, we may easily, however, call this data is

not homogenously distributed.

To make further examination over data, we grouped data with two different

features, colors and ranges respectively. We will try to show, contrary to whole set, how

distribution of data is transformed to more normal.

Figure 3: Distribution Plot of Color Based Group Data

After grouping data based on their colors’ average purchase quantity, distribution

became highly normal as shown by Figure 3.

 9

Figure 4: Violin Plot of Color Based Group Data

Violin plot is highly useful technique to show distribution by demonstrating both

density and edges of data. Here, we have violin plot of data grouped by its colors. The

median of the data is between 1.2 and 1.3 and the density of the quantity data is mostly

around the median.

Figure 5: Histogram of Top 5 Colors

In Figure 5, it is shown that some colors are sold much more than others. It is

obviously seen that dark colors are preferred more than light colors in top 5 colors.

 10

Figure 6: Histogram of Range Criteria

In Figure 6, it is shown that some range criteria are sold much more than others. It

is seen that “Kesin Katlı”, “Siluet_Standart” are preferred more than some other criteria.

For further exploration, we may look onto range-based groupings and below, we

have related plots.

Figure 7: Violin Plot of Quantity (Group by range-based)

The density distribution of range based grouped dataset is shown in Figure 7. The

median is between 1.05 and 1.1 and it is seen that dataset become much more normal when

it is grouped on range based.

 11

Figure 8: Distribution Plot of Quantity (Group by range-based)

In Figure 8 we can see more statistical and classical way of violin plot and the

distribution looks more likely as a normal distribution.

Before user-based plots, we will demonstrate box plots of processed data’s over

color-based and range-based datasets. To clarify why we could not plotted whole dataset,

we need to purport that after rescaling data, we are left over just one and two number of

purchases.

Figure 9: Box Plot of Quantity (Group by color-based)

Box plots are another useful technique to represent and visualize of numerical data

and here Figure 9 shows how quartiles distributed over data. The 1st quartile is nearly at

1.08 and median is nearly at 1.1 and the 3rd quartile is nearly at 1.11 this shows that

distribution looks like a normal distribution.

 12

Figure 10: Box Plot of Quantity (Group by range-based)

The box plot with group by range-based demonstrates that the distribution of data

more skewed to right side, on the other hand the data which is grouped by color-based

skewed to left side.

Lastly, we concentrated onto the data grouped by user-based. We used raw data and

deleted outlier after averagely grouped over user ids. Hence, some statistical visualizations

and number may differ from former ones.

Like others, grouping is made over average numbers and here some fundamental

numbers of the group:

Count: 58,662

Mean: 1.15

Maximum: 80.51

Minimum: 1

Standard Deviation: 0.56

First Three Quartiles: 1

After elimination of outliers by z-test confidential interval, these numbers become:

Count: 57,482

Mean: 1.11

Maximum: 2.32

Minimum: 1

Standard Deviation: 0.25

First Three Quartiles: 1

 13

As seen above, in user-based group, there were many outliers than expected. To be

briefer and more understandable, we will only put same graphs made for earlier examples.

Figure 11: Distribution Plot of Quantity After Elimination (Group by User-based)

In the Figure 11 we can see some concentrations on some numbers like 1.1 or 2. So

this plot is also more useful and helpful than statistic itself only.

Figure 12: Violin Plot of Quantity (Group by User-based)

In Figure 12 it is obviously seen that user behaviors not well distributed. A lot of

data group around the 1.

 14

Figure 13: The histogram of the first 6 range criteria

Table 1: Number of Criteria in dataset

We see that in Figure 13, "SIYAH_yeni_KOL_BOYU_UZUN_KOL" is the most

preferred criteria, exceeding the second most preferred

"SIYAH_yeni_KATLANABILIRLIK_OZELLIGI_KESIN_KATLI" by 19077 times.

To calculate the similarities between users and between criteria we transform the

data into a different format. The columns include the criteria and the rows include the user

at the new data format. Thus, we can calculate the similarities.

Below we can see the similarity of the first 10 users with each other by creating and

visualizing similarity matrix that uses the cosine distance:

 15

Figure 14: The similarity of the first 10 customers with each other

In the given matrix, each row and each column corresponds to a user, and each cell

corresponds to the similarity between two users. The more red the cell is, the more similar

two users are. Note that the diagonal is red, since it's comparing each user with itself.

Figure 15: The similarity of the first 10 range criteria with each other

Using with the same approach, we compute similarity between the first 10 range

criteria.Figure 14 and Figure 15 show that there are more similarities between range

criteria than users.

