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EXECUTIVE SUMMARY 

THE EFFECT OF EXCHANGE RATE VOLATILITY ON  EXPORT AND 
IMPORT OF TURKEY ON SECTORAL BASIS 

Yağmur Ulutürk Tekten 

Advisor: Asst. Prof. Nazlı Toraganlı Karamollaoğlu  

SEPTEMBER, 2018,   76 pages 
 

 
In this study, the effects of exchange rate volatility on export and import of Turkey is                

analysed by employing monthly trade data for the period from January 2004 to November              
2015. The study is extended to cover both sectoral and country specific export and import               
volumes.  

 
The major aim of this study is to show how fluctuations in foreign exchange rate               

change the volume of exports and imports among various sectors in Turkey. In this paper               
export and import volume equation is formulated using sectoral data in which explanatory             
variables are derived from the volatility of each country’s nominal exchange rate against the              
TRY, bilateral real effective exchange rates for each country that Turkey has foreign trade              
relationship. The dependent or target variable is the percentage change in the trade size in               
USD amount both for export and import. 

 
In this analysis, 6 different regression algorithms are utilized to explain the effect of              

exchange rate volatility on industrial activities for export and import in Turkey. The impact of               
features on the target feature is analyzed using linear, ridge, lasso, random forest, decision              
tree and gradient boosting regression algorithms. 

 
According to results of these 6 algorithms, for Turkey, the volatility of exchange rate              

has significant impact on some sectors and on broad product group categories in both export               
and import up to 26%. The sectors that most exposed to exchange rate volatilities are seen in                 
‘Giyim Eşyası’ in export and ‘Binek otomobilleri’ in import.  

 
For export, ‘Rusya Federasyonu’, and for import ‘İtalya’ is the most sensitive            

countries against exchange rate volatility in Turkey.  
 

 
KeyWords: Import, Export, Exchange Rate Volatility, Real Exchange Rate, Regression,          

Ridge, Lasso 
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ÖZET 

DÖVİZ KURUNDAKİ OYNAKLIĞIN SEKTÖREL BAZDA TÜRKİYE’NİN 

İHRACAT VE İTHALAT HACMİ ÜZERİNDEKİ ETKİSİ 

Yağmur Ulutürk Tekten 

Tez Danışmanı: Asst. Prof. Nazlı Toraganlı Karamollaoğlu  

EYLÜL, 2018, 76 sayfa 

 
Bu çalışmada döviz kurundaki oynaklığın Türkiye’nin farklı sektörlerinin ihracat ve          

ithalat hacimlerine olan etkisi incelenmiştir. Çalışmada kullanılan veri seti aylık bazda Ocak            
2004 ve Kasım 2015 tarihlerini kapsamaktadır. Döviz kurundaki oynaklığın etkisi sektör ve            
ülke bazında hem ithalat hem ihracat alanlarında analiz edilmiştir.  

 
Bu çalışmanın temel amacı son yıllarda artan döviz kurundaki dalgalanmaların          

Türkiye’de farklı sektörlerin ihracat ve ithalat hacimlerindeki değişimine olan etkisini          
anlamaya çalışmaktır. 

 
Raporda, ihracat ve ithalat hacimlerindeki değişim sektör ve ürün grupları bazında            

formülize edilmiştir. Modellemede kullanılan bağımsız değişkenler Türk Lirasına karşılık         
çeşitli ülkelerin nominal döviz kurları, Türkiye ile ticari ilişkisi olan ülkelerin para birimleri             
ve Türk Lirası arasındaki reel efektif döviz kurları baz alınarak oluşturulmuştur. Modellemede            
kullanılan bağımlı değişkenler ise ihracat ve ithalat rakamlarındaki aylara göre yüzdesel           
değişimlerdir.  

 
Bu çalışmada döviz kuru oynaklığının sektörlerin ihracat ve ithalat hacimlerindeki          

etkisi regresyon metodu ile analiz edildi. Bağımsız değişkenlerin modele katkısı linear, ridge,            
lasso, rassal orman, karar ağaçları ve gradyan artırma regresyon modelleriyle incelendi. 

 
6 farklı regresyon algoritmasının sonuçlarına göre, Türkiye’de döviz kuru         

oynaklığının bazı sektör ve geniş ürün gruplarının ihracat ve ithalat hacimlerindeki değişimi            
üzerinde 26%’ ya kadar ciddi etkileri olduğu saptanmıştır. Döviz kuru oynaklığından en çok             
etkilenen sektörün ihracatta ‘Giyim eşyası’, ithalatta ise ‘Binek otomobilleri’ olduğu          
gözlenmiştir. İhracatta ‘Rusya Federasyonu’ en fazla etkilenen ülke olurken, ithalatta ise           
‘İtalya’ döviz kurundaki oynaklıktan en çok etkilenen ülke olarak öne çıkmıştır. 

 
 
Anahtar Kelimeler: İthalat, İhracat, Döviz Kuru Oynaklığı, Reel Döviz Kuru, Regresyon,  
Ridge, Lasso  
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1. INTRODUCTION 

This study analyzes the impact of exchange rate volatility on the change of export and               

import in Turkey on sectoral basis. For Turkey, as a middle-income country, export growth              

and the composition of the goods in exports have a significant impact on the growth. In this                 

respect, export sectors and the share of these sectors in Turkey’s export play a key role in                 

terms of the growth performance of Turkey. 

The objective of this paper is to understand how the exchange rate volatility affects the               

change of exports and imports across Turkey's different sectors. The use of trade volume data               

at country level may lead to the aggregation bias problem since the effect of exchange rate                

volatility on export and import may vary across sectors in a country (Bahmani-Oskooee and              

Wang 2008). For this reason, employing the sector-level export and import volume data in              

order to deal with the aggregation bias problem is preferred to analyse the impact of exchange                

rate volatility on sector-level trade. 

1.1. About the Data 

The export and import volume based on cross-sectoral and cross-country specific data            

is obtained from Turkish Statistical Institute (TUIK) online trade database. The nominal            

exchange rates are retrieved from the Electronic Data Distribution Center of The Central Bank              

of the Republic of Turkey (TCMB EVDS). The country specific price indexes for             

computation of real exchange rates are obtained from the OECD statistics library. 

The dataset covers trade statistics over the period between January 2004 and            

November 2015. The export dataset contains more than 1.9 million rows with 10 variables,              

while import dataset has more than 1.2 million  rows with 10 variables.  

The sectoral categorization in the TUIK database named as ISIC3_CODE complies           

with classification of product group by technology intensity prepared by OECD standards.            

Therefore, ISIC3_CODE refers to this classification standards in the dataset. 

BEC column in the dataset refers to the BEC classification (Classification by Broad             

Economic Categories) that provides a means for international trade statistics to be analyzed by              

broad economic categories such as food, industrial supplies, capital equipment, consumer           

durables and consumer non-durables. Thus, BEC is a goods classification of foreign trade             
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statistics. The classification correlates the goods to broad macroeconomic categories such as            

capital goods, intermediates goods, and consumer goods. 

1.2. Project Definition 

The study analyzes the impact of exchange rate volatility on Turkey’s export and             

import for various sectors. The major aim of the study is to show variability in the changes in                  

export and import volume on sectoral basis against the volatility in the foreign exchange rates. 

1.3. Methodology 

The model is formulated as a regression problem. The contributions of explanatory            

variables are analysed using regression analysis on time series trade volume data and foreign              

exchange rates. 

There are 16 explanatory variables  in the modelling. These variables are: 
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2. LITERATURE REVIEW 

There is a wide range of academic studies that analyzes the change in export and               

import against the exchange rate volatility. Majority of the studies focuses on export income              

elasticity for different countries, while remaining ones try to model export and import demand              

function in order to define explanatory variables for export and import demand functions. 

While some studies suggest that the exchange rate volatility has a negative impact on the               

export volume, some others argue the opposite recommending that the volatility on the             

exchange rate has a positive impact on the export size. 

Berument et al. (2013) shows that income elasticity is greater than 1 for aggregate              

exports, whereas they suggest that the real exchange rate elasticity is less than 1. In many                

sectors, they found that income elasticity is greater than 1 with significant variations across              

countries. Nazlioglu (2012) states that the impact of the exchange rate volatility on Turkish              

exports differs across industries and the depreciation of the Turkish lira has positive impacts              

on Turkish industry-level exports. Demez and Ustaoglu (2012) show that export is not             

sensitive to the volatility in currency rates by applying Zivot-Andrews’ unit root test with one               

structural break and Lee-Strazicich’ s unit root test with two structural breaks methodologies. 

Demirhan (2015) shows that exchange-rate stability has a significant positive effect           

on real export volume, both in the short and the long run. In this study, The Johansen                 

multivariate cointegration method and the parsimonious error-correction model are used to           

determine long-run and short-run relationships between real export volume and its           

determinants. In addition, GARCH model is taken as a proxy for exchange-rate stability and              

generalized impulse-response functions and VAR analyses are employed to analyze the           

effects of variables on real export volume.  

Tari and Yildirim (2009) employ error correction and Johansen cointegration models           

and suggest that volatility of exchange rate influences export volume negatively in the long              

run. However, the uncertainty of exchange rate does not have an impact on export volume in                

the short run. 

In contrast to the previous studies, Altintas et al. (2011) shows that relative prices have               

a negative effect and foreign income has an insignificant effect. However, nominal exchange             

13 

 



 

rate volatility has a positive and significant effect on Turkish exports by applying multivariate              

cointegration and error correction model techniques. This study also suggests that           

disaggregated trade data which means industry-level trade data should be analyzed in order to              

make clear policy recommendations. 
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3. DESCRIPTIVE ANALYSIS ON EXPORT DATASET 

3.1. Turkey’s Export over Years (2004-2015) 

 

3.2. Turkey’s Export by Sectoral Breakdown (2004-2015 Total) 

BEC categorization 
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3.3. Turkey’s Export by Sub-Sectoral Breakdown (2004-2015 Total) 

ISIC3 categorization 

 

3.4. Turkey’s Export by Trade Partners (2004-2015 Total) 

Country level categorization 
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4. DESCRIPTIVE ANALYSIS ON IMPORT DATASET 

4.1. Turkey’s Import over Years (2004-2015) 

 

 

4.2. Turkey’s Import by Sectoral Breakdown (2004-2015 Total) 

BEC categorization 
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4.3. Turkey’s  Import by Sub-Sectoral Breakdown (2004-2015 Total) 

ISIC3 categorization 

 

4.4. Turkey’s Import by Trade Partners (2004-2015 Total) 

Country level categorization 
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5. DATA PREPROCESSING & FEATURE ENGINEERING 

5.1. Data Cleaning 

Firstly, the original dataset is divided into two parts which are import and export              

datasets. Then, all of the data preprocessing tasks are performed on both of them. Data               

cleaning process begins with the detecting duplicate codes for same countries. The countries             

with the same country codes are detected and replaced with suitable values. However,             

duplicate country codes problem does not exist in the export dataset. Afterwards the rows              

which all values have NAN are dropped both for import and export datasets. Import data               

frames for different time ranges are merged. 

