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This project studies the usage of the recommendation engines to improve the sales 

in an online fashion retailer. Fashion retailers sale variety of products throughout their 

online channels. Since the number of products can be huge compared to an in-line shop, 

customers may miss some of them while shopping online. Hence, it is crucial to display 

products that are more likely to be purchased by a customer when the customer is surfing 

on the website. Our problem is motivated by practice at an online fashion retailer in 

Turkey. Four collaborative filtering-based algorithms and a random recommender are 

utilized to design a recommendation engine. 80% of the data is used for training while the 

other 20% is to used test the designed method. Based on our experiments, User Based 

Collaborative Filtering (UBCF) using Pearson correlation outperform the other algorithms 

based on Receiver Operating Characteristic (ROC) curve.     
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ÖZET 

 

BİR ONLINE HAZIR GİYİM MODA PERAKENDECİSİNDE ÖNERİ 

SİSTEMLERİNİN KARŞILAŞTIRILMASI 

 

Mustafa TİLKAT 

 

 

Tez Danışmanı:Hande KÜÇÜKAYDIN 

 

 

EYLÜL, 2018, 54 sayfa 

 

 

 

Bu projede, bir online moda perakendecisinde satışları iyileştirmek için öneri 

sistemlerinin nasıl uygulanacağı anlatılmıştır. Moda perakendecilerinin online kanallarında 

ürün çeşitliliği oldukça fazla olabilmektedir. Ürünlerin sayısı normal bir mağazayla 

karşılaştırıldığında çok büyük olabileceğinden, müşteriler online alışveriş yaparken bazı 

modelleri gözden kaçırabilmekte veya aradıkları ürünleri kolayca bulamayabilmektedirler. 

Bu nedenle, müşteri bir web sitesinde gezinirken bir müşteri tarafından satın alınma 

olasılığı daha yüksek olan ürünleri müşteriye sunabilme kabiliyeti oldukça önemlidir. 

Problemimiz, Türkiye'de bir online moda perakendecisi dataları üzerinde uygulama 

yaparak tatmin edici sonuçlar bulmak üzerine motive edilmiştir. Bir öneri motoru 

tasarlamak için dört farklı işbirlikçi filtreleme (Collaborative filtering) tabanlı algoritma ve 

rastgele çeşitli öneriler sunabilecek arı bir baz model kullanılmaktadır. Verilerin% 80'i 

eğitim seti,% 20'si ise tasarlanan yöntemi test etmek için kullanılmıştır. Deneylerimize 

dayanarak, Pearson korelasyonunu kullanan Kullanıcı Tabanlı İşbirlikli Filtreleme (User 

Based Collaborative Filtering) modelinin, ROC eğrisine bakıldığında diğer algoritmalara 

göre daha iyi bir performans ortaya koyduğu gözlemlenmiştir. 
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1. INTRODUCTION 

Recommendation engine is becoming very popular in many domains specifically in 

online shops like Amazon, Facebook, Google and ect (Suchal and Navrat 2010).  

Recommendation systems are based on web usage mining to obtain meaningful knowledge 

about user to use this knowledge in order to respond to the user's interests (Nasraoui and 

Petenes 2003). 

Characteristics of the items that a user likes determine the items that a user may 

like, or other users’ likes and dislikes. Similarity index between users and recommend 

items are computed according to them. 

Both methods can be combined in order to create more robust recommendation 

engine. On the other hand, it is fundamental to select an algorithm that fits the problem.  

Today, as people emphasis on fashion, outfit select difficulty became a serious 

problem in daily life and as massive amounts of fashion items are available in markets and 

online, needs for efficient recommendation services has grown significantly. 

Recommender systems bolster clients in customized way for the identification of product 

based on the history of the user. In on-line retail sector, since customer can only see a 

limited number of products on the screen, it is crucial to recommend products which fit the 

customers the best. Since huge data is available for any given customer (e.g., which 

products s/he visited, how long s/he spent on each page, prices, etc), it is desirable for the 

retailers to recommend products to customers. Currently, this retailer uses rule of thumb to 

find the best solution for the recommendation engine. However, this solution can be 

improved by the state of art available in the literature.  

Because of the difficulty to dress people on-line with their lifestyles and budgets 

and to make them feel good, recommending new products is a very challenging category 

for fast fashion retailing. Every retailer aims to increase the amount of products it sells and 

increase its profits.  

 In off-line, retailers can make product recommendations through sales 

representatives (sometimes it can be a disadvantage) but in on-line there is no possibility to 

do. Even there is no possibility to use sales representatives, there is a huge amount of data 

to use on on-line retail which is a very strong advantage to use. So in on-line retail every 
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customer’s historical sales are being tracked and with using this data retailers can 

recommend their products with helping of the very powerful algorithms. 

To solve the recommendation problem on on-line retail, one of most powerful 

model called collaborative filtering mothods which is used by Amazon and Netflix, 

utilized to reach more accurate results for the recommendation engine which can company 

use it on their current online site. In this project this method is utilized to obtain a solution 

for the recommendation engine 

1.1. About the Company 

The fashion retailer whose data we use for the project aims to consolidate its 

leading position within apparel and footwear specialist retailers and to become one of the 

three most successful apparel and footwear specialist retailers across Europe, through new 

outlet openings and increasing its total sales area through the opening of new, larger 

flagship outlets within Turkey. By 2023 the company plans to reach turnover of 10 billion  

USD, to reach 500 outlets in Turkey and 1,000 outlets outside of Turkey, with an 

investment of 2 billion USD. 

This retailer launched its online shop in March 2011, and since then sales through 

its online store have been registering significant growth, as the company heavily invested 

in service improvements such as payment and delivery systems. The company invested in 

its online operations to supplement its store-based sales, and also to bolster its overall 

sales. The company provides over 10,000 products through its online shopping channel. 

The company opened its mobile online store in 2013, which also supports its sales through 

non-store retailing. 

This fashion retailer continued to actively use social media in 2016. The company 

has 115,000 followers on Twitter and 485,000 followers on Instagram. The company is 

also highly popular on Facebook, which is the most popular social media platform in the 

country. Many low- and middle-income consumers use Facebook extensively, and also 

constitute the main target segments for the company. 

1.2. Literature Review  

In the literature, there are continuously growing number of papers which use 

different techniques in different places for different purposes. Whilst reviewing the 

literature, we have used some papers which is to mention fundamental features of 
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recommender systems. In this part of my research, two papers drew my attention. The first 

one explains and shows the stages of developing a recommender system and demonstrates 

technical sides of them which are useful for stronger understanding of the system design 

(Isinkaye, Folajimi, & Ojokoh, 2015).  

