
ii

 MEF UNIVERSITY

CUSTOMER CREDIT DELINQUENCY PREDICTION

Capstone Project

Aykut Ülgenalp

İSTANBUL, 2018

iii

iv

MEF UNIVERSITY

CUSTOMER CREDIT DELINQUENCY PREDICTION

Capstone Project

Aykut Ülgenalp

Advisor: Dr. Berk Orbay

İSTANBUL, 2018

v

MEF UNIVERSITY

Name of the project: Customer Credit Delinquency Prediction

Name/Last Name of the Student: Aykut Ülgenalp

Date of Thesis Defense: __/__/____

I hereby state that the graduation project prepared by Aykut Ülgenalp has been

completed under my supervision. I accept this work as a “Graduation Project”.

__/__/____

Dr. Berk Orbay

I hereby state that I have examined this graduation project by Aykut Ülgenalp which

is accepted by his supervisor. This work is acceptable as a graduation project and the student

is eligible to take the graduation project examination.

 __/__/____

 Prof. Dr. Özgür Özlük

Director

of

Big Data Analytics Program

We hereby state that we have held the graduation examination of __________ and

agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE

Committee Member Signature

1. Dr. Berk Orbay ………………………..

2. Prof. Dr. Özgür Özlük ………………………..

vi

Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that

I have neither given nor received inappropriate assistance in preparing it.

Aykut Ülgenalp

Name Date Signature

vii

EXECUTIVE SUMMARY

CUSTOMER CREDIT DELINQUENCY PREDICTION

Aykut Ülgenalp

Advisor: Dr. Berk Orbay

 SEPTEMBER, 2018, 16 Pages

This study presents a supervised machine learning algorithm to detect delinquency

probability of the customers in next 2 years with a dataset that is extracted from a leading

online data source website. The aim is to predict customer delinquency before the credit is

being delinquent and thus, avoid the bank from unexpected loss and also detecting to

customers’ possible payment difficulty and support them to pay their debts regularly. The

supervised machine learning algorithms provided the opportunity to detect similarities

between customer behaviours and differ them into groups for taking early actions.

Key Words: Delinquency, Credit Delinquency, Customer Delinquency,

Delinquency Prediction

viii

ÖZET

MÜŞTERİ KREDİ GECİKME TAHMİNİ

Aykut Ülgenalp

Tez Danışmanı: Dr. Berk Orbay

 EYLÜL, 2018, 16 Sayfa

Bu çalışmada internette önde gelen veri kaynağı sitesinden elde edilen bir veri

üzerinde, gözetimli makine öğrenmesi algoritmaları kullanılarak müşteri kredilerinde 2 yıl

içerisinde yaşanması muhtemel gecikmeyi tahmin eden bir model sunulmuştur. Amaç,

müşterilerin gecikmelerinden önce tahmin edebilmek ve böylece, bankayı beklenmeyen

kayıptan kurtarabilmek ve ayrıca müşterilerin olası ödeme güçlüklerini tespit edip onlara

ödemelerini düzgün yapabilmeleri için destek olabilmektir. Gözetimli makine öğrenmesi

algoritmaları, müşteri davranışlarındaki benzerlikleri tespit etmeye ve onları farklı gruplara

ayırarak erken aksiyon alabilmeye olanak sağlamaktadır.

Anahtar Kelimeler: Gecikme, Kredi Gecikmesi, Müşteri Gecikmesi, Gecikme

Tahmini

ix

TABLE OF CONTENTS

Academic Honesty Pledge .. vi

EXECUTIVE SUMMARY ... vii

ÖZET .. viii

1. INTRODUCTION ... 1

1.1. Customer/Credit Delinquency Models: A Brief Literature Survey 1

1.2. About The Data .. 2

2. PROJECT STATEMENT AND METHODOLOGY .. 3

2.1. Problem Statement ... 3

2.1.1 Problem Objectives .. 3

2.1.2 Project Scope ... 3

2.2. Methodology .. 4

3. DATA PREPARATION AND FEATURE SELECTION .. 4

3.1. Exploratory Data Analysis (EDA) ... 4

3.2. Feature Selection .. 5

3.2.1. Correlation Matrix .. 5

3.2.2. Feature Selection ... 7

4. MODEL CREATING .. 8

4.1. Logistic Regression .. 8

4.2. Decision Tree ... 9

4.3. Gradient Boosting .. 9

4.4. Random Forest ... 9

5. MODEL PERFORMANCE ANALYSIS AND MODEL SELECTION 9

6. DELIVERED VALUE AND FURTHER STEPS ... 13

6.1. Project’s Delivered Value .. 13

6.2. Social and Ethical Aspects ... 13

6.3. Further Steps .. 14

REFERENCES .. 15

APPENDIX .. 17

.

1

1. INTRODUCTION

This study examined the detection of early customer credit delinquency warnings and

creating a prediction model to handle with this delinquency problem before it occurs. If the

model prediction power is enough to separate bad and good customers before 2 years, it can

be very helpful to avoid unexpected loss for the bank. In this chapter, the objectives and

scope of the study are presented with supporting literature review.

1.1. Customer/Credit Delinquency Models: A Brief Literature Survey

In a lifetime cycle of credit, the process is briefly as follows; customer credit

application, evaluation of the application, disbursement of the credit, and monitoring the

behaviour of the customer before delinquency, if the delinquency situation occurs,

immediately taking early collection actions, mid-collection actions, late collection actions

and if the bank cannot being provide paying the dept, assume the credit non-performing and

send the file legal action departments, and still cannot provide the customer pay their depts,

restructure the dept or in worst scenario selling the dept to lending companies.

The final step of this cycle is the most undesired action for a bank and it is causing

not only reduced profit margins but also significant sales losses for retail companies. For this

reason, delinquency prediction models is one of the most important asset for a bank. This is

also clearly defined from Sung Ho Ha and Ramayya Krishnan (2010) as below:

“The recent economic crisis not only reduces the profit of retailer stores but also

incurs the significant losses caused by increasing the late-payment rate of credit cards. Under

this pressure, the scope of credit prediction needs to be broadened to the customer

management after delinquency occurs.”