We select observations from 2004 and afterwards, since export dataset lacked           

“MONTH” column before 2004. Another reason for such a decision is that before European              

Union, there were lots of different currencies and exchange rate combinations which would             

increase complexity in the model. 

In the dataset, there are countries using more than one currency pair in export and               

import in their trade relationships. In order to reduce currency complexity, for each country              

only one currency pair is selected based on conventional nominal exchange rates. We also              

need to sum trade volumes for such cases, otherwise we would lose information.  

Then each country code and each currency code are matched and merged on the              

import and export datasets. There are 34 countries in the datasets but not 34 unique currencies                

since some countries use common currencies such as those in European Union use EUR in               

international trade.  

There are some missing values in Currency Names. These cases are actually had “US              

Dollar Code” (400) in Currency Code cells. Thus, Currency Names of such cases are filled               

with “US Dollar”.  
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Mapping data frames for ISIC3, BEC, Currency and Country codes and names are             

created. Rows which do not have information for currency or any missing values are dropped.               

Lastly, data types of pandas data frame columns are corrected for any future error. 
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After cleaning duplicate and missing values for currencies and countries, monthly           

consumer price indices (CPI) are added to the datasets. Having imported Turkey’s and other              

countries’ monthly CPI values, only those countries which we are able to import monthly              

CPI values are kept for the rest of the study. The reason is CPI values are necessary to                  

calculate bilateral real exchange rates between Turkey and other countries. The countries            

which do not have monthly CPI values are dropped from both datasets. A mapping data frame                

is generated for matching countries’ names in English, Turkish and related ‘COUNTRY            

CODE’. 

5.2. Feature Extraction  

After merging CPI values with the export and import datasets, nominal exchange rates             

for those different countries against TRY are added to the datasets. There are 23 currency               

pairs against TRY. The monthly series of those 23 nominal exchange rates between             

2004-2015 years are imported from the website called ‘Investing.com’. There are Close,            

Open, High and Low prices for nominal exchange rates on monthly basis. When nominal              

exchange rates are merged with the export and import datasets, monthly real exchange rates              

between Turkey and other countries are calculated and a new feature called ‘REXR’ is added               

to the datasets. The real exchange rates between two countries are calculated as below: 

 

Real Exchange Rate = Nominal Exchange Rate * CPI (domestic) / CPI (foreign) 

 

The other feature named ‘CLOSE-OPEN’ which refers to the price range (close price             

minus open price) within a month is created and added to the datasets. The third one called                 

‘HIGH-LOW’ stands for the difference between the HIGH and LOW price that is observed              

within a month.  

After including those currency related features, the datasets which have already been            

in the form of Python data frame are turned into pandas time-series format using ‘to_period’               

method. This transformation was necessary in order to calculate percentage changes and            

standard deviations of changes in the exchange rates, since the data frames should be in               

time-series format. Otherwise, new features would not be generated from existing ones like             

High, Low, Close, Open prices. 
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Pandas ‘to_period’ method was useful in this case since one can easily convert pandas              

data frame from DatetimeIndex to PeriodIndex with desired frequency. In our case all datasets              

are in monthly frequency in DateTimeIndex format and they are transformed into monthly             

periods using ’to_period’ method.  

An example script about how ‘to_period’ method is utilized in this case:  

 

 

 

It was easy to calculate percentage changes and also standard deviations in the             

nominal exchange rates’ percentage changes, when we have a data frame in pandas             

time-series format. For the features REXR, CLOSE-OPEN, HIGH-LOW and CLOSE          

6-month period standard deviations of percentage changes are calculated, while for the REXR             

and CLOSE percentage changes for 1, 3 and 6 month periods are calculated separately using               

pandas' stack/unstack, pct_change and rolling methods. These new features are included to            

the export and import data frames. 

After including calculated features such as REXR_STD, REXR_PCT_1 or         

CLOSE_STD, some rows are filled with NAN due to lack of values in the previous periods.                

Those rows and features on 13 columns with NAN values are dropped before running              

regression models. 

At this step, feature list is extended with 17 new features as seen in the table below: 
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5.3. Label Encoding 

Before executing regression model, categorical variables ISIC3_CODE, BEC_CODE,        

COUNTRY_CODE should be turned into numerical format. Those categorical variables are           

transformed into numerical format using label encoding method. Label encoding simply           

converts each value in the column to a number that stands for the index of the column. For                  

label encoding, ‘cat_codes’ function is applied to those three features. At the final stage, the               

types of features are turned into numerical format (float or integer) that are ready to be used in                  

the regression analysis. 
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5.4. Outliers 

When we look at the distribution of these new features, we can easily infer that there                

are outlier values that need to be manipulated. Excluding those outlier values from the              

datasets that will be used in the modelling was necessary. For this reason threshold values are                

defined for each feature according to their histograms and those thresholds are used as              

parameters in the function below: 

 

 

 

5.5. Feature Scaling 

The feature named ‘YEAR’ refers to year in number and it is scaled just by deducting                

2003 from each year value since there are 12 years in the datasets that begin with 2004 and                  

end with 2015. Through this simple scaling method, each year is represented as 1 to 12                

instead of 2004 to 2015. 
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The features ‘HIGH-LOW_STD’ and ‘CLOSE-OPEN_STD’ are also needed to be          

scaled. These two features are scaled with MinMaxScaler. After attempting several feature            

scaling methods (MinMaxScaler, StandardScaler, MaxAbsScaler, RobustScaler, Normalizer)       

to those two features, the best scaler method is seen as MinMaxScaler. 

Before starting model building, we save pickle files of import and export features and              

targets, in order to use them in Azure Machine Learning Studio for BDA 564 Final Project. 
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6. MODEL BUILDING 

In this section, export and import equation models, regression analysis output and            

model parameters will be shown. Cross country level and cross-sectoral level coefficients and             

relationships among the model variables will be analyzed in this section. 

6.1. Dependent Variable 

For the regression model, three different target features or independent variables are created.             

These are: 

 

For the export and import datasets, instead of absolute values of USD trade amount,              

percentage changes in 1, 3 and 6 month-periods are set as target features. Each regression               

model tried to explain one of these 3 targets each time. In other words, we do not try to                   

predict DOLLAR_AMOUNT_PCT_1, DOLLAR_AMOUNT_PCT_3,   

DOLLAR_AMOUNT_PCT_6 at the same time. 

6.2. Independent Variables 

In the final datasets both for import and export, there are 16 explanatory features that               

are used in the regression models. All of these features are used in the model. 16 features in                  

the model are listed in the table below:  

 

26 

 



 

6.3. Modelling and Parameters 

In this study, 6 different regression algorithms are used for both export and import              

datasets. These algorithms are: 

 

I. Linear Regression 

II. Ridge Regression 

III. Lasso Regression 

IV. Random Forest Regression 

V. Decision Tree Regression 

VI. Gradient Boosting Regression 

 

We define a regression function which takes “features”, “target”, “explanation”,          

“trade_type” and “algo” as input parameters, and generates results for given parameters. The             

reason behind defining such a function is that we will have multiple regression analysis for               

each trade type (import or export), each country or sector, each target or each regression               

algorithm (ex: Linear Regression or an ensemble method). We call regression function each             

time we have a different combination of input parameters. Combining all these different             

regression models, we generate more than 1.500 results. The results are saved into             

“results_df” data frame and stored into a CSV file, so we can easily access the results for                 

further analysis. The import and export datasets have more than 160.000 observations with 16              

features. model.py script takes 5 minutes in order to execute all the code. 

Since there are more than 30 countries and a great deal amount of sectors (ISIC3) and                

broad product group classifications (BEC), there should be a lot of distinct regression models              

that take into account those sector and product group breakdowns. This was a tricky part for                

the analysis since when we split the dataset into breakdowns, some sector or product group               

breakdowns have even less than 10 observations. Having insufficient number of observations            

for regression models would have produced biased and erroneous results. For this reason, we              

add minimum sample size parameter into our regression function. Minimum sample size is set              

as 100 (min_samples = 100) in the regression function so that when a dataset for different                

categorical feature breakdown has less than 100 samples, the regression output will return 0              
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for all performance metrics. Otherwise, the given regression output will be generated and             

printed.  

Apart from minimum sample size, this new function takes into account other tuning             

parameters as well. Those parameters are explained as below:  

 

● The test-train split:  Test size fraction is set to be 0.30. for both import and export. 

● Random state parameter: It is given 7 for all of the models.  

● Ridge Regression: Alpha parameter is set to 1.0. 

● Random Forest Regression: Alpha is given 0.1. 

 

After executing all regressions, we end up with a great deal amount of regression              

outputs that makes difficult to understand and interpret the results. The regression function             

outputs are stored so that we can see all the results for each combination. The results, output                 

metrics and regression coefficients are shown in a data frame in human readable and              

comprehensible format. The final data frame for results contains the 28 columns in the table               

below: 

 

When all regression functions are executed, one of the ISIC3 code ‘33’ and BEC code               

‘17’ in import dataset outperformed other models by R2 scores with higher than 40%. These               

R2 scores were extremely higher than the other regression results for other country, BEC and               
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ISIC3 breakdowns. The sector with ISIC3_33 and the BEC_17 refer to ‘Gizli Veri’, i.e,              

confidential information. These two codes were excluded from the final regression results. 

In the result data frame, breakdown names are added instead of codes for readability. 
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7. RESULTS & CONCLUDING REMARKS 

In order to empirically analyze the impact of exchange rate volatility on industry-level             

and country-level trade, the regressions are executed on the import and export data for              

Turkey. Since the main goal of this study is to understand the effect of exchange rate volatility                 

on trade volume, explanatory analysis is conducted for import and export datasets. Various             

regression algorithms are utilized to explain whether or not the exchange rate volatility has              

significant impact on the Turkey’s export and import volume for different industrial activities.  

6 different regression algorithms are applied and coefficients are stored for more than             

1500 different regression functions in such a way that the contributions of each feature in each                

regression function can easily be interpreted.  

When we look at the results table, we can easily read the regression outputs and make                

comments on the breakdowns. However, as a conclusion of the best five models for export               

and import, respectively, will be summarized below. The 6 regression models’ performance            

will also be analyzed at the end of this section. 

 

Regression Results Table: 
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EXPORT 

● The first best three R2 test score belongs to the models based on ISIC3 = ‘Giyim                

Eşyası’ breakdown in export. 

● The first best two model has the target feature ‘Dollar_Amount_PCT_6’.  

● When we compare the best two models, we see that Random Forest regressor in              

‘Giyim Eşyası’ with R2 score on test data 0.264 performs better than Gradient             

Boosting for export volume. 