Secondly, we intended to read a paper and benefit from it in order to see how the 

information we get from the first one can be implemented on and to notice the differences 

between items-based system like first paper referred and user-based system analyzed in the 

latter. In the second paper, social network recommender system design is evaluated to 

present calculations for generalized models (Hemant Kumar & Jeysree, 2014). In the 

paper, Kumar et al. (2014) modelled two different system and these models are deployed a 

specific social network website as a medium, namely Facebook. In the study, to determine 

relationships, they defined two different trust metrics, global trust metrics and local trust 

metrics. By local trust metrics, researchers purposed to find out the close friends of the 

person, who is the target and they are called as ego person in the paper. Why the authors 

aimed to figure out the people’s closeness to the ego is that if ego’s preferences and close 

relations’ are learnt then a super recommender system can be developed since the factors 

which affect the ego’s preferences and habits may be much more revealed. First trust 

calculation is based on the rate of ego user and friends’ of his/her activity on ego’s activity. 

The other is based on friends’ activities and users’ activities ratio. 

When calculations and formulations are provided, they targeted to determine best 

criteria to understand achievement of study and their total set is combination of four: 

 

“1. A: Set of all recommendations on social networks Sar: this is the set of the all 

product and services which is liked by users on social networks frequently. 

2. B: Set of products liked in closed group Sg1: This is the product and services 

which is being liked frequently by the ego user’s friends group 

3. C: Set of products liked by closest friend Scl: These are the product and services 

which are recommended by ego user’s close friends. 

4. D: Set of ego user’s preferences Sel: These are the products and services which 

the ego user like most.”  

(Hemant Kumar & Jeysree, 2014) 
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They concluded the paper by mentioning two main problems, problem of trust 

metrics calculation of a person who is not directly connected to ego user, and how to make 

recommender system more efficient if there are conflicting facts. 

After a general aspect and a case study are inspected, we got our attention onto 

usage of recent improvements. As an example of usage of technology and predict tech 

consumers’ behaviors, first of all, the paper which investigates Netflix’s contest on 

developing a recommendation system to recommend users the movie they mostly like 

(Hallinan & Striphas, 2016). In this paper, they analyzed the novel contest in tech culture 

the conceptual and semantic work required to render algorithmic information processing 

systems, as they stated. To dive deeper into recommender use with novel technologies, we 

reviewed a paper named as “Deep Learning based Recommender System: A Survey and 

New Perspectives” (Shuai Zhang, 2017) which aims to provide a comprehensive review of 

recent research efforts on deep learning-based recommender systems towards fostering 

innovations of recommender system research. In this paper, authors recognized newer 

artificial neural network architectures for recommender systems. 

At the end of reviewing, we studied on a paper in which mathematical formulations 

and approaches evaluated. In this earlier study, authors try to improve performance of RSs 

by dimensionality reduction techniques (Badrul, George, Joseph, & Riedl, 2000). They 

used main techniques to reduce dimensions like Singular Value Decomposition or 

Principal Component Analysis and used basic metrics to calculate success of these 

methods. The paper argues that SVD is a useful technique to reduce the filtering systems. 

The use of dimension reduction needed because of three limitations of systems developed 

for raw data, sparsity, scalability and synonymy of data and implementation. Sparsity 

occurs because of to find a relationship between two customers, at least two products are 

necessary in common. Since more recent recommender systems are applied to commercial 

areas which have large domain of products. In practice, most of data becomes sparse as 

data grows. Therefore, to avoid such problem, dimension reduction is useful technique. 

Scalability is a problem due to as data get larger as it needs more computational power and 

to reduce number of data is also a cure for this problem. The meaning of synonymy in the 

paper is mostly refers to product groups which have different names and same product 

groups. For synonymy, they used Latent Semantic Indexing and then paper demonstrates 

how dimension reduction is implemented. They have used Singular Value Decomposition 
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to have less sparse and scaled data of customer-items matrix and then data is ordered 

according to the most likely to be purchased by a specific user and N of them are selected 

as best. At the rest of method’s explanations are metrics they have used.  

Even though that most of SVD methods implemented on filtering systems were 

worse than more traditionally methods, they claim that if it is implemented on dense data, 

it can be useful and much faster than others.  

As already mentioned, there is numerous works on the RSs, however we tried to get 

deeper understanding of fundamental sides, some popular use cases those became efficient 

and recognize novel technologies. 

2. PROJECT DEFINITION 

In this section, the objective and scope of the project will be discussed by 

highlighting the business priorities.  

2.1. Project Definition  

With the popularization of e-commerce, every online retailer is aiming to keep its 

customers shopping on their own channels. With increasing competition, online retailers 

are having difficulty in providing customer loyalty due to both annual growth and annual 

turnover targets. Especially in fast fashion retail, it can be twice as difficult to provide 

customer loyalty. The most important reason why it is difficult to provide customer loyalty 

in fast fashion retail is that the product variety is very high. Instead of spending most of 

their time searching for products, customers often want to find the product they are looking 

for quickly. For this reason, the ability of to offer the product which customers looking for 

from among many products is a key point for online retailers to provide a significant return 

on profit and customer loyalty. 

2.2. Project Objective 

The objective of the project is to develop a baseline algorithm that recommends the 

product types for online users. In the meantime, understanding how the existing 

recommendation algorithms works and measuring their performance is another 

fundamental objective. 

 



 6 

The list of project objectives are as follows: 

• Analyzing the dataset provided by an online fast fashion retailer 

• Developing a User Based Collaborative Filtering algorithm with default parameters 

• Developing an Item Based Collaborative Filtering algorithm with default 

parameters 

• Comparing the Collaborative Filtering algorithms with different distance 

calculation methods. 

• Measuring performance of the algorithms and selecting the best one. 

 

The company does not use a recommendation system currently. Hence, there is not a 

current success criterion to compare to our solution at the end of the project. 

2.2. Project Scope 

At the scope of this project, we focus on the question “What kind of product an 

online retailer should recommends their customers?”. We use item-based and user-based 

recommendation techniques for generating product type recommendations. Our analysis 

does not consider all the categories because of the computational time factor. Because of 

this situation, our dataset has been created with only a single product category to build a 

baseline recommender system for the company. All the other categories remain as areas of 

future research.  