 We can visualize the whole matrix of quantities by building a heat map. Each row

of the matrix corresponds to a user, each column to a criterion, and each cell to its quantity.

Because of there are too many users and criteria, that may cause difficulty of read. Thus,

we focused to display some random users and criteria. We selected the most relevant users

 16

and criteria and visualize only the users who have purchased many criteria and the criteria

that have been purchased by many users.

Figure 16: Heat map of the top users and criteria

If we focus on the users who purchase at a lot of criteria, most of them have

purchase all the top criteria, and this is expected normally. Some columns of the heatmap

are darker than the others, means that these columns show the most preferable criteria. On

the other hand, darker rows show higher quantity of the criteria. Because of this,

normalization might be helpful.

 17

Figure 17: Heat map of the top users and criteria after normalization

In Figure 17 it is it is seen that users have different purchasing skills more clearly

than Figure 16.

Some recommendation models work on binary data, so it might be useful to

binarize the data, which means defining a table containing only 0’s and 1’s. The 0’s will

assume as missing values or as bad data.

 18

We define a matrix having 1 if the user preferred a criterion, and 0 if the user not.

We define a matrix having 1 if the quantity is above or equal to a definite threshold

(for example, 3), and 0 if it is not. Figure 18 and Figure 19 represents the matrix build on

this rule.

Figure 18: Heat map of the top users and criteria after binarization (without threshold)

 19

Figure 19: Heat map of the top users and criteria after binarization (Threshold=3)

There are more white cells in Figure 19, which shows that there are more criteria

with no or small quantity than those that were not purchased by customers.

 20

4. METHODOLOGHY

Recommendation engines utilize collaborative filtering. As the name suggests,

collaborative filtering is a method that uses data from other people (or “users” on the

platform) to make its prediction. Collaborative filtering can work in a few different ways.

A collaborative filtering algorithm could ‘filter’ similar purchases users made in the past to

generate and then recommend a list of items that go well together in combination. In this

example, items that do not occur together frequently enough in past purchasing data would

be dropped from the list, and the recommendation engine would make recommendation

from a final set of items that have a strong history of being purchased together.

Recommendation algorithms generally make recommendations based on two types

of collaborative filtering algorithms, user-based collaborative or item-based collaborative

filtering.

4.1. User-based collaborative filtering systems

A user-based recommendation engine recommends product types based on what

other users with similar profiles have bought and liked in the past. As an example of a

user-based recommender, imagine there is a user type who purchased several types of

products regularly, every weekend. A user-based recommender could go and look up

product types recommendations based on what other similar profiles, who purchased

regularly have liked.

4.2. Item-based collaborative filtering systems

An item-based recommender would make recommendations based on similarities

between product types; in other words, it would recommend product types that are similar

ones that a user already purchased. As an example of this, imagine you purchased a

product type like long sleeve t-shirt with color yellow and supreme fabric and bought

several times. The item-based collaborative filtering system would look into similar

product types from the same fabric type and then recommend product types based on the

preference you indicated when you bought before. In fact, an item-based collaborative

filtering system can even make recommendations based on any variety of common

elements, such as product about color and range criteria, product from the same category,

 21

etc. For this example, it is most likely that the primary suggestions will include “fabric

type” followed by other cases.

Collaborative filtering is the most successful method of recommendation systems.

Collaborative filtering algorithms consist of 2 different calculation steps before the

estimation step: similarity calculation and neighborhood selection

4.3. Similarity calculations

The first step in collaborative filtering prediction algorithm is to weight all users

with respect the similarity with the active users. (Herlocker & Konstan & Borchers &

Riedl 1999).

At this stage, similarity calculations are performed on the products that the active

user and other users evaluating the product evaluate together. To calculate the similarity,

cosine similarity, Pearson correlation coefficient, adjustable cosine similarity etc. many

techniques are used. The most successful of these is the Pearson correlation coefficient.

4.3.1. Cosine Similarity

In this similarity, each user is treated as a vector of previous evaluations. In this

case, the angle cosine value between the two vectors expresses the similarity between the

two vectors. The cosine similarity is calculated by Equation 1.

Equation 1: Equation of calculating Cosine similarity (Bulut & Milli 2014)

In Equation 1, 𝑠𝑖𝑚 (𝑎, 𝑢) represents the similarity value between active user and

user u. The I represents the set of products that the active user and u user both have

evaluated in the past. Ra represents the value of the active user gives to the product i. Ru

represents the value of the user u gives to the product i.

 In cosine similarity, the similarity between two users is between 0 and 1. If the

result is closer to 1, it means that the users are very similar to each other.

