

MEF UNIVERSITY

THE EFFECT OF EXCHANGE RATE VOLATILITY
ON EXPORT AND IMPORT OF TURKEY ON

SECTORAL BASIS

Capstone Project

Yağmur Ulutürk Tekten

İSTANBUL, 2018

2

3

MEF UNIVERSITY

THE EFFECT OF EXCHANGE RATE VOLATILITY
ON EXPORT AND IMPORT OF TURKEY ON

SECTORAL BASIS

Capstone Project

Yağmur Ulutürk Tekten

Advisor: Asst. Prof. Nazlı Toraganlı Karamollaoğlu

İSTANBUL, 2018

4

MEF UNIVERSITY

Name of the project: The Effect of Exchange Rate Volatility On Export and Import of Turkey
On Sectoral Basis
Name/Last Name of the Student: Yağmur Ulutürk Tekten
Date of Thesis Defense: 03/09/2018

I hereby state that the graduation project prepared by Yağmur Ulutürk Tekten has been

completed under my supervision. I accept this work as a “Graduation Project”.

03/09/2018
 Asst. Prof. Nazlı Toraganlı Karamollaoğlu

I hereby state that I have examined this graduation project by Yağmur Ulutürk Tekten
which is accepted by his supervisor. This work is acceptable as a graduation project and the
student is eligible to take the graduation project examination.

03/09/2018
Director of

Big Data Analytics Program
Prof. Özgür Özlük

We hereby state that we have held the graduation examination of Yağmur Ulutürk Tekten and
agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE

Committee Member Signature

1. Asst. Prof. Nazlı Toraganlı Karamollaoğlu ………………………..

2. Prof. Özgür Özlük ………………………..

5

ACADEMIC HONESTY PLEDGE

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that I

have neither given nor received inappropriate assistance in preparing it.

YAĞMUR ULUTÜRK TEKTEN 03/09/2018

Name Date Signature

6

EXECUTIVE SUMMARY

THE EFFECT OF EXCHANGE RATE VOLATILITY ON EXPORT AND
IMPORT OF TURKEY ON SECTORAL BASIS

Yağmur Ulutürk Tekten

Advisor: Asst. Prof. Nazlı Toraganlı Karamollaoğlu

SEPTEMBER, 2018, 76 pages

In this study, the effects of exchange rate volatility on export and import of Turkey is

analysed by employing monthly trade data for the period from January 2004 to November
2015. The study is extended to cover both sectoral and country specific export and import
volumes.

The major aim of this study is to show how fluctuations in foreign exchange rate

change the volume of exports and imports among various sectors in Turkey. In this paper
export and import volume equation is formulated using sectoral data in which explanatory
variables are derived from the volatility of each country’s nominal exchange rate against the
TRY, bilateral real effective exchange rates for each country that Turkey has foreign trade
relationship. The dependent or target variable is the percentage change in the trade size in
USD amount both for export and import.

In this analysis, 6 different regression algorithms are utilized to explain the effect of

exchange rate volatility on industrial activities for export and import in Turkey. The impact of
features on the target feature is analyzed using linear, ridge, lasso, random forest, decision
tree and gradient boosting regression algorithms.

According to results of these 6 algorithms, for Turkey, the volatility of exchange rate

has significant impact on some sectors and on broad product group categories in both export
and import up to 26%. The sectors that most exposed to exchange rate volatilities are seen in
‘Giyim Eşyası’ in export and ‘Binek otomobilleri’ in import.

For export, ‘Rusya Federasyonu’, and for import ‘İtalya’ is the most sensitive

countries against exchange rate volatility in Turkey.

KeyWords: Import, Export, Exchange Rate Volatility, Real Exchange Rate, Regression,

Ridge, Lasso

7

ÖZET

DÖVİZ KURUNDAKİ OYNAKLIĞIN SEKTÖREL BAZDA TÜRKİYE’NİN

İHRACAT VE İTHALAT HACMİ ÜZERİNDEKİ ETKİSİ

Yağmur Ulutürk Tekten

Tez Danışmanı: Asst. Prof. Nazlı Toraganlı Karamollaoğlu

EYLÜL, 2018, 76 sayfa

Bu çalışmada döviz kurundaki oynaklığın Türkiye’nin farklı sektörlerinin ihracat ve

ithalat hacimlerine olan etkisi incelenmiştir. Çalışmada kullanılan veri seti aylık bazda Ocak
2004 ve Kasım 2015 tarihlerini kapsamaktadır. Döviz kurundaki oynaklığın etkisi sektör ve
ülke bazında hem ithalat hem ihracat alanlarında analiz edilmiştir.

Bu çalışmanın temel amacı son yıllarda artan döviz kurundaki dalgalanmaların

Türkiye’de farklı sektörlerin ihracat ve ithalat hacimlerindeki değişimine olan etkisini
anlamaya çalışmaktır.

Raporda, ihracat ve ithalat hacimlerindeki değişim sektör ve ürün grupları bazında

formülize edilmiştir. Modellemede kullanılan bağımsız değişkenler Türk Lirasına karşılık
çeşitli ülkelerin nominal döviz kurları, Türkiye ile ticari ilişkisi olan ülkelerin para birimleri
ve Türk Lirası arasındaki reel efektif döviz kurları baz alınarak oluşturulmuştur. Modellemede
kullanılan bağımlı değişkenler ise ihracat ve ithalat rakamlarındaki aylara göre yüzdesel
değişimlerdir.

Bu çalışmada döviz kuru oynaklığının sektörlerin ihracat ve ithalat hacimlerindeki

etkisi regresyon metodu ile analiz edildi. Bağımsız değişkenlerin modele katkısı linear, ridge,
lasso, rassal orman, karar ağaçları ve gradyan artırma regresyon modelleriyle incelendi.

6 farklı regresyon algoritmasının sonuçlarına göre, Türkiye’de döviz kuru

oynaklığının bazı sektör ve geniş ürün gruplarının ihracat ve ithalat hacimlerindeki değişimi
üzerinde 26%’ ya kadar ciddi etkileri olduğu saptanmıştır. Döviz kuru oynaklığından en çok
etkilenen sektörün ihracatta ‘Giyim eşyası’, ithalatta ise ‘Binek otomobilleri’ olduğu
gözlenmiştir. İhracatta ‘Rusya Federasyonu’ en fazla etkilenen ülke olurken, ithalatta ise
‘İtalya’ döviz kurundaki oynaklıktan en çok etkilenen ülke olarak öne çıkmıştır.

Anahtar Kelimeler: İthalat, İhracat, Döviz Kuru Oynaklığı, Reel Döviz Kuru, Regresyon,
Ridge, Lasso

8

TABLE OF CONTENTS

ACADEMIC HONESTY PLEDGE 6

EXECUTIVE SUMMARY 7

ÖZET 8

1. INTRODUCTION 11
1.1. About the Data 11
1.2. Project Definition 12
1.3. Methodology 12

2. LITERATURE REVIEW 13

3. DESCRIPTIVE ANALYSIS ON EXPORT DATASET 15
3.1. Turkey’s Export over Years (2004-2015) 15
3.2. Turkey’s Export by Sectoral Breakdown (2004-2015 Total) 15
3.3. Turkey’s Export by Sub-Sectoral Breakdown (2004-2015 Total) 16
3.4. Turkey’s Export by Trade Partners (2004-2015 Total) 16

4. DESCRIPTIVE ANALYSIS ON IMPORT DATASET 17
4.1. Turkey’s Import over Years (2004-2015) 17
4.2. Turkey’s Import by Sectoral Breakdown (2004-2015 Total) 17
4.3. Turkey’s Import by Sub-Sectoral Breakdown (2004-2015 Total) 18
4.4. Turkey’s Import by Trade Partners (2004-2015 Total) 18

5. DATA PREPROCESSING & FEATURE ENGINEERING 19
5.1. Data Cleaning 19
5.2. Feature Extraction 21
5.3. Label Encoding 23
5.4. Outliers 24

6. MODEL BUILDING 26
6.1. Dependent Variable 26
6.2. Independent Variables 26
6.3. Modelling and Parameters 27

7. RESULTS & CONCLUDING REMARKS 30

8. FUTURE DEVELOPMENTS 41

8. REFERENCES 42

APPENDIX A 43
Python Codes for Data Preprocessing 43

9

APPENDIX B 44
Python Codes For the Entire Study 44

10

1. INTRODUCTION

This study analyzes the impact of exchange rate volatility on the change of export and

import in Turkey on sectoral basis. For Turkey, as a middle-income country, export growth

and the composition of the goods in exports have a significant impact on the growth. In this

respect, export sectors and the share of these sectors in Turkey’s export play a key role in

terms of the growth performance of Turkey.

The objective of this paper is to understand how the exchange rate volatility affects the

change of exports and imports across Turkey's different sectors. The use of trade volume data

at country level may lead to the aggregation bias problem since the effect of exchange rate

volatility on export and import may vary across sectors in a country (Bahmani-Oskooee and

Wang 2008). For this reason, employing the sector-level export and import volume data in

order to deal with the aggregation bias problem is preferred to analyse the impact of exchange

rate volatility on sector-level trade.

1.1. About the Data

The export and import volume based on cross-sectoral and cross-country specific data

is obtained from Turkish Statistical Institute (TUIK) online trade database. The nominal

exchange rates are retrieved from the Electronic Data Distribution Center of The Central Bank

of the Republic of Turkey (TCMB EVDS). The country specific price indexes for

computation of real exchange rates are obtained from the OECD statistics library.

The dataset covers trade statistics over the period between January 2004 and

November 2015. The export dataset contains more than 1.9 million rows with 10 variables,

while import dataset has more than 1.2 million rows with 10 variables.

The sectoral categorization in the TUIK database named as ISIC3_CODE complies

with classification of product group by technology intensity prepared by OECD standards.

Therefore, ISIC3_CODE refers to this classification standards in the dataset.

BEC column in the dataset refers to the BEC classification (Classification by Broad

Economic Categories) that provides a means for international trade statistics to be analyzed by

broad economic categories such as food, industrial supplies, capital equipment, consumer

durables and consumer non-durables. Thus, BEC is a goods classification of foreign trade

11

statistics. The classification correlates the goods to broad macroeconomic categories such as

capital goods, intermediates goods, and consumer goods.

1.2. Project Definition

The study analyzes the impact of exchange rate volatility on Turkey’s export and

import for various sectors. The major aim of the study is to show variability in the changes in

export and import volume on sectoral basis against the volatility in the foreign exchange rates.

1.3. Methodology

The model is formulated as a regression problem. The contributions of explanatory

variables are analysed using regression analysis on time series trade volume data and foreign

exchange rates.