● The third best model has the target feature ‘Dollar_Amount_PCT_3’. In this model,            

changes in the export volume of the ‘Giyim Eşyası’ against the exchange rate             

volatility is best explained with Random Forest regressor with 0.247 R2 score on test              

data. 

● The successive best model in export is the one in which the target feature is again                

‘Dollar_Amount_PCT_6’, but the breakdown type is BEC. 

● When regression is run on BEC = ‘Esası yiyecek ve içecek olan işlenmemiş tüketim              

malları’ for export dataset, we can see that Gradient Boosting regressor best explains             

the 6 month percentage change in the dollar amount of export volume in ‘Esası              

yiyecek ve içecek olan işlenmemiş tüketim malları’ product category against the           

volatility in exchange rates.  

● The other best performance model in export is seen when the target feature is again               

‘Dollar_Amount_PCT_6’ and breakdown type is COUNTRY. 

● For ‘Rusya Federasyonu’, Gradient Boosting regressor best explains the 6 month           

percentage change in the dollar amount of export volume against the volatility in             

exchange rates with R2 test score 0.202 

 

IMPORT: 

● The best performance model for import is seen when the target feature is             

‘Dollar_Amount_PCT_1’ and the breakdown type is BEC. 

● Gradient Boosting regressor best explains the changes in the 1 month percentage            

change in the import volume in BEC = ‘Binek otomobilleri’ with R2 score on test data                

0.217 

31 

 



 

● The second best performance model in import is again attained with Gradient            

Boosting when BEC is again ‘Binek otomobilleri’, but in this case the target feature is  

‘Dollar_Amount_PCT_3’  

● The third best model in import is seen with Gradient Boosting regressor when             

breakdown type is ISIC3 = ‘Motorlu kara taşıtı ve römorklar’. Gradient Boosting            

regressor performs better when the target feature is again ‘Dollar_Amount_PCT_3’          

and ISIC3 breakdown is set to be ‘Motorlu kara taşıtı ve römorklar’. At this model, R2                

score on test data is 0.206. 

● The fourth best model in import is seen when breakdown is set on COUNTRY. 

● The Gradient Boosting regressor seems the best when we try to analyze the impact of               

exchange rate volatility on 6 month percentage change in the dollar amount of imports              

from Italy with R2 score on test set is 0.199. 

● The fifth best model in import is obtained when breakdown is set on ISIC3. Again,               

Gradient Boosting regressor performs better for import. 

● In the fifth one, Gradient Boosting regressor best explains the effect of exchange rate              

volatility for 3 month percentage change in the dollar amount of import volume for              

ISIC3= ‘Başka yerde sınıflandırılmamış makine ve teçhizat’ 

 

Average Performance Metrics of Regression Algorithms 

When we summarize the average results for the 6 regression models for import and              

export, we see that Gradient Boosting algorithm performs better than the rest of them on               

average for both import and export as seen in the table below. 

In contrast, Decision Tree regressor seems to perform the worst among others since             

decision tree algorithms have a tendency to overfitting. The figures in the table below show us                

that Decision Tree has the highest R2 score on train with zero error for both import and                 

export. Outperformance of decision tree verifies the overfitting problem in this case. 
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Average R2 Test Scores of Regression Algorithms on The Three Target Features 

When average R2 test scores are analyzed for the three different target features we see 

that; 

For export:  

● Linear Regression performs better for Dollar_Amount_PCT_3 with average R2 test 

score (0.026)  

● Gradient Boosting has the highest average R2 test score (0.101) for 

Dollar_Amount_PCT_6 

● Random Forest has also the highest average R2 test score (0.07) for 

Dollar_Amount_PCT_6 

For import:  

● Linear Regression performs better for Dollar_Amount_PCT_6 with average R2 test 

score (0.024) 

● Gradient Boosting has highest R2 test score (0.102) on average for 

Dollar_Amount_PCT_6 
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● Random Forest has the highest R2 test score (0.060) on average for 

Dollar_Amount_PCT_6 

 

 

 

Average R2 Test Scores for Export on BEC Breakdown 

When the analysis is splitted on sectoral breakdown and product group, we see that  

Gradient Boosting algorithm outperforms the others in terms of average R2 test score which is               

greater than 5% for all of the three target feature for export. 

Gradient Boosting algorithm explains on average 14% of the change in the export             

volume in BEC categories ‘Dayanıklı tüketim malları’ and ‘Esası yiyecek ve içecek olan             

işlenmemiş tüketim malları’ when all of the target features are taken into account.  

Random Forest also performs similar to Gradient Boosting in such a way that it              

explains 13% of the change in the export volume in BEC category called ‘Esası yiyecek ve                

içecek olan işlenmemiş tüketim malları’ when all of the target features are taken into account.  
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Average R2 Test Score for Export on ISIC3 Breakdown 

When we analyze the outputs in terms of ISIC3 breakdown, we see that the highest R2                

test score is again obtained with Gradient Boosting. It explains 15% of the variance in the                

export volume of ‘Motorlu kara taşıtı ve römorklar’ when all of the target features are               

considered. 

Random Forest algorithm seems to explain 13% of that in the export volume of              

‘Tekstil ürünleri’ when regression function is run for all of the target features. 
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Average R2 Test Score for Export on COUNTRY Breakdown 

 

When the regression function is executed on COUNTRY breakdown, we see that            

Gradient Boosting explains more than 10% of the variance in the export volume of countries               

ABD, Almanya, Avusturya, Avustralya, İngiltere, İsveç, İtalya, Kanada, Polonya, Rusya          

Federasyonu, Suudi Arabistan and Yunanistan. On the other hand, Random Forest performs            

well on Rusya Federasyonu and Yunanistan with 15% and 11% R2 test scores, respectively. 

 

Average R2 Test Scores for Import on BEC Breakdown 

When the regression function is run on BEC breakdown for import, it is seen              

that average R2 test scores are higher with Gradient Boosting. With gradient boosting on BEC               

breakdown on import data, average R2 test score is 17% for ‘Binek otomobilleri’ and ‘Sanayi               
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ile ilgili taşımacılık araç ve gereçleri’. R2 test score is 14% for ‘Taşımacılık araçlarının aksam               

ve parçaları’.  

 

Average R2 Test Scores for Import on ISIC3 Breakdown 

The highest R2 test scores are observed for ‘Motorlu kara taşıtı ve römorklar’,             

‘Metalik olmayan diğer mineral ürünler’, ‘Metal eşya sanayi (makine ve teçhizatı hariç)’,            

‘Mobilya ve başka yerde sınıflandırılmamış diğer ürünler’, ‘Giyim eşyası’ with 17%, 15%,            

13%, 13%, 13%, respectively, when the regression function is executed on ISIC3 breakdown             

on import. 
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Average R2 Test Scores for Import on COUNTRY Breakdown 

The Gradient Boosting algorithm outperforms against all others when the regression           

function is executed on country breakdown for import. When all of the target features are               

considered, 15% of the change in the import from ABD and Fransa, 16% of that from İtalya,                 

14% of that from Japonya against exchange rate volatility is explained by the underlying              

model. 
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Linear Regression Results 

When we consider only Linear Regression results, we see that coefficients of 16             

features do not differ significantly from each other both for export and import. 

In order to take a general picture on linear regression results, firstly, average of              

coefficients are shown in a table that takes into account all regression results for 3 different                

target features, and secondly, maximum value of coefficients are displayed on a seperate             

table. 

As you can see in the maximum coefficients table below, the most exploratory             

variables for import and export are highlighted with red. REXR_PCT_1, REXR_PCT_3,           
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REXR_PCT_6, CLOSE_STD, REXR_STD, CLOSE_PCT_1, CLOSE_PCT_3 features are       

common for export and import. 

   

As seen in the average coefficients table below, the average coefficients are stronger             

for REXR_PCT_1, REXR_PCT_3, REXR_PCT_6, CLOSE_STD, REXR_STD,      

CLOSE_PCT_1, CLOSE_PCT_3 and CLOSE_PCT_6 features both for import and export. 
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8. FUTURE DEVELOPMENTS 

For those three categorical features COUNTRY, ISIC3 and BEC, label encoding           

method is applied to transform them into numerical format. However, instead of assigning             

integer values to these categorical features, the average values for the underlying year can be               

used so that they can be turned into continuous values and get different values for each year.  

The export and import datasets composed of monthly series from 2004 to 2015. One              

drawback in this analysis is the lack of seasonality analysis. The seasonal components can be               

eliminated for further studies if time range of datasets were higher. As mentioned above,              

some of the sample sizes for country and industry level breakdowns are too small to run a                 

healthy regression model. Thus, as the size of the sample and the number of years increases,                

seasonality analysis can be conducted on those country-level and industry-level breakdowns. 

The analysis in this study are made with month ranges. Regression analysis can be              

extended further for yearly or quarterly analysis as well. 

Econometric tests such as unit root or autocorrelation tests can also be performed             

before executing regression models. In statistics, a “unit root test” tests whether a time series               

feature is non-stationary and possesses a unit root. A unit root is a stochastic trend in a time                  

series data. If a time series data has a unit root, it shows a systematic pattern that is                  

unpredictable. Thus, a stationary time series data has mean, variance, autocorrelation in so             

that they are all constant over time. On the other side, autocorrelation in time series data refers                 

to the situation which the errors may not be independent; i.e, errors are autocorrelated. This               

means that each error is correlated with the error immediately before it. 

In this study, regression models are executed separately on different country-level or            

sector-level breakdowns. However, regression models can be applied on combinations of           

breakdowns such as (Country = Germany and ISIC3 = 12) or (Country = Italy and BEC = 2)                  

etc. The outputs for these regression models may be far more explanatory than the existing               

ones. 
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APPENDIX A 

Python Codes for Data Preprocessing  

Python codes generated by using iPython Notebook can be found in the attachment.  

