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This study presents a supervised machine learning algorithm to detect delinquency 

probability of the customers in next 2 years with a dataset that is extracted from a leading 

online data source website. The aim is to predict customer delinquency before the credit is 

being delinquent and thus, avoid the bank from unexpected loss and also detecting to 

customers’ possible payment difficulty and support them to pay their debts regularly. The 

supervised machine learning algorithms provided the opportunity to detect similarities 

between customer behaviours and differ them into groups for taking early actions. 
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MÜŞTERİ KREDİ GECİKME TAHMİNİ 
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Bu çalışmada internette önde gelen veri kaynağı sitesinden elde edilen bir veri 

üzerinde, gözetimli makine öğrenmesi algoritmaları kullanılarak müşteri kredilerinde 2 yıl 

içerisinde yaşanması muhtemel gecikmeyi tahmin eden bir model sunulmuştur. Amaç, 

müşterilerin gecikmelerinden önce tahmin edebilmek ve böylece, bankayı beklenmeyen 

kayıptan kurtarabilmek ve ayrıca müşterilerin olası ödeme güçlüklerini tespit edip onlara 

ödemelerini düzgün yapabilmeleri için destek olabilmektir. Gözetimli makine öğrenmesi 

algoritmaları, müşteri davranışlarındaki benzerlikleri tespit etmeye ve onları farklı gruplara 

ayırarak erken aksiyon alabilmeye olanak sağlamaktadır. 
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1. INTRODUCTION 

This study examined the detection of early customer credit delinquency warnings and 

creating a prediction model to handle with this delinquency problem before it occurs. If the 

model prediction power is enough to separate bad and good customers before 2 years, it can 

be very helpful to avoid unexpected loss for the bank. In this chapter, the objectives and 

scope of the study are presented with supporting literature review. 

 

1.1. Customer/Credit Delinquency Models: A Brief Literature Survey 

In a lifetime cycle of credit, the process is briefly as follows; customer credit 

application, evaluation of the application, disbursement of the credit, and monitoring the 

behaviour of the customer before delinquency, if the delinquency situation occurs, 

immediately taking early collection actions, mid-collection actions, late collection actions 

and if the bank cannot being provide paying the dept, assume the credit non-performing and 

send the file legal action departments, and still cannot provide the customer pay their depts, 

restructure the dept or in worst scenario selling the dept to lending companies.  

The final step of this cycle is the most undesired action for a bank and it is causing 

not only reduced profit margins but also significant sales losses for retail companies. For this 

reason, delinquency prediction models is one of the most important asset for a bank. This is 

also clearly defined from Sung Ho Ha and Ramayya Krishnan (2010) as below: 

“The recent economic crisis not only reduces the profit of retailer stores but also 

incurs the significant losses caused by increasing the late-payment rate of credit cards. Under 

this pressure, the scope of credit prediction needs to be broadened to the customer 

management after delinquency occurs.” 

It is also very important for the customers, because the customers need to assist for 

their payment difficulties in before collection and early collection phases. If a bank has 

powerful manoeuvrability to take action and help the customers before the situation getting 

worse, most of the customers can handle their situations in a good way. 

And this situation represented in a short and direct way from Fair Isaac Corp (2007) 

as below:  

“The present invention relates generally to the optimization of strategies for 

collecting and recovering on delinquent debt accounts, and more particularly, to an 
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automated system that uses predictive modelling to optimize the use of various collection 

resources on a portfolio of delinquent debt accounts, including for example credit card 

accounts.”  

 

1.2. About The Data 

In the dataset, there are 150,000 rows and 12 fields like product utilization ratios, 

demographic and behaviour variables which is also using to predict business model in many 

banks or lending companies. The inputs and their meanings are introduced as below 

(prepared by data owner and shared in bigml.com): 

ID: ID of borrower. 

SeriousDlqin2yrs: Person experienced 90 days past due delinquency or worse in 2 

years (Type: Y/N). The Target Variable 

RevolvingUtilizationOfUnsecuredLines: Total balance on credit cards and 

personal lines of credit except real estate and no instalment debt like car loans divided 

by the sum of credit limits (Type: percentage) 

Age: Age of borrower in years (Type: integer)  

NumberOfTime30-59DaysPastDueNotWorse: Number of times borrower has 

been 30-59 days past due but no worse in the last 2 years. (Type: integer). 

DebtRatio: Monthly debt payments, alimony, living costs divided by monthly gross 

income (Type: integer) 

MonthlyIncome: Monthly income (Type: real) 

NumberOfOpenCreditLinesAndLoans: Number of Open loans (instalment like 

car loan or mortgage) and Lines of credit (e.g. credit cards) (Type: integer)  

NumberOfTimes90DaysLate: Number of times borrower has been 90 days or more 

past due. (Type: integer)  

NumberRealEstateLoansOrLines: Number of mortgage and real estate loans 

including home equity lines of credit (Type: integer) 

NumberOfTime60-89DaysPastDueNotWorse: Number of times borrower has 

been 60-89 days past due but no worse in the last 2 years. (Type: integer) 

NumberOfDependents: Number of dependents in family excluding themselves 

(spouse, children etc.). (Type: integer) 
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2. PROJECT STATEMENT AND METHODOLOGY 

In this section, the objective and scope of the project are discussed by highlighting 

the business priorities. Following that, the methodology is presented covering steps such as 

exploratory data analysis and model deployment.  