There are 16 explanatory variables in the modelling. These variables are:

12

2. LITERATURE REVIEW

There is a wide range of academic studies that analyzes the change in export and

import against the exchange rate volatility. Majority of the studies focuses on export income

elasticity for different countries, while remaining ones try to model export and import demand

function in order to define explanatory variables for export and import demand functions.

While some studies suggest that the exchange rate volatility has a negative impact on the

export volume, some others argue the opposite recommending that the volatility on the

exchange rate has a positive impact on the export size.

Berument et al. (2013) shows that income elasticity is greater than 1 for aggregate

exports, whereas they suggest that the real exchange rate elasticity is less than 1. In many

sectors, they found that income elasticity is greater than 1 with significant variations across

countries. Nazlioglu (2012) states that the impact of the exchange rate volatility on Turkish

exports differs across industries and the depreciation of the Turkish lira has positive impacts

on Turkish industry-level exports. Demez and Ustaoglu (2012) show that export is not

sensitive to the volatility in currency rates by applying Zivot-Andrews’ unit root test with one

structural break and Lee-Strazicich’ s unit root test with two structural breaks methodologies.

Demirhan (2015) shows that exchange-rate stability has a significant positive effect

on real export volume, both in the short and the long run. In this study, The Johansen

multivariate cointegration method and the parsimonious error-correction model are used to

determine long-run and short-run relationships between real export volume and its

determinants. In addition, GARCH model is taken as a proxy for exchange-rate stability and

generalized impulse-response functions and VAR analyses are employed to analyze the

effects of variables on real export volume.

Tari and Yildirim (2009) employ error correction and Johansen cointegration models

and suggest that volatility of exchange rate influences export volume negatively in the long

run. However, the uncertainty of exchange rate does not have an impact on export volume in

the short run.

In contrast to the previous studies, Altintas et al. (2011) shows that relative prices have

a negative effect and foreign income has an insignificant effect. However, nominal exchange

13

rate volatility has a positive and significant effect on Turkish exports by applying multivariate

cointegration and error correction model techniques. This study also suggests that

disaggregated trade data which means industry-level trade data should be analyzed in order to

make clear policy recommendations.

14

3. DESCRIPTIVE ANALYSIS ON EXPORT DATASET

3.1. Turkey’s Export over Years (2004-2015)

3.2. Turkey’s Export by Sectoral Breakdown (2004-2015 Total)

BEC categorization

15

3.3. Turkey’s Export by Sub-Sectoral Breakdown (2004-2015 Total)

ISIC3 categorization

3.4. Turkey’s Export by Trade Partners (2004-2015 Total)

Country level categorization

16

4. DESCRIPTIVE ANALYSIS ON IMPORT DATASET

4.1. Turkey’s Import over Years (2004-2015)

4.2. Turkey’s Import by Sectoral Breakdown (2004-2015 Total)

BEC categorization

17

4.3. Turkey’s Import by Sub-Sectoral Breakdown (2004-2015 Total)

ISIC3 categorization

4.4. Turkey’s Import by Trade Partners (2004-2015 Total)

Country level categorization

18

5. DATA PREPROCESSING & FEATURE ENGINEERING

5.1. Data Cleaning

Firstly, the original dataset is divided into two parts which are import and export

datasets. Then, all of the data preprocessing tasks are performed on both of them. Data

cleaning process begins with the detecting duplicate codes for same countries. The countries

with the same country codes are detected and replaced with suitable values. However,

duplicate country codes problem does not exist in the export dataset. Afterwards the rows

which all values have NAN are dropped both for import and export datasets. Import data

frames for different time ranges are merged.

We select observations from 2004 and afterwards, since export dataset lacked

“MONTH” column before 2004. Another reason for such a decision is that before European

Union, there were lots of different currencies and exchange rate combinations which would

increase complexity in the model.

In the dataset, there are countries using more than one currency pair in export and

import in their trade relationships. In order to reduce currency complexity, for each country

only one currency pair is selected based on conventional nominal exchange rates. We also

need to sum trade volumes for such cases, otherwise we would lose information.

Then each country code and each currency code are matched and merged on the

import and export datasets. There are 34 countries in the datasets but not 34 unique currencies

since some countries use common currencies such as those in European Union use EUR in

international trade.

There are some missing values in Currency Names. These cases are actually had “US

Dollar Code” (400) in Currency Code cells. Thus, Currency Names of such cases are filled

with “US Dollar”.

19

Mapping data frames for ISIC3, BEC, Currency and Country codes and names are

created. Rows which do not have information for currency or any missing values are dropped.

Lastly, data types of pandas data frame columns are corrected for any future error.

20

After cleaning duplicate and missing values for currencies and countries, monthly

consumer price indices (CPI) are added to the datasets. Having imported Turkey’s and other

countries’ monthly CPI values, only those countries which we are able to import monthly

CPI values are kept for the rest of the study. The reason is CPI values are necessary to

calculate bilateral real exchange rates between Turkey and other countries. The countries

which do not have monthly CPI values are dropped from both datasets. A mapping data frame

is generated for matching countries’ names in English, Turkish and related ‘COUNTRY

CODE’.

5.2. Feature Extraction

After merging CPI values with the export and import datasets, nominal exchange rates

for those different countries against TRY are added to the datasets. There are 23 currency

pairs against TRY. The monthly series of those 23 nominal exchange rates between

2004-2015 years are imported from the website called ‘Investing.com’. There are Close,

Open, High and Low prices for nominal exchange rates on monthly basis. When nominal

exchange rates are merged with the export and import datasets, monthly real exchange rates

between Turkey and other countries are calculated and a new feature called ‘REXR’ is added

to the datasets. The real exchange rates between two countries are calculated as below:

Real Exchange Rate = Nominal Exchange Rate * CPI (domestic) / CPI (foreign)

The other feature named ‘CLOSE-OPEN’ which refers to the price range (close price

minus open price) within a month is created and added to the datasets. The third one called

‘HIGH-LOW’ stands for the difference between the HIGH and LOW price that is observed

within a month.

After including those currency related features, the datasets which have already been

in the form of Python data frame are turned into pandas time-series format using ‘to_period’

method. This transformation was necessary in order to calculate percentage changes and

standard deviations of changes in the exchange rates, since the data frames should be in

time-series format. Otherwise, new features would not be generated from existing ones like

High, Low, Close, Open prices.

21

Pandas ‘to_period’ method was useful in this case since one can easily convert pandas

data frame from DatetimeIndex to PeriodIndex with desired frequency. In our case all datasets

are in monthly frequency in DateTimeIndex format and they are transformed into monthly

periods using ’to_period’ method.

An example script about how ‘to_period’ method is utilized in this case:

It was easy to calculate percentage changes and also standard deviations in the

nominal exchange rates’ percentage changes, when we have a data frame in pandas

time-series format. For the features REXR, CLOSE-OPEN, HIGH-LOW and CLOSE

6-month period standard deviations of percentage changes are calculated, while for the REXR

and CLOSE percentage changes for 1, 3 and 6 month periods are calculated separately using

pandas' stack/unstack, pct_change and rolling methods. These new features are included to

the export and import data frames.

After including calculated features such as REXR_STD, REXR_PCT_1 or

CLOSE_STD, some rows are filled with NAN due to lack of values in the previous periods.

Those rows and features on 13 columns with NAN values are dropped before running

regression models.

At this step, feature list is extended with 17 new features as seen in the table below:

22

5.3. Label Encoding

Before executing regression model, categorical variables ISIC3_CODE, BEC_CODE,

COUNTRY_CODE should be turned into numerical format. Those categorical variables are

transformed into numerical format using label encoding method. Label encoding simply

converts each value in the column to a number that stands for the index of the column. For

label encoding, ‘cat_codes’ function is applied to those three features. At the final stage, the

types of features are turned into numerical format (float or integer) that are ready to be used in

the regression analysis.

23

5.4. Outliers

When we look at the distribution of these new features, we can easily infer that there

are outlier values that need to be manipulated. Excluding those outlier values from the

datasets that will be used in the modelling was necessary. For this reason threshold values are

defined for each feature according to their histograms and those thresholds are used as

parameters in the function below:

5.5. Feature Scaling

The feature named ‘YEAR’ refers to year in number and it is scaled just by deducting

2003 from each year value since there are 12 years in the datasets that begin with 2004 and

end with 2015. Through this simple scaling method, each year is represented as 1 to 12

instead of 2004 to 2015.

24

The features ‘HIGH-LOW_STD’ and ‘CLOSE-OPEN_STD’ are also needed to be

scaled. These two features are scaled with MinMaxScaler. After attempting several feature

scaling methods (MinMaxScaler, StandardScaler, MaxAbsScaler, RobustScaler, Normalizer)

to those two features, the best scaler method is seen as MinMaxScaler.

Before starting model building, we save pickle files of import and export features and

targets, in order to use them in Azure Machine Learning Studio for BDA 564 Final Project.

25

6. MODEL BUILDING

In this section, export and import equation models, regression analysis output and

model parameters will be shown. Cross country level and cross-sectoral level coefficients and

relationships among the model variables will be analyzed in this section.

6.1. Dependent Variable

For the regression model, three different target features or independent variables are created.

These are:

For the export and import datasets, instead of absolute values of USD trade amount,

percentage changes in 1, 3 and 6 month-periods are set as target features. Each regression

model tried to explain one of these 3 targets each time. In other words, we do not try to

predict DOLLAR_AMOUNT_PCT_1, DOLLAR_AMOUNT_PCT_3,

DOLLAR_AMOUNT_PCT_6 at the same time.

6.2. Independent Variables

In the final datasets both for import and export, there are 16 explanatory features that

are used in the regression models. All of these features are used in the model. 16 features in

the model are listed in the table below:

26

6.3. Modelling and Parameters

In this study, 6 different regression algorithms are used for both export and import

datasets. These algorithms are:

I. Linear Regression

II. Ridge Regression

III. Lasso Regression

IV. Random Forest Regression

V. Decision Tree Regression

VI. Gradient Boosting Regression

We define a regression function which takes “features”, “target”, “explanation”,

“trade_type” and “algo” as input parameters, and generates results for given parameters. The

reason behind defining such a function is that we will have multiple regression analysis for

each trade type (import or export), each country or sector, each target or each regression

algorithm (ex: Linear Regression or an ensemble method). We call regression function each

time we have a different combination of input parameters. Combining all these different

regression models, we generate more than 1.500 results. The results are saved into

“results_df” data frame and stored into a CSV file, so we can easily access the results for

further analysis. The import and export datasets have more than 160.000 observations with 16

features. model.py script takes 5 minutes in order to execute all the code.