3. ABOUT THE DATA 

At first glance, to see statistical sides and some fundamental patterns and recognize 

better the data we have, we made an Exploratory Data Analysis (EDA). Since the retailer 

whose data we use for the project has a tremendous rate, we needed to subsample data and 

therefore we used different types of apparels which belong to same hierarchal sub-group. 

In these groups data has differences according to their colors and ranges, briefly range 

means specialties and features of same type of apparel like whether having lines or points 

on a shirt. In this EDA, we will introduce the data, then we will demonstrate some 

fundamental and statistical results and show visualizations in order to model better 

algorithms and implement them.  
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Firstly, our data consists of a sub-type of adult women clothing and number of 

products a customer purchased on a year. Length of data is 769,449 and distinct number of 

users is 58,663. Moreover, we had 22 different colors and 53 different ranges at all. Most 

of clients purchased once among this group of products, namely the quantity who bought 

once is 637,983. Basic statistical numbers of purchase quantities over one are demonstrated 

below: 

Mean = 3.13   

Standard Deviation = 10.44   

Median = 2   

Max = 1089 

As seen above, purchase quantities’ distribution is highly skewed left hand-side 

(towards to minimum). For instance, even though the median is two, there were 16 

customers who purchased over 500 products. As a result, it is needed to eliminate lots of 

data by z-test confidence interval selection.  Our 95% confidence interval occurred 

between 0.01 and 2.74 so we extracted other values but in this interval. Figure 1 and Figure 

2 shows the plot before and after eliminations. 

 

Figure 1: Distribution Plot of Quantity Before Elimination 

 

As graph shows, even if quantity one is eliminated, graph is still left skewed. Thus, 

we have grouped data by its color and range. Here is the distribution of color-based group. 
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Figure 2: Distribution Plot of Quantity After Elimination 

 

Although it is not a Gaussian Normal Distribution shape plot, the x labels limits are 

more reasonable shown at Figure 2. At the end, we may easily, however, call this data is 

not homogenously distributed. 

To make further examination over data, we grouped data with two different 

features, colors and ranges respectively. We will try to show, contrary to whole set, how 

distribution of data is transformed to more normal.   

 

Figure 3: Distribution Plot of Color Based Group Data 

After grouping data based on their colors’ average purchase quantity, distribution 

became highly normal as shown by Figure 3. 
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Figure 4: Violin Plot of Color Based Group Data 

Violin plot is highly useful technique to show distribution by demonstrating both 

density and edges of data. Here, we have violin plot of data grouped by its colors. The 

median of the data is between 1.2 and 1.3 and the density of the quantity data is mostly 

around the median. 

 

Figure 5: Histogram of Top 5 Colors 

In Figure 5, it is shown that some colors are sold much more than others. It is 

obviously seen that dark colors are preferred more than light colors in top 5 colors. 
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Figure 6: Histogram of Range Criteria 

In Figure 6, it is shown that some range criteria are sold much more than others. It 

is seen that “Kesin Katlı”, “Siluet_Standart” are preferred more than some other criteria.  

 

For further exploration, we may look onto range-based groupings and below, we 

have related plots. 

 

Figure 7: Violin Plot of Quantity (Group by range-based) 

The density distribution of range based grouped dataset is shown in Figure 7. The 

median is between 1.05 and 1.1 and it is seen that dataset become much more normal when 

it is grouped on range based.  
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Figure 8: Distribution Plot of Quantity (Group by range-based) 

In Figure 8 we can see more statistical and classical way of violin plot and the 

distribution looks more likely as a normal distribution. 

Before user-based plots, we will demonstrate box plots of processed data’s over 

color-based and range-based datasets. To clarify why we could not plotted whole dataset, 

we need to purport that after rescaling data, we are left over just one and two number of 

purchases. 

 

Figure 9: Box Plot of Quantity (Group by color-based) 

Box plots are another useful technique to represent and visualize of numerical data 

and here Figure 9 shows how quartiles distributed over data. The 1st quartile is nearly at 

1.08 and median is nearly at 1.1 and the 3rd quartile is nearly at 1.11 this shows that 

distribution looks like a normal distribution. 
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Figure 10: Box Plot of Quantity (Group by range-based) 

The box plot with group by range-based demonstrates that the distribution of data 

more skewed to right side, on the other hand the data which is grouped by color-based 

skewed to left side. 

Lastly, we concentrated onto the data grouped by user-based. We used raw data and 

deleted outlier after averagely grouped over user ids. Hence, some statistical visualizations 

and number may differ from former ones. 

Like others, grouping is made over average numbers and here some fundamental 

numbers of the group: 

Count: 58,662   

Mean: 1.15    

Maximum: 80.51   

Minimum: 1 

Standard Deviation: 0.56   

First Three Quartiles: 1 

 

After elimination of outliers by z-test confidential interval, these numbers become: 

Count: 57,482   

Mean: 1.11    

Maximum: 2.32   

Minimum: 1  

Standard Deviation: 0.25   

First Three Quartiles: 1 
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As seen above, in user-based group, there were many outliers than expected. To be 

briefer and more understandable, we will only put same graphs made for earlier examples. 

 

Figure 11: Distribution Plot of Quantity After Elimination (Group by User-based) 

 

In the Figure 11 we can see some concentrations on some numbers like 1.1 or 2. So 

this plot is also more useful and helpful than statistic itself only. 

 

Figure 12: Violin Plot of Quantity (Group by User-based) 

 

In Figure 12 it is obviously seen that user behaviors not well distributed. A lot of 

data group around the 1. 



 14 

 

Figure 13: The histogram of the first 6 range criteria  

 

 

Table 1: Number of Criteria in dataset 

 

We see that in Figure 13, "SIYAH_yeni_KOL_BOYU_UZUN_KOL" is the most 

preferred criteria, exceeding the second most preferred 

"SIYAH_yeni_KATLANABILIRLIK_OZELLIGI_KESIN_KATLI" by 19077 times. 

To calculate the similarities between users and between criteria we transform the 

data into a different format. The columns include the criteria and the rows include the user 

at the new data format. Thus, we can calculate the similarities. 

Below we can see the similarity of the first 10 users with each other by creating and 

visualizing similarity matrix that uses the cosine distance: 
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Figure 14: The similarity of the first 10 customers with each other 

In the given matrix, each row and each column corresponds to a user, and each cell 

corresponds to the similarity between two users. The more red the cell is, the more similar 

two users are. Note that the diagonal is red, since it's comparing each user with itself. 

 

Figure 15: The similarity of the first 10 range criteria with each other 

Using with the same approach, we compute similarity between the first 10 range 

criteria.Figure 14 and Figure 15 show that there are more similarities between range 

criteria than users. 