4.3.2. Pearson Correlation Similarity

 Users may perceive the evaluation scale differently. Some users prefer to use the

upper values of the scale, while others prefer lower values while others can use a relatively

 22

homogeneous usage. Cosine similarity ignores users' perception of evaluation scale. The

Pearson correlation coefficient reduces the negative effect by adding user averages. In

other words, in the Pearson correlation coefficient method, the user evaluation vector is

converted to the user preference vector and the preference is calculated. The Pearson

Correlation Coefficient is as shown in Equation 2.

Equation 2: Equation of calculating Pearson correlation similarity (Bulut & Milli 2014)

In Equation 2, 𝑠𝑖𝑚 (𝑎, 𝑢) represents the similarity value between the active user

and the 𝑢 user. The 𝐼 represents the set of products that the active user and 𝑢 user have

both evaluated in the past. Ra,i represents the value that the active user gives to product i.

Ru,i represents the value that the user u gave to product i. Ra represents the average of the

values that the user a gives to the products. Ru represents the averages of the values that the

user u gives to the products.

 Similarity between two users in the Pearson correlation coefficient similarity takes

values between -1 and 1. If the result is closer to 1, it means that the users are very similar

to each other.

4.4. Neighborhood Selection

The second stage of collaborative filtering algorithms is neighborhood selection.

The similarity values found in the previous step are used to find the closest neighbors to

the active user at this stage. In this stage, the threshold method and 𝑘 nearest neighbor

algorithms are the most used neighborhood selection methods.

In the threshold value method, users who have similarities to the active user over a

certain value are selected as neighbors of the active user and included in the calculation, in

k nearest neighbors, k users with the highest similarity to the active user are selected and

included in the calculation.

The disadvantage of this algorithm is that it is difficult to select a k value that is

appropriate to the data set in the nearest neighbors method. Choosing an appropriate k

value will affect the accuracy of the calculation. If we select k low, some of the users that

are similar to the active user will not be included in the calculation, so if we choose k high,

 23

the accuracy of the estimate will be negatively affected, since users who are not similar to

the active user will be included in the calculation.

4.5. Why We Use Collaborative Filtering?

Collaborative filtering systems have many advantages over content-based

recommenders. These advantages include:

• They can handle huge, high-dimensional datasets.

• They can suggest niche items (items popular among only a specific segment of

users).

• They can suggest items which may be from a completely different product

category all together.

• Based on the type of data you have; a collaborative filtering system can suggest

items purchased by similar users solely depending upon their ratings for these

items.

5. EXPERIMENTAL RESULTS

Collaborative filtering algorithms are based on measuring the similarity between

users or between items. For this purpose, in R-Project program, there is a package called

“recommenderlab” which contains the similarity function. The supported methods to

compute similarities are cosine, pearson, and jaccard.

5.1. Results of Item Based Collaborative Filtering

Before start to build an Item Based Collaborative Filtering (IBCF) model, the data

must be transformed to a sparse matrix which includes each criteria as a new feature by

each user. The core algorithm is based on these steps:

• The algorithm calculates how similar they are in terms of having purchased

similar quantities by similar users for each two criteria.

• To identify the k most similar items for each criterion.

• To identify the items that are most similar to the user's purchases for each user.

 24

First, we start with defining train and test datasets. We define %80 of the data as

training dataset and %20 of the dataset as test set.

When we look at the default parameters of IBCF model in package

“recommenderlab”, k is the number of items to compute the similarities among them in the

first step. After, for each item, the algorithm identifies its k most similar items and stores

the number. Method is a similarity function, which is Cosine by default, may also be

Pearson. We built the model using the default parameters of method = Cosine and k=30.

In the IBCF model, a dgCMatrix matrix created which includes similarity rates.

According these similarity rates Figure 19 and Figure 20 generated.

Figure 19: The heatmap of first 20 criteria

Figure 20: The distribution of the number of elements by column for IBCF model

Figure 20 shows that many values are equal to 0. The reason is that each row

includes only 30 (k) elements that are greater than 0. The number of greater than 0

 25

elements for each column depends on how many times the corresponding criteria was

included in the top k of another criteria. Thus, the matrix is not necessarily symmetric.

The chart of the distribution of the number of elements by column shows there are a

few criteria that are similar with many others.

It is possible to recommend criteria to the users in the test set. We define

n_recommended” parameter equal to 10 that specifies the number of criteria to recommend

to each user.

For each user, the algorithm extracts its criteria. For each criterion, it identifies all

its similar criteria, starting from the similarity matrix. Then, the algorithm ranks each

similar criterion in this way:

• Extract the quantities of each purchased associated with these criteria. The

quantity is used as a weight.

• Extract the similarity of the criteria with each purchase associated with these

criteria.