File Name: preprocess_monthly.ipynb, Descriptive_Analysis.html 

File Type: iPython  Notebook, ipython notebook generated html file 
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APPENDIX B 

Python Codes For the Entire Study 

 

File Name: preprocess_monthly.py 

File Type: Python Script File 

 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Sat Jun 30 18:43:50 2018 
 
@author: yagmuruluturktekten 
""" 
 
# Capstone Project 
# Yagmur Uluturk Tekten 
 
# Import Libraries 
import pandas as pd 
import numpy as np 
import os 
 
# Change path 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
 
# Read true currency map 
path = os.path.expanduser("~/Documents/capstone/datasets/currency_map") 
os.chdir(path) 
t_currency_map = pd.read_csv('t_currency_map.csv', sep=',', header=0, encoding='utf-8') 
 
#########################################################################
############################# 
#####           IMPORT DATASET PREPROCESSING 
#########################################################################
############################# 
 
# Read Import datasets 
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path = os.path.expanduser("~/Documents/capstone/datasets/imports") 
os.chdir(path) 
import_19892003 = pd.read_csv('1989_2003_import.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
import_20042009 = pd.read_csv('2004_2009_import.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
import_20102013 = pd.read_csv('2010_2013_import.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
import_20142015 = pd.read_csv('2014_2015_import.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
import_dfs = [import_19892003, import_20042009, import_20102013, import_20142015] 
 
# Different dataset files may contain different string values for same code. We should check 
it. 
isic3 = pd.DataFrame() 
bec = pd.DataFrame() 
currency = pd.DataFrame() 
country = pd.DataFrame() 
 
for dataset in import_dfs: 
    isic3 = isic3.append(dataset[['ISIC3_2', 'ISIC3_ADI']].drop_duplicates(subset=None, 
keep='first', inplace=False), ignore_index=False, verify_integrity=False) 
    bec = bec.append(dataset[['BEC', 'BEC_ADI']].drop_duplicates(subset=None, 
keep='first', inplace=False), ignore_index=False, verify_integrity=False) 
    currency = currency.append(dataset[['DOVIZ_KODU', 
'DOVIZ_ADI']].drop_duplicates(subset=None, keep='first', inplace=False), 
ignore_index=False, verify_integrity=False) 
    country = country.append(dataset[['ULKE', 
'ULKE_ADI']].drop_duplicates(subset=None, keep='first', inplace=False), 
ignore_index=False, verify_integrity=False) 
del dataset 
 
isic3 = isic3.drop_duplicates(subset=None, keep='first', 
inplace=False)['ISIC3_2'].value_counts().sort_values(ascending=False) 
bec = bec.drop_duplicates(subset=None, keep='first', 
inplace=False)['BEC'].value_counts().sort_values(ascending=False) 
currency = currency.drop_duplicates(subset=None, keep='first', 
inplace=False)['DOVIZ_KODU'].value_counts().sort_values(ascending=False) 
country = country.drop_duplicates(subset=None, keep='first', 
inplace=False)['ULKE'].value_counts().sort_values(ascending=False) 
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# Correct Kanarya Adalari & Ceuta 
print(import_19892003.iloc[6194]['ULKE_ADI']) # Kanarya Adalari 
import_19892003.loc[import_19892003['ULKE_ADI'] == 'Kanarya Adaları', 'ULKE_ADI'] 
= 'Ceuta' 
print(import_19892003.iloc[6194]['ULKE_ADI']) # Ceuta 
del bec, country, currency, isic3 
 
# Merge Import Dataframes 
dfM = pd.concat(import_dfs, ignore_index=True) 
del import_19892003, import_20042009, import_20102013, import_20142015, import_dfs 
 
# Correct multiple codes for same country problem 
# Find countries with duplicate codes 
corrector = dfM.groupby(['ULKE_ADI', 'ULKE'])['DOLAR'].count().reset_index() 
corrector.drop(['DOLAR'], axis=1, inplace=True) 
corrector_keys = corrector[corrector.duplicated(['ULKE_ADI'], 
keep='first')]['ULKE'].tolist() 
corrector_vals = corrector[corrector.duplicated(['ULKE_ADI'], 
keep='last')]['ULKE'].tolist() 
corrector = dict(zip(corrector_keys, corrector_vals)) 
dfM.replace({'ULKE':corrector}, inplace=True) 
del corrector, corrector_keys, corrector_vals 
 
# Clean Import Dataframe dfM 
 
# Drop first column specifying rows are about Export data 
dfM.drop('IHRITH', 1, inplace=True, errors='raise') 
 
# Drop fully NAN rows and columns 
dfM.dropna(axis=0, how='all', inplace=True) 
dfM.dropna(axis=1, how='all', inplace=True) 
 
# Rename columns 
dfM.columns = ['MONTH', 'BEC_CODE', 'BEC_NAME', 'DOLLAR_AMOUNT', 
'CURRENCY_NAME', 'CURRENCY_CODE', 'ISIC3_CODE', 'ISIC3_NAME', 
'COUNTRY_CODE', 'COUNTRY_NAME', 'YEAR'] 
 
# Check NAN values 
dfM.isnull().any() 
""" 
Returns: 
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MONTH            False 
BEC_CODE         False 
BEC_NAME         False 
DOLLAR_AMOUNT    False 
CURRENCY_NAME     True 
CURRENCY_CODE     True 
ISIC3_CODE       False 
ISIC3_NAME       False 
COUNTRY_CODE     False 
COUNTRY_NAME     False 
YEAR             False 
dtype: bool 
 
Only CURRENCY_NAME and CURRENCY_CODE columns contain NAN values. 
""" 
 
# Fill Currency Codes & Names 
print(dfM['CURRENCY_CODE'].isnull().sum()) # 10 rows 
print(dfM['CURRENCY_NAME'].isnull().sum()) # 56564 rows 
dfM.loc[dfM['CURRENCY_NAME'].isnull(), 'CURRENCY_CODE'] = 400 # Fill NAN 
currency names and codes with US Dollar  
dfM['CURRENCY_NAME'].fillna(value='ABD Doları', inplace=True) # Fill NAN 
currency names and codes with US Dollar  
print(dfM['CURRENCY_CODE'].isnull().sum()) # 0 rows 
print(dfM['CURRENCY_NAME'].isnull().sum()) # 0 rows 
 
# Check NAN values 
dfM.isnull().any() 
""" 
Returns: 
MONTH            False 
BEC_CODE         False 
BEC_NAME         False 
DOLLAR_AMOUNT    False 
CURRENCY_NAME    False 
CURRENCY_CODE    False 
ISIC3_CODE       False 
ISIC3_NAME       False 
COUNTRY_CODE     False 
COUNTRY_NAME     False 
YEAR             False 
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dtype: bool 
 
None of the columns contain NAN values. 
""" 
 
# Generate new dataframes for standard names for codes, so we can drop duplicate 
information from original dfM 
bec_names = dfM[['BEC_CODE', 'BEC_NAME']].drop_duplicates(subset=None, 
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False) 
currency_names = dfM[['CURRENCY_CODE', 
'CURRENCY_NAME']].drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
isic3_names = dfM[['ISIC3_CODE', 'ISIC3_NAME']].drop_duplicates(subset=None, 
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False) 
country_names = dfM[['COUNTRY_CODE', 
'COUNTRY_NAME']].drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
dfM.drop(['BEC_NAME', 'CURRENCY_NAME', 'ISIC3_NAME','COUNTRY_NAME'], 
axis=1, inplace=True) 
dfM = dfM[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE', 
'CURRENCY_CODE', 'DOLLAR_AMOUNT']] 
 
# Select rows after year 2003 
dfM = dfM[dfM['YEAR'] > 2003] 
 
# Drop Currency Complexity by Country 
dfM.drop(['CURRENCY_CODE'], inplace=True, axis=1) 
dfM = dfM.groupby(['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 
'COUNTRY_CODE'])['DOLLAR_AMOUNT'].sum().reset_index() 
 
# Add True Currency Code 
dfM = pd.merge(dfM, t_currency_map[['COUNTRY_CODE','T_CURRENCY_CODE']], 
on=['COUNTRY_CODE'], how='left') 
 
# Drop rows which we don't have information for currency and/or CPI 
dfM.dropna(axis=0, how='any', inplace=True) 
 
# Change data types 
print(dfM.dtypes) 
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dfM['T_CURRENCY_CODE'] = dfM['T_CURRENCY_CODE'].astype('int64') 
currency_names['CURRENCY_CODE'] = 
currency_names['CURRENCY_CODE'].astype('int64') 
 
print(dfM.dtypes) 
 
# Save preprocessed import dataset information into Python Object file 
path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
dfM.to_pickle("dfM.pkl", compression='gzip') 
bec_names.to_pickle("bec_names_m.pkl", compression='gzip') 
country_names.to_pickle("country_names_m.pkl", compression='gzip') 
isic3_names.to_pickle("isic3_names_m.pkl", compression='gzip') 
currency_names.to_pickle("currency_names_m.pkl", compression='gzip') 
del bec_names, country_names, currency_names, isic3_names, dfM 
 
 
 
 
#########################################################################
############################# 
#####           EXPORT DATASET PREPROCESSING 
#########################################################################
############################# 
 
# Change path to back 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
 
# Read Export datasets 
path = os.path.expanduser("~/Documents/capstone/datasets/exports") 
os.chdir(path) 
# export_19892003 = pd.read_csv('1989_2003_export.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
export_19892003 = pd.DataFrame() 
export_20042009 = pd.read_csv('2004_2009_export.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
export_20102013 = pd.read_csv('2010_2013_export.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
export_20142015 = pd.read_csv('2014_2015_export.csv', sep=';', header=0, 
encoding='utf-8', thousands=",") 
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# export_dfs = [export_19892003, export_20042009, export_20102013, export_20142015] 
export_dfs = [export_20042009, export_20102013, export_20142015] 
 
# Different dataset files may contain different string values for same code. We should check 
it. 
isic3 = pd.DataFrame() 
bec = pd.DataFrame() 
currency = pd.DataFrame() 
country = pd.DataFrame() 
 
for dataset in export_dfs: 
    isic3 = isic3.append(dataset[['ISIC3_2', 'ISIC3_ADI']].drop_duplicates(subset=None, 
keep='first', inplace=False), ignore_index=False, verify_integrity=False) 
    bec = bec.append(dataset[['BEC', 'BEC_ADI']].drop_duplicates(subset=None, 
keep='first', inplace=False), ignore_index=False, verify_integrity=False) 
    currency = currency.append(dataset[['DOVIZ_KODU', 
'DOVIZ_ADI']].drop_duplicates(subset=None, keep='first', inplace=False), 
ignore_index=False, verify_integrity=False) 
    country = country.append(dataset[['ULKE', 
'ULKE_ADI']].drop_duplicates(subset=None, keep='first', inplace=False), 
ignore_index=False, verify_integrity=False) 
del dataset 
 
isic3 = isic3.drop_duplicates(subset=None, keep='first', 
inplace=False)['ISIC3_2'].value_counts().sort_values(ascending=False) 
bec = bec.drop_duplicates(subset=None, keep='first', 
inplace=False)['BEC'].value_counts().sort_values(ascending=False) 
currency = currency.drop_duplicates(subset=None, keep='first', 
inplace=False)['DOVIZ_KODU'].value_counts().sort_values(ascending=False) 
country = country.drop_duplicates(subset=None, keep='first', 
inplace=False)['ULKE'].value_counts().sort_values(ascending=False) 
 
""" 
print(export_19892003.iloc[6194]['ULKE_ADI']) # Kanarya Adalari 
export_19892003.loc[export_19892003['ULKE_ADI'] == 'Kanarya Adaları', 'ULKE_ADI'] 
= 'Ceuta' 
print(export_19892003.iloc[6194]['ULKE_ADI']) # Ceuta 
""" 
del bec, country, currency, isic3 
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# Merge Export Dataframes 
dfX = pd.concat(export_dfs, ignore_index=True) 
del export_19892003,  export_20042009, export_20102013, export_20142015, export_dfs 
 