It is also very important for the customers, because the customers need to assist for

their payment difficulties in before collection and early collection phases. If a bank has

powerful manoeuvrability to take action and help the customers before the situation getting

worse, most of the customers can handle their situations in a good way.

And this situation represented in a short and direct way from Fair Isaac Corp (2007)

as below:

“The present invention relates generally to the optimization of strategies for

collecting and recovering on delinquent debt accounts, and more particularly, to an

2

automated system that uses predictive modelling to optimize the use of various collection

resources on a portfolio of delinquent debt accounts, including for example credit card

accounts.”

1.2. About The Data

In the dataset, there are 150,000 rows and 12 fields like product utilization ratios,

demographic and behaviour variables which is also using to predict business model in many

banks or lending companies. The inputs and their meanings are introduced as below

(prepared by data owner and shared in bigml.com):

ID: ID of borrower.

SeriousDlqin2yrs: Person experienced 90 days past due delinquency or worse in 2

years (Type: Y/N). The Target Variable

RevolvingUtilizationOfUnsecuredLines: Total balance on credit cards and

personal lines of credit except real estate and no instalment debt like car loans divided

by the sum of credit limits (Type: percentage)

Age: Age of borrower in years (Type: integer)

NumberOfTime30-59DaysPastDueNotWorse: Number of times borrower has

been 30-59 days past due but no worse in the last 2 years. (Type: integer).

DebtRatio: Monthly debt payments, alimony, living costs divided by monthly gross

income (Type: integer)

MonthlyIncome: Monthly income (Type: real)

NumberOfOpenCreditLinesAndLoans: Number of Open loans (instalment like

car loan or mortgage) and Lines of credit (e.g. credit cards) (Type: integer)

NumberOfTimes90DaysLate: Number of times borrower has been 90 days or more

past due. (Type: integer)

NumberRealEstateLoansOrLines: Number of mortgage and real estate loans

including home equity lines of credit (Type: integer)

NumberOfTime60-89DaysPastDueNotWorse: Number of times borrower has

been 60-89 days past due but no worse in the last 2 years. (Type: integer)

NumberOfDependents: Number of dependents in family excluding themselves

(spouse, children etc.). (Type: integer)

3

2. PROJECT STATEMENT AND METHODOLOGY

In this section, the objective and scope of the project are discussed by highlighting

the business priorities. Following that, the methodology is presented covering steps such as

exploratory data analysis and model deployment.

2.1. Problem Statement

As mentioned in the introduction, customer credit delinquency harms the bank in

many ways, so in this project the problem is predict whether a person experience 90 day past

due delinquency or worse in the next 2 years or not before they get delinquent.

The model prediction power is quite strong, so it means that the model found the

similarities between bad and good customers within it, and separate and sort them in both

statistical and business wise way.

Before the model works in a bank, credit monitoring system is administrated via basic

reports conclusions or experienced base decisions. So, it can lead the bank to irrecoverable

situations.

2.1.1 Problem Objectives

The main object is to build model that borrowers can use to help make the best

financial decisions and using these models into decision making, monitoring or collection

systems of the bank.

If it can be predicted before the customer is delinquent, then the bank can minimize

the probability of default of the customers, number of lost customer, money and credibility.

2.1.2 Project Scope

In this project, readers can easily realise that the final model inputs are enough to

predict delinquency in 2 years and how accurately they are. So, they can use same inputs in

their workstream thus they do not need to try to create new complex inputs and do not waste

4

their times with doing complex analysis or giving clue them to creating similar models to

improve their credit life cycle.

In the scope of the project, giving importance order of the inputs or the way to

improve input content or telling direct way to use these model output in the reader

workstream are not included. However, they can inspire or think over from the results,

methodology and input contents, so they can improve this model up to higher level.

2.2. Methodology

In this project, machine learning algorithms are used which are decision tree, logistic

regression, gradient boosting and random forest. Supervised machine learning algorithms is

selected because there is label to represent the population are already delinquent or not. Also,

there is no segmentation problem in this project, there is binary classification problem in

here.

Four different supervised machine learning algorithms are created to compare those

results and see the difference between them and pros and cons of these modelling techniques.

The comparing the model performances is done via statistical indicators also making

the model implementation more practical and easily repeatable and explicable to business

unit is also seriously considering. Because if the business unit cannot understand the way of

using inputs, then implementing the model can be very hard in a bank.

For doing analysis and creating models, python language and Microsoft Azure ML

Studio Tool is used, and all codes and Diagram are shown in appendix.

The data is taken from kind of a dataset source called “bigml.com”. This dataset is

selected because the inputs are very similar which is using to solve same problems in many

banks or lending companies.

3. DATA PREPARATION AND FEATURE SELECTION

3.1. Exploratory Data Analysis (EDA)

In this part, deep analysis of the data and variables is done. Target ratio, variables

values distributions are also be investigated. Null value analysis is done and null values in

variables, filled with statistical approach to prevent them to influence modelling in a bad

way.

5

To insert the data in, “pandas” library is used, and target ratio is investigated. It is

observed that the target ratio is 6.7% which is enough to creating a good predictive model.

After analysed the target variable/label, all the other inputs/features are also investigated and

tried to observe if there any anomalies or outliers in the input value distributions. For

instance, in 'DebtRatio' input, there are some records which are greater than 1, so it is

considered while creating the models.

After the describing inputs, missing values are also investigated, and for 2 inputs

(‘MonthlyIncome’ , ‘NumberOfDependents’) some missing values are observed. Handling

with missing values is very important to create accurate models, beyond these some

modelling algorithms cannot work with missing values, so they should be managed. In this

project, for deciding how they should be managed, missing values’ target ratios are analysed

and tried to understand they behave different or similar to non-missing values of the input.

Following, especially ‘MonthlyIncome’ input there are too much missing values and

observed that missing values target ratio nearly equal the overall target ratio and rest of the

data. And the other input has very few missing data, so for both inputs, missing values

replaced by their average values.