Since there are more than 30 countries and a great deal amount of sectors (ISIC3) and

broad product group classifications (BEC), there should be a lot of distinct regression models

that take into account those sector and product group breakdowns. This was a tricky part for

the analysis since when we split the dataset into breakdowns, some sector or product group

breakdowns have even less than 10 observations. Having insufficient number of observations

for regression models would have produced biased and erroneous results. For this reason, we

add minimum sample size parameter into our regression function. Minimum sample size is set

as 100 (min_samples = 100) in the regression function so that when a dataset for different

categorical feature breakdown has less than 100 samples, the regression output will return 0

27

http://tureng.com/tr/turkce-ingilizce/erroneous

for all performance metrics. Otherwise, the given regression output will be generated and

printed.

Apart from minimum sample size, this new function takes into account other tuning

parameters as well. Those parameters are explained as below:

● The test-train split: Test size fraction is set to be 0.30. for both import and export.

● Random state parameter: It is given 7 for all of the models.

● Ridge Regression: Alpha parameter is set to 1.0.

● Random Forest Regression: Alpha is given 0.1.

After executing all regressions, we end up with a great deal amount of regression

outputs that makes difficult to understand and interpret the results. The regression function

outputs are stored so that we can see all the results for each combination. The results, output

metrics and regression coefficients are shown in a data frame in human readable and

comprehensible format. The final data frame for results contains the 28 columns in the table

below:

When all regression functions are executed, one of the ISIC3 code ‘33’ and BEC code

‘17’ in import dataset outperformed other models by R2 scores with higher than 40%. These

R2 scores were extremely higher than the other regression results for other country, BEC and

28

ISIC3 breakdowns. The sector with ISIC3_33 and the BEC_17 refer to ‘Gizli Veri’, i.e,

confidential information. These two codes were excluded from the final regression results.

In the result data frame, breakdown names are added instead of codes for readability.

29

7. RESULTS & CONCLUDING REMARKS

In order to empirically analyze the impact of exchange rate volatility on industry-level

and country-level trade, the regressions are executed on the import and export data for

Turkey. Since the main goal of this study is to understand the effect of exchange rate volatility

on trade volume, explanatory analysis is conducted for import and export datasets. Various

regression algorithms are utilized to explain whether or not the exchange rate volatility has

significant impact on the Turkey’s export and import volume for different industrial activities.

6 different regression algorithms are applied and coefficients are stored for more than

1500 different regression functions in such a way that the contributions of each feature in each

regression function can easily be interpreted.

When we look at the results table, we can easily read the regression outputs and make

comments on the breakdowns. However, as a conclusion of the best five models for export

and import, respectively, will be summarized below. The 6 regression models’ performance

will also be analyzed at the end of this section.

Regression Results Table:

30

EXPORT

● The first best three R2 test score belongs to the models based on ISIC3 = ‘Giyim

Eşyası’ breakdown in export.

● The first best two model has the target feature ‘Dollar_Amount_PCT_6’.

● When we compare the best two models, we see that Random Forest regressor in

‘Giyim Eşyası’ with R2 score on test data 0.264 performs better than Gradient

Boosting for export volume.

● The third best model has the target feature ‘Dollar_Amount_PCT_3’. In this model,

changes in the export volume of the ‘Giyim Eşyası’ against the exchange rate

volatility is best explained with Random Forest regressor with 0.247 R2 score on test

data.

● The successive best model in export is the one in which the target feature is again

‘Dollar_Amount_PCT_6’, but the breakdown type is BEC.

● When regression is run on BEC = ‘Esası yiyecek ve içecek olan işlenmemiş tüketim

malları’ for export dataset, we can see that Gradient Boosting regressor best explains

the 6 month percentage change in the dollar amount of export volume in ‘Esası

yiyecek ve içecek olan işlenmemiş tüketim malları’ product category against the

volatility in exchange rates.

● The other best performance model in export is seen when the target feature is again

‘Dollar_Amount_PCT_6’ and breakdown type is COUNTRY.

● For ‘Rusya Federasyonu’, Gradient Boosting regressor best explains the 6 month

percentage change in the dollar amount of export volume against the volatility in

exchange rates with R2 test score 0.202

IMPORT:

● The best performance model for import is seen when the target feature is

‘Dollar_Amount_PCT_1’ and the breakdown type is BEC.

● Gradient Boosting regressor best explains the changes in the 1 month percentage

change in the import volume in BEC = ‘Binek otomobilleri’ with R2 score on test data

0.217

31

● The second best performance model in import is again attained with Gradient

Boosting when BEC is again ‘Binek otomobilleri’, but in this case the target feature is

‘Dollar_Amount_PCT_3’

● The third best model in import is seen with Gradient Boosting regressor when

breakdown type is ISIC3 = ‘Motorlu kara taşıtı ve römorklar’. Gradient Boosting

regressor performs better when the target feature is again ‘Dollar_Amount_PCT_3’

and ISIC3 breakdown is set to be ‘Motorlu kara taşıtı ve römorklar’. At this model, R2

score on test data is 0.206.

● The fourth best model in import is seen when breakdown is set on COUNTRY.

● The Gradient Boosting regressor seems the best when we try to analyze the impact of

exchange rate volatility on 6 month percentage change in the dollar amount of imports

from Italy with R2 score on test set is 0.199.

● The fifth best model in import is obtained when breakdown is set on ISIC3. Again,

Gradient Boosting regressor performs better for import.

● In the fifth one, Gradient Boosting regressor best explains the effect of exchange rate

volatility for 3 month percentage change in the dollar amount of import volume for

ISIC3= ‘Başka yerde sınıflandırılmamış makine ve teçhizat’

Average Performance Metrics of Regression Algorithms

When we summarize the average results for the 6 regression models for import and

export, we see that Gradient Boosting algorithm performs better than the rest of them on

average for both import and export as seen in the table below.

In contrast, Decision Tree regressor seems to perform the worst among others since

decision tree algorithms have a tendency to overfitting. The figures in the table below show us

that Decision Tree has the highest R2 score on train with zero error for both import and

export. Outperformance of decision tree verifies the overfitting problem in this case.

32

Average R2 Test Scores of Regression Algorithms on The Three Target Features

When average R2 test scores are analyzed for the three different target features we see

that;

For export:

● Linear Regression performs better for Dollar_Amount_PCT_3 with average R2 test

score (0.026)

● Gradient Boosting has the highest average R2 test score (0.101) for

Dollar_Amount_PCT_6

● Random Forest has also the highest average R2 test score (0.07) for

Dollar_Amount_PCT_6

For import:

● Linear Regression performs better for Dollar_Amount_PCT_6 with average R2 test

score (0.024)

● Gradient Boosting has highest R2 test score (0.102) on average for

Dollar_Amount_PCT_6

33

● Random Forest has the highest R2 test score (0.060) on average for

Dollar_Amount_PCT_6

Average R2 Test Scores for Export on BEC Breakdown

When the analysis is splitted on sectoral breakdown and product group, we see that

Gradient Boosting algorithm outperforms the others in terms of average R2 test score which is

greater than 5% for all of the three target feature for export.

Gradient Boosting algorithm explains on average 14% of the change in the export

volume in BEC categories ‘Dayanıklı tüketim malları’ and ‘Esası yiyecek ve içecek olan

işlenmemiş tüketim malları’ when all of the target features are taken into account.

Random Forest also performs similar to Gradient Boosting in such a way that it

explains 13% of the change in the export volume in BEC category called ‘Esası yiyecek ve

içecek olan işlenmemiş tüketim malları’ when all of the target features are taken into account.

34

Average R2 Test Score for Export on ISIC3 Breakdown

When we analyze the outputs in terms of ISIC3 breakdown, we see that the highest R2

test score is again obtained with Gradient Boosting. It explains 15% of the variance in the

export volume of ‘Motorlu kara taşıtı ve römorklar’ when all of the target features are

considered.

Random Forest algorithm seems to explain 13% of that in the export volume of

‘Tekstil ürünleri’ when regression function is run for all of the target features.

35

Average R2 Test Score for Export on COUNTRY Breakdown

When the regression function is executed on COUNTRY breakdown, we see that

Gradient Boosting explains more than 10% of the variance in the export volume of countries

ABD, Almanya, Avusturya, Avustralya, İngiltere, İsveç, İtalya, Kanada, Polonya, Rusya

Federasyonu, Suudi Arabistan and Yunanistan. On the other hand, Random Forest performs

well on Rusya Federasyonu and Yunanistan with 15% and 11% R2 test scores, respectively.

Average R2 Test Scores for Import on BEC Breakdown

When the regression function is run on BEC breakdown for import, it is seen

that average R2 test scores are higher with Gradient Boosting. With gradient boosting on BEC

breakdown on import data, average R2 test score is 17% for ‘Binek otomobilleri’ and ‘Sanayi

36

ile ilgili taşımacılık araç ve gereçleri’. R2 test score is 14% for ‘Taşımacılık araçlarının aksam

ve parçaları’.

Average R2 Test Scores for Import on ISIC3 Breakdown

The highest R2 test scores are observed for ‘Motorlu kara taşıtı ve römorklar’,

‘Metalik olmayan diğer mineral ürünler’, ‘Metal eşya sanayi (makine ve teçhizatı hariç)’,

‘Mobilya ve başka yerde sınıflandırılmamış diğer ürünler’, ‘Giyim eşyası’ with 17%, 15%,

13%, 13%, 13%, respectively, when the regression function is executed on ISIC3 breakdown

on import.

37

Average R2 Test Scores for Import on COUNTRY Breakdown

The Gradient Boosting algorithm outperforms against all others when the regression

function is executed on country breakdown for import. When all of the target features are

considered, 15% of the change in the import from ABD and Fransa, 16% of that from İtalya,

14% of that from Japonya against exchange rate volatility is explained by the underlying

model.

38

Linear Regression Results

When we consider only Linear Regression results, we see that coefficients of 16

features do not differ significantly from each other both for export and import.

In order to take a general picture on linear regression results, firstly, average of

coefficients are shown in a table that takes into account all regression results for 3 different

target features, and secondly, maximum value of coefficients are displayed on a seperate

table.

As you can see in the maximum coefficients table below, the most exploratory

variables for import and export are highlighted with red. REXR_PCT_1, REXR_PCT_3,

39

REXR_PCT_6, CLOSE_STD, REXR_STD, CLOSE_PCT_1, CLOSE_PCT_3 features are

common for export and import.

As seen in the average coefficients table below, the average coefficients are stronger

for REXR_PCT_1, REXR_PCT_3, REXR_PCT_6, CLOSE_STD, REXR_STD,

CLOSE_PCT_1, CLOSE_PCT_3 and CLOSE_PCT_6 features both for import and export.

40

8. FUTURE DEVELOPMENTS

For those three categorical features COUNTRY, ISIC3 and BEC, label encoding

method is applied to transform them into numerical format. However, instead of assigning

integer values to these categorical features, the average values for the underlying year can be

used so that they can be turned into continuous values and get different values for each year.