• Multiply each weight with the related similarity.

• Summation of all the rows.

For instance, the algorithm identifies the top 10 recommendations for the first user:

Table 2: Top 10 recommended criteria for the first user for IBCF model

 26

Figure 21: The histogram of the recommendations for IBCF model

Figure 21 shows that most of the criteria have been recommended only a few times,

some criterias have been recommended more than 20 times which is shown at below. The

maximum recommendation for a criteria is 125.

Table 3: Criteria recommended more than 20 times for IBCF model

As shown in Table 3, the items with

“SARI|_yeni_ELYAF_ICERIGI_VISKON_ELASTAN” criterion is the most common

recommended criterion at the model.

IBCF recommends items on the basis of the similarity matrix. It’s an eager-learning

model, that is, once it is built, it does not need to access the initial data. For each item, the

model stores the k-most similar, so the amount of information is small once the model is

built. This is an advantage in the presence of lots of data.

5.2. User Based Collaborative Filtering

 According to this approach, given a new user, firstly the similar users identified by

the algorithm. Then, the top-rated items which rated by similar users are recommended.

For each new user, algorithm fallows these steps:

• Measuring the similarity of users is to the new one.

• Identifying the most similar users. The options are:

o Selecting the top k users (k-nearest_neighbors)

o Selecting the users whose similarity is higher than a defined threshold

 27

• Rating the items rated by the most similar users. The rating is the average rating

among similar users and the approaches are:

o Average rating

o Weighted average rating, using the similarities as weights

• Pick the top-rated items.

For instance, the User Based Collaborative Filtering(UBCF) algorithm identifies

the top 10 recommendations for the first user:

Table 4: Top 10 recommended criteria for the first user at UBCF model

The default parameters of UBCF model, “nn” is the number of similar users, and

method is a similarity function, which is cosine by default. We build a recommender model

leaving the parameters to their defaults and using the training set. The default “nn”

parameter is 25 for UBCF model.

Figure 22: The histogram of the recommendations for UBCF model

Compared with the IBCF, the distribution has a long tail. On one hand, some

criteria are recommended only one time, on the other hand some criteria recommend more

than 20 times as shown in Figure 22. The maximum is more than 45 and at IBCF model it

was 125. Some criteria have been recommended more than 20 times which is shown at

below.

 28

Table 5: Criteria recommended more than 20 times at UBCF model

5.3. Comparing the Models

 To compare the different models, we will define several methods with different

parameters with the following list:

• Item-based collaborative filtering, using the Cosine as the distance function

• Item-based collaborative filtering, using the Pearson correlation as the distance

function

• User-based collaborative filtering, using the Cosine as the distance function

• User-based collaborative filtering, using the Pearson correlation as the distance

function

• Random recommendations

The following tables presents as an example the first rows of the performance

evaluation matrix for each model at different number of recommendations. We can see at

all tables when number of recommendations is getting higher precision rate is getting

lower. Despite the precision rate getting lower, True Positive Rate (TPR) and False

Positive Rate (FPR) is getting higher. This means that the model makes accurate

predictions when the number of recommendations is getting higher.

 29

Table 6: The evaluation matrix for UBCF model using pearson correlation distance (UBCF_cor)

Table 7: The evaluation matrix for UBCF model using cosine distance (UBCF_cos)

Table 8: The evaluation matrix for IBCF model using pearson correlation distance (IBCF_cor)

Table 9: The evaluation matrix for IBCF model using cosine distance (IBCF_cos)

Figure 23: The ROC Curve of each model

 30

A good way to understand the performance of a model is the area under the curve

(AUC) which means that if AUC gets higher model performance is also gets higher. As

shown in Figure 23, even without computing the certain AUC value, the chart shows that

the highest performance is at the UBCF model with pearson correlation distance. The

UBCF_cor model’s TPR and FPR is getting higher when the number of recommendations

getting higher as we mentioned before at Table 6.

With these results we can clearly say that User Based Collaborative Filtering

method with using Pearson correlation distance outperform the other algorithms based on

ROC curve and the evaluation matrixes.

6. CONCLUSION & DISCUSSION

In this project, we have developed and evaluated a collaborative filtering

recommender (CFR) systems for recommending criteria for fast fashion online retailer

users.

Recommendation systems have become an important strategic platform to

understand the patterns and get information of internet users. It also helps to alleviate the

problem of information overload which is a very common phenomenon with information

retrieval systems and enables users to have access to products and services which are not

readily available to users on the system. (Isinkaye & Folajimi & Ojokoh 2015). Web

recommendation systems help the website visitors for easy navigation of web pages,

quickly reaching their destination and to obtain relevant information (Suguna & Sharmila

2013). In this project we discussed the two traditional recommendation techniques and

strategies used to improve their performances.