 We can visualize the whole matrix of quantities by building a heat map. Each row 

of the matrix corresponds to a user, each column to a criterion, and each cell to its quantity. 

Because of there are too many users and criteria, that may cause difficulty of read. Thus, 

we focused to display some random users and criteria. We selected the most relevant users 
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and criteria and visualize only the users who have purchased many criteria and the criteria 

that have been purchased by many users.  

 

Figure 16: Heat map of the top users and criteria 

If we focus on the users who purchase at a lot of criteria, most of them have 

purchase all the top criteria, and this is expected normally. Some columns of the heatmap 

are darker than the others, means that these columns show the most preferable criteria. On 

the other hand, darker rows show higher quantity of the criteria. Because of this, 

normalization might be helpful. 
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Figure 17: Heat map of the top users and criteria after normalization 

In Figure 17 it is it is seen that users have different purchasing skills more clearly 

than Figure 16. 

Some recommendation models work on binary data, so it might be useful to 

binarize the data, which means defining a table containing only 0’s and 1’s. The 0’s will 

assume as missing values or as bad data. 
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We define a matrix having 1 if the user preferred a criterion, and 0 if the user not. 

We define a matrix having 1 if the quantity is above or equal to a definite threshold 

(for example, 3), and 0 if it is not. Figure 18 and Figure 19 represents the matrix build on 

this rule. 

 

Figure 18: Heat map of the top users and criteria after binarization (without threshold) 
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Figure 19: Heat map of the top users and criteria after binarization (Threshold=3) 

 

There are more white cells in Figure 19, which shows that there are more criteria 

with no or small quantity than those that were not purchased by customers. 
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4. METHODOLOGHY 

Recommendation engines utilize collaborative filtering. As the name suggests, 

collaborative filtering is a method that uses data from other people (or “users” on the 

platform) to make its prediction. Collaborative filtering can work in a few different ways. 

A collaborative filtering algorithm could ‘filter’ similar purchases users made in the past to 

generate and then recommend a list of items that go well together in combination. In this 

example, items that do not occur together frequently enough in past purchasing data would 

be dropped from the list, and the recommendation engine would make recommendation 

from a final set of items that have a strong history of being purchased together. 

Recommendation algorithms generally make recommendations based on two types 

of collaborative filtering algorithms, user-based collaborative or item-based collaborative 

filtering.  

4.1. User-based collaborative filtering systems  

A user-based recommendation engine recommends product types based on what 

other users with similar profiles have bought and liked in the past. As an example of a 

user-based recommender, imagine there is a user type who purchased several types of 

products regularly, every weekend. A user-based recommender could go and look up 

product types recommendations based on what other similar profiles, who purchased 

regularly have liked. 

4.2. Item-based collaborative filtering systems  

An item-based recommender would make recommendations based on similarities 

between product types; in other words, it would recommend product types that are similar 

ones that a user already purchased. As an example of this, imagine you purchased a 

product type like long sleeve t-shirt with color yellow and supreme fabric and bought 

several times. The item-based collaborative filtering system would look into similar 

product types from the same fabric type and then recommend product types based on the 

preference you indicated when you bought before. In fact, an item-based collaborative 

filtering system can even make recommendations based on any variety of common 

elements, such as product about color and range criteria, product from the same category, 
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etc. For this example, it is most likely that the primary suggestions will include “fabric 

type” followed by other cases. 

Collaborative filtering is the most successful method of recommendation systems. 

Collaborative filtering algorithms consist of 2 different calculation steps before the 

estimation step: similarity calculation and neighborhood selection 

4.3. Similarity calculations  

The first step in collaborative filtering prediction algorithm is to weight all users 

with respect the similarity with the active users. (Herlocker & Konstan & Borchers & 

Riedl 1999). 

At this stage, similarity calculations are performed on the products that the active 

user and other users evaluating the product evaluate together. To calculate the similarity, 

cosine similarity, Pearson correlation coefficient, adjustable cosine similarity etc. many 

techniques are used. The most successful of these is the Pearson correlation coefficient. 

4.3.1. Cosine Similarity  

In this similarity, each user is treated as a vector of previous evaluations. In this 

case, the angle cosine value between the two vectors expresses the similarity between the 

two vectors. The cosine similarity is calculated by Equation 1. 

 

Equation 1: Equation of calculating Cosine similarity (Bulut & Milli 2014)  

In Equation 1, 𝑠𝑖𝑚 (𝑎, 𝑢) represents the similarity value between active user and 

user u. The I represents the set of products that the active user and u user both have 

evaluated in the past. Ra represents the value of the active user gives to the product i. Ru 

represents the value of the user u gives to the product i. 

 In cosine similarity, the similarity between two users is between 0 and 1. If the 

result is closer to 1, it means that the users are very similar to each other. 

4.3.2. Pearson Correlation Similarity  

 Users may perceive the evaluation scale differently. Some users prefer to use the 

upper values of the scale, while others prefer lower values while others can use a relatively 
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homogeneous usage. Cosine similarity ignores users' perception of evaluation scale. The 

Pearson correlation coefficient reduces the negative effect by adding user averages. In 

other words, in the Pearson correlation coefficient method, the user evaluation vector is 

converted to the user preference vector and the preference is calculated. The Pearson 

Correlation Coefficient is as shown in Equation 2. 

 

Equation 2: Equation of calculating Pearson correlation similarity (Bulut & Milli 2014)  

In Equation 2, 𝑠𝑖𝑚 (𝑎, 𝑢) represents the similarity value between the active user 

and the 𝑢 user. The 𝐼 represents the set of products that the active user and 𝑢 user have 

both evaluated in the past. Ra,i represents the value that the active user gives to product i. 

Ru,i represents the value that the user u gave to product i. Ra represents the average of the 

values that the user a gives to the products. Ru represents the averages of the values that the 

user u gives to the products. 

 Similarity between two users in the Pearson correlation coefficient similarity takes 

values between -1 and 1. If the result is closer to 1, it means that the users are very similar 

to each other. 

4.4. Neighborhood Selection  

The second stage of collaborative filtering algorithms is neighborhood selection. 

The similarity values found in the previous step are used to find the closest neighbors to 

the active user at this stage. In this stage, the threshold method and 𝑘 nearest neighbor 

algorithms are the most used neighborhood selection methods. 