2.1. Problem Statement 

As mentioned in the introduction, customer credit delinquency harms the bank in 

many ways, so in this project the problem is predict whether a person experience 90 day past 

due delinquency or worse in the next 2 years or not before they get delinquent.  

The model prediction power is quite strong, so it means that the model found the 

similarities between bad and good customers within it, and separate and sort them in both 

statistical and business wise way.  

Before the model works in a bank, credit monitoring system is administrated via basic 

reports conclusions or experienced base decisions. So, it can lead the bank to irrecoverable 

situations. 

2.1.1 Problem Objectives 

The main object is to build model that borrowers can use to help make the best 

financial decisions and using these models into decision making, monitoring or collection 

systems of the bank. 

If it can be predicted before the customer is delinquent, then the bank can minimize 

the probability of default of the customers, number of lost customer, money and credibility.  

2.1.2 Project Scope 

In this project, readers can easily realise that the final model inputs are enough to 

predict delinquency in 2 years and how accurately they are. So, they can use same inputs in 

their workstream thus they do not need to try to create new complex inputs and do not waste 
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their times with doing complex analysis or giving clue them to creating similar models to 

improve their credit life cycle. 

In the scope of the project, giving importance order of the inputs or the way to 

improve input content or telling direct way to use these model output in the reader 

workstream are not included. However, they can inspire or think over from the results, 

methodology and input contents, so they can improve this model up to higher level. 

2.2. Methodology 

In this project, machine learning algorithms are used which are decision tree, logistic 

regression, gradient boosting and random forest. Supervised machine learning algorithms is 

selected because there is label to represent the population are already delinquent or not. Also, 

there is no segmentation problem in this project, there is binary classification problem in 

here. 

Four different supervised machine learning algorithms are created to compare those 

results and see the difference between them and pros and cons of these modelling techniques.  

The comparing the model performances is done via statistical indicators also making 

the model implementation more practical and easily repeatable and explicable to business 

unit is also seriously considering. Because if the business unit cannot understand the way of 

using inputs, then implementing the model can be very hard in a bank. 

For doing analysis and creating models, python language and Microsoft Azure ML 

Studio Tool is used, and all codes and Diagram are shown in appendix. 

The data is taken from kind of a dataset source called “bigml.com”. This dataset is 

selected because the inputs are very similar which is using to solve same problems in many 

banks or lending companies. 

3. DATA PREPARATION AND FEATURE SELECTION 

3.1. Exploratory Data Analysis (EDA) 

In this part, deep analysis of the data and variables is done. Target ratio, variables 

values distributions are also be investigated. Null value analysis is done and null values in 

variables, filled with statistical approach to prevent them to influence modelling in a bad 

way.  
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To insert the data in, “pandas” library is used, and target ratio is investigated. It is 

observed that the target ratio is 6.7% which is enough to creating a good predictive model. 

After analysed the target variable/label, all the other inputs/features are also investigated and 

tried to observe if there any anomalies or outliers in the input value distributions. For 

instance, in 'DebtRatio' input, there are some records which are greater than 1, so it is 

considered while creating the models.  

After the describing inputs, missing values are also investigated, and for 2 inputs 

(‘MonthlyIncome’ , ‘NumberOfDependents’) some missing values are observed. Handling 

with missing values is very important to create accurate models, beyond these some 

modelling algorithms cannot work with missing values, so they should be managed. In this 

project, for deciding how they should be managed, missing values’ target ratios are analysed 

and tried to understand they behave different or similar to non-missing values of the input. 

Following, especially ‘MonthlyIncome’ input there are too much missing values and 

observed that missing values target ratio nearly equal the overall target ratio and rest of the 

data. And the other input has very few missing data, so for both inputs, missing values 

replaced by their average values.  

3.2. Feature Selection 

In this part, to create successful model, best features is selected based on correlation 

and feature selection algorithms. 

3.2.1. Correlation Matrix 

In this part, correlation matrix is done and observed any correlation between inputs. 

And handled with correlated variables in a rational and statistical way.  

Firstly, variable names are shortened to understand and read the correlation and 

model results easier. Variables names are shortened like below; 

 

Long Name Short Name 

RevolvingUtilizationOfUnsecuredLines Inp1 

Age Inp2 

NumberOfTime30-59DaysPastDueNotWorse Inp3 

DebtRatio Inp4 

MonthlyIncome Inp5 

NumberOfOpenCreditLinesAndLoans Inp6 

NumberOfTimes90DaysLate Inp7 
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NumberRealEstateLoansOrLines Inp8 

NumberOfTime60-89DaysPastDueNotWorse Inp9 

NumberOfDependents Inp10 

SeriousDlqin2yrs Target_Inp 

 

 

 

As a result of correlation analysis, some correlation is observed between features.  