The export and import datasets composed of monthly series from 2004 to 2015. One

drawback in this analysis is the lack of seasonality analysis. The seasonal components can be

eliminated for further studies if time range of datasets were higher. As mentioned above,

some of the sample sizes for country and industry level breakdowns are too small to run a

healthy regression model. Thus, as the size of the sample and the number of years increases,

seasonality analysis can be conducted on those country-level and industry-level breakdowns.

The analysis in this study are made with month ranges. Regression analysis can be

extended further for yearly or quarterly analysis as well.

Econometric tests such as unit root or autocorrelation tests can also be performed

before executing regression models. In statistics, a “unit root test” tests whether a time series

feature is non-stationary and possesses a unit root. A unit root is a stochastic trend in a time

series data. If a time series data has a unit root, it shows a systematic pattern that is

unpredictable. Thus, a stationary time series data has mean, variance, autocorrelation in so

that they are all constant over time. On the other side, autocorrelation in time series data refers

to the situation which the errors may not be independent; i.e, errors are autocorrelated. This

means that each error is correlated with the error immediately before it.

In this study, regression models are executed separately on different country-level or

sector-level breakdowns. However, regression models can be applied on combinations of

breakdowns such as (Country = Germany and ISIC3 = 12) or (Country = Italy and BEC = 2)

etc. The outputs for these regression models may be far more explanatory than the existing

ones.

41

8. REFERENCES

Berument, H., Dincer, N. and Mustafaoglu, Z. (2013). External income shocks and Turkish

exports: A sectoral analysis. Journal of Elsevier, Economic Modelling 37 (2014) 476–484

Nazlioglu, S. (2012). Exchange rate volatility and Turkish industry-level export: Panel

cointegration analysis. The Journal of International Trade & Economic Development (2013)

Vol. 22, 1088–1107

Demez, S., Ustaoglu, M. (2012). Exchange-Rate Volatility’ s Impact on Turkey’s Exports: An

Empirical Analyze for 1992-2010. Procedia - Social and Behavioral Sciences 41 (2012) 168 –

176

Demirhan, E., Demirhan, B. (2015). The Dynamic Effect of Exchange-Rate Volatility on

Turkish Exports: Parsimonious Error-Correction Model Approach. Panoeconomicus (2015),

Vol. 62, 429-451

Tarı, R., Yıldırım, D.Ç. (2009). The Effect of Exchange Rate on Export: An Analysis for

Turkey. Yönetim ve Ekonomi (2009)

Altıntaş, H., Çetin, R., Öz, Bülent (2011). The Impact of Exchange Rate Volatility on Turkish

Exports: 1993-2009. South East European Journal of Economics & Business (2011) 67-77

42

APPENDIX A

Python Codes for Data Preprocessing

Python codes generated by using iPython Notebook can be found in the attachment.

File Name: preprocess_monthly.ipynb, Descriptive_Analysis.html

File Type: iPython Notebook, ipython notebook generated html file

43

APPENDIX B

Python Codes For the Entire Study

File Name: preprocess_monthly.py

File Type: Python Script File

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Sat Jun 30 18:43:50 2018

@author: yagmuruluturktekten
"""

Capstone Project
Yagmur Uluturk Tekten

Import Libraries
import pandas as pd
import numpy as np
import os

Change path
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

Read true currency map
path = os.path.expanduser("~/Documents/capstone/datasets/currency_map")
os.chdir(path)
t_currency_map = pd.read_csv('t_currency_map.csv', sep=',', header=0, encoding='utf-8')

###
#############################
IMPORT DATASET PREPROCESSING
###
#############################

Read Import datasets

44

path = os.path.expanduser("~/Documents/capstone/datasets/imports")
os.chdir(path)
import_19892003 = pd.read_csv('1989_2003_import.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
import_20042009 = pd.read_csv('2004_2009_import.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
import_20102013 = pd.read_csv('2010_2013_import.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
import_20142015 = pd.read_csv('2014_2015_import.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
import_dfs = [import_19892003, import_20042009, import_20102013, import_20142015]

Different dataset files may contain different string values for same code. We should check
it.
isic3 = pd.DataFrame()
bec = pd.DataFrame()
currency = pd.DataFrame()
country = pd.DataFrame()

for dataset in import_dfs:
 isic3 = isic3.append(dataset[['ISIC3_2', 'ISIC3_ADI']].drop_duplicates(subset=None,
keep='first', inplace=False), ignore_index=False, verify_integrity=False)
 bec = bec.append(dataset[['BEC', 'BEC_ADI']].drop_duplicates(subset=None,
keep='first', inplace=False), ignore_index=False, verify_integrity=False)
 currency = currency.append(dataset[['DOVIZ_KODU',
'DOVIZ_ADI']].drop_duplicates(subset=None, keep='first', inplace=False),
ignore_index=False, verify_integrity=False)
 country = country.append(dataset[['ULKE',
'ULKE_ADI']].drop_duplicates(subset=None, keep='first', inplace=False),
ignore_index=False, verify_integrity=False)
del dataset

isic3 = isic3.drop_duplicates(subset=None, keep='first',
inplace=False)['ISIC3_2'].value_counts().sort_values(ascending=False)
bec = bec.drop_duplicates(subset=None, keep='first',
inplace=False)['BEC'].value_counts().sort_values(ascending=False)
currency = currency.drop_duplicates(subset=None, keep='first',
inplace=False)['DOVIZ_KODU'].value_counts().sort_values(ascending=False)
country = country.drop_duplicates(subset=None, keep='first',
inplace=False)['ULKE'].value_counts().sort_values(ascending=False)

45

Correct Kanarya Adalari & Ceuta
print(import_19892003.iloc[6194]['ULKE_ADI']) # Kanarya Adalari
import_19892003.loc[import_19892003['ULKE_ADI'] == 'Kanarya Adaları', 'ULKE_ADI']
= 'Ceuta'
print(import_19892003.iloc[6194]['ULKE_ADI']) # Ceuta
del bec, country, currency, isic3

Merge Import Dataframes
dfM = pd.concat(import_dfs, ignore_index=True)
del import_19892003, import_20042009, import_20102013, import_20142015, import_dfs

Correct multiple codes for same country problem
Find countries with duplicate codes
corrector = dfM.groupby(['ULKE_ADI', 'ULKE'])['DOLAR'].count().reset_index()
corrector.drop(['DOLAR'], axis=1, inplace=True)
corrector_keys = corrector[corrector.duplicated(['ULKE_ADI'],
keep='first')]['ULKE'].tolist()
corrector_vals = corrector[corrector.duplicated(['ULKE_ADI'],
keep='last')]['ULKE'].tolist()
corrector = dict(zip(corrector_keys, corrector_vals))
dfM.replace({'ULKE':corrector}, inplace=True)
del corrector, corrector_keys, corrector_vals

Clean Import Dataframe dfM

Drop first column specifying rows are about Export data
dfM.drop('IHRITH', 1, inplace=True, errors='raise')

Drop fully NAN rows and columns
dfM.dropna(axis=0, how='all', inplace=True)
dfM.dropna(axis=1, how='all', inplace=True)

Rename columns
dfM.columns = ['MONTH', 'BEC_CODE', 'BEC_NAME', 'DOLLAR_AMOUNT',
'CURRENCY_NAME', 'CURRENCY_CODE', 'ISIC3_CODE', 'ISIC3_NAME',
'COUNTRY_CODE', 'COUNTRY_NAME', 'YEAR']

Check NAN values
dfM.isnull().any()
"""
Returns:

46

MONTH False
BEC_CODE False
BEC_NAME False
DOLLAR_AMOUNT False
CURRENCY_NAME True
CURRENCY_CODE True
ISIC3_CODE False
ISIC3_NAME False
COUNTRY_CODE False
COUNTRY_NAME False
YEAR False
dtype: bool

Only CURRENCY_NAME and CURRENCY_CODE columns contain NAN values.
"""

Fill Currency Codes & Names
print(dfM['CURRENCY_CODE'].isnull().sum()) # 10 rows
print(dfM['CURRENCY_NAME'].isnull().sum()) # 56564 rows
dfM.loc[dfM['CURRENCY_NAME'].isnull(), 'CURRENCY_CODE'] = 400 # Fill NAN
currency names and codes with US Dollar
dfM['CURRENCY_NAME'].fillna(value='ABD Doları', inplace=True) # Fill NAN
currency names and codes with US Dollar
print(dfM['CURRENCY_CODE'].isnull().sum()) # 0 rows
print(dfM['CURRENCY_NAME'].isnull().sum()) # 0 rows

Check NAN values
dfM.isnull().any()
"""
Returns:
MONTH False
BEC_CODE False
BEC_NAME False
DOLLAR_AMOUNT False
CURRENCY_NAME False
CURRENCY_CODE False
ISIC3_CODE False
ISIC3_NAME False
COUNTRY_CODE False
COUNTRY_NAME False
YEAR False

47

dtype: bool

None of the columns contain NAN values.
"""

Generate new dataframes for standard names for codes, so we can drop duplicate
information from original dfM
bec_names = dfM[['BEC_CODE', 'BEC_NAME']].drop_duplicates(subset=None,
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False)
currency_names = dfM[['CURRENCY_CODE',
'CURRENCY_NAME']].drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)
isic3_names = dfM[['ISIC3_CODE', 'ISIC3_NAME']].drop_duplicates(subset=None,
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False)
country_names = dfM[['COUNTRY_CODE',
'COUNTRY_NAME']].drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

dfM.drop(['BEC_NAME', 'CURRENCY_NAME', 'ISIC3_NAME','COUNTRY_NAME'],
axis=1, inplace=True)
dfM = dfM[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE',
'CURRENCY_CODE', 'DOLLAR_AMOUNT']]

Select rows after year 2003
dfM = dfM[dfM['YEAR'] > 2003]

Drop Currency Complexity by Country
dfM.drop(['CURRENCY_CODE'], inplace=True, axis=1)
dfM = dfM.groupby(['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE',
'COUNTRY_CODE'])['DOLLAR_AMOUNT'].sum().reset_index()

Add True Currency Code
dfM = pd.merge(dfM, t_currency_map[['COUNTRY_CODE','T_CURRENCY_CODE']],
on=['COUNTRY_CODE'], how='left')

Drop rows which we don't have information for currency and/or CPI
dfM.dropna(axis=0, how='any', inplace=True)

Change data types
print(dfM.dtypes)

48

dfM['T_CURRENCY_CODE'] = dfM['T_CURRENCY_CODE'].astype('int64')
currency_names['CURRENCY_CODE'] =
currency_names['CURRENCY_CODE'].astype('int64')

print(dfM.dtypes)

Save preprocessed import dataset information into Python Object file
path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)
dfM.to_pickle("dfM.pkl", compression='gzip')
bec_names.to_pickle("bec_names_m.pkl", compression='gzip')
country_names.to_pickle("country_names_m.pkl", compression='gzip')
isic3_names.to_pickle("isic3_names_m.pkl", compression='gzip')
currency_names.to_pickle("currency_names_m.pkl", compression='gzip')
del bec_names, country_names, currency_names, isic3_names, dfM