3.2. Feature Selection

In this part, to create successful model, best features is selected based on correlation

and feature selection algorithms.

3.2.1. Correlation Matrix

In this part, correlation matrix is done and observed any correlation between inputs.

And handled with correlated variables in a rational and statistical way.

Firstly, variable names are shortened to understand and read the correlation and

model results easier. Variables names are shortened like below;

Long Name Short Name

RevolvingUtilizationOfUnsecuredLines Inp1

Age Inp2

NumberOfTime30-59DaysPastDueNotWorse Inp3

DebtRatio Inp4

MonthlyIncome Inp5

NumberOfOpenCreditLinesAndLoans Inp6

NumberOfTimes90DaysLate Inp7

6

NumberRealEstateLoansOrLines Inp8

NumberOfTime60-89DaysPastDueNotWorse Inp9

NumberOfDependents Inp10

SeriousDlqin2yrs Target_Inp

As a result of correlation analysis, some correlation is observed between features.

There are high correlation between these pair of inputs;

1-) inp3 and inp7

2-) inp3 and inp9

3-) inp7 and inp9

So, if inp3 (NumberOfTime30-59DaysPastDueNotWorse) and inp9

(NumberOfTime60-89DaysPastDueNotWorse), then we have none-correlation input list.

(The threshold is identified as 0.70)

7

In the below chart, it can be seen that there is no high correlated inputs left in the

input list.

3.2.2. Feature Selection

In this part, 2 different feature selection techniques are applied which are percentile

selection and model-based feature selection.

Both techniques are indicated same results which is no need to eliminate inputs more

after correlation elimination. But, seeing results of these techniques, made it easier to go

through the modelling phase.

8

4. MODEL CREATING

This part will be the most complex and comprehensive part of the project. Many

modelling algorithms and different version of them are performed to predict target. There

are 4 different algorithms are examined;

1. Logistic Regression

2. Decision Tree

3. Gradient Boosting

4. Random Forest

Before creating models, data is splitted into 2 parts which are train and test data with a weight

of 70% and 30% respectively via using from “sklearn.model_selection” library,

train_test_split function. Stratify splitting method is used because it makes the 2 parts of the

data equal with respect to target ratio.

4.1. Logistic Regression

 Logistic Regression is old but very strong machine learning algorithm to solve binary

classification problems. Because of the selected model is logistic regression model, the logic

behind this algorithm is explained as follows.

It is using logistic function also called sigmoid function to create an equation between

features and labels with giving features weights (mathematically coefficients). The formula

can be represent like below (Brownlee J., 2016) ;

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯ + 𝑏𝑘𝑋𝑘

where p is the probability of presence of the characteristic of interest. The logit

transformation is defined as the logged odds:

𝑜𝑑𝑑𝑠=
𝑝

1−𝑝
=

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐

and

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1 − 𝑝
)

9

As a result of logistic regression model, model score in train and test data is very good.

4.2. Decision Tree

Decision tree algorithm is a very common and one of the most understandable

algorithms because of its ability to visualize the results in a straight way.

After 3 different examinations, the optimal result is found.

4.3. Gradient Boosting

 Gradient Boosting is one of the most powerful technique for building predictive

model. Its prediction power comes from the technique that combining different predictions

and minimizing the loss function.

After 4 different examinations, the optimal result is found.

4.4. Random Forest

 Random Forest is a flexible, easy to use and simple machine learning algorithm that

can be used for both classification and regression tasks. It builds multiple decision trees and

merges them together to get a more accurate and stable prediction.3 (towardsdatascience- on

the random forest algorithm)

After 3 different examinations, the optimal result is found.

5. MODEL PERFORMANCE ANALYSIS AND MODEL SELECTION

In this part, all the model results are evaluated and tried to select optimal one by

comparing with many statistical indicators.

Firstly, for every model type, one version of them are selected and evaluated by

confusion matrix, precision, recall and f1-score. These statistical indicators have meanings

as below respectively;

Confusion matrix represents that the relation between actual and prediction values.

There are four outcomes of binary classification (Koehrsen, W. ,2018) ;

10

True positives: data points labelled as positive that are actually positive

False positives: data points labelled as positive that are actually negative

True negatives: data points labelled as negative that are actually negative

False negatives: data points labelled as negative that are actually positive

Precision is ability of a classification model to return only relevant instances. And it

can be formulable as below (Koehrsen, W. ,2018);

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall is ability of a classification model to identify all relevant instances. And it can

be formulable as below (Koehrsen, W. ,2018);

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

F1 score is a single metric that combines recall and precision using the harmonic

mean. And it can be formulized as below (Koehrsen, W. ,2018);

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

In this project, logistic regression model is selected when these indicators are

considered, and confusion matrix results in test data is as below;

11

 And as follows, all model performance results can be found;

 These results are shown that, Logistic Regression is a very powerful model as well

as other models, but it is more consistent in both test and train data and it predict the customer

credit delinquency in 2 years very accurate way.

Model Type Training set score Test set score True Positive False Negative False Positive True Negative Recall Precision F1 Score

Logistic Regression 0.945 0.933 15 791 13 11238 0.019 0.536 0.036

Decision Tree 0.947 0.935 128 678 107 11144 0.159 0.545 0.246

Gradient Boosting 0.949 0.935 152 654 136 11115 0.189 0.528 0.278

Random Forest 0.99 0.93 125 681 110 11141 0.155 0.532 0.24

12

There are 8 features are used in the Logistic Regression model which are as below;

Long Name Short Name Description Weight in Selected Model

RevolvingUtilizationOfUnsecuredLines Inp1

Total balance on credit cards and personal lines of credit except real

estate and no installment debt like car loans divided by the sum of

credit limits (Type: percentage)

12,0149

Age Inp2 Age of borrower in years (Type: integer) -3,11605

DebtRatio Inp4
Monthly debt payments, alimony, living costs divided by monthly

gross income (Type: integer)
2,20085

MonthlyIncome Inp5 Monthly income (Type: real) -0,35006

NumberOfOpenCreditLinesAndLoans Inp6
Number of Open loans (installment like car loan or mortgage) and

Lines of credit (e.g. credit cards) (Type: integer)
-0,0739745

NumberOfTimes90DaysLate Inp7
Number of times borrower has been 90 days or more past due.