""" 
# Correct multiple codes for same country problem 
corrector = dfX.groupby(['ULKE_ADI', 'ULKE'])['DOLAR'].count().reset_index() 
corrector.drop(['DOLAR'], axis=1, inplace=True) 
corrector_keys = corrector[corrector.duplicated(['ULKE_ADI'], 
keep='first')]['ULKE'].tolist() 
corrector_vals = corrector[corrector.duplicated(['ULKE_ADI'], 
keep='last')]['ULKE'].tolist() 
corrector = dict(zip(corrector_keys, corrector_vals)) 
dfX.replace({'ULKE':corrector}, inplace=True) 
del corrector, corrector_keys, corrector_vals 
# Important note: Duplicate country code problem does not exist in dfX dataframe 
""" 
 
# Correct country code of Switzerland 
dfX["ULKE"].replace(39, 36, inplace=True) 
 
# Clean Export Dataframe dfX 
 
# Drop first column specifying rows are about Export data 
dfX.drop('IHRITH', 1, inplace=True, errors='raise') 
 
# Drop fully NAN rows and columns 
dfX.dropna(axis=0, how='all', inplace=True) 
dfX.dropna(axis=1, how='all', inplace=True) 
 
# Rename columns 
dfX.columns = ['MONTH', 'BEC_CODE', 'BEC_NAME', 'DOLLAR_AMOUNT', 
'CURRENCY_NAME', 'CURRENCY_CODE', 'ISIC3_CODE', 'ISIC3_NAME', 
'COUNTRY_CODE', 'COUNTRY_NAME', 'YEAR'] 
 
# Check NAN values 
dfX.isnull().any() 
""" 
Returns: 
MONTH            False 
BEC_CODE         False 
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BEC_NAME         False 
DOLLAR_AMOUNT    False 
CURRENCY_NAME    False 
CURRENCY_CODE    False 
ISIC3_CODE       False 
ISIC3_NAME       False 
COUNTRY_CODE     False 
COUNTRY_NAME     False 
YEAR             False 
dtype: bool 
 
None of the columns contains NAN values. 
""" 
 
 
# Generate new dataframes for standard names for codes, so we can drop duplicate 
information from original dfX 
bec_names = dfX[['BEC_CODE', 'BEC_NAME']].drop_duplicates(subset=None, 
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False) 
currency_names = dfX[['CURRENCY_CODE', 
'CURRENCY_NAME']].drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
isic3_names = dfX[['ISIC3_CODE', 'ISIC3_NAME']].drop_duplicates(subset=None, 
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False) 
country_names = dfX[['COUNTRY_CODE', 
'COUNTRY_NAME']].drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
dfX.drop(['BEC_NAME', 'CURRENCY_NAME', 'ISIC3_NAME','COUNTRY_NAME'], 
axis=1, inplace=True) 
dfX = dfX[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE', 
'CURRENCY_CODE', 'DOLLAR_AMOUNT']] 
 
 
# Drop Currency Complexity by Country 
dfX.drop(['CURRENCY_CODE'], inplace=True, axis=1) 
dfX = dfX.groupby(['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 
'COUNTRY_CODE'])['DOLLAR_AMOUNT'].sum().reset_index() 
 
# Add True Currency Code 
dfX = pd.merge(dfX, t_currency_map[['COUNTRY_CODE','T_CURRENCY_CODE']], 
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on=['COUNTRY_CODE'], how='left') 
 
# Drop rows which we don't have information for currency and/or CPI 
dfX.dropna(axis=0, how='any', inplace=True) 
 
# Change data types 
print(dfX.dtypes) 
 
dfX['T_CURRENCY_CODE'] = dfX['T_CURRENCY_CODE'].astype('int64') 
currency_names['CURRENCY_CODE'] = 
currency_names['CURRENCY_CODE'].astype('int64') 
 
print(dfX.dtypes) 
 
# Save preprocessed export dataset information into Python Object file 
path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
dfX.to_pickle("dfX.pkl", compression='gzip') 
bec_names.to_pickle("bec_names_x.pkl", compression='gzip') 
country_names.to_pickle("country_names_x.pkl", compression='gzip') 
isic3_names.to_pickle("isic3_names_x.pkl", compression='gzip') 
currency_names.to_pickle("currency_names_x.pkl", compression='gzip') 
del bec_names, country_names, currency_names, isic3_names, dfX 
 
# Change path to back 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
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File Name: cpi.py 

File Type: Python Script File 

 

 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Sun Jul 22 18:40:30 2018 
 
@author: yagmuruluturktekten 
""" 
 
# Capstone Project 
# Yagmur Uluturk Tekten 
 
#########################################################################
############################# 
#####           CPI VALUES TO EXPORT & IMPORT DATAFRAMES 
#########################################################################
############################# 
 
# Import Libraries 
import pandas as pd 
import numpy as np 
import os 
 
# Change path 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
 
# Load CPI csv file 
 
# Change path firstly 
path = os.path.expanduser("~/Documents/capstone/datasets/cpi") 
os.chdir(path) 
 
# Read CPI Indices CSV filer 
cpi = pd.read_csv('cpi.csv', sep=',', header=0, encoding='utf-8') 
cpi.drop(['MONTH','YEAR'], axis=1, inplace=True, errors='raise') 
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# Melt CPI df 
cpi_cols = list(cpi.columns)[2:] 
cpi = pd.melt(cpi, id_vars = ['MONTH&YEAR'], value_vars = cpi_cols, 
var_name='COUNTRY_NAME', value_name='CPI') 
 
# Generate month & year separately 
cpi['DATE_PD'] = pd.to_datetime(cpi['MONTH&YEAR'], format = '%d.%m.%Y') 
cpi['MONTH'] = cpi['DATE_PD'].map(lambda x: x.month) 
cpi['YEAR'] = cpi['DATE_PD'].map(lambda x: x.year) 
 
# Reshape CPI df 
cpi = cpi[['YEAR', 'MONTH', 'DATE_PD', 'COUNTRY_NAME', 'CPI']] 
 
# CPI of Turkey 
cpi_tr = cpi[cpi['COUNTRY_NAME'] == 'Turkey'] 
cpi_tr = cpi_tr[['YEAR','MONTH','CPI']] 
cpi_tr.rename(columns={'CPI':'CPI_TR'}, inplace = True) 
 
# Map country names 
country_names_eng_tur = {   'United States':'ABD', 
                            'Germany':'Almanya', 
                            'Australia':'Avustralya', 
                            'Austria':'Avusturya', 
                            'Belgium':'Belçika', 
                            'Brazil':'Brezilya', 
                            'Czech Republic':'Çek Cumhuriyeti', 
                            'China':'Çin', 
                            'Denmark':'Danimarka', 
                            'France':'Fransa', 
                            'South Africa':'Güney Afrika', 
                            'India':'Hindistan', 
                            'Croatia':'Hırvatistan', 
                            'Netherlands':'Hollanda', 
                            'Hong Kong SAR':'Hong Kong', 
                            'United Kingdom':'İngiltere', 
                            'Ireland':'İrlanda', 
                            'Spain':'İspanya', 
                            'Israel':'İsrail', 
                            'Sweden':'İsveç', 
                            'Switzerland':'İsviçre', 
                            'Italy':'İtalya', 
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                            'Japan':'Japonya', 
                            'Canada':'Kanada', 
                            'Mexico':'Meksika', 
                            'Norway':'Norveç', 
                            'Poland':'Polonya', 
                            'Portugal':'Portekiz', 
                            'Romania':'Romanya', 
                            'Russia':'Rusya Federasyonu', 
                            'Saudi Arabia':'Suudi Arabistan', 
                            'New Zealand':'Yeni Zelanda', 
                            'Greece':'Yunanistan' 
        } 
 
cpi.replace({"COUNTRY_NAME": country_names_eng_tur}, inplace=True) 
 
# Drop unwanted countries 
countries_to_keep = list(country_names_eng_tur.values()) 
countries_to_keep.append('Malta') 
cpi = cpi[cpi['COUNTRY_NAME'].isin(countries_to_keep)] 
 
# Find Country Codes 
path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
country_names_m = pd.read_pickle('country_names_m.pkl', compression='gzip') 
cpi = pd.merge(cpi, country_names_m, on=['COUNTRY_NAME'], how='left') 
 
# Drop columns & reorder 
cpi = cpi[['YEAR', 'MONTH', 'COUNTRY_CODE', 'CPI']] 
 
# Add CPI value to dfM & dfX 
dfX = pd.read_pickle('dfX.pkl', compression = 'gzip') 
dfM = pd.read_pickle('dfM.pkl', compression = 'gzip') 
 
dfX = pd.merge(dfX, cpi, on=['YEAR','MONTH','COUNTRY_CODE'], how='left') 
dfM = pd.merge(dfM, cpi, on=['YEAR','MONTH','COUNTRY_CODE'], how='left') 
 
# Add CPI Turkey to dfM & dfX 
dfX = pd.merge(dfX, cpi_tr, on=['YEAR','MONTH'], how='left') 
dfM = pd.merge(dfM, cpi_tr, on=['YEAR','MONTH'], how='left') 
 
# Save CPI values into Python Object file 
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path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
dfX.to_pickle("dfX_wcpi.pkl", compression='gzip') 
dfM.to_pickle("dfM_wcpi.pkl", compression='gzip') 
del countries_to_keep, country_names_eng_tur, cpi_cols 
 
# Change path to back 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
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File Name: currency_preprocess.py 

File Type: Python Script File 

 

 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Sun Jul 15 15:35:06 2018 
 
@author: yagmuruluturktekten 
""" 
 
# Capstone Project 
# Yagmur Uluturk Tekten 
 
#########################################################################
############################# 
#####           CURRENCY PAIRS PREPROCESSING 
#########################################################################
############################# 
 
# Import Libraries 
import pandas as pd 
import numpy as np 
import os 
import glob 
 
# Change path 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
 
dfX = pd.read_pickle('datasets/pickles/dfX_wcpi.pkl', compression = 'gzip') 
dfM = pd.read_pickle('datasets/pickles/dfM_wcpi.pkl', compression = 'gzip') 
 
# Read true currency map 
path = os.path.expanduser("~/Documents/capstone/datasets/currency_map") 
os.chdir(path) 
t_currency_map = pd.read_csv('t_currency_map.csv', sep=',', header=0, encoding='utf-8') 
 
# Load currency csv files 

58 

 



 

 
# Change path firstly 
path = os.path.expanduser("~/Documents/capstone/datasets/currencies") 
os.chdir(path) 
 
# Read all currency CSV file 
files = glob.glob(path + '/*.csv') 
currency_dfs = [] 
 
for csv_file in files: 
    df = pd.read_csv(csv_file, sep=',', header=0, encoding='utf-8', thousands=",") 
    df.name = csv_file[66:73].lower().replace('_', '') 
    currency_dfs.append(df) 
del df, csv_file 
 