###
#############################
EXPORT DATASET PREPROCESSING
###
#############################

Change path to back
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

Read Export datasets
path = os.path.expanduser("~/Documents/capstone/datasets/exports")
os.chdir(path)
export_19892003 = pd.read_csv('1989_2003_export.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
export_19892003 = pd.DataFrame()
export_20042009 = pd.read_csv('2004_2009_export.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
export_20102013 = pd.read_csv('2010_2013_export.csv', sep=';', header=0,
encoding='utf-8', thousands=",")
export_20142015 = pd.read_csv('2014_2015_export.csv', sep=';', header=0,
encoding='utf-8', thousands=",")

49

export_dfs = [export_19892003, export_20042009, export_20102013, export_20142015]
export_dfs = [export_20042009, export_20102013, export_20142015]

Different dataset files may contain different string values for same code. We should check
it.
isic3 = pd.DataFrame()
bec = pd.DataFrame()
currency = pd.DataFrame()
country = pd.DataFrame()

for dataset in export_dfs:
 isic3 = isic3.append(dataset[['ISIC3_2', 'ISIC3_ADI']].drop_duplicates(subset=None,
keep='first', inplace=False), ignore_index=False, verify_integrity=False)
 bec = bec.append(dataset[['BEC', 'BEC_ADI']].drop_duplicates(subset=None,
keep='first', inplace=False), ignore_index=False, verify_integrity=False)
 currency = currency.append(dataset[['DOVIZ_KODU',
'DOVIZ_ADI']].drop_duplicates(subset=None, keep='first', inplace=False),
ignore_index=False, verify_integrity=False)
 country = country.append(dataset[['ULKE',
'ULKE_ADI']].drop_duplicates(subset=None, keep='first', inplace=False),
ignore_index=False, verify_integrity=False)
del dataset

isic3 = isic3.drop_duplicates(subset=None, keep='first',
inplace=False)['ISIC3_2'].value_counts().sort_values(ascending=False)
bec = bec.drop_duplicates(subset=None, keep='first',
inplace=False)['BEC'].value_counts().sort_values(ascending=False)
currency = currency.drop_duplicates(subset=None, keep='first',
inplace=False)['DOVIZ_KODU'].value_counts().sort_values(ascending=False)
country = country.drop_duplicates(subset=None, keep='first',
inplace=False)['ULKE'].value_counts().sort_values(ascending=False)

"""
print(export_19892003.iloc[6194]['ULKE_ADI']) # Kanarya Adalari
export_19892003.loc[export_19892003['ULKE_ADI'] == 'Kanarya Adaları', 'ULKE_ADI']
= 'Ceuta'
print(export_19892003.iloc[6194]['ULKE_ADI']) # Ceuta
"""
del bec, country, currency, isic3

50

Merge Export Dataframes
dfX = pd.concat(export_dfs, ignore_index=True)
del export_19892003, export_20042009, export_20102013, export_20142015, export_dfs

"""
Correct multiple codes for same country problem
corrector = dfX.groupby(['ULKE_ADI', 'ULKE'])['DOLAR'].count().reset_index()
corrector.drop(['DOLAR'], axis=1, inplace=True)
corrector_keys = corrector[corrector.duplicated(['ULKE_ADI'],
keep='first')]['ULKE'].tolist()
corrector_vals = corrector[corrector.duplicated(['ULKE_ADI'],
keep='last')]['ULKE'].tolist()
corrector = dict(zip(corrector_keys, corrector_vals))
dfX.replace({'ULKE':corrector}, inplace=True)
del corrector, corrector_keys, corrector_vals
Important note: Duplicate country code problem does not exist in dfX dataframe
"""

Correct country code of Switzerland
dfX["ULKE"].replace(39, 36, inplace=True)

Clean Export Dataframe dfX

Drop first column specifying rows are about Export data
dfX.drop('IHRITH', 1, inplace=True, errors='raise')

Drop fully NAN rows and columns
dfX.dropna(axis=0, how='all', inplace=True)
dfX.dropna(axis=1, how='all', inplace=True)

Rename columns
dfX.columns = ['MONTH', 'BEC_CODE', 'BEC_NAME', 'DOLLAR_AMOUNT',
'CURRENCY_NAME', 'CURRENCY_CODE', 'ISIC3_CODE', 'ISIC3_NAME',
'COUNTRY_CODE', 'COUNTRY_NAME', 'YEAR']

Check NAN values
dfX.isnull().any()
"""
Returns:
MONTH False
BEC_CODE False

51

BEC_NAME False
DOLLAR_AMOUNT False
CURRENCY_NAME False
CURRENCY_CODE False
ISIC3_CODE False
ISIC3_NAME False
COUNTRY_CODE False
COUNTRY_NAME False
YEAR False
dtype: bool

None of the columns contains NAN values.
"""

Generate new dataframes for standard names for codes, so we can drop duplicate
information from original dfX
bec_names = dfX[['BEC_CODE', 'BEC_NAME']].drop_duplicates(subset=None,
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False)
currency_names = dfX[['CURRENCY_CODE',
'CURRENCY_NAME']].drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)
isic3_names = dfX[['ISIC3_CODE', 'ISIC3_NAME']].drop_duplicates(subset=None,
keep='first', inplace=False).reset_index(level=None, drop=True, inplace=False)
country_names = dfX[['COUNTRY_CODE',
'COUNTRY_NAME']].drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

dfX.drop(['BEC_NAME', 'CURRENCY_NAME', 'ISIC3_NAME','COUNTRY_NAME'],
axis=1, inplace=True)
dfX = dfX[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE',
'CURRENCY_CODE', 'DOLLAR_AMOUNT']]

Drop Currency Complexity by Country
dfX.drop(['CURRENCY_CODE'], inplace=True, axis=1)
dfX = dfX.groupby(['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE',
'COUNTRY_CODE'])['DOLLAR_AMOUNT'].sum().reset_index()

Add True Currency Code
dfX = pd.merge(dfX, t_currency_map[['COUNTRY_CODE','T_CURRENCY_CODE']],

52

on=['COUNTRY_CODE'], how='left')

Drop rows which we don't have information for currency and/or CPI
dfX.dropna(axis=0, how='any', inplace=True)

Change data types
print(dfX.dtypes)

dfX['T_CURRENCY_CODE'] = dfX['T_CURRENCY_CODE'].astype('int64')
currency_names['CURRENCY_CODE'] =
currency_names['CURRENCY_CODE'].astype('int64')

print(dfX.dtypes)

Save preprocessed export dataset information into Python Object file
path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)
dfX.to_pickle("dfX.pkl", compression='gzip')
bec_names.to_pickle("bec_names_x.pkl", compression='gzip')
country_names.to_pickle("country_names_x.pkl", compression='gzip')
isic3_names.to_pickle("isic3_names_x.pkl", compression='gzip')
currency_names.to_pickle("currency_names_x.pkl", compression='gzip')
del bec_names, country_names, currency_names, isic3_names, dfX

Change path to back
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

53

File Name: cpi.py

File Type: Python Script File

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Sun Jul 22 18:40:30 2018

@author: yagmuruluturktekten
"""

Capstone Project
Yagmur Uluturk Tekten

###
#############################
CPI VALUES TO EXPORT & IMPORT DATAFRAMES
###
#############################

Import Libraries
import pandas as pd
import numpy as np
import os

Change path
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

Load CPI csv file

Change path firstly
path = os.path.expanduser("~/Documents/capstone/datasets/cpi")
os.chdir(path)

Read CPI Indices CSV filer
cpi = pd.read_csv('cpi.csv', sep=',', header=0, encoding='utf-8')
cpi.drop(['MONTH','YEAR'], axis=1, inplace=True, errors='raise')

54

Melt CPI df
cpi_cols = list(cpi.columns)[2:]
cpi = pd.melt(cpi, id_vars = ['MONTH&YEAR'], value_vars = cpi_cols,
var_name='COUNTRY_NAME', value_name='CPI')

Generate month & year separately
cpi['DATE_PD'] = pd.to_datetime(cpi['MONTH&YEAR'], format = '%d.%m.%Y')
cpi['MONTH'] = cpi['DATE_PD'].map(lambda x: x.month)
cpi['YEAR'] = cpi['DATE_PD'].map(lambda x: x.year)

Reshape CPI df
cpi = cpi[['YEAR', 'MONTH', 'DATE_PD', 'COUNTRY_NAME', 'CPI']]

CPI of Turkey
cpi_tr = cpi[cpi['COUNTRY_NAME'] == 'Turkey']
cpi_tr = cpi_tr[['YEAR','MONTH','CPI']]
cpi_tr.rename(columns={'CPI':'CPI_TR'}, inplace = True)

Map country names
country_names_eng_tur = { 'United States':'ABD',
 'Germany':'Almanya',
 'Australia':'Avustralya',
 'Austria':'Avusturya',
 'Belgium':'Belçika',
 'Brazil':'Brezilya',
 'Czech Republic':'Çek Cumhuriyeti',
 'China':'Çin',
 'Denmark':'Danimarka',
 'France':'Fransa',
 'South Africa':'Güney Afrika',
 'India':'Hindistan',
 'Croatia':'Hırvatistan',
 'Netherlands':'Hollanda',
 'Hong Kong SAR':'Hong Kong',
 'United Kingdom':'İngiltere',
 'Ireland':'İrlanda',
 'Spain':'İspanya',
 'Israel':'İsrail',
 'Sweden':'İsveç',
 'Switzerland':'İsviçre',
 'Italy':'İtalya',

55

 'Japan':'Japonya',
 'Canada':'Kanada',
 'Mexico':'Meksika',
 'Norway':'Norveç',
 'Poland':'Polonya',
 'Portugal':'Portekiz',
 'Romania':'Romanya',
 'Russia':'Rusya Federasyonu',
 'Saudi Arabia':'Suudi Arabistan',
 'New Zealand':'Yeni Zelanda',
 'Greece':'Yunanistan'
 }

cpi.replace({"COUNTRY_NAME": country_names_eng_tur}, inplace=True)

Drop unwanted countries
countries_to_keep = list(country_names_eng_tur.values())
countries_to_keep.append('Malta')
cpi = cpi[cpi['COUNTRY_NAME'].isin(countries_to_keep)]

Find Country Codes
path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)
country_names_m = pd.read_pickle('country_names_m.pkl', compression='gzip')
cpi = pd.merge(cpi, country_names_m, on=['COUNTRY_NAME'], how='left')

Drop columns & reorder
cpi = cpi[['YEAR', 'MONTH', 'COUNTRY_CODE', 'CPI']]