In the threshold value method, users who have similarities to the active user over a 

certain value are selected as neighbors of the active user and included in the calculation, in 

k nearest neighbors, k users with the highest similarity to the active user are selected and 

included in the calculation. 

The disadvantage of this algorithm is that it is difficult to select a k value that is 

appropriate to the data set in the nearest neighbors method. Choosing an appropriate k 

value will affect the accuracy of the calculation. If we select k low, some of the users that 

are similar to the active user will not be included in the calculation, so if we choose k high, 
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the accuracy of the estimate will be negatively affected, since users who are not similar to 

the active user will be included in the calculation. 

4.5. Why We Use Collaborative Filtering? 

Collaborative filtering systems have many advantages over content-based 

recommenders. These advantages include: 

• They can handle huge, high-dimensional datasets.  

• They can suggest niche items (items popular among only a specific segment of 

users). 

• They can suggest items which may be from a completely different product 

category all together. 

• Based on the type of data you have; a collaborative filtering system can suggest 

items purchased by similar users solely depending upon their ratings for these 

items. 

5. EXPERIMENTAL RESULTS 

Collaborative filtering algorithms are based on measuring the similarity between 

users or between items. For this purpose, in R-Project program, there is a package called 

“recommenderlab” which contains the similarity function. The supported methods to 

compute similarities are cosine, pearson, and jaccard. 

 

5.1. Results of Item Based Collaborative Filtering 

Before start to build an Item Based Collaborative Filtering (IBCF) model, the data 

must be transformed to a sparse matrix which includes each criteria as a new feature by 

each user. The core algorithm is based on these steps: 

 

• The algorithm calculates how similar they are in terms of having purchased 

similar quantities by similar users for each two criteria. 

• To identify the k most similar items for each criterion. 

• To identify the items that are most similar to the user's purchases for each user. 
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First, we start with defining train and test datasets. We define %80 of the data as 

training dataset and %20 of the dataset as test set. 

When we look at the default parameters of IBCF model in package 

“recommenderlab”, k is the number of items to compute the similarities among them in the 

first step. After, for each item, the algorithm identifies its k most similar items and stores 

the number. Method is a similarity function, which is Cosine by default, may also be 

Pearson. We built the model using the default parameters of method = Cosine and k=30. 

In the IBCF model, a dgCMatrix matrix created which includes similarity rates. 

According these similarity rates Figure 19 and Figure 20 generated. 

 

Figure 19: The heatmap of first 20 criteria 

 

Figure 20: The distribution of the number of elements by column for IBCF model 

Figure 20 shows that many values are equal to 0. The reason is that each row 

includes only 30 (k) elements that are greater than 0. The number of greater than 0 
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elements for each column depends on how many times the corresponding criteria was 

included in the top k of another criteria. Thus, the matrix is not necessarily symmetric. 

The chart of the distribution of the number of elements by column shows there are a 

few criteria that are similar with many others. 

It is possible to recommend criteria to the users in the test set. We define 

n_recommended” parameter equal to 10 that specifies the number of criteria to recommend 

to each user. 

For each user, the algorithm extracts its criteria. For each criterion, it identifies all 

its similar criteria, starting from the similarity matrix. Then, the algorithm ranks each 

similar criterion in this way: 

• Extract the quantities of each purchased associated with these criteria. The 

quantity is used as a weight. 

• Extract the similarity of the criteria with each purchase associated with these 

criteria. 

• Multiply each weight with the related similarity. 

• Summation of all the rows. 

For instance, the algorithm identifies the top 10 recommendations for the first user: 

 

Table 2: Top 10 recommended criteria for the first user for IBCF model 
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Figure 21: The histogram of the recommendations for IBCF model 

Figure 21 shows that most of the criteria have been recommended only a few times, 

some criterias have been recommended more than 20 times which is shown at below. The 

maximum recommendation for a criteria is 125. 

 

Table 3: Criteria recommended more than 20 times for IBCF model 

As shown in Table 3, the items with 

“SARI|_yeni_ELYAF_ICERIGI_VISKON_ELASTAN”  criterion is the most common 

recommended criterion at the model. 

IBCF recommends items on the basis of the similarity matrix. It’s an eager-learning 

model, that is, once it is built, it does not need to access the initial data. For each item, the 

model stores the k-most similar, so the amount of information is small once the model is 

built. This is an advantage in the presence of lots of data. 

 

5.2. User Based Collaborative Filtering 

 According to this approach, given a new user, firstly the similar users identified by 

the algorithm. Then, the top-rated items which rated by similar users are recommended. 

For each new user, algorithm fallows these steps: 

• Measuring the similarity of users is to the new one.  

• Identifying the most similar users. The options are: 

o Selecting the top k users (k-nearest_neighbors) 

o Selecting the users whose similarity is higher than a defined threshold 
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• Rating the items rated by the most similar users. The rating is the average rating 

among similar users and the approaches are: 

o Average rating 

o Weighted average rating, using the similarities as weights 

• Pick the top-rated items. 

For instance, the User Based Collaborative Filtering(UBCF) algorithm identifies 

the top 10 recommendations for the first user: 

 

Table 4: Top 10 recommended criteria for the first user at UBCF model 

The default parameters of UBCF model, “nn” is the number of similar users, and 

method is a similarity function, which is cosine by default. We build a recommender model 

leaving the parameters to their defaults and using the training set. The default “nn” 

parameter is 25 for UBCF model. 

 

Figure 22: The histogram of the recommendations for UBCF model 

Compared with the IBCF, the distribution has a long tail. On one hand, some 

criteria are recommended only one time, on the other hand some criteria recommend more 

than 20 times as shown in Figure 22. The maximum is more than 45 and at IBCF model it 

was 125. Some criteria have been recommended more than 20 times which is shown at 

below. 
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Table 5: Criteria recommended more than 20 times at UBCF model 

5.3. Comparing the Models 

 To compare the different models, we will define several methods with different 

parameters with the following list: 

 

• Item-based collaborative filtering, using the Cosine as the distance function 

• Item-based collaborative filtering, using the Pearson correlation as the distance 

function 

• User-based collaborative filtering, using the Cosine as the distance function 

• User-based collaborative filtering, using the Pearson correlation as the distance 

function 

• Random recommendations  

 

The following tables presents as an example the first rows of the performance 

evaluation matrix for each model at different number of recommendations. We can see at 

all tables when number of recommendations is getting higher precision rate is getting 

lower. Despite the precision rate getting lower, True Positive Rate (TPR) and False 

Positive Rate (FPR) is getting higher. This means that the model makes accurate 

predictions when the number of recommendations is getting higher. 
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Table 6: The evaluation matrix for UBCF model using pearson correlation distance (UBCF_cor) 

 

Table 7: The evaluation matrix for UBCF model using cosine distance (UBCF_cos) 

 

 

Table 8: The evaluation matrix for IBCF model using pearson correlation distance (IBCF_cor) 

 

Table 9: The evaluation matrix for IBCF model using cosine distance (IBCF_cos) 

 

Figure 23: The ROC Curve of each model 
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A good way to understand the performance of a model is the area under the curve 

(AUC) which means that if AUC gets higher model performance is also gets higher. As 

shown in Figure 23, even without computing the certain AUC value, the chart shows that 

the highest performance is at the UBCF model with pearson correlation distance. The 

UBCF_cor model’s TPR and FPR is getting higher when the number of recommendations 

getting higher as we mentioned before at Table 6. 