(Type: integer)
3,27848

NumberRealEstateLoansOrLines Inp8
Number of mortgage and real estate loans including home equity

lines of credit (Type: integer)
0,779585

NumberOfDependents Inp10
Number of dependents in family excluding themselves (spouse,

children etc.). (Type: integer)
1,72528

Bias Bias Bias -1,39704

13

6. DELIVERED VALUE AND FURTHER STEPS

6.1. Project’s Delivered Value

In this study, the customer credit delinquency prediction problem is solved through

a machine learning algorithm to achieve utmost precision and simplicity. Following the

exploratory data analysis, small number of features are eliminated which is correlated other

ones, and with these 8 features a logistic regression model is developed. In the meantime,

the analysis and measurement of existing algorithm’s performance is presented. Taking

existing process of delinquency monitoring system inadequacies into consideration, this

study positively improves the performance of the prediction of customer credit delinquency

in 2 years. The outcome of this project is reliable, accurate and most importantly based on

statistics unlike the monitoring weekly and monthly performance reports or expert-based

approach. The used algorithm is easy to understand and implement, for this reason it is very

useful for bank environments. The model is open for update any time based on business side

preferences.

6.2. Social and Ethical Aspects

In environments like banks or other lending companies, the model inputs must be

classified, and they should not have shared with the business units. Because when a business

unit know the input list entirely, they can give a clue to branch or external customers to

overtake the system with intentionally or not. It can ruin the model performance and it may

drag the bank to wrong path in an irreversible way. Model performance should be monitored

periodically, and the performance of the model won’t change in a mid-term, then model

performance should be re-evaluated. Because this model also aims to change customer

behaviour and teach them how should they behave when they got a credit from a bank.

14

6.3. Further Steps

 As mentioned in the previous sections of problem statement and project scope, this

study has the potential of further improvement through machine learning algorithms. The

model performance is quite good and according to simplicity of the inputs, it can be very

easy to understand by related managers and rest of the senior management. In further step,

the number of data might be increased both in volume and variety to create more accurate

prediction model. In addition to that, after increasing the data and changing the customer

behaviour after 6-12 months from implementation, the model performance should be

worsened naturally. In this situation, there are 2 ways to do, one of them creating similar

model technique to boosting implementation process or trying other machine learning

algorithms to predict customer credit delinquency in 2 years better.

15

REFERENCES

 Fair Isaac Corporation, Minneapolis, MN (US) (2007). Enhancing delinquent debt

collection using statistical models of debt historical information and account

events. Retrieved from

https://patents.google.com/patent/US7536348B2/en

 General Electric Company, Schenectady, NY (US) (1999). Method for managing

disposition of delinquent accounts. Retrieved from

https://patents.google.com/patent/US6456983B1/en

 Ho Ha S. & Krishnan R., Pittsburg, PA (US) (2010). Predicting repayment of the

credit card debt. Retrieved from

https://www.sciencedirect.com/science/article/pii/S030505481000290X?via%3

Dihub#aep-keywords-id11

 Accenture Global Services GmbH, Schauffhauen (CH) (2001). Debt collection

practices. Retrieved from

https://patents.google.com/patent/US7403923B2/en

 Koehrsen, W. (2018, March 03) Beyond Accuracy: Precision and Recall. Retrieved

from

https://towardsdatascience.com/beyond-accuracy-precision-and-recall-

3da06bea9f6c

 Donges, N. (2018, February 22) The Random Forest Algorithm. Retrieved from

https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd

 Gorman, B. (2017, February 23) A Kaggle Master Explains Gradient Boosting.

Retrieved from

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

https://patents.google.com/patent/US7536348B2/en
https://patents.google.com/patent/US6456983B1/en
https://www.sciencedirect.com/science/article/pii/S030505481000290X?via%3Dihub#aep-keywords-id11
https://www.sciencedirect.com/science/article/pii/S030505481000290X?via%3Dihub#aep-keywords-id11
https://patents.google.com/patent/US7403923B2/en
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

16

 Prashant, G. (2017, May 17) Decision Trees in Machine Learning. Retrieved from

https://towardsdatascience.com/decision-trees-in-machine-learning-

641b9c4e8052

 Swaminathan, S. (2018, March 15) Logistic Regression - Detailed Overview.

Retrieved from

https://towardsdatascience.com/logistic-regression-detailed-overview-

46c4da4303bc

 Brownlee, J. (2016, April 1) Logistic Regression for Machine Learning. Retrieved

from

https://machinelearningmastery.com/logistic-regression-for-machine-learning/

 Steele, M. (2018, January 11) Hands-On Machine Learning--Predicting Loan

Delinquency. Retrieved from

https://blog.riskspan.com/hands-on-machine-learning-predicting-loan-

delinquency

 “Give Me Some Credit” dataset. Retrieved from bigML.com and kaggle.com

https://bigml.com/user/jbosca/gallery/dataset/5a7def3d2a83476e09000456

https://www.kaggle.com/c/GiveMeSomeCredit/download/cs-training.csv

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://blog.riskspan.com/hands-on-machine-learning-predicting-loan-delinquency
https://blog.riskspan.com/hands-on-machine-learning-predicting-loan-delinquency
https://bigml.com/user/jbosca/gallery/dataset/5a7def3d2a83476e09000456
https://www.kaggle.com/c/GiveMeSomeCredit/download/cs-training.csv

17

APPENDIX

Microsoft Azure Machine Learning Studio Modelling Diagram

18

Codes

EDA

import os

os.chdir("D:\Kişisel\BIG DATA\Capstone_Project")

import pandas as pd

my_data = pd.read_csv('data.csv', sep=',')

my_data.head(15)

'''