Add CPI value to dfM & dfX
dfX = pd.read_pickle('dfX.pkl', compression = 'gzip')
dfM = pd.read_pickle('dfM.pkl', compression = 'gzip')

dfX = pd.merge(dfX, cpi, on=['YEAR','MONTH','COUNTRY_CODE'], how='left')
dfM = pd.merge(dfM, cpi, on=['YEAR','MONTH','COUNTRY_CODE'], how='left')

Add CPI Turkey to dfM & dfX
dfX = pd.merge(dfX, cpi_tr, on=['YEAR','MONTH'], how='left')
dfM = pd.merge(dfM, cpi_tr, on=['YEAR','MONTH'], how='left')

Save CPI values into Python Object file

56

path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)
dfX.to_pickle("dfX_wcpi.pkl", compression='gzip')
dfM.to_pickle("dfM_wcpi.pkl", compression='gzip')
del countries_to_keep, country_names_eng_tur, cpi_cols

Change path to back
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

57

File Name: currency_preprocess.py

File Type: Python Script File

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Sun Jul 15 15:35:06 2018

@author: yagmuruluturktekten
"""

Capstone Project
Yagmur Uluturk Tekten

###
#############################
CURRENCY PAIRS PREPROCESSING
###
#############################

Import Libraries
import pandas as pd
import numpy as np
import os
import glob

Change path
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

dfX = pd.read_pickle('datasets/pickles/dfX_wcpi.pkl', compression = 'gzip')
dfM = pd.read_pickle('datasets/pickles/dfM_wcpi.pkl', compression = 'gzip')

Read true currency map
path = os.path.expanduser("~/Documents/capstone/datasets/currency_map")
os.chdir(path)
t_currency_map = pd.read_csv('t_currency_map.csv', sep=',', header=0, encoding='utf-8')

Load currency csv files

58

Change path firstly
path = os.path.expanduser("~/Documents/capstone/datasets/currencies")
os.chdir(path)

Read all currency CSV file
files = glob.glob(path + '/*.csv')
currency_dfs = []

for csv_file in files:
 df = pd.read_csv(csv_file, sep=',', header=0, encoding='utf-8', thousands=",")
 df.name = csv_file[66:73].lower().replace('_', '')
 currency_dfs.append(df)
del df, csv_file

Drop Change % column for each currency df and add currency code as a column
new_currency_dfs = []

for currency in currency_dfs:
 currency.drop(['Change %'], axis=1, inplace = True)
 currency['CURRENCY_PAIR'] = currency.name
 currency = pd.merge(currency,
t_currency_map[['CURRENCY_PAIR','T_CURRENCY_CODE']],
on=['CURRENCY_PAIR'], how='left')
 currency.drop(['CURRENCY_PAIR'], axis=1, inplace = True)
 new_currency_dfs.append(currency)
del currency

currency_dfs = new_currency_dfs
del new_currency_dfs

Merge currency data frames and create Year and Month columns seperately
currency_df = pd.concat(currency_dfs, ignore_index=True)
del currency_dfs
currency_df['DATE_PD'] = pd.to_datetime(currency_df['Date'], format = '%b %y')
currency_df['MONTH'] = currency_df['DATE_PD'].map(lambda x: x.month)
currency_df['YEAR'] = currency_df['DATE_PD'].map(lambda x: x.year)

Change path
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

59

Drop duplicate rows
currency_df.drop_duplicates(subset=['T_CURRENCY_CODE', 'MONTH','YEAR'],
keep='first', inplace=True)

Join dfM & dfX with currency dataframe
dfM = pd.merge(dfM,
currency_df[['YEAR','MONTH','T_CURRENCY_CODE','Price','Open','High','Low']],
on=['YEAR','MONTH','T_CURRENCY_CODE'], how='left')
dfM = dfM.rename(columns={'Price': 'CLOSE', 'Open':'OPEN', 'High':'HIGH',
'Low':'LOW'})
dfX = pd.merge(dfX,
currency_df[['YEAR','MONTH','T_CURRENCY_CODE','Price','Open','High','Low']],
on=['YEAR','MONTH','T_CURRENCY_CODE'], how='left')
dfX = dfX.rename(columns={'Price': 'CLOSE', 'Open':'OPEN', 'High':'HIGH',
'Low':'LOW'})

REXR, CLOSE-OPEN, HIGH-LOW
dfM['REXR'] = dfM['CLOSE'] * (dfM['CPI'] / dfM['CPI_TR'])
dfM['CLOSE-OPEN'] = dfM['CLOSE'] - dfM['OPEN']
dfM['HIGH-LOW'] = dfM['HIGH'] - dfM['LOW']

dfX['REXR'] = dfX['CLOSE'] * (dfX['CPI'] / dfX['CPI_TR'])
dfX['CLOSE-OPEN'] = dfX['CLOSE'] - dfX['OPEN']
dfX['HIGH-LOW'] = dfX['HIGH'] - dfX['LOW']

Drop NA, if exists
dfM.dropna(axis=0, how='any', inplace=True)
dfX.dropna(axis=0, how='any', inplace=True)

Convert dfM & dfX to Pandas time-series format
dfM['MONTH_YEAR'] = dfM['MONTH'].map(str) + '/' + dfM['YEAR'].map(str)
dfM['MONTH_YEAR'] = pd.to_datetime(dfM['MONTH_YEAR'], errors='raise',
yearfirst=True, format='%m/%Y').dt.to_period('M')
dfM['SUPER_INDEX'] = dfM['COUNTRY_CODE'].map(str) + '/' +
dfM['ISIC3_CODE'].map(str) + '/' + dfM['BEC_CODE'].map(str)
dfM.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False,
inplace=True, verify_integrity=False)
dfM.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True,
sort_remaining=False)

60

dfX['MONTH_YEAR'] = dfX['MONTH'].map(str) + '/' + dfX['YEAR'].map(str)
dfX['MONTH_YEAR'] = pd.to_datetime(dfX['MONTH_YEAR'], errors='raise',
yearfirst=True, format='%m/%Y').dt.to_period('M')
dfX['SUPER_INDEX'] = dfX['COUNTRY_CODE'].map(str) + '/' +
dfX['ISIC3_CODE'].map(str) + '/' + dfX['BEC_CODE'].map(str)
dfX.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False,
inplace=True, verify_integrity=False)
dfX.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True,
sort_remaining=False)

Rolling variables & functions
list_df = [dfM, dfX]
list_stds = ['CLOSE','CLOSE-OPEN','HIGH-LOW','REXR']
months = [[6,3],]
del dfM, dfX

def rolling_stones(df, col, month, min_month):
 std_df = df.copy()
 std_df = std_df[col].unstack()
 std_df = std_df.pct_change(periods=1, fill_method=None, limit=None)
 std_df = std_df.rolling(month, min_periods=min_month).std()
 std_df = std_df.stack().reset_index().rename(columns={0:col+'_STD'})
 df = pd.merge(df, std_df, on=['MONTH_YEAR','SUPER_INDEX'], how='left')

 df.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False,
inplace=True, verify_integrity=False)
 df.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True,
sort_remaining=False)

 del std_df
 return df

for i in range(0,len(list_df)):
 for feature in list_stds:
 for time_range in months:
 list_df[i] = rolling_stones(list_df[i], feature, *time_range)

dfM = list_df[0]
dfX = list_df[1]
del feature, i, list_df, list_stds, months

61

Save preprocessed import & export dataset information into Python Object file
path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)
dfM.to_pickle('dfM_wfeatures.pkl', compression='gzip')
dfX.to_pickle('dfX_wfeatures.pkl', compression='gzip')
currency_df.to_pickle('currency.pkl', compression='gzip')

Change path to back
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

62

File Name: change_calculator.py

File Type: Python Script File

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Wed Aug 22 15:21:40 2018

@author: yagmuruluturktekten
"""

Capstone Project
Yagmur Uluturk Tekten

###
#############################
CHANGE CALCULATOR
###
#############################

Import Libraries
import pandas as pd
import numpy as np
import os

Change path
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

Read pickles for Import and Export dataframes containing features
dfM_withfeatures = pd.read_pickle('datasets/pickles/dfM_wfeatures.pkl', compression =
'gzip')
dfX_withfeatures = pd.read_pickle('datasets/pickles/dfX_wfeatures.pkl', compression =
'gzip')

Percentage change variables & functions
list_df = [dfM_withfeatures, dfX_withfeatures]
list_pct = ['DOLLAR_AMOUNT', 'REXR', 'CLOSE']
windows = [1,3,6]
del dfM_withfeatures, dfX_withfeatures

63

def rolling_stones(df, col, window):
 pct_df = df.copy()
 pct_df = pct_df[col].unstack()
 pct_df = pct_df.pct_change(periods = window, fill_method='pad', limit=None)
 pct_df = pct_df.stack().reset_index().rename(columns={0:col+'_PCT_'+ str(window)})
 df = pd.merge(df, pct_df, on=['MONTH_YEAR','SUPER_INDEX'], how='left')
 df.set_index(['MONTH_YEAR','SUPER_INDEX'], drop=False, append=False,
inplace=True, verify_integrity=False)
 df.sort_index(axis=0, level=[0,1], ascending=[True,True], inplace=True,
sort_remaining=False)

 del pct_df
 return df

for i in range(0,len(list_df)):
 for feature in list_pct:
 for window in windows:
 list_df[i] = rolling_stones(list_df[i], feature, window)

dfM = list_df[0]
dfX = list_df[1]
del feature, i, list_df, list_pct, window

Save preprocessed import & export dataset information into Python Object file
path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)
dfM.to_pickle('dfM_wfeatures_pct.pkl', compression='gzip')
dfX.to_pickle('dfX_wfeatures_pct.pkl', compression='gzip')

64

File Name: model.py

File Type: Python Script File

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Created on Mon Jul 23 23:41:28 2018

@author: yagmuruluturktekten
"""

Change path
import os
path = os.path.expanduser("~/Documents/capstone")
os.chdir(path)

Read pickles for Import and Export dataframes containing features

from datetime import datetime
start_time = datetime.now()

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import MinMaxScaler

from sklearn import linear_model
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor

dfM_withfeatures = pd.read_pickle('datasets/pickles/dfM_wfeatures_pct.pkl', compression
= 'gzip')
dfX_withfeatures = pd.read_pickle('datasets/pickles/dfX_wfeatures_pct.pkl', compression =
'gzip')

Handle Missing Values in dfM_withfeatures
dfM_withfeatures.isnull().sum()

"""
There are 13 columns which have nan values
CLOSE_STD 46751
CLOSE-OPEN_STD 51262

65

HIGH-LOW_STD 51173
REXR_STD 46751
DOLLAR_AMOUNT_PCT_1 3923
DOLLAR_AMOUNT_PCT_3 8527
DOLLAR_AMOUNT_PCT_6 15428
REXR_PCT_1 3923
REXR_PCT_3 8527
REXR_PCT_6 15428
CLOSE_PCT_1 3923
CLOSE_PCT_3 8527
CLOSE_PCT_6 15428
"""