Our problem is motivated by practice at an online fashion retailer in Turkey. Four

collaborative filtering-based algorithms and a random recommender are utilized to design a

recommendation engine. 80% of the data is used for training while the other 20% is to used

test the designed method. The expectation from the project was to make suggestions

(predictions) on the test data with models using the similarity matrix. After building both

user-based and item-based models with default parameters, the models re-trained to

 31

compare performances of different models with changing the distance calculation functions

and the number of recommendations parameter. Based on our experiments, User Based

Collaborative Filtering (UBCF) using Pearson correlation outperform the other 4

algorithms based on Receiver Operating Characteristic (ROC) curve.

In addition to all this information, some of the extra information about cons and

pros of recommendation systems are to be emphasized;

 User-based Collaborative Filtering offers suggestions that may be appropriate for

the item that the user has previously purchased or rated. This can be a stronger proposition

than a salesperson can do at a real store.

Collaborative Filtering uses all user data in the database to create recommendations

and it is a memory-based method. Because of there are a lot of users, to look all the

pairwise correlations between the users is not a good way and may have a huge

computational time. A good way to solve this problem would be to apply a dimensionality

reduction method, like a Principal Component Analysis.

Our future plans for this project to improve this model on different product

categories of the online retailer which we used their data. We will try each possibility with

changing level of parameters. Dimensionality reduction methods will also be applied to the

model because of the number of feature of data will get higher with using the data of

different categories.

 32

7. REFERENCES

Badrul, S., George, K., Joseph, K., & Riedl, a. J. (2000). Application of Dimensionality

Reduction in Recommender System - A Case Study. Minnesota: Department of

Computer Science and Engineering University of Minnesota.

Hallinan, B., & Striphas, T. (2016). Recommend for you: the Netflix Proze and algorithmic

culture. New Media & Society, 117-137.

Hemant Kumar, K., & Jeysree, J. (2014). Personalized Recommender System.

International Journal of Computer Applications, 1-7.

Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. O. (2015). Recommandetion Systems:

Principles, Methods and Evaluation. Egyptian Informatics Journal , 261-273.

Shuai Zhang, L. Y. (2017). Deep learning based recommender system: A survey and new

perspectives. ArXiv, 1-35.

Suguna,R. & Sharmila, D. (2013) An Efficient Web Recommendation System

using Collaborative Filtering and Pattern Discovery Algorithms. International

Journal of Computer Applications, 37-44.

Nasraoui,O. & Petenes,C. (2003) An intelligent Web recommendation engine based

on fuzzy approximate reasoning. The 12th IEEE International Conference on Fuzzy

Systems,

Suchal,J. & Navrat,P. (2010) Full text search engine as scalable k-nearest neighbor

recommendation system. IFIP International Conference on Artificial Intelligence in

Theory and Practice,1-7

Herlocker, J.L. & Konstan, J.A. & Borchers, A. & Riedl, J. (1999) An algorithmic

framework for performing collaborative filtering, 22nd Annual International ACM

SIGIR’99, Conference on Research and Development in Information Retrieval, 15-

19

Bulut, H. & Milli, M (2014) New prediction methods for collaborative filtering,

Pamukkale University Journal of Engineering Sciences, 124-125

Isinkaye, F.O. & Folajimi, Y.O & Ojokoh, B.A. (2015) Recommendation systems:

Principles, methods andevaluation, Egyptian Informatics Journal 2015-16, 261-273

 33

APPENDIX A

Python Codes for Explanatory Data Analysis

#importing the libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from statsmodels.api import stats as st

Reading the data and changing the name of columns

re=pd.read_csv(r'C:\Users\HP\Desktop\Recommendation System

Mtilkat\REdata.csv',encoding='Latin-1')

re=re.iloc[:,1:]

re.columns=['musteri','mag','bug','klasman','renk','range','miktar']

First we look the ranking by quantity which represent ‘miktar’

Applying z-score to whole data set and select without outliers.

re.nlargest(18,'miktar')

z_score_all=st.zconfint(re.miktar)

mean_all=re.miktar.mean()

re=re[(re.miktar< (mean_all + z_score_all[1])) & (re.miktar > (mean_all - z_score_all[0]))]

Looking the lengths of the customers and the colors and the range

len(re.musteri.unique())

len(re.renk.unique())

len(re.range.unique())

Basic statistics of data

re[re.miktar!=1].miktar.describe()

Plotting the data

sns.countplot(re.renk)

sns.countplot(re.range)