 ID ... NumberOfDependents

0 1 ... 2.0

1 2 ... 1.0

2 3 ... 0.0

3 4 ... 0.0

4 5 ... 0.0

5 6 ... 1.0

6 7 ... 0.0

7 8 ... 0.0

8 9 ... NaN

9 10 ... 2.0

10 11 ... 0.0

11 12 ... 2.0

12 13 ... 2.0

13 14 ... 2.0

14 15 ... 0.0

[15 rows x 12 columns]

'''

my_data[1:1]

"""

Columns: [ID, SeriousDlqin2yrs, RevolvingUtilizationOfUnsecuredLines,

Age, NumberOfTime30-59DaysPastDueNotWorse, DebtRatio, MonthlyIncome,

NumberOfOpenCreditLinesAndLoans, NumberOfTimes90DaysLate,

NumberRealEstateLoansOrLines, NumberOfTime60-89DaysPastDueNotWorse,

NumberOfDependents]

"""

my_data.shape

##(150000, 12)

##Descriptive analysis

##Firstly let's look at our target input which is SeriousDlqin2yrs

my_data['SeriousDlqin2yrs'].describe()

19

"""

count 150000.000000

mean 0.066840

std 0.249746

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 1.000000

dtype: float64

"""

##As we can see in here our target rate is 6.7% which is enough to

creating a predictive model

##And let's continue to describing the other inputs

my_data['RevolvingUtilizationOfUnsecuredLines'].describe()

"""

count 150000.000000

mean 6.048438

std 249.755371

min 0.000000

25% 0.029867

50% 0.154181

75% 0.559046

max 50708.000000

dtype: float64

"""

my_data['Age'].describe()

"""

count 150000.000000

mean 52.295207

std 14.771866

min 0.000000

25% 41.000000

50% 52.000000

75% 63.000000

max 109.000000

Name: Age, dtype: float64

"""

##We will working on a population with old age, It can be a helpful

information to understand our model outputs

my_data['NumberOfTime30-59DaysPastDueNotWorse'].describe()

"""

count 150000.000000

mean 0.421033

std 4.192781

min 0.000000

25% 0.000000

50% 0.000000

20

75% 0.000000

max 98.000000

Name: NumberOfTime30-59DaysPastDueNotWorse, dtype: float64

"""

my_data['DebtRatio'].describe()

"""

count 150000.000000

mean 353.005076

std 2037.818523

min 0.000000

25% 0.175074

50% 0.366508

75% 0.868254

max 329664.000000

Name: DebtRatio, dtype: float64

"""

my_data[my_data['DebtRatio']>1].count()

##DebtRatio 35137

#as we can see here, there are 35137(23%) borrowers has a debtratio

greater than 1. It is a huge number of rows. So we have to taking account

this situation while creating model

my_data['MonthlyIncome'].describe()

"""

my_data['MonthlyIncome'].describe()

count 1.202690e+05

mean 6.670221e+03

std 1.438467e+04

min 0.000000e+00

25% 3.400000e+03

50% 5.400000e+03

75% 8.249000e+03

max 3.008750e+06

Name: MonthlyIncome, dtype: float64

"""

(my_data.MonthlyIncome)[:50].describe()

"""

count 45.000000

mean 7139.266667

std 9892.955353

min 0.000000

25% 2600.000000

50% 3661.000000

75% 8800.000000

max 63588.000000

Name: MonthlyIncome, dtype: float64

"""

##as we can see here when we have some NA rows, descriptive functions

doesn't work true

my_data['NumberOfOpenCreditLinesAndLoans'].describe()

21

"""

count 150000.000000

mean 8.452760

std 5.145951

min 0.000000

25% 5.000000

50% 8.000000

75% 11.000000

max 58.000000

Name: NumberOfOpenCreditLinesAndLoans, dtype: float64

"""

my_data['NumberOfTimes90DaysLate'].describe()

"""

count 150000.000000

mean 0.265973

std 4.169304

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 98.000000

Name: NumberOfTimes90DaysLate, dtype: float64

"""

my_data['NumberRealEstateLoansOrLines'].describe()

"""

count 150000.000000

mean 1.018240

std 1.129771

min 0.000000

25% 0.000000

50% 1.000000

75% 2.000000

max 54.000000

Name: NumberRealEstateLoansOrLines, dtype: float64

"""

my_data['NumberOfTime60-89DaysPastDueNotWorse'].describe()

"""

count 150000.000000

mean 0.240387

std 4.155179

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 98.000000

Name: NumberOfTime60-89DaysPastDueNotWorse, dtype: float64

"""

my_data['NumberOfDependents'].describe()

"""

count 146076.000000

mean 0.757222

22

std 1.115086

min 0.000000

25% 0.000000

50% 0.000000

75% 1.000000

max 20.000000

Name: NumberOfDependents, dtype: float64

"""

##Let's look at number of NA counts

##NULL ANALYSIS AND HANDLING WITH THEM###

#NULL row control

my_data.isnull().sum()

"""

ID 0

SeriousDlqin2yrs 0

RevolvingUtilizationOfUnsecuredLines 0

Age 0

NumberOfTime30-59DaysPastDueNotWorse 0

DebtRatio 0

MonthlyIncome 29731

NumberOfOpenCreditLinesAndLoans 0

NumberOfTimes90DaysLate 0

NumberRealEstateLoansOrLines 0

NumberOfTime60-89DaysPastDueNotWorse 0

NumberOfDependents 3924

"""

##as we can see in here there are some NA rows in only 2 inputs

#as we can see here, there too much NA rows in 'MonthlyIncome' input. So

we cannot delete these rows, because we can lose too much data.

#so we have 2 options, we can delete this input from our dataset or we

can replace NA's into the mean of the total 'MonthlyIncome'

#But replacing mean value is a little bit dangerous way, because we

manipulating the data and model can learn very wrong from these data.