# Drop Change % column for each currency df and add currency code as a column 
new_currency_dfs = [] 
 
for currency in currency_dfs: 
    currency.drop(['Change %'], axis=1, inplace = True) 
    currency['CURRENCY_PAIR'] = currency.name 
    currency = pd.merge(currency, 
t_currency_map[['CURRENCY_PAIR','T_CURRENCY_CODE']], 
on=['CURRENCY_PAIR'], how='left') 
    currency.drop(['CURRENCY_PAIR'], axis=1, inplace = True) 
    new_currency_dfs.append(currency) 
del currency 
 
currency_dfs = new_currency_dfs 
del new_currency_dfs 
 
# Merge currency data frames and create Year and Month columns seperately 
currency_df = pd.concat(currency_dfs, ignore_index=True) 
del currency_dfs 
currency_df['DATE_PD'] = pd.to_datetime(currency_df['Date'], format = '%b %y') 
currency_df['MONTH'] = currency_df['DATE_PD'].map(lambda x: x.month) 
currency_df['YEAR'] = currency_df['DATE_PD'].map(lambda x: x.year) 
 
# Change path 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
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# Drop duplicate rows 
currency_df.drop_duplicates(subset=['T_CURRENCY_CODE', 'MONTH','YEAR'], 
keep='first', inplace=True) 
 
# Join dfM & dfX with currency dataframe 
dfM = pd.merge(dfM, 
currency_df[['YEAR','MONTH','T_CURRENCY_CODE','Price','Open','High','Low']], 
on=['YEAR','MONTH','T_CURRENCY_CODE'], how='left') 
dfM = dfM.rename(columns={'Price': 'CLOSE', 'Open':'OPEN', 'High':'HIGH', 
'Low':'LOW'}) 
dfX = pd.merge(dfX, 
currency_df[['YEAR','MONTH','T_CURRENCY_CODE','Price','Open','High','Low']], 
on=['YEAR','MONTH','T_CURRENCY_CODE'], how='left') 
dfX = dfX.rename(columns={'Price': 'CLOSE', 'Open':'OPEN', 'High':'HIGH', 
'Low':'LOW'}) 
 
# REXR, CLOSE-OPEN, HIGH-LOW 
dfM['REXR'] = dfM['CLOSE'] * (dfM['CPI'] / dfM['CPI_TR']) 
dfM['CLOSE-OPEN'] = dfM['CLOSE'] - dfM['OPEN'] 
dfM['HIGH-LOW'] = dfM['HIGH'] - dfM['LOW'] 
 
dfX['REXR'] = dfX['CLOSE'] * (dfX['CPI'] / dfX['CPI_TR']) 
dfX['CLOSE-OPEN'] = dfX['CLOSE'] - dfX['OPEN'] 
dfX['HIGH-LOW'] = dfX['HIGH'] - dfX['LOW'] 
 
# Drop NA, if exists 
dfM.dropna(axis=0, how='any', inplace=True) 
dfX.dropna(axis=0, how='any', inplace=True) 
 
# Convert dfM & dfX to Pandas time-series format 
dfM['MONTH_YEAR'] = dfM['MONTH'].map(str) + '/' + dfM['YEAR'].map(str) 
dfM['MONTH_YEAR'] = pd.to_datetime(dfM['MONTH_YEAR'], errors='raise', 
yearfirst=True, format='%m/%Y').dt.to_period('M') 
dfM['SUPER_INDEX'] = dfM['COUNTRY_CODE'].map(str) + '/' + 
dfM['ISIC3_CODE'].map(str) + '/' + dfM['BEC_CODE'].map(str) 
dfM.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False, 
inplace=True, verify_integrity=False) 
dfM.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True, 
sort_remaining=False) 
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dfX['MONTH_YEAR'] = dfX['MONTH'].map(str) + '/' + dfX['YEAR'].map(str) 
dfX['MONTH_YEAR'] = pd.to_datetime(dfX['MONTH_YEAR'], errors='raise', 
yearfirst=True, format='%m/%Y').dt.to_period('M') 
dfX['SUPER_INDEX'] = dfX['COUNTRY_CODE'].map(str) + '/' + 
dfX['ISIC3_CODE'].map(str) + '/' + dfX['BEC_CODE'].map(str) 
dfX.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False, 
inplace=True, verify_integrity=False) 
dfX.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True, 
sort_remaining=False) 
 
 
# Rolling variables & functions 
list_df = [dfM, dfX] 
list_stds = ['CLOSE','CLOSE-OPEN','HIGH-LOW','REXR'] 
months = [[6,3],] 
del dfM, dfX 
 
def rolling_stones(df, col, month, min_month): 
    std_df = df.copy() 
    std_df = std_df[col].unstack() 
    std_df = std_df.pct_change(periods=1, fill_method=None, limit=None) 
    std_df = std_df.rolling(month, min_periods=min_month).std() 
    std_df = std_df.stack().reset_index().rename(columns={0:col+'_STD'}) 
    df = pd.merge(df, std_df,  on=['MONTH_YEAR','SUPER_INDEX'], how='left') 
 
    df.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False, 
inplace=True, verify_integrity=False) 
    df.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True, 
sort_remaining=False) 
 
    del std_df 
    return df 
 
for i in range(0,len(list_df)): 
    for feature in list_stds: 
        for time_range in months: 
            list_df[i] = rolling_stones(list_df[i], feature, *time_range) 
 
dfM = list_df[0] 
dfX = list_df[1] 
del feature, i, list_df, list_stds, months 
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# Save preprocessed import & export dataset information into Python Object file 
path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
dfM.to_pickle('dfM_wfeatures.pkl', compression='gzip') 
dfX.to_pickle('dfX_wfeatures.pkl', compression='gzip') 
currency_df.to_pickle('currency.pkl', compression='gzip') 
 
# Change path to back 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
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File Name: change_calculator.py 

File Type: Python Script File 

 

 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Wed Aug 22 15:21:40 2018 
 
@author: yagmuruluturktekten 
""" 
 
# Capstone Project 
# Yagmur Uluturk Tekten 
 
#########################################################################
############################# 
#####           CHANGE CALCULATOR 
#########################################################################
############################# 
 
# Import Libraries 
import pandas as pd 
import numpy as np 
import os 
 
# Change path 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
 
# Read pickles for Import and Export dataframes containing features 
dfM_withfeatures = pd.read_pickle('datasets/pickles/dfM_wfeatures.pkl', compression = 
'gzip') 
dfX_withfeatures = pd.read_pickle('datasets/pickles/dfX_wfeatures.pkl', compression = 
'gzip') 
 
 
 
# Percentage change variables & functions 
list_df = [dfM_withfeatures, dfX_withfeatures] 
list_pct = ['DOLLAR_AMOUNT', 'REXR', 'CLOSE'] 
windows = [1,3,6] 
del dfM_withfeatures, dfX_withfeatures 
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def rolling_stones(df, col, window): 
    pct_df = df.copy() 
    pct_df = pct_df[col].unstack() 
    pct_df = pct_df.pct_change(periods = window, fill_method='pad', limit=None) 
    pct_df = pct_df.stack().reset_index().rename(columns={0:col+'_PCT_'+ str(window)}) 
    df = pd.merge(df, pct_df,  on=['MONTH_YEAR','SUPER_INDEX'], how='left') 
    df.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False, 
inplace=True, verify_integrity=False) 
    df.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True, 
sort_remaining=False) 
 
    del pct_df 
    return df 
 
for i in range(0,len(list_df)): 
    for feature in list_pct: 
        for window in windows: 
            list_df[i] = rolling_stones(list_df[i], feature, window) 
 
dfM = list_df[0] 
dfX = list_df[1] 
del feature, i, list_df, list_pct, window 
 
# Save preprocessed import & export dataset information into Python Object file 
path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
dfM.to_pickle('dfM_wfeatures_pct.pkl', compression='gzip') 
dfX.to_pickle('dfX_wfeatures_pct.pkl', compression='gzip') 
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File Name: model.py 

File Type: Python Script File 

 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Mon Jul 23 23:41:28 2018 
 
@author: yagmuruluturktekten 
""" 
 
# Change path 
import os 
path = os.path.expanduser("~/Documents/capstone") 
os.chdir(path) 
 
# Read pickles for Import and Export dataframes containing features 
 
from datetime import datetime 
start_time = datetime.now() 
 
import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error, r2_score 
from sklearn.preprocessing import MinMaxScaler 
 
from sklearn import linear_model 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import GradientBoostingRegressor 
 
dfM_withfeatures = pd.read_pickle('datasets/pickles/dfM_wfeatures_pct.pkl', compression 
= 'gzip') 
dfX_withfeatures = pd.read_pickle('datasets/pickles/dfX_wfeatures_pct.pkl', compression = 
'gzip') 
 
# Handle Missing Values in dfM_withfeatures 
dfM_withfeatures.isnull().sum() 
 
""" 
There are 13 columns which have nan values 
CLOSE_STD              46751 
CLOSE-OPEN_STD         51262 
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HIGH-LOW_STD           51173 
REXR_STD               46751 
DOLLAR_AMOUNT_PCT_1     3923 
DOLLAR_AMOUNT_PCT_3     8527 
DOLLAR_AMOUNT_PCT_6    15428 
REXR_PCT_1              3923 
REXR_PCT_3              8527 
REXR_PCT_6             15428 
CLOSE_PCT_1             3923 
CLOSE_PCT_3             8527 
CLOSE_PCT_6            15428 
""" 
 
# Drop rows with nan values 
dfM_withfeatures.dropna(inplace=True) 
 
 
# Handle Missing Values in dfX_withfeatures 
dfX_withfeatures.isnull().sum() 
 
""" 
There are 13 columns which have nan values 
CLOSE_STD              46705 
CLOSE-OPEN_STD         50581 
HIGH-LOW_STD           50435 
REXR_STD               46705 
DOLLAR_AMOUNT_PCT_1     3872 
DOLLAR_AMOUNT_PCT_3     8235 
DOLLAR_AMOUNT_PCT_6    14760 
REXR_PCT_1              3872 
REXR_PCT_3              8235 
REXR_PCT_6             14760 
CLOSE_PCT_1             3872 
CLOSE_PCT_3             8235 
CLOSE_PCT_6            14760 
""" 
 