 34

Drawing a distribution plot of the data

sns.distplot(re.miktar,hist=False,color='Green')

plt.title('Distribution Plot')

plt.xlabel('Quantity')

plt.ylabel('Distribution Rate')

Data with group by color

color=re.groupby('renk')['miktar'].mean()

Violin plot with data grouped by color

sns.violinplot(y=color,color= 'DarkRed')

plt.title('Violin Plot of Color Based Group')

plt.ylabel('Average Quantity')

Data with group by range

ranges=re.groupby('range')['miktar'].sum()

Distribution plot for data with grouped by range

sns.distplot(ranges,hist=False)

plt.title('Distribution Plot of Ranges Based Group')

plt.xlabel('Quantity')

plt.ylabel('Distribution Rate')

'Violin Plot of Range Based Group'

sns.violinplot(y=ranges,color= 'DarkRed')

plt.title('Violin Plot of Range Based Group')

plt.ylabel('Average Quantity')

Range Based and Color Based Group's Box Plot

sns.boxplot(y=ranges,color='pink')

plt.ylabel('Average Quantity')

plt.title("Range Based Group's Box Plot")

 35

sns.boxplot(y=color,color='purple')

plt.ylabel('Average Quantity')

plt.title("Color Based Group's Box Plot")

Data with group by users

user=re.groupby('musteri')['miktar'].mean()

Distribution plot for data with grouped by users

sns.distplot(user,hist=False)

sns.boxplot(user)

Finding confidence interval and scaling the data

user=user[(user > (user.mean()- st.zconfint(user)[0])) & (user < (user.mean() +

st.zconfint(user)[1]))]

All values of user data

user.describe()

Violin and Distribution Plot of User Based Group'

sns.violinplot(y=user)

plt.title('Violin Plot of User Based Group')

plt.ylabel('Average Quantity')

sns.distplot(user,color='Black',hist=False)

plt.title('Distribution Plot of User Bssed Group')

plt.ylabel('Distributions')

plt.xlabel('Quantity')

Re defining the colors

re[re['renk']=='PEMBE'],re[re['renk']=='SÝYAH'],re[re['renk']=='HAKÝ'],re[re['renk']=='L

ACÝVERT'],re[re['renk']=='ANTRASÝT']='Pink','Black','Khaki','Dark Blue','Antracite'

 36

Finding the best seller ranges and colors

top_color=re.groupby('renk')['miktar'].sum().sort_values(ascending=False)

top_range=re.groupby('range')['miktar'].sum().sort_values(ascending=False)

Histogram of the colors and range which are best sellers

sns.countplot(re[re['renk'].isin(['Pink','Black','Khaki','Dark Blue','Antracite'])]['miktar'])

plt.xlabel('Quantity')

sns.countplot(re[re['range'].isin(top_range.index[:5])]['range'])

plt.xticks(rotation=66)

plt.xticks()

 37

APPENDIX B

R Codes for Recommendation Models

#Loading the libraries

library(recommenderlab)

library(ggplot2)

library(data.table)

library(reshape2)

library(methods)

library(recommenderlab)

library(data.table)

library(ggplot2)

library(knitr)

library(stringr)

set.seed(123)

#Read the data

data<-read.csv("C:/Users/HP/Desktop/BDA/capstone/REdata.csv")

data<-data[,-1]

data<-data.table(data)

data[Miktar<=0,Miktar:=NA]

data <- na.omit(data)

#Changing the types of Turkish charachters

data$Range<-str_replace_all(data$Range," ","_")

data$Range<-str_replace_all(data$Range,"Ü","U")

data$Range<-str_replace_all(data$Range,"Ö","O")

data$Range<-str_replace_all(data$Range,"Ş","S")

data$Range<-str_replace_all(data$Range,"Ç","C")

data$Range<-str_replace_all(data$Range,"Ğ","G")

data$Range<-str_replace_all(data$Range,"İ","I")

data$Range<-str_replace_all(data$Range,"/","_")

data$Range<-str_replace_all(data$Range,"&","_")

 38

data$Range<-str_replace_all(data$Range,"-","_")

data$AnaRenkTanim<-str_trim(data$AnaRenkTanim)

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim," ","_")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ü","U")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ö","O")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ş","S")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ç","C")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ğ","G")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"İ","I")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"/","_")

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"&","_")

#Creating the Criteria column combining with Range and Color column

data[,Criteria:=str_c(AnaRenkTanim,"_",Range,sep ="")]

data[,musteriref:=str_c("U",musteriref,sep ="")]

data[,MerchAltGrupKod:=NULL]

data[,BuyerGrupTanim:=NULL]

data[,UrunKlasmanTanim:=NULL]

data[,AnaRenkTanim:=NULL]

data[,Range:=NULL]