Drop rows with nan values
dfM_withfeatures.dropna(inplace=True)

Handle Missing Values in dfX_withfeatures
dfX_withfeatures.isnull().sum()

"""
There are 13 columns which have nan values
CLOSE_STD 46705
CLOSE-OPEN_STD 50581
HIGH-LOW_STD 50435
REXR_STD 46705
DOLLAR_AMOUNT_PCT_1 3872
DOLLAR_AMOUNT_PCT_3 8235
DOLLAR_AMOUNT_PCT_6 14760
REXR_PCT_1 3872
REXR_PCT_3 8235
REXR_PCT_6 14760
CLOSE_PCT_1 3872
CLOSE_PCT_3 8235
CLOSE_PCT_6 14760
"""

Drop rows with nan values
dfX_withfeatures.dropna(inplace=True)

Select necessary columns for modelling

dfM_model = dfM_withfeatures[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE',
'COUNTRY_CODE','REXR', 'REXR_PCT_1', 'REXR_PCT_3', 'REXR_PCT_6',
'CLOSE_STD', 'CLOSE-OPEN_STD', 'HIGH-LOW_STD', 'REXR_STD',
'CLOSE_PCT_1', 'CLOSE_PCT_3', 'CLOSE_PCT_6', 'DOLLAR_AMOUNT',

66

'DOLLAR_AMOUNT_PCT_1', 'DOLLAR_AMOUNT_PCT_3',
'DOLLAR_AMOUNT_PCT_6']]
dfX_model = dfX_withfeatures[['YEAR', 'MONTH', 'ISIC3_CODE', 'BEC_CODE',
'COUNTRY_CODE','REXR', 'REXR_PCT_1', 'REXR_PCT_3', 'REXR_PCT_6',
'CLOSE_STD', 'CLOSE-OPEN_STD', 'HIGH-LOW_STD', 'REXR_STD',
'CLOSE_PCT_1', 'CLOSE_PCT_3', 'CLOSE_PCT_6', 'DOLLAR_AMOUNT',
'DOLLAR_AMOUNT_PCT_1', 'DOLLAR_AMOUNT_PCT_3',
'DOLLAR_AMOUNT_PCT_6']]

Apply LABEL ENCODING for categorical variables in Import dataframe using
"cat.codes" method !!!
There are 3 categorical variables(ISIC3_CODE,BEC_CODE,COUNTRY_CODE) that
need to be transformed into numbers in order to use them in the modelling
Label encoding simply converts each value in the column to a number that stands for the
index of the column

Label enconding for ISIC3_CODE in Import data frame
dfM_model.ISIC3_CODE = pd.Categorical(dfM_model.ISIC3_CODE)
dfM_model['ISIC3'] = dfM_model.ISIC3_CODE.cat.codes
dfM_model['ISIC3'].value_counts().sort_index()

Label enconding for ISIC3_CODE in Export data frame
dfX_model.ISIC3_CODE = pd.Categorical(dfX_model.ISIC3_CODE)
dfX_model['ISIC3'] = dfX_model.ISIC3_CODE.cat.codes
dfX_model['ISIC3'].value_counts().sort_index()

Label enconding for BEC_CODE in Import data frame
dfM_model.BEC_CODE = pd.Categorical(dfM_model.BEC_CODE)
dfM_model['BEC'] = dfM_model.BEC_CODE.cat.codes
dfM_model['BEC'].value_counts().sort_index()

Label enconding for BEC_CODE in Export data frame
dfX_model.BEC_CODE = pd.Categorical(dfX_model.BEC_CODE)
dfX_model['BEC'] = dfX_model.BEC_CODE.cat.codes
dfX_model['BEC'].value_counts().sort_index()

Label enconding for COUNTRY_CODE in Import data frame
dfM_model.COUNTRY_CODE = pd.Categorical(dfM_model.COUNTRY_CODE)
dfM_model['COUNTRY'] = dfM_model.COUNTRY_CODE.cat.codes
dfM_model['COUNTRY'].value_counts().sort_index()

Label enconding for COUNTRY_CODE in Export data frame

67

dfX_model.COUNTRY_CODE = pd.Categorical(dfX_model.COUNTRY_CODE)
dfX_model['COUNTRY'] = dfX_model.COUNTRY_CODE.cat.codes
dfX_model['COUNTRY'].value_counts().sort_index()

dfM_model.dtypes
dfX_model.dtypes

Convert ISIC3_CODE, BEC_CODE and COUNTRY_CODE which is in categorical
format into numerical format
dfM_model['ISIC3_CODE'] = dfM_model['ISIC3_CODE'].astype('int64', copy=True)
dfM_model['BEC_CODE'] = dfM_model['BEC_CODE'].astype('int64', copy=True)
dfM_model['COUNTRY_CODE'] = dfM_model['COUNTRY_CODE'].astype('int64',
copy=True)
dfM_model.dtypes

dfX_model['ISIC3_CODE'] = dfX_model['ISIC3_CODE'].astype('int64', copy=True)
dfX_model['BEC_CODE'] = dfX_model['BEC_CODE'].astype('int64', copy=True)
dfX_model['COUNTRY_CODE'] = dfX_model['COUNTRY_CODE'].astype('int64',
copy=True)
dfX_model.dtypes

Keep original ISIC3_CODE,COUNTRY_CODE and BEC_CODE to remember the
names of the sectors and countries for further analysis

For Import
isic3_code_m = dfM_model[['ISIC3_CODE','ISIC3']]
isic3_code_m = isic3_code_m.drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

bec_code_m = dfM_model[['BEC_CODE','BEC']]
bec_code_m = bec_code_m.drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

country_code_m = dfM_model[['COUNTRY_CODE','COUNTRY']]
country_code_m = country_code_m.drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

For Export
isic3_code_x = dfX_model[['ISIC3_CODE','ISIC3']]
isic3_code_x = isic3_code_x.drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

bec_code_x = dfX_model[['BEC_CODE','BEC']]

68

bec_code_x = bec_code_x.drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

country_code_x = dfX_model[['COUNTRY_CODE','COUNTRY']]
country_code_x = country_code_x.drop_duplicates(subset=None, keep='first',
inplace=False).reset_index(level=None, drop=True, inplace=False)

Read pickles for ISIC3, COUNTRY and BEC names
isic3_names_m = pd.read_pickle('datasets/pickles/isic3_names_m.pkl', compression =
'gzip')
isic3_names_x = pd.read_pickle('datasets/pickles/isic3_names_x.pkl', compression = 'gzip')

bec_names_m = pd.read_pickle('datasets/pickles/bec_names_m.pkl', compression = 'gzip')
bec_names_x = pd.read_pickle('datasets/pickles/bec_names_x.pkl', compression = 'gzip')

country_names_m = pd.read_pickle('datasets/pickles/country_names_m.pkl', compression
= 'gzip')
country_names_x = pd.read_pickle('datasets/pickles/country_names_x.pkl', compression =
'gzip')

Combine codes and names for ISIC3, COUNTRY and BEC

isic3_map_m = pd.merge(isic3_code_m, isic3_names_m, on=['ISIC3_CODE'], how='left')
isic3_map_x = pd.merge(isic3_code_x, isic3_names_x, on=['ISIC3_CODE'], how='left')

country_map_m = pd.merge(country_code_m, country_names_m,
on=['COUNTRY_CODE'], how='left')
country_map_x = pd.merge(country_code_x, country_names_x, on=['COUNTRY_CODE'],
how='left')

bec_map_m = pd.merge(bec_code_m, bec_names_m, on=['BEC_CODE'], how='left')
bec_map_x = pd.merge(bec_code_x, bec_names_x, on=['BEC_CODE'], how='left')

Save mapping files as pickles

Change path first
path = os.path.expanduser("~/Documents/capstone/datasets/pickles")
os.chdir(path)

isic3_map_m.to_pickle("isic3_map_m.pkl", compression='gzip')
isic3_map_x.to_pickle("isic3_map_x.pkl", compression='gzip')
country_map_m.to_pickle("country_map_m.pkl", compression='gzip')
country_map_x.to_pickle("country_map_x.pkl", compression='gzip')

69

bec_map_m.to_pickle("bec_map_m.pkl", compression='gzip')
bec_map_x.to_pickle("bec_map_x.pkl", compression='gzip')

OUTLIERS

Detect OUTLIERS in Import dataframe

def remove_outliers(df_man, col, threshold):
 df = df_man.copy()
 del_df = df[df[col] > threshold]
 print('There are %d outliers in the %s out of %d entries' % (len(del_df), str(col), len(df)))
 df = df[df[col] <= threshold]
 return df

dfM_model = remove_outliers(dfM_model, 'DOLLAR_AMOUNT_PCT_1', 1)
dfM_model = remove_outliers(dfM_model, 'DOLLAR_AMOUNT_PCT_3', 1)
dfM_model = remove_outliers(dfM_model, 'DOLLAR_AMOUNT_PCT_6', 1)
dfM_model = remove_outliers(dfM_model, 'REXR', 200000)
dfM_model = remove_outliers(dfM_model, 'CLOSE-OPEN_STD', 90)
dfM_model = remove_outliers(dfM_model, 'HIGH-LOW_STD', 90)
dfM_model = remove_outliers(dfM_model, 'CLOSE-OPEN_STD', 90)

dfX_model = remove_outliers(dfX_model, 'DOLLAR_AMOUNT_PCT_1', 1)
dfX_model = remove_outliers(dfX_model, 'DOLLAR_AMOUNT_PCT_3', 1)
dfX_model = remove_outliers(dfX_model, 'DOLLAR_AMOUNT_PCT_6', 1)
dfX_model = remove_outliers(dfX_model, 'REXR', 200000)
dfX_model = remove_outliers(dfX_model, 'CLOSE-OPEN_STD', 90)
dfX_model = remove_outliers(dfX_model, 'HIGH-LOW_STD', 20)
dfX_model = remove_outliers(dfX_model, 'CLOSE-OPEN_STD', 90)

REGRESSION MODEL

Prepare features and targets

dfM_targets =
dfM_model[['DOLLAR_AMOUNT_PCT_1','DOLLAR_AMOUNT_PCT_3','DOLLAR_A
MOUNT_PCT_6']]
dfM_targets.reset_index(drop=True, inplace=True)
dfX_targets =
dfX_model[['DOLLAR_AMOUNT_PCT_1','DOLLAR_AMOUNT_PCT_3','DOLLAR_A
MOUNT_PCT_6']]
dfX_targets.reset_index(drop=True, inplace=True)

dfM_model.drop(['DOLLAR_AMOUNT','DOLLAR_AMOUNT_PCT_1','DOLLAR_AM

70

OUNT_PCT_3','DOLLAR_AMOUNT_PCT_6',
 'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE'],
 axis=1, inplace=True)
dfX_model.drop(['DOLLAR_AMOUNT','DOLLAR_AMOUNT_PCT_1','DOLLAR_AMO
UNT_PCT_3','DOLLAR_AMOUNT_PCT_6',
 'ISIC3_CODE', 'BEC_CODE', 'COUNTRY_CODE'],
 axis=1, inplace=True)
dfM_model.reset_index(drop=True, inplace=True)
dfX_model.reset_index(drop=True, inplace=True)

Feature Scaling

Year
dfM_model['YEAR'] = dfM_model['YEAR'] - 2003
dfX_model['YEAR'] = dfX_model['YEAR'] - 2003
Scaling year had very little effect on MSE. It reduced MSE slightly.