With these results we can clearly say that User Based Collaborative Filtering 

method with using Pearson correlation distance outperform the other algorithms based on 

ROC curve and the evaluation matrixes. 

 

6. CONCLUSION & DISCUSSION 

In this project, we have developed and evaluated a collaborative filtering 

recommender (CFR) systems for recommending criteria for fast fashion online retailer 

users. 

Recommendation systems have become an important strategic platform to 

understand the patterns and get information of internet users. It also helps to alleviate the 

problem of information overload which is a very common phenomenon with information 

retrieval systems and enables users to have access to products and services which are not 

readily available to users on the system. (Isinkaye & Folajimi & Ojokoh 2015).  Web 

recommendation systems help the website visitors for easy navigation of web pages, 

quickly reaching their destination and to obtain relevant information (Suguna & Sharmila 

2013). In this project we discussed the two traditional recommendation techniques and 

strategies used to improve their performances.  

 

Our problem is motivated by practice at an online fashion retailer in Turkey. Four 

collaborative filtering-based algorithms and a random recommender are utilized to design a 

recommendation engine. 80% of the data is used for training while the other 20% is to used 

test the designed method. The expectation from the project was to make suggestions 

(predictions) on the test data with models using the similarity matrix. After building both 

user-based and item-based models with default parameters, the models re-trained to 
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compare performances of different models with changing the distance calculation functions 

and the number of recommendations parameter. Based on our experiments, User Based 

Collaborative Filtering (UBCF) using Pearson correlation outperform the other 4 

algorithms based on Receiver Operating Characteristic (ROC) curve.     

In addition to all this information, some of the extra information about cons and 

pros of recommendation systems are to be emphasized; 

 User-based Collaborative Filtering offers suggestions that may be appropriate for 

the item that the user has previously purchased or rated. This can be a stronger proposition 

than a salesperson can do at a real store. 

Collaborative Filtering uses all user data in the database to create recommendations 

and it is a memory-based method. Because of there are a lot of users, to look all the 

pairwise correlations between the users is not a good way and may have a huge 

computational time. A good way to solve this problem would be to apply a dimensionality 

reduction method, like a Principal Component Analysis.  

Our future plans for this project to improve this model on different product 

categories of the online retailer which we used their data. We will try each possibility with 

changing level of parameters. Dimensionality reduction methods will also be applied to the 

model  because of the number of feature of data will get higher with using the data of 

different categories. 
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APPENDIX A 

 

Python Codes for Explanatory Data Analysis 

#importing the libraries 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from statsmodels.api import stats as st 

 

# Reading the data and changing the name of columns 

re=pd.read_csv(r'C:\Users\HP\Desktop\Recommendation System 

Mtilkat\REdata.csv',encoding='Latin-1') 

re=re.iloc[:,1:] 

re.columns=['musteri','mag','bug','klasman','renk','range','miktar'] 

 

# First we look the ranking by quantity which represent ‘miktar’  

# Applying z-score to whole data set and select without outliers.  

re.nlargest(18,'miktar') 

z_score_all=st.zconfint(re.miktar) 

mean_all=re.miktar.mean() 

re=re[(re.miktar< (mean_all + z_score_all[1])) & (re.miktar > (mean_all - z_score_all[0]))] 

 

# Looking the lengths of the customers and the colors and the range 

len(re.musteri.unique()) 

len(re.renk.unique()) 

len(re.range.unique()) 

# Basic statistics of data 

re[re.miktar!=1].miktar.describe() 

# Plotting the data 

sns.countplot(re.renk) 

sns.countplot(re.range) 
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# Drawing a distribution plot of the data 

sns.distplot(re.miktar,hist=False,color='Green') 

plt.title('Distribution Plot') 

plt.xlabel('Quantity') 

plt.ylabel('Distribution Rate') 

 

# Data with group by color 

color=re.groupby('renk')['miktar'].mean() 

 

# Violin plot with data grouped by color 

sns.violinplot(y=color,color= 'DarkRed') 

plt.title('Violin Plot of Color Based Group') 

plt.ylabel('Average Quantity') 

 

# Data with group by range 

ranges=re.groupby('range')['miktar'].sum() 

 

# Distribution plot for data with grouped by range 

sns.distplot(ranges,hist=False) 

plt.title('Distribution Plot of Ranges Based Group') 

plt.xlabel('Quantity') 

plt.ylabel('Distribution Rate') 

 

# 'Violin Plot of Range Based Group' 

sns.violinplot(y=ranges,color= 'DarkRed') 

plt.title('Violin Plot of Range Based Group') 

plt.ylabel('Average Quantity') 

 

# Range Based and Color Based Group's Box Plot 

sns.boxplot(y=ranges,color='pink') 

plt.ylabel('Average Quantity') 

plt.title("Range Based Group's Box Plot") 
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sns.boxplot(y=color,color='purple') 

plt.ylabel('Average Quantity') 

plt.title("Color Based Group's Box Plot") 

 

# Data with group by users 

user=re.groupby('musteri')['miktar'].mean() 

 

# Distribution plot for data with grouped by users 

sns.distplot(user,hist=False) 

sns.boxplot(user) 

 

# Finding confidence interval and scaling the data 

user=user[(user > (user.mean()- st.zconfint(user)[0])) & ( user < (user.mean() + 

st.zconfint(user)[1]))] 

 

# All values of user data  

user.describe() 

 

# Violin and Distribution Plot of User Based Group' 

sns.violinplot(y=user) 

plt.title('Violin Plot of User Based Group') 

plt.ylabel('Average Quantity') 

 

sns.distplot(user,color='Black',hist=False) 

plt.title('Distribution Plot of User Bssed Group') 

plt.ylabel('Distributions') 

plt.xlabel('Quantity') 