#Quick look at the data on column quantity

quantile(data$Miktar,probs =c(seq(0,1,0.001)))

#Create quantity matrix. Rows = userId, Columns = Criteria

quantitymat <- dcast(data[Miktar<=10,], musteriref~Criteria, value.var = "Miktar",

na.rm=FALSE)

quantitymat <- as.matrix(quantitymat[,-1]) #remove userIds

 39

#Convert quantity matrix into a recommenderlab sparse matrix

quantitymat <- as(quantitymat, "realRatingMatrix")

quantitymat

#Transforming data into real rating matrix

recommender_models <- recommenderRegistry$get_entries(dataType =

"realRatingMatrix")

names(recommender_models)

#calculating the similarity matrix for users

similarity_users <- similarity(quantitymat[1:10,],

 method = "cosine",

 which = "users")

as.matrix(similarity_users)

image(as.matrix(similarity_users), main = "User similarity")

#calculating the similarity matrix for items

similarity_items <- similarity(quantitymat[, 1:10], method =

 "cosine", which = "items")

as.matrix(similarity_items)

image(as.matrix(similarity_items), main = "Criteria similarity")

count quantity for each criteria

count_per_criteria <- colCounts(quantitymat)

table_counts <- data.frame(Criteria = names(count_per_criteria),

 views = count_per_criteria) # create dataframe of quantity

table_counts <- table_counts[order(table_counts$views,

 decreasing = TRUE),] # sort by number of quantity

 40

table_counts[1:6,]

ggplot(table_counts[1:6,], aes(x = Criteria, y = views)) +

 geom_bar(stat="identity") +

 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

 ggtitle("Number of count of the top criteria")

average_quantites <- colMeans(quantitymat)

min_n_criteria <- quantile(rowCounts(quantitymat), 0.75)

min_n_users <- quantile(colCounts(quantitymat), 0.75)

print("Minimum number of criteria per user:")

min_n_criteria

print("Minimum number of users per criteria:")

min_n_users

#Heat map with all dimensions

image(quantitymat[rowCounts(quantitymat) > min_n_criteria,

 colCounts(quantitymat) > min_n_users],

 main = "Heatmap of the top users and criteria")

#Selecting more the more important criteria and customer

quantity_criteria <- quantitymat[rowCounts(quantitymat) > 50,

 colCounts(quantitymat) > 50]

quantity_criteria

#ratingmat

#Heatmap of the top users and criterias

min_criteria <- quantile(rowCounts(quantity_criteria), 0.75)

min_users <- quantile(colCounts(quantity_criteria), 0.75)

image(quantity_criteria[rowCounts(quantity_criteria) > min_criteria,

 41

 colCounts(quantity_criteria) > min_users],

 main = "Heatmap of the top users and criterias")

#Distribution of the average quantites per user

average_quantities_per_user <- rowMeans(quantity_criteria)

qplot(average_quantities_per_user) + stat_bin(binwidth = 0.1) +

 ggtitle("Distribution of the average quantites per user")

#Normalizing data

quantities_criteria_norm <- normalize(quantity_criteria)

sum(rowMeans(quantities_criteria_norm) > 0.00001)

#Heat map with normalized data

image(quantities_criteria_norm[rowCounts(quantities_criteria_norm) > min_criteria,

 colCounts(quantities_criteria_norm) > min_users],

 main = "Heatmap of the top users and criteria")

#Heat map with binarizing data

quantities_criteria_purchased <- binarize(quantity_criteria, minRating = 1)

min_criteria_binary <- quantile(rowCounts(quantity_criteria), 0.75)

min_users_binary <- quantile(colCounts(quantity_criteria), 0.75)

image(quantities_criteria_purchased[rowCounts(quantity_criteria) > min_criteria_binary,

 colCounts(quantity_criteria) > min_users_binary],

 main = "Heatmap of the top users and criterias")

#Heat map binarized data with a threshold.

quantities_criteria_good <- binarize(quantity_criteria, minRating = 3)

image(quantities_criteria_good[rowCounts(quantity_criteria) > min_criteria_binary,

 colCounts(quantity_criteria) > min_users_binary],

 main = "Heatmap of the top users and criterias (trashold 3)")

which_train <- sample(x = c(TRUE, FALSE),

 42

 size = nrow(quantity_criteria),

 replace = TRUE,

 prob = c(0.8, 0.2))

#head(which_train)

recc_data_train <- quantity_criteria[which_train,]

recc_data_test <- quantity_criteria[!which_train,]