# Drop rows with nan values 
dfX_withfeatures.dropna(inplace=True) 
 
# Select necessary columns for modelling 
 
dfM_model = dfM_withfeatures[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 
'COUNTRY_CODE','REXR', 'REXR_PCT_1', 'REXR_PCT_3', 'REXR_PCT_6', 
'CLOSE_STD', 'CLOSE-OPEN_STD', 'HIGH-LOW_STD', 'REXR_STD', 
'CLOSE_PCT_1', 'CLOSE_PCT_3', 'CLOSE_PCT_6', 'DOLLAR_AMOUNT', 
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'DOLLAR_AMOUNT_PCT_1', 'DOLLAR_AMOUNT_PCT_3', 
'DOLLAR_AMOUNT_PCT_6']] 
dfX_model = dfX_withfeatures[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 
'COUNTRY_CODE','REXR', 'REXR_PCT_1', 'REXR_PCT_3', 'REXR_PCT_6', 
'CLOSE_STD', 'CLOSE-OPEN_STD', 'HIGH-LOW_STD', 'REXR_STD', 
'CLOSE_PCT_1', 'CLOSE_PCT_3', 'CLOSE_PCT_6', 'DOLLAR_AMOUNT', 
'DOLLAR_AMOUNT_PCT_1', 'DOLLAR_AMOUNT_PCT_3', 
'DOLLAR_AMOUNT_PCT_6']] 
 
 
 
  
 
# Apply LABEL ENCODING for categorical variables in Import dataframe using 
"cat.codes" method !!! 
# There are 3 categorical variables(ISIC3_CODE,BEC_CODE,COUNTRY_CODE) that 
need to be transformed into numbers in order to use them in the modelling 
# Label encoding simply converts each value in the column to a number that stands for the 
index of the column  
 
# Label enconding for ISIC3_CODE in Import data frame 
dfM_model.ISIC3_CODE = pd.Categorical(dfM_model.ISIC3_CODE) 
dfM_model['ISIC3'] = dfM_model.ISIC3_CODE.cat.codes 
dfM_model['ISIC3'].value_counts().sort_index() 
 
# Label enconding for ISIC3_CODE in Export data frame 
dfX_model.ISIC3_CODE = pd.Categorical(dfX_model.ISIC3_CODE) 
dfX_model['ISIC3'] = dfX_model.ISIC3_CODE.cat.codes 
dfX_model['ISIC3'].value_counts().sort_index() 
 
# Label enconding for BEC_CODE in Import data frame 
dfM_model.BEC_CODE = pd.Categorical(dfM_model.BEC_CODE) 
dfM_model['BEC'] = dfM_model.BEC_CODE.cat.codes 
dfM_model['BEC'].value_counts().sort_index() 
 
# Label enconding for BEC_CODE in Export data frame 
dfX_model.BEC_CODE = pd.Categorical(dfX_model.BEC_CODE) 
dfX_model['BEC'] = dfX_model.BEC_CODE.cat.codes 
dfX_model['BEC'].value_counts().sort_index() 
 
# Label enconding for COUNTRY_CODE in Import data frame 
dfM_model.COUNTRY_CODE = pd.Categorical(dfM_model.COUNTRY_CODE) 
dfM_model['COUNTRY'] = dfM_model.COUNTRY_CODE.cat.codes 
dfM_model['COUNTRY'].value_counts().sort_index() 
 
# Label enconding for COUNTRY_CODE in Export data frame 

67 

 



 

dfX_model.COUNTRY_CODE = pd.Categorical(dfX_model.COUNTRY_CODE) 
dfX_model['COUNTRY'] = dfX_model.COUNTRY_CODE.cat.codes 
dfX_model['COUNTRY'].value_counts().sort_index() 
 
 
dfM_model.dtypes 
dfX_model.dtypes 
 
 
# Convert ISIC3_CODE, BEC_CODE and COUNTRY_CODE which is in categorical 
format into numerical format 
dfM_model['ISIC3_CODE'] = dfM_model['ISIC3_CODE'].astype('int64', copy=True) 
dfM_model['BEC_CODE'] = dfM_model['BEC_CODE'].astype('int64', copy=True) 
dfM_model['COUNTRY_CODE'] = dfM_model['COUNTRY_CODE'].astype('int64', 
copy=True) 
dfM_model.dtypes 
 
 
dfX_model['ISIC3_CODE'] = dfX_model['ISIC3_CODE'].astype('int64', copy=True) 
dfX_model['BEC_CODE'] = dfX_model['BEC_CODE'].astype('int64', copy=True) 
dfX_model['COUNTRY_CODE'] = dfX_model['COUNTRY_CODE'].astype('int64', 
copy=True) 
dfX_model.dtypes 
 
# Keep original ISIC3_CODE,COUNTRY_CODE and BEC_CODE to remember the 
names of the sectors and countries for further analysis 
 
# For Import 
isic3_code_m = dfM_model[['ISIC3_CODE','ISIC3']] 
isic3_code_m = isic3_code_m.drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
bec_code_m = dfM_model[['BEC_CODE','BEC']] 
bec_code_m = bec_code_m.drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
country_code_m = dfM_model[['COUNTRY_CODE','COUNTRY']] 
country_code_m = country_code_m.drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
# For Export 
isic3_code_x = dfX_model[['ISIC3_CODE','ISIC3']] 
isic3_code_x = isic3_code_x.drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
bec_code_x = dfX_model[['BEC_CODE','BEC']] 
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bec_code_x = bec_code_x.drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
country_code_x = dfX_model[['COUNTRY_CODE','COUNTRY']] 
country_code_x = country_code_x.drop_duplicates(subset=None, keep='first', 
inplace=False).reset_index(level=None, drop=True, inplace=False) 
 
 
# Read pickles for ISIC3, COUNTRY and BEC names 
isic3_names_m = pd.read_pickle('datasets/pickles/isic3_names_m.pkl', compression = 
'gzip') 
isic3_names_x = pd.read_pickle('datasets/pickles/isic3_names_x.pkl', compression = 'gzip') 
 
bec_names_m = pd.read_pickle('datasets/pickles/bec_names_m.pkl', compression = 'gzip') 
bec_names_x = pd.read_pickle('datasets/pickles/bec_names_x.pkl', compression = 'gzip') 
 
country_names_m = pd.read_pickle('datasets/pickles/country_names_m.pkl', compression 
= 'gzip') 
country_names_x = pd.read_pickle('datasets/pickles/country_names_x.pkl', compression = 
'gzip') 
 
 
# Combine codes and names for ISIC3, COUNTRY and BEC 
 
isic3_map_m = pd.merge(isic3_code_m, isic3_names_m, on=['ISIC3_CODE'], how='left') 
isic3_map_x = pd.merge(isic3_code_x, isic3_names_x, on=['ISIC3_CODE'], how='left') 
 
country_map_m = pd.merge(country_code_m, country_names_m, 
on=['COUNTRY_CODE'], how='left') 
country_map_x = pd.merge(country_code_x, country_names_x, on=['COUNTRY_CODE'], 
how='left') 
 
bec_map_m = pd.merge(bec_code_m, bec_names_m, on=['BEC_CODE'], how='left') 
bec_map_x = pd.merge(bec_code_x, bec_names_x, on=['BEC_CODE'], how='left') 
 
 
# Save mapping files as pickles 
 
# Change path first 
path = os.path.expanduser("~/Documents/capstone/datasets/pickles") 
os.chdir(path) 
 
isic3_map_m.to_pickle("isic3_map_m.pkl", compression='gzip') 
isic3_map_x.to_pickle("isic3_map_x.pkl", compression='gzip') 
country_map_m.to_pickle("country_map_m.pkl", compression='gzip') 
country_map_x.to_pickle("country_map_x.pkl", compression='gzip') 
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bec_map_m.to_pickle("bec_map_m.pkl", compression='gzip') 
bec_map_x.to_pickle("bec_map_x.pkl", compression='gzip') 
 
############################################## OUTLIERS 
##############################################  
 
# Detect OUTLIERS in Import dataframe 
 
def remove_outliers(df_man, col, threshold): 
    df = df_man.copy() 
    del_df = df[df[col] > threshold] 
    print('There are %d outliers in the %s out of %d entries' % (len(del_df), str(col), len(df))) 
    df = df[df[col] <= threshold] 
    return df 
 
dfM_model = remove_outliers(dfM_model, 'DOLLAR_AMOUNT_PCT_1', 1) 
dfM_model = remove_outliers(dfM_model, 'DOLLAR_AMOUNT_PCT_3', 1) 
dfM_model = remove_outliers(dfM_model, 'DOLLAR_AMOUNT_PCT_6', 1) 
dfM_model = remove_outliers(dfM_model, 'REXR', 200000) 
dfM_model = remove_outliers(dfM_model, 'CLOSE-OPEN_STD', 90) 
dfM_model = remove_outliers(dfM_model, 'HIGH-LOW_STD', 90) 
dfM_model = remove_outliers(dfM_model, 'CLOSE-OPEN_STD', 90) 
 
dfX_model = remove_outliers(dfX_model, 'DOLLAR_AMOUNT_PCT_1', 1) 
dfX_model = remove_outliers(dfX_model, 'DOLLAR_AMOUNT_PCT_3', 1) 
dfX_model = remove_outliers(dfX_model, 'DOLLAR_AMOUNT_PCT_6', 1) 
dfX_model = remove_outliers(dfX_model, 'REXR', 200000) 
dfX_model = remove_outliers(dfX_model, 'CLOSE-OPEN_STD', 90) 
dfX_model = remove_outliers(dfX_model, 'HIGH-LOW_STD', 20) 
dfX_model = remove_outliers(dfX_model, 'CLOSE-OPEN_STD', 90) 
 
############################################## REGRESSION MODEL 
##############################################  
 
# Prepare features and targets 
 
dfM_targets = 
dfM_model[['DOLLAR_AMOUNT_PCT_1','DOLLAR_AMOUNT_PCT_3','DOLLAR_A
MOUNT_PCT_6']] 
dfM_targets.reset_index(drop=True, inplace=True) 
dfX_targets = 
dfX_model[['DOLLAR_AMOUNT_PCT_1','DOLLAR_AMOUNT_PCT_3','DOLLAR_A
MOUNT_PCT_6']] 
dfX_targets.reset_index(drop=True, inplace=True) 
 
dfM_model.drop(['DOLLAR_AMOUNT','DOLLAR_AMOUNT_PCT_1','DOLLAR_AM
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OUNT_PCT_3','DOLLAR_AMOUNT_PCT_6', 
                'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE'], 
               axis=1, inplace=True) 
dfX_model.drop(['DOLLAR_AMOUNT','DOLLAR_AMOUNT_PCT_1','DOLLAR_AMO
UNT_PCT_3','DOLLAR_AMOUNT_PCT_6', 
                'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE'], 
               axis=1, inplace=True) 
dfM_model.reset_index(drop=True, inplace=True) 
dfX_model.reset_index(drop=True, inplace=True) 
 
 
# Feature Scaling 
 
# Year 
dfM_model['YEAR'] = dfM_model['YEAR'] - 2003 
dfX_model['YEAR'] = dfX_model['YEAR'] - 2003 
# Scaling year had very little effect on MSE. It reduced MSE slightly. 
 