 

# Re defining the colors 

re[re['renk']=='PEMBE'],re[re['renk']=='SÝYAH'],re[re['renk']=='HAKÝ'],re[re['renk']=='L

ACÝVERT'],re[re['renk']=='ANTRASÝT']='Pink','Black','Khaki','Dark Blue','Antracite' 
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# Finding the best seller ranges and colors 

top_color=re.groupby('renk')['miktar'].sum().sort_values(ascending=False) 

top_range=re.groupby('range')['miktar'].sum().sort_values(ascending=False) 

 

# Histogram of the colors and range which are best sellers 

sns.countplot(re[re['renk'].isin(['Pink','Black','Khaki','Dark Blue','Antracite'])]['miktar']) 

plt.xlabel('Quantity') 

sns.countplot(re[re['range'].isin(top_range.index[:5])]['range']) 

plt.xticks(rotation=66) 

plt.xticks() 
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APPENDIX B 

 

R Codes for Recommendation Models 

#Loading the libraries 

library(recommenderlab) 

library(ggplot2) 

library(data.table) 

library(reshape2) 

library(methods) 

library(recommenderlab) 

library(data.table) 

library(ggplot2) 

library(knitr) 

library(stringr) 

set.seed(123) 

#Read the data 

data<-read.csv("C:/Users/HP/Desktop/BDA/capstone/REdata.csv") 

data<-data[,-1] 

data<-data.table(data) 

data[Miktar<=0,Miktar:=NA] 

data <- na.omit(data) 

 

#Changing the types of Turkish charachters 

data$Range<-str_replace_all(data$Range," ","_") 

data$Range<-str_replace_all(data$Range,"Ü","U") 

data$Range<-str_replace_all(data$Range,"Ö","O") 

data$Range<-str_replace_all(data$Range,"Ş","S") 

data$Range<-str_replace_all(data$Range,"Ç","C") 

data$Range<-str_replace_all(data$Range,"Ğ","G") 

data$Range<-str_replace_all(data$Range,"İ","I") 

data$Range<-str_replace_all(data$Range,"/","_") 

data$Range<-str_replace_all(data$Range,"&","_") 
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data$Range<-str_replace_all(data$Range,"-","_") 

 

 

data$AnaRenkTanim<-str_trim(data$AnaRenkTanim) 

 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim," ","_") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ü","U") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ö","O") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ş","S") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ç","C") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"Ğ","G") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"İ","I") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"/","_") 

data$AnaRenkTanim<-str_replace_all(data$AnaRenkTanim,"&","_") 

 

#Creating the Criteria column combining with Range and Color column 

data[,Criteria:=str_c(AnaRenkTanim,"_",Range,sep ="")] 

data[,musteriref:=str_c("U",musteriref,sep ="")] 

 

data[,MerchAltGrupKod:=NULL] 

data[,BuyerGrupTanim:=NULL] 

data[,UrunKlasmanTanim:=NULL] 

data[,AnaRenkTanim:=NULL] 

data[,Range:=NULL] 

 

#Quick look at the data on column quantity 

quantile(data$Miktar,probs =c(seq(0,1,0.001))) 

 

#Create quantity matrix. Rows = userId, Columns = Criteria  

quantitymat <- dcast(data[Miktar<=10,], musteriref~Criteria, value.var = "Miktar", 

na.rm=FALSE) 

quantitymat <- as.matrix(quantitymat[,-1]) #remove userIds 
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#Convert quantity matrix into a recommenderlab sparse matrix 

quantitymat <- as(quantitymat, "realRatingMatrix") 

quantitymat 

 

#Transforming data into real rating matrix 

recommender_models <- recommenderRegistry$get_entries(dataType = 

"realRatingMatrix") 

names(recommender_models) 

 

 

#calculating the similarity matrix for users 

similarity_users <- similarity(quantitymat[1:10, ],  

                               method = "cosine",  

                               which = "users") 

as.matrix(similarity_users) 

image(as.matrix(similarity_users), main = "User similarity") 

 

#calculating the similarity matrix for items 

similarity_items <- similarity(quantitymat[, 1:10], method = 

                                 "cosine", which = "items") 

as.matrix(similarity_items) 

image(as.matrix(similarity_items), main = "Criteria similarity") 

 

# count quantity for each criteria 

count_per_criteria <- colCounts(quantitymat)  

 

table_counts <- data.frame(Criteria = names(count_per_criteria), 

                          views = count_per_criteria) # create dataframe of quantity 

table_counts <- table_counts[order(table_counts$views,  

                                 decreasing = TRUE), ] # sort by number of quantity 
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table_counts[1:6,] 

 

ggplot(table_counts[1:6, ], aes(x = Criteria, y = views)) + 

  geom_bar(stat="identity") +  

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  

  ggtitle("Number of count of the top criteria") 

 

 

average_quantites <- colMeans(quantitymat) 

 

min_n_criteria <- quantile(rowCounts(quantitymat), 0.75) 

min_n_users <- quantile(colCounts(quantitymat), 0.75) 

print("Minimum number of criteria per user:") 

min_n_criteria 

print("Minimum number of users per criteria:") 

min_n_users 

 

#Heat map with all dimensions 

image(quantitymat[rowCounts(quantitymat) > min_n_criteria, 

                colCounts(quantitymat) > min_n_users],  

      main = "Heatmap of the top users and criteria") 

 

#Selecting more the more important criteria and customer 

quantity_criteria <- quantitymat[rowCounts(quantitymat) > 50, 

                            colCounts(quantitymat) > 50] 

quantity_criteria 

#ratingmat 

 

#Heatmap of the top users and criterias 

min_criteria <- quantile(rowCounts(quantity_criteria), 0.75) 

min_users <- quantile(colCounts(quantity_criteria), 0.75) 

image(quantity_criteria[rowCounts(quantity_criteria) > min_criteria, 
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                     colCounts(quantity_criteria) > min_users],  

      main = "Heatmap of the top users and criterias") 

 

#Distribution of the average quantites per user 

average_quantities_per_user <- rowMeans(quantity_criteria) 

qplot(average_quantities_per_user) + stat_bin(binwidth = 0.1) + 

  ggtitle("Distribution of the average quantites per user") 

 

#Normalizing data 

quantities_criteria_norm <- normalize(quantity_criteria) 

sum(rowMeans(quantities_criteria_norm) > 0.00001) 

 