#Building IBCF model

recommender_models <- recommenderRegistry$get_entries(dataType

="realRatingMatrix")

recommender_models$IBCF_realRatingMatrix$parameters

recc_model <- Recommender(data = recc_data_train,

 method = "IBCF",

 parameter = list(k = 30))

recc_model

class(recc_model)

model_details <- getModel(recc_model)

#model_details$description

#model_details$k

class(model_details$sim) # this contains a similarity matrix

dim(model_details$sim)

n_items_top <- 20

image(model_details$sim[1:n_items_top, 1:n_items_top],

 main = "Heatmap of the first rows and columns")

 43

row_sums <- rowSums(model_details$sim > 0)

table(row_sums)

col_sums <- colSums(model_details$sim > 0)

qplot(col_sums) + stat_bin(binwidth = 1) + ggtitle("Distribution of the column count")

n_recommended <- 10 # the number of items to recommend to each user

recc_predicted <- predict(object = recc_model,

 newdata = recc_data_test,

 n = n_recommended)

recc_predicted

#class(recc_predicted)

#slotNames(recc_predicted)

recommendation for the first user

recc_user_1 <- recc_predicted@items[[1]]

criteria_user_1 <- recc_predicted@itemLabels[recc_user_1]

criteria_user_1

matrix with the recommendations for each user

recc_matrix <- sapply(recc_predicted@items,

 function(x){ as.character(colnames(quantity_criteria)[x]) })

#dim(recc_matrix)

number_of_items <- factor(table(unlist(recc_matrix)))

chart_title <- "Distribution of the number of items for IBCF"

qplot(number_of_items) + ggtitle(chart_title)

 44

number_of_items_sorted <- sort(number_of_items, decreasing = TRUE)

number_of_criteria_top <- head(number_of_items_sorted, n = 20)

table_top <- data.frame(number_of_criteria_top)

table_top

#Building UBCF model

recommender_models <- recommenderRegistry$get_entries(dataType

="realRatingMatrix")

recommender_models$UBCF_realRatingMatrix$parameters

recc_model <- Recommender(data = recc_data_train, method = "UBCF")

recc_model

model_details <- getModel(recc_model)

#names(model_details)

model_details$data

model_details$method

n_recommended <- 10

recc_predicted <- predict(object = recc_model,

 newdata = recc_data_test,

 n = n_recommended)

recc_predicted

recommendation for the first user

recc_user_1 <- recc_predicted@items[[1]]

criteria_user_1 <- recc_predicted@itemLabels[recc_user_1]

criteria_user_1

recc_matrix <- sapply(recc_predicted@items,

 function(x){ as.character(colnames(quantity_criteria)[x]) })

#dim(recc_matrix)

 45

recc_matrix[, 1:4]

number_of_items <- factor(table(recc_matrix))

chart_title <- "Distribution of the number of items for UBCF"

qplot(number_of_items) + ggtitle(chart_title)

number_of_items_sorted <- sort(number_of_items, decreasing = TRUE)

number_of_criterias_top <- head(number_of_items_sorted, n = 37)

table_top <- data.frame(number_of_criterias_top)

table_top

min(rowCounts(quantity_criteria))

items_to_keep <- 5 #number of items to generate recommendations

quantity_threshold <- 3 # threshold with the minimum quantity that is considered good

n_eval <- 1 #number of times to run evaluation

percentage_training <- 0.8

n_fold <- 4

eval_sets <- evaluationScheme(data = quantity_criteria,

 method = "cross-validation",

 k = n_fold,

 given = items_to_keep,

 goodRating = quantity_threshold)

#Selecting model and parameters

models_to_evaluate <- list(

 IBCF_cos = list(name = "IBCF",

 param = list(method = "cosine")),

 IBCF_cor = list(name = "IBCF",

 param = list(method = "pearson")),

 46

 UBCF_cos = list(name = "UBCF",

 param = list(method = "cosine")),

 UBCF_cor = list(name = "UBCF",

 param = list(method = "pearson")),

 random = list(name = "RANDOM", param=NULL)

)

n_recommendations <- c(1, 5, seq(10, 100, 10))

list_results <- evaluate(x = eval_sets,

 method = models_to_evaluate,

 n = n_recommendations)

sapply(list_results, class) == "evaluationResults"

avg_matrices <- lapply(list_results, avg)

head(avg_matrices$UBCF_cor[, 5:8])

head(avg_matrices$UBCF_cos[, 5:8])

head(avg_matrices$IBCF_cor[, 5:8])

head(avg_matrices$IBCF_cos[, 5:8])

plot(list_results, annotate = 1, legend = "topleft")

title("ROC curve")