 
# HIGH-LOW_STD, CLOSE-OPEN_STD 
scaler = MinMaxScaler() 
 
dfM_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']] = 
scaler.fit_transform(dfM_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']]) 
dfX_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']] = 
scaler.fit_transform(dfX_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']]) 
 
 
# Tried: MinMaxScaler, StandardScaler, MaxAbsScaler, RobustScaler, Normalizer 
# Best results are observed with MinMaxScaler 
 
 
# Put features and targets in the some box 
model_inputs = [[dfM_model, dfM_targets, 'import'], 
                [dfX_model, dfX_targets, 'export'] 
 
                ] 
 
#########################################################################
## 
 
# Azure Machine Learning Datasets 
dfM_azure = dfM_model.copy() 
dfM_azure['DOLLAR_AMOUNT_PCT_1'] = 
dfM_targets['DOLLAR_AMOUNT_PCT_1'] 
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dfX_azure = dfX_model.copy() 
dfX_azure['DOLLAR_AMOUNT_PCT_1'] = dfX_targets['DOLLAR_AMOUNT_PCT_1'] 
 
path = os.path.expanduser("~/Documents/capstone/datasets/azure") 
os.chdir(path) 
 
dfM_azure.to_csv('dfm_azure.csv', 
                  sep=',', 
                  na_rep='???', 
                  header=True, 
                  index=False, 
                  index_label=None, 
                  encoding='UTF-8', 
                  compression=None, 
                  decimal='.') 
 
dfX_azure.to_csv('dfx_azure.csv', 
                  sep=',', 
                  na_rep='???', 
                  header=True, 
                  index=False, 
                  index_label=None, 
                  encoding='UTF-8', 
                  compression=None, 
                  decimal='.') 
 
#########################################################################
## 
 
# Define regression function 
 
def reg_func(features, target, explanation, trade_type, algo): 
    feature_count = features.shape[1] 
    sample_count = features.shape[0] 
    min_samples = 100 
  
    if algo == 'linear': 
        regr = linear_model.LinearRegression() 
    elif algo == 'ridge': 
        regr = linear_model.Ridge(alpha=1.0, random_state = 7) 
    elif algo == 'lasso': 
        regr = linear_model.Lasso(alpha=0.1, random_state = 7) 
    elif algo == 'randomforest': 
        regr = RandomForestRegressor(max_depth = feature_count-1, random_state = 7) 
    elif algo == 'decisiontree': 
        regr = DecisionTreeRegressor(max_features = feature_count-1, random_state=7) 
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    elif algo == 'gradientboosting': 
        regr = GradientBoostingRegressor(random_state=7) 
  
    X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.30, 
random_state=7) 
  
    if sample_count < min_samples: 
        to_return = { 
                'coefficients': [0] * feature_count,  
                'mse_test': 0, 
                'r2_test': 0, 
                'mse_train': 0, 
                'r2_train': 0, 
                'algorithm':algo, 
                'explanation': explanation, 
                'trade_type': trade_type, 
                'target':str(target.name), 
                'sample_size':sample_count 
            } 
  
        print('Not enough samples.') 
 
        return to_return 
  
    regr.fit(X_train, y_train) 
    ytrain_pred = regr.predict(X_train) 
    y_pred = regr.predict(X_test) 
  
    to_return = { 
                'coefficients': regr.coef_ if hasattr(regr, 'coef_') else [0] * feature_count, 
                'mse_test': mean_squared_error(y_test, y_pred), 
                'r2_test': r2_score(y_test, y_pred), 
                'mse_train': mean_squared_error(y_train, ytrain_pred), 
                'r2_train': r2_score(y_train, ytrain_pred), 
                'algorithm':algo, 
                'explanation': explanation, 
                'trade_type': trade_type, 
                'target':str(target.name), 
                'sample_size':sample_count 
            } 
    """ 
    print('########################################################') 
    print('Explanation: ' + str(explanation)) 
    print('Trade type: ' + str(trade_type)) 
    print('Target: ' + str(target.name)) 
    print('Algorithm: ' + str(algo)) 
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    print('Coefficients: ' + str(to_return['coefficients'])) 
    print('Mean squared error: ' + str(to_return['mse'])) 
    print('R square: ' + str(to_return['r2'])) 
    print('########################################################') 
    """ 
  
    print('Finished regression for following:'+ str(algo) + ',' 
                                              + str(explanation) + ',' 
                                              + str(trade_type)) 
    return to_return 
  
# Collect results for overall features and targets 
 
""" 
results_ls_all = [] 
 
for ls in model_inputs: 
    for target in ls[1]: 
        results_ls_all.append(reg_func(ls[0],ls[1][target],'Overall Regression',ls[2],'linear')) 
""" 
 
# Define regression function for categorical feature breakdowns 
 
def reg_breakdown(input_features,input_target,col,trade_type,algo): 
    features = input_features.copy() 
    target = input_target.copy() 
    breakdowns = features[col].unique().tolist() 
    # print(breakdowns) 
  
    reg_results = [] 
    for breakdown in breakdowns: 
        new_features = features[features[col] == breakdown] 
        new_target = target[new_features.index.values] 
        exp = str(col) + "_" + str(breakdown) 
        reg_results.append(reg_func(new_features, new_target, exp, trade_type, algo)) 
        del new_features, new_target 
    return reg_results 
 
# Collect results for each categorical feature 
  
results_ls_breakdown = [] 
breakdown_cols = ['COUNTRY','BEC','ISIC3'] 
algorithms = ['linear','lasso','ridge','randomforest','decisiontree','gradientboosting'] 
 
for ls in model_inputs: 
    for target in ls[1]: 
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        for breakdown in breakdown_cols: 
            for algorithm in algorithms: 
                    results_ls_breakdown.append(reg_breakdown(ls[0], 
                                                              ls[1][target], 
                                                              breakdown, 
                                                              ls[2], 
                                                              algorithm)) 
 
result_columns = ['Trade_Type', 'Explanation', 'Target', 'Algorithm', 
                  'MSE_Test', 'R2_Test', 'MSE_Train', 'R2_Train', 'Sample_Size', 
                  'Coef_YEAR','Coef_MONTH','Coef_REXR', 
                  'Coef_REXR_PCT_1','Coef_REXR_PCT_3','Coef_REXR_PCT_6', 
                  'Coef_CLOSE_STD','Coef_CLOSE-OPEN_STD', 'Coef_HIGH-LOW_STD', 
                  'Coef_REXR_STD', 'Coef_CLOSE_PCT_1', 'Coef_CLOSE_PCT_3', 
'Coef_CLOSE_PCT_6',  
                  'Coef_ISIC3','Coef_BEC', 'Coef_COUNTRY' 
                  ] 
 
results_df = pd.DataFrame(index=None, columns = result_columns) 
 
for lol_item in results_ls_breakdown: 
    for lod_item in lol_item: 
        results_df = results_df.append( {'Trade_Type':lod_item['trade_type'], 
                                         'Explanation':lod_item['explanation'], 
                                         'Target':lod_item['target'], 
                                         'Algorithm':lod_item['algorithm'], 
                                         'MSE_Test':lod_item['mse_test'],  
                                         'R2_Test':lod_item['r2_test'], 
                                         'MSE_Train':lod_item['mse_train'],  
                                         'R2_Train':lod_item['r2_train'], 
                                         'Sample_Size':lod_item['sample_size'], 
  
                                         'Coef_YEAR':lod_item['coefficients'][0], 
                                         'Coef_MONTH':lod_item['coefficients'][1], 
                                         'Coef_REXR':lod_item['coefficients'][2], 
                                         'Coef_REXR_PCT_1':lod_item['coefficients'][3], 
                                         'Coef_REXR_PCT_3':lod_item['coefficients'][4], 
                                         'Coef_REXR_PCT_6':lod_item['coefficients'][5], 
                                         'Coef_CLOSE_STD':lod_item['coefficients'][6], 
                                         'Coef_CLOSE-OPEN_STD':lod_item['coefficients'][7], 
                                         'Coef_HIGH-LOW_STD':lod_item['coefficients'][8], 
                                         'Coef_REXR_STD':lod_item['coefficients'][9], 
                                         'Coef_CLOSE_PCT_1':lod_item['coefficients'][10], 
                                         'Coef_CLOSE_PCT_3':lod_item['coefficients'][11], 
                                         'Coef_CLOSE_PCT_6':lod_item['coefficients'][12], 
                                         'Coef_ISIC3':lod_item['coefficients'][13], 
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                                         'Coef_BEC':lod_item['coefficients'][14], 
                                         'Coef_COUNTRY':lod_item['coefficients'][15] 
  
                                         }, ignore_index=True) 
 
# Drop 'Gizli Veri' from results 
results_df = results_df.drop(results_df[(results_df['Trade_Type'] == 'import') & 
                                         (results_df['Explanation'] == 'ISIC3_33')].index 
                             ) 
 
results_df = results_df.drop(results_df[(results_df['Trade_Type'] == 'import') & 
                                         (results_df['Explanation'] == 'BEC_17')].index 
                             ) 
 
# Replace Country, BEC, ISIC3 Codes with actual names 
 
path = os.path.expanduser("~/Documents/capstone/outputs") 
os.chdir(path) 
 
results_df[['Breakdown_Type', 'Breakdown_Code']] = results_df['Explanation'].str.split('_', 
n=1, expand=True) 
results_mappings = pd.read_csv('result_mappings.csv', sep=',') 
results_mappings['Breakdown_Code'] = results_mappings['Breakdown_Code'].astype(int) 
results_df['Breakdown_Code'] = results_df['Breakdown_Code'].astype(int) 
 
results_df = pd.merge(results_df, results_mappings, on=['Trade_Type', 'Breakdown_Type', 
'Breakdown_Code'], how='left') 
 
result_cols = ['Trade_Type', 'Breakdown_Type', 'Breakdown_Code', 'Breakdown_Name', 
'Explanation', 
         'Target', 'Algorithm', 'MSE_Test', 'R2_Test', 'MSE_Train', 'R2_Train', 'Sample_Size', 
         'Coef_YEAR', 'Coef_MONTH', 'Coef_REXR', 'Coef_REXR_PCT_1', 
         'Coef_REXR_PCT_3', 'Coef_REXR_PCT_6', 'Coef_CLOSE_STD', 
         'Coef_CLOSE-OPEN_STD', 'Coef_HIGH-LOW_STD', 
         'Coef_REXR_STD', 'Coef_CLOSE_PCT_1', 'Coef_CLOSE_PCT_3', 
'Coef_CLOSE_PCT_6', 
         'Coef_ISIC3', 'Coef_BEC', 'Coef_COUNTRY', 
         ] 
 
results_df = results_df[result_cols] 
 
# Save Results to CSV file 
 
results_df.to_csv('reg_results.csv', 
                  sep=',', 
                  na_rep='???', 
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                  header=True, 
                  index=False, 
                  index_label=None, 
                  encoding='UTF-8', 
                  compression=None, 
                  decimal='.') 
 
# Calculate run time 
end_time = datetime.now() 
print('Congrats! Your script has finished executing. Run time:') 
print(end_time - start_time) 
 

 

 

 

 

 

 

77 

 