#Let's look the mean of 'MonthlyIncome'

my_data['MonthlyIncome'].mean()

##6670.221237392844

my_data['MonthlyIncome'].max()

##3008750.0

(my_data[my_data['MonthlyIncome'].isnull()]).groupby(['SeriousDlqin2yrs']

).size()

"""

SeriousDlqin2yrs

0 28062

1 1669

dtype: int64

"""

##so we can see that the target ratio of NA rows of is 'MonthlyIncome'

is nearly 6%. So it is very similar to our total target ratio 6.7%

##Then we can change assume that these NA rows are similar to other rows,

23

then we can replace them as the average.

##alternative way to find NA rows target ratio

"""

b=my_data[my_data['MonthlyIncome'].isnull()]

c=pd.merge(my_data,b,on=['ID'])

c.groupby(['SeriousDlqin2yrs_y']).size()

0 28062

1 1669

"""

##replacing NA's their's mean value

my_data.mean()

"""

ID 75000.500000

SeriousDlqin2yrs 0.066840

RevolvingUtilizationOfUnsecuredLines 6.048438

Age 52.295207

NumberOfTime30-59DaysPastDueNotWorse 0.421033

DebtRatio 353.005076

MonthlyIncome 6670.221237

NumberOfOpenCreditLinesAndLoans 8.452760

NumberOfTimes90DaysLate 0.265973

NumberRealEstateLoansOrLines 1.018240

NumberOfTime60-89DaysPastDueNotWorse 0.240387

NumberOfDependents 0.757222

dtype: float64

"""

my_data_2=my_data.fillna(my_data.mean())

my_data_2.mean()

"""

ID 75000.500000

SeriousDlqin2yrs 0.066840

RevolvingUtilizationOfUnsecuredLines 6.048438

Age 52.295207

NumberOfTime30-59DaysPastDueNotWorse 0.421033

DebtRatio 353.005076

MonthlyIncome 6670.221237

NumberOfOpenCreditLinesAndLoans 8.452760

NumberOfTimes90DaysLate 0.265973

NumberRealEstateLoansOrLines 1.018240

NumberOfTime60-89DaysPastDueNotWorse 0.240387

NumberOfDependents 0.757222

dtype: float64

"""

my_data_2.isnull().sum()

"""

ID 0

SeriousDlqin2yrs 0

RevolvingUtilizationOfUnsecuredLines 0

24

Age 0

NumberOfTime30-59DaysPastDueNotWorse 0

DebtRatio 0

MonthlyIncome 0

NumberOfOpenCreditLinesAndLoans 0

NumberOfTimes90DaysLate 0

NumberRealEstateLoansOrLines 0

NumberOfTime60-89DaysPastDueNotWorse 0

NumberOfDependents 0

dtype: int64

"""

##So as we can see here, the mean of the inputs did not change and now

there are no NA rows in our data

##Let's look at the correlation between inputs

my_data_model = pd.read_csv('data_2.csv', sep=',')

my_data_model_2=my_data_model.fillna(my_data_model.mean())

target=my_data_model_2.iloc[:,-1:]

labels=my_data_model_2.iloc[:,:-1]

#CORRELATION

import matplotlib.pyplot as plt

import numpy

correlations = labels.corr()

plotting correlation matrix

fig = plt.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations, vmin=-1, vmax=1)

fig.colorbar(cax)

ticks = numpy.arange(0,11,1)

ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(labels.head(0))

ax.set_yticklabels(labels.head(0))

plt.show()

#as we can see in the matrix there are high correlation between

1-) inp3 and inp7

2-) inp3 and inp9

3-) inp7 and inp9

so if we eliminate inp3(NumberOfTime30-59DaysPastDueNotWorse) and

inp9(NumberOfTime60-89DaysPastDueNotWorse) then we have none-correlation

input list

labels_new=labels.drop(columns=['Inp3', 'Inp9'])

labels_new.head(0)

"""

25

Columns: [ID, Inp1, Inp2, Inp4, Inp5, Inp6, Inp7, Inp8, Inp10]

"""

##let's look at the correlation again and making sure there is no

correlations between inputs

correlations2 = labels_new.corr()

plotting correlation matrix

fig = plt.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations2, vmin=-1, vmax=1)

fig.colorbar(cax)

ticks = numpy.arange(0,9,1)

ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(labels_new.head(0))

ax.set_yticklabels(labels_new.head(0))

plt.show()

#and we can see that there is no high correlations now

##Let's creating some models and try to understand prediction power with

these inputs

DATA ANALYSIS

####DATASPLITTING####

from sklearn.model_selection import train_test_split

y=target.Target_Inp

X=labels_new

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,

random_state=10)

####DATA SCALING####

from sklearn.preprocessing import StandardScaler

sc_x = StandardScaler()

X_train = sc_x.fit_transform(X_train)

X_test = sc_x.transform(X_test)

#########LOGISTIC REGRESSION#############

26

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression().fit(X_train, y_train)

print("Training set score: {:.3f}".format(logreg.score(X_train, y_train)))

print("Test set score: {:.3f}".format(logreg.score(X_test, y_test)))

"""

Training set score: 0.945

Test set score: 0.933

"""

#As we can see in here, the performance of the model is quite good with

Logistic regression algorithm

logreg2 = LogisticRegression(C=0.0001).fit(X_train, y_train)

print("Training set score: {:.3f}".format(logreg2.score(X_train,

y_train)))

print("Test set score: {:.3f}".format(logreg2.score(X_test, y_test)))

"""

Training set score: 0.945

Test set score: 0.933

"""

#as we can see in here it makes no difference to change C parameters.