HIGH-LOW_STD, CLOSE-OPEN_STD
scaler = MinMaxScaler()

dfM_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']] =
scaler.fit_transform(dfM_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']])
dfX_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']] =
scaler.fit_transform(dfX_model[['HIGH-LOW_STD', 'CLOSE-OPEN_STD']])

Tried: MinMaxScaler, StandardScaler, MaxAbsScaler, RobustScaler, Normalizer
Best results are observed with MinMaxScaler

Put features and targets in the some box
model_inputs = [[dfM_model, dfM_targets, 'import'],
 [dfX_model, dfX_targets, 'export']

]

###

Azure Machine Learning Datasets
dfM_azure = dfM_model.copy()
dfM_azure['DOLLAR_AMOUNT_PCT_1'] =
dfM_targets['DOLLAR_AMOUNT_PCT_1']

71

dfX_azure = dfX_model.copy()
dfX_azure['DOLLAR_AMOUNT_PCT_1'] = dfX_targets['DOLLAR_AMOUNT_PCT_1']

path = os.path.expanduser("~/Documents/capstone/datasets/azure")
os.chdir(path)

dfM_azure.to_csv('dfm_azure.csv',
 sep=',',
 na_rep='???',
 header=True,
 index=False,
 index_label=None,
 encoding='UTF-8',
 compression=None,
 decimal='.')

dfX_azure.to_csv('dfx_azure.csv',
 sep=',',
 na_rep='???',
 header=True,
 index=False,
 index_label=None,
 encoding='UTF-8',
 compression=None,
 decimal='.')

###

Define regression function

def reg_func(features, target, explanation, trade_type, algo):
 feature_count = features.shape[1]
 sample_count = features.shape[0]
 min_samples = 100

 if algo == 'linear':
 regr = linear_model.LinearRegression()
 elif algo == 'ridge':
 regr = linear_model.Ridge(alpha=1.0, random_state = 7)
 elif algo == 'lasso':
 regr = linear_model.Lasso(alpha=0.1, random_state = 7)
 elif algo == 'randomforest':
 regr = RandomForestRegressor(max_depth = feature_count-1, random_state = 7)
 elif algo == 'decisiontree':
 regr = DecisionTreeRegressor(max_features = feature_count-1, random_state=7)

72

 elif algo == 'gradientboosting':
 regr = GradientBoostingRegressor(random_state=7)

 X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.30,
random_state=7)

 if sample_count < min_samples:
 to_return = {
 'coefficients': [0] * feature_count,
 'mse_test': 0,
 'r2_test': 0,
 'mse_train': 0,
 'r2_train': 0,
 'algorithm':algo,
 'explanation': explanation,
 'trade_type': trade_type,
 'target':str(target.name),
 'sample_size':sample_count
 }

 print('Not enough samples.')

 return to_return

 regr.fit(X_train, y_train)
 ytrain_pred = regr.predict(X_train)
 y_pred = regr.predict(X_test)

 to_return = {
 'coefficients': regr.coef_ if hasattr(regr, 'coef_') else [0] * feature_count,
 'mse_test': mean_squared_error(y_test, y_pred),
 'r2_test': r2_score(y_test, y_pred),
 'mse_train': mean_squared_error(y_train, ytrain_pred),
 'r2_train': r2_score(y_train, ytrain_pred),
 'algorithm':algo,
 'explanation': explanation,
 'trade_type': trade_type,
 'target':str(target.name),
 'sample_size':sample_count
 }
 """
 print('##')
 print('Explanation: ' + str(explanation))
 print('Trade type: ' + str(trade_type))
 print('Target: ' + str(target.name))
 print('Algorithm: ' + str(algo))

73

 print('Coefficients: ' + str(to_return['coefficients']))
 print('Mean squared error: ' + str(to_return['mse']))
 print('R square: ' + str(to_return['r2']))
 print('##')
 """

 print('Finished regression for following:'+ str(algo) + ','
 + str(explanation) + ','
 + str(trade_type))
 return to_return

Collect results for overall features and targets

"""
results_ls_all = []

for ls in model_inputs:
 for target in ls[1]:
 results_ls_all.append(reg_func(ls[0],ls[1][target],'Overall Regression',ls[2],'linear'))
"""

Define regression function for categorical feature breakdowns

def reg_breakdown(input_features,input_target,col,trade_type,algo):
 features = input_features.copy()
 target = input_target.copy()
 breakdowns = features[col].unique().tolist()
 # print(breakdowns)

 reg_results = []
 for breakdown in breakdowns:
 new_features = features[features[col] == breakdown]
 new_target = target[new_features.index.values]
 exp = str(col) + "_" + str(breakdown)
 reg_results.append(reg_func(new_features, new_target, exp, trade_type, algo))
 del new_features, new_target
 return reg_results

Collect results for each categorical feature

results_ls_breakdown = []
breakdown_cols = ['COUNTRY','BEC','ISIC3']
algorithms = ['linear','lasso','ridge','randomforest','decisiontree','gradientboosting']

for ls in model_inputs:
 for target in ls[1]:

74

 for breakdown in breakdown_cols:
 for algorithm in algorithms:
 results_ls_breakdown.append(reg_breakdown(ls[0],
 ls[1][target],
 breakdown,
 ls[2],
 algorithm))

result_columns = ['Trade_Type', 'Explanation', 'Target', 'Algorithm',
 'MSE_Test', 'R2_Test', 'MSE_Train', 'R2_Train', 'Sample_Size',
 'Coef_YEAR','Coef_MONTH','Coef_REXR',
 'Coef_REXR_PCT_1','Coef_REXR_PCT_3','Coef_REXR_PCT_6',
 'Coef_CLOSE_STD','Coef_CLOSE-OPEN_STD', 'Coef_HIGH-LOW_STD',
 'Coef_REXR_STD', 'Coef_CLOSE_PCT_1', 'Coef_CLOSE_PCT_3',
'Coef_CLOSE_PCT_6',
 'Coef_ISIC3','Coef_BEC', 'Coef_COUNTRY'
]

results_df = pd.DataFrame(index=None, columns = result_columns)

for lol_item in results_ls_breakdown:
 for lod_item in lol_item:
 results_df = results_df.append({'Trade_Type':lod_item['trade_type'],
 'Explanation':lod_item['explanation'],
 'Target':lod_item['target'],
 'Algorithm':lod_item['algorithm'],
 'MSE_Test':lod_item['mse_test'],
 'R2_Test':lod_item['r2_test'],
 'MSE_Train':lod_item['mse_train'],
 'R2_Train':lod_item['r2_train'],
 'Sample_Size':lod_item['sample_size'],

 'Coef_YEAR':lod_item['coefficients'][0],
 'Coef_MONTH':lod_item['coefficients'][1],
 'Coef_REXR':lod_item['coefficients'][2],
 'Coef_REXR_PCT_1':lod_item['coefficients'][3],
 'Coef_REXR_PCT_3':lod_item['coefficients'][4],
 'Coef_REXR_PCT_6':lod_item['coefficients'][5],
 'Coef_CLOSE_STD':lod_item['coefficients'][6],
 'Coef_CLOSE-OPEN_STD':lod_item['coefficients'][7],
 'Coef_HIGH-LOW_STD':lod_item['coefficients'][8],
 'Coef_REXR_STD':lod_item['coefficients'][9],
 'Coef_CLOSE_PCT_1':lod_item['coefficients'][10],
 'Coef_CLOSE_PCT_3':lod_item['coefficients'][11],
 'Coef_CLOSE_PCT_6':lod_item['coefficients'][12],
 'Coef_ISIC3':lod_item['coefficients'][13],

75

 'Coef_BEC':lod_item['coefficients'][14],
 'Coef_COUNTRY':lod_item['coefficients'][15]

 }, ignore_index=True)

Drop 'Gizli Veri' from results
results_df = results_df.drop(results_df[(results_df['Trade_Type'] == 'import') &
 (results_df['Explanation'] == 'ISIC3_33')].index
)

results_df = results_df.drop(results_df[(results_df['Trade_Type'] == 'import') &
 (results_df['Explanation'] == 'BEC_17')].index
)

Replace Country, BEC, ISIC3 Codes with actual names

path = os.path.expanduser("~/Documents/capstone/outputs")
os.chdir(path)

results_df[['Breakdown_Type', 'Breakdown_Code']] = results_df['Explanation'].str.split('_',
n=1, expand=True)
results_mappings = pd.read_csv('result_mappings.csv', sep=',')
results_mappings['Breakdown_Code'] = results_mappings['Breakdown_Code'].astype(int)
results_df['Breakdown_Code'] = results_df['Breakdown_Code'].astype(int)

results_df = pd.merge(results_df, results_mappings, on=['Trade_Type', 'Breakdown_Type',
'Breakdown_Code'], how='left')

result_cols = ['Trade_Type', 'Breakdown_Type', 'Breakdown_Code', 'Breakdown_Name',
'Explanation',
 'Target', 'Algorithm', 'MSE_Test', 'R2_Test', 'MSE_Train', 'R2_Train', 'Sample_Size',
 'Coef_YEAR', 'Coef_MONTH', 'Coef_REXR', 'Coef_REXR_PCT_1',
 'Coef_REXR_PCT_3', 'Coef_REXR_PCT_6', 'Coef_CLOSE_STD',
 'Coef_CLOSE-OPEN_STD', 'Coef_HIGH-LOW_STD',
 'Coef_REXR_STD', 'Coef_CLOSE_PCT_1', 'Coef_CLOSE_PCT_3',
'Coef_CLOSE_PCT_6',
 'Coef_ISIC3', 'Coef_BEC', 'Coef_COUNTRY',
]

results_df = results_df[result_cols]

Save Results to CSV file

results_df.to_csv('reg_results.csv',
 sep=',',
 na_rep='???',

76

 header=True,
 index=False,
 index_label=None,
 encoding='UTF-8',
 compression=None,
 decimal='.')

Calculate run time
end_time = datetime.now()
print('Congrats! Your script has finished executing. Run time:')
print(end_time - start_time)

77