#Heat map with normalized data 

image(quantities_criteria_norm[rowCounts(quantities_criteria_norm) > min_criteria, 

                          colCounts(quantities_criteria_norm) > min_users],  

      main = "Heatmap of the top users and criteria") 

 

#Heat map with binarizing data 

quantities_criteria_purchased <- binarize(quantity_criteria, minRating = 1) 

min_criteria_binary <- quantile(rowCounts(quantity_criteria), 0.75) 

min_users_binary <- quantile(colCounts(quantity_criteria), 0.75) 

image(quantities_criteria_purchased[rowCounts(quantity_criteria) > min_criteria_binary, 

                             colCounts(quantity_criteria) > min_users_binary],  

      main = "Heatmap of the top users and criterias") 

 

#Heat map binarized data with a threshold. 

quantities_criteria_good <- binarize(quantity_criteria, minRating = 3) 

image(quantities_criteria_good[rowCounts(quantity_criteria) > min_criteria_binary,  

                          colCounts(quantity_criteria) > min_users_binary],  

      main = "Heatmap of the top users and criterias (trashold 3)") 

 

which_train <- sample(x = c(TRUE, FALSE),  
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                      size = nrow(quantity_criteria), 

                      replace = TRUE,  

                      prob = c(0.8, 0.2)) 

#head(which_train) 

 

recc_data_train <- quantity_criteria[which_train, ] 

recc_data_test <- quantity_criteria[!which_train, ] 

 

 

#Building IBCF model 

recommender_models <- recommenderRegistry$get_entries(dataType 

="realRatingMatrix") 

recommender_models$IBCF_realRatingMatrix$parameters 

 

recc_model <- Recommender(data = recc_data_train,  

                          method = "IBCF", 

                          parameter = list(k = 30)) 

 

recc_model 

class(recc_model) 

 

 

model_details <- getModel(recc_model) 

#model_details$description 

#model_details$k 

 

class(model_details$sim) # this contains a similarity matrix 

dim(model_details$sim) 

 

n_items_top <- 20 

image(model_details$sim[1:n_items_top, 1:n_items_top], 

      main = "Heatmap of the first rows and columns") 
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row_sums <- rowSums(model_details$sim > 0) 

table(row_sums) 

col_sums <- colSums(model_details$sim > 0) 

qplot(col_sums) + stat_bin(binwidth = 1) + ggtitle("Distribution of the column count") 

 

n_recommended <- 10 # the number of items to recommend to each user 

 

recc_predicted <- predict(object = recc_model,  

                          newdata = recc_data_test,  

                          n = n_recommended) 

recc_predicted 

 

#class(recc_predicted) 

#slotNames(recc_predicted) 

 

# recommendation for the first user 

recc_user_1 <- recc_predicted@items[[1]] 

criteria_user_1 <- recc_predicted@itemLabels[recc_user_1] 

criteria_user_1 

 

 

# matrix with the recommendations for each user 

recc_matrix <- sapply(recc_predicted@items,  

                      function(x){ as.character(colnames(quantity_criteria)[x]) })  

#dim(recc_matrix) 

 

number_of_items <- factor(table(unlist(recc_matrix))) 

 

chart_title <- "Distribution of the number of items for IBCF" 

qplot(number_of_items) + ggtitle(chart_title) 
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number_of_items_sorted <- sort(number_of_items, decreasing = TRUE) 

number_of_criteria_top <- head(number_of_items_sorted, n = 20) 

table_top <- data.frame(number_of_criteria_top) 

 

table_top 

 

#Building UBCF model 

recommender_models <- recommenderRegistry$get_entries(dataType 

="realRatingMatrix") 

recommender_models$UBCF_realRatingMatrix$parameters 

recc_model <- Recommender(data = recc_data_train, method = "UBCF") 

recc_model 

model_details <- getModel(recc_model) 

#names(model_details) 

model_details$data 

model_details$method 

 

n_recommended <- 10 

recc_predicted <- predict(object = recc_model, 

                          newdata = recc_data_test,  

                          n = n_recommended)  

recc_predicted 

 

# recommendation for the first user 

recc_user_1 <- recc_predicted@items[[1]]  

criteria_user_1 <- recc_predicted@itemLabels[recc_user_1] 

criteria_user_1 

 

 

recc_matrix <- sapply(recc_predicted@items,  

                      function(x){ as.character(colnames(quantity_criteria)[x]) }) 

#dim(recc_matrix) 
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recc_matrix[, 1:4] 

 

number_of_items <- factor(table(recc_matrix)) 

 

chart_title <- "Distribution of the number of items for UBCF" 

qplot(number_of_items) + ggtitle(chart_title) 

 

number_of_items_sorted <- sort(number_of_items, decreasing = TRUE) 

number_of_criterias_top <- head(number_of_items_sorted, n = 37) 

table_top <- data.frame(number_of_criterias_top) 

 

table_top 

 

min(rowCounts(quantity_criteria))  

items_to_keep <- 5 #number of items to generate recommendations 

quantity_threshold <- 3 # threshold with the minimum quantity that is considered good 

n_eval <- 1 #number of times to run evaluation 

percentage_training <- 0.8 

n_fold <- 4 

 

eval_sets <- evaluationScheme(data = quantity_criteria,  

                              method = "cross-validation", 

                              k = n_fold,  

                              given = items_to_keep,  

                              goodRating = quantity_threshold) 

 

#Selecting model and parameters 

models_to_evaluate <- list( 

  IBCF_cos = list(name = "IBCF",  

                  param = list(method = "cosine")), 

  IBCF_cor = list(name = "IBCF",  

                  param = list(method = "pearson")), 
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  UBCF_cos = list(name = "UBCF",  

                  param = list(method = "cosine")), 

  UBCF_cor = list(name = "UBCF",  

                  param = list(method = "pearson")), 

  random = list(name = "RANDOM", param=NULL) 

) 

 

n_recommendations <- c(1, 5, seq(10, 100, 10)) 

list_results <- evaluate(x = eval_sets,  

                         method = models_to_evaluate,  

                         n = n_recommendations) 

 

sapply(list_results, class) == "evaluationResults" 

 

avg_matrices <- lapply(list_results, avg) 

head(avg_matrices$UBCF_cor[, 5:8]) 

head(avg_matrices$UBCF_cos[, 5:8]) 

head(avg_matrices$IBCF_cor[, 5:8]) 

head(avg_matrices$IBCF_cos[, 5:8]) 

 

plot(list_results, annotate = 1, legend = "topleft")  

title("ROC curve") 

 

 