##########DECISION TREE##########

from sklearn.tree import DecisionTreeClassifier

tree1 = DecisionTreeClassifier(random_state=0)

tree1.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree1.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(tree1.score(X_test, y_test)))

27

"""

Accuracy on training set: 1.000

Accuracy on test set: 0.901

"""

tree2 = DecisionTreeClassifier(max_depth=4,random_state=0)

tree2.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree2.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(tree2.score(X_test, y_test)))

"""

Accuracy on training set: 0.947

Accuracy on test set: 0.935

"""

tree3 = DecisionTreeClassifier(max_depth=5,random_state=0)

tree3.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree3.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(tree3.score(X_test, y_test)))

"""

Accuracy on training set: 0.947

Accuracy on test set: 0.933

"""

######RANDOM FOREST######

from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier(n_estimators=100, random_state=0)

forest.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))

28

"""

Accuracy on training set: 1.000

Accuracy on test set: 0.935

"""

forest2 = RandomForestClassifier(n_estimators=5, random_state=0)

forest2.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest2.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(forest2.score(X_test,

y_test)))

"""

Accuracy on training set: 0.990

Accuracy on test set: 0.930

"""

forest3 = RandomForestClassifier(n_estimators=4, random_state=0)

forest3.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest3.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(forest3.score(X_test,

y_test)))

"""

Accuracy on training set: 0.981

Accuracy on test set: 0.932

"""

###########GRADIENT BOOSTING#######

from sklearn.ensemble import GradientBoostingClassifier

gbrt = GradientBoostingClassifier(random_state=0)

gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train,

29

y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

"""

Accuracy on training set: 0.948

Accuracy on test set: 0.936

"""

gbrt2 = GradientBoostingClassifier(random_state=0, max_depth=4)

gbrt2.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt2.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt2.score(X_test, y_test)))

"""

Accuracy on training set: 0.949

Accuracy on test set: 0.935

"""

gbrt3 = GradientBoostingClassifier(random_state=0, max_depth=5)

gbrt3.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt3.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt3.score(X_test, y_test)))

"""

Accuracy on training set: 0.951

Accuracy on test set: 0.934

"""

gbrt4 = GradientBoostingClassifier(random_state=0, learning_rate=0.01)

gbrt4.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt4.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt4.score(X_test, y_test)))

30

"""

Accuracy on training set: 0.945

Accuracy on test set: 0.933

"""

#######FEATURE SELECTION#######

#We will try 2 different feature selection. Let's start with percentile

selection

#1-PERCENTILE SELECTION#

from sklearn.feature_selection import SelectPercentile

select_perc = SelectPercentile(percentile=50)

select_perc.fit(X_train, y_train)

transform training set

X_train_selected_perc = select_perc.transform(X_train)

print("X_train.shape: {}".format(X_train.shape))

print("X_train_selected_perc.shape:

{}".format(X_train_selected_perc.shape))

"""

X_train.shape: (137943, 9)

X_train_selected_perc.shape: (137943, 4)

"""

logreg.fit(X_train, y_train)

print("Score with all features: {:.3f}".format(logreg.score(X_test,

y_test)))

##Score with all features: 0.933

X_test_selected_perc = select_perc.transform(X_test)

logreg.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(logreg.score(X_test_selected_perc, y_test)))

31

##Score with only selected features: 0.933

##In logistic regression, there is no difference. Let's try for decision

tree

print("Score with all features: {:.3f}".format(tree1.score(X_test,

y_test)))

##Score with all features: 0.901

tree1.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(tree1.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.933

#As you can see in here, when eliminate some inputs, decision tree's

performance is increased.

#So let's continue with the other models

print("Score with all features: {:.3f}".format(tree2.score(X_test,

y_test)))

##Score with all features: 0.935

tree2.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(tree2.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.934

##Increased again

print("Score with all features: {:.3f}".format(tree3.score(X_test,

y_test)))

##Score with all features: 0.933

tree3.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(tree3.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.935

##Increased again

print("Score with all features: {:.3f}".format(forest.score(X_test,

32

y_test)))

##Score with all features: 0.933

forest.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(forest.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.935

##Increased again

print("Score with all features: {:.3f}".format(forest2.score(X_test,

y_test)))

##Score with all features: 0.930

forest2.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(forest2.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.934

##Increased again

print("Score with all features: {:.3f}".format(forest3.score(X_test,

y_test)))

##Score with all features: 0.931

forest3.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(forest3.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.933

##Increased again

print("Score with all features: {:.3f}".format(gbrt.score(X_test,

y_test)))

##Score with all features: 0.932

gbrt.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.935

##Increased again

33

print("Score with all features: {:.3f}".format(gbrt2.score(X_test,

y_test)))

##Score with all features: 0.935

gbrt2.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt2.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.935

##stable

gbrt3.fit(X_train,y_train)

print("Score with all features: {:.3f}".format(gbrt3.score(X_test,

y_test)))

##Score with all features: 0.934

gbrt3.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt3.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.935

##Increased again

print("Score with all features: {:.3f}".format(gbrt4.score(X_test,

y_test)))

##Score with all features: 0.933

gbrt4.fit(X_train_selected_perc, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt4.score(X_test_selected_perc, y_test)))

##Score with only selected features: 0.933

##Stable

#2-Model-based Feature Selection#

from sklearn.feature_selection import SelectFromModel

from sklearn.ensemble import RandomForestClassifier

select_model = SelectFromModel(

 RandomForestClassifier(n_estimators=100, random_state=42),

 threshold="median")

34

select_model.fit(X_train, y_train)

X_train_selected_model = select_model.transform(X_train)

print("X_train.shape: {}".format(X_train.shape))

print("X_train_selected_model.shape:

{}".format(X_train_selected_model.shape))

"""

X_train.shape: (137943, 9)

X_train_selected_model.shape: (137943, 5)

"""

logreg.fit(X_train, y_train)

X_test_selected_model = select_model.transform(X_test)

print("Score with all features: {:.3f}".format(logreg.score(X_test,

y_test)))

##Score with all features: 0.933

logreg.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(logreg.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.933

##In logistic regression, there is no difference. Let's try for decision

tree

print("Score with all features: {:.3f}".format(tree1.score(X_test,

y_test)))

##Score with all features: 0.901

tree1.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(tree1.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.893

#As you can see in here, when eliminate some inputs, decision tree's

performance is decreased. So with selected features

based on randomforest model is not performed as well as whole feature

set.

35

#So let's continue with the other models

print("Score with all features: {:.3f}".format(tree2.score(X_test,

y_test)))

##Score with all features: 0.935

tree2.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(tree2.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.933

##Decreased again

print("Score with all features: {:.3f}".format(tree3.score(X_test,

y_test)))

##Score with all features: 0.933

tree3.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(tree3.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.934

##Increased this time

print("Score with all features: {:.3f}".format(forest.score(X_test,

y_test)))

##Score with all features: 0.933

forest.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(forest.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.933

##Stable

print("Score with all features: {:.3f}".format(forest2.score(X_test,

y_test)))

##Score with all features: 0.930

forest2.fit(X_train_selected_model, y_train)

print("Score with only selected features:

36

{:.3f}".format(forest2.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.928

##Decreased

print("Score with all features: {:.3f}".format(forest3.score(X_test,

y_test)))

##Score with all features: 0.931

forest3.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(forest3.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.930

##Decreased again

print("Score with all features: {:.3f}".format(gbrt.score(X_test,

y_test)))

##Score with all features: 0.932

gbrt.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.934

##Increased

gbrt2.fit(X_train,y_train)

print("Score with all features: {:.3f}".format(gbrt2.score(X_test,

y_test)))

##Score with all features: 0.935

gbrt2.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt2.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.933

##Decreased

print("Score with all features: {:.3f}".format(gbrt3.score(X_test,

y_test)))

##Score with all features: 0.934

gbrt3.fit(X_train_selected_model, y_train)

37

print("Score with only selected features:

{:.3f}".format(gbrt3.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.934

##Stable

print("Score with all features: {:.3f}".format(gbrt4.score(X_test,

y_test)))

##Score with all features: 0.933

gbrt4.fit(X_train_selected_model, y_train)

print("Score with only selected features:

{:.3f}".format(gbrt4.score(X_test_selected_model, y_test)))

##Score with only selected features: 0.933

##Stable

####MODEL SELECTION#####

##Based on the accuracy score, I selected one version from every model

types

Confusion matrices

logreg.fit(X_train,y_train)

y_predicted_logreg = logreg.predict(X_test)

tree2.fit(X_train,y_train)

y_predicted_tree2 = tree2.predict(X_test)

forest2.fit(X_train_selected_perc,y_train)

y_predicted_forest2 = forest2.predict(X_test_selected_perc)

gbrt2.fit(X_train,y_train)

y_predicted_gbrt2 = gbrt2.predict(X_test)

38

from sklearn.metrics import confusion_matrix

print("Logistic Regression:")

print(confusion_matrix(y_test, y_predicted_logreg))

print("\nDecision Tree:")

print(confusion_matrix(y_test, y_predicted_tree2))

print("\nRandom Fores:")

print(confusion_matrix(y_test, y_predicted_forest2))

print("\nGradient Boosting")

print(confusion_matrix(y_test, y_predicted_gbrt2))

"""

Logistic Regression:

[[8593 39]

 [562 57]]

Decision Tree:

[[8583 49]

 [554 65]]

Random Fores:

[[8567 65]

 [544 75]]

Gradient Boosting

[[8593 39]

 [562 57]]

"""

Precision, recall and f-score

from sklearn.metrics import f1_score

print("f1 score Logistic Regression: {:.2f}".format(f1_score(y_test,

y_predicted_logreg)))

print("f1 score Decision Tree: {:.2f}".format(f1_score(y_test,

y_predicted_tree2)))

print("f1 score Random Forest: {:.2f}".format(f1_score(y_test,

y_predicted_forest2)))

print("f1 score Gradient Boosting: {:.2f}".format(f1_score(y_test,

y_predicted_gbrt2)))

"""

39

f1 score Logistic Regression: 0.16

f1 score Decision Tree: 0.18

f1 score Random Forest: 0.20

f1 score Gradient Boosting: 0.16

"""

from sklearn.metrics import classification_report

print(classification_report(y_test, y_predicted_logreg,

 target_names=["not delinquent",

"delinquent"]))

"""

 precision recall f1-score support

not delinquent 0.94 1.00 0.97 8632

 delinquent 0.59 0.09 0.16 619

 avg / total 0.92 0.94 0.91 9251

"""

print(classification_report(y_test, y_predicted_tree2,

 target_names=["not delinquent",

"delinquent"]))

"""

 precision recall f1-score support

not delinquent 0.94 0.99 0.97 8632

 delinquent 0.57 0.11 0.18 619

 avg / total 0.91 0.93 0.91 9251

"""

print(classification_report(y_test, y_predicted_forest2,

 target_names=["not delinquent",

"delinquent"]))

"""

 precision recall f1-score support

not delinquent 0.94 0.99 0.97 8632

 delinquent 0.54 0.12 0.20 619

 avg / total 0.91 0.93 0.91 9251

"""

40

print(classification_report(y_test, y_predicted_gbrt2,

 target_names=["not delinquent",

"delinquent"]))

"""

 precision recall f1-score support

not delinquent 0.94 1.00 0.97 8632

 delinquent 0.59 0.09 0.16 619

 avg / total 0.92 0.94 0.91 9251

"""

##AS WE CAN SEE IN HERE LOGISTIC REGRESSION AND GRADIENT BOOSTING MODELS

ARE THE BEST

##I SELECTED LOGISTIC REGRESSION

########CONFUSION MATRIX########

logreg.fit(X_train,y_train)

y_predicted_logreg = logreg.predict(X_test)

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_predicted_logreg)

print(cm)

"""

[[8614 18]

 [602 17]]

"""

plt.clf()

plt.imshow(cm,interpolation='nearest',cmap=plt.cm.Wistia)

classNames=['Negative','Positive']

plt.title('Logistic Reg. Serious Delinquency in 2 years or Not Confusion

Matrix')

plt.ylabel('True label')

plt.xlabel('Predicted label')

tick_marks = np.arange(len(classNames))

41

plt.xticks(tick_marks, classNames, rotation=45)

plt.yticks(tick_marks, classNames)

s = [['TN','FP'], ['FN', 'TP']]

for i in range(2):

 for j in range(2):

 plt.text(j,i, str(s[i][j])+" = "+str(cm[i][j]))

plt.show()