 

There are high correlation between these pair of inputs; 

1- ) inp3 and inp7 

2- ) inp3 and inp9 

3- ) inp7 and inp9 

 

So, if inp3 (NumberOfTime30-59DaysPastDueNotWorse) and inp9 

(NumberOfTime60-89DaysPastDueNotWorse), then we have none-correlation input list. 

(The threshold is identified as 0.70) 



7 

 

In the below chart, it can be seen that there is no high correlated inputs left in the 

input list. 

 

 

3.2.2. Feature Selection 

In this part, 2 different feature selection techniques are applied which are percentile 

selection and model-based feature selection. 

Both techniques are indicated same results which is no need to eliminate inputs more 

after correlation elimination. But, seeing results of these techniques, made it easier to go 

through the modelling phase. 
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4. MODEL CREATING 

This part will be the most complex and comprehensive part of the project. Many 

modelling algorithms and different version of them are performed to predict target. There 

are 4 different algorithms are examined; 

1. Logistic Regression 

2. Decision Tree 

3. Gradient Boosting 

4. Random Forest 

Before creating models, data is splitted into 2 parts which are train and test data with a weight 

of 70% and 30% respectively via using from “sklearn.model_selection” library, 

train_test_split function. Stratify splitting method is used because it makes the 2 parts of the 

data equal with respect to target ratio. 

4.1. Logistic Regression 

 Logistic Regression is old but very strong machine learning algorithm to solve binary 

classification problems. Because of the selected model is logistic regression model, the logic 

behind this algorithm is explained as follows.  

It is using logistic function also called sigmoid function to create an equation between 

features and labels with giving features weights (mathematically coefficients). The formula 

can be represent like below (Brownlee J., 2016) ; 

 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯ + 𝑏𝑘𝑋𝑘 

    

where p is the probability of presence of the characteristic of interest. The logit 

transformation is defined as the logged odds: 

 

𝑜𝑑𝑑𝑠=
𝑝

1−𝑝
=

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐
 

 

and 

 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1 − 𝑝
) 
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As a result of logistic regression model, model score in train and test data is very good. 

4.2. Decision Tree 

Decision tree algorithm is a very common and one of the most understandable 

algorithms because of its ability to visualize the results in a straight way.  

After 3 different examinations, the optimal result is found. 

4.3. Gradient Boosting 

 Gradient Boosting is one of the most powerful technique for building predictive 

model. Its prediction power comes from the technique that combining different predictions 

and minimizing the loss function. 

After 4 different examinations, the optimal result is found. 

4.4. Random Forest 

 Random Forest is a flexible, easy to use and simple machine learning algorithm that 

can be used for both classification and regression tasks. It builds multiple decision trees and 

merges them together to get a more accurate and stable prediction.3  (towardsdatascience- on 

the random forest algorithm) 

After 3 different examinations, the optimal result is found. 

5. MODEL PERFORMANCE ANALYSIS AND MODEL SELECTION 

In this part, all the model results are evaluated and tried to select optimal one by 

comparing with many statistical indicators. 

Firstly, for every model type, one version of them are selected and evaluated by 

confusion matrix, precision, recall and f1-score. These statistical indicators have meanings 

as below respectively; 

 

Confusion matrix represents that the relation between actual and prediction values.  

There are four outcomes of binary classification (Koehrsen, W. ,2018) ; 

 

 



10 

 

True positives: data points labelled as positive that are actually positive 

False positives: data points labelled as positive that are actually negative 

True negatives: data points labelled as negative that are actually negative 

False negatives: data points labelled as negative that are actually positive 

 

Precision is ability of a classification model to return only relevant instances. And it 

can be formulable as below (Koehrsen, W. ,2018); 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall is ability of a classification model to identify all relevant instances. And it can 

be formulable as below (Koehrsen, W. ,2018); 

  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

F1 score is a single metric that combines recall and precision using the harmonic 

mean. And it can be formulized as below (Koehrsen, W. ,2018); 

 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

In this project, logistic regression model is selected when these indicators are 

considered, and confusion matrix results in test data is as below; 
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 And as follows, all model performance results can be found; 

 

 

 

 These results are shown that, Logistic Regression is a very powerful model as well 

as other models, but it is more consistent in both test and train data and it predict the customer 

credit delinquency in 2 years very accurate way.   

 

Model Type Training set score Test set score True Positive False Negative False Positive True Negative Recall Precision F1 Score

Logistic Regression 0.945 0.933 15 791 13 11238 0.019 0.536 0.036

Decision Tree 0.947 0.935 128 678 107 11144 0.159 0.545 0.246

Gradient Boosting 0.949 0.935 152 654 136 11115 0.189 0.528 0.278

Random Forest 0.99 0.93 125 681 110 11141 0.155 0.532 0.24
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There are 8 features are used in the Logistic Regression model which are as below;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Long Name Short Name Description Weight in Selected Model

RevolvingUtilizationOfUnsecuredLines Inp1

Total balance on credit cards and personal lines of credit except real 

estate and no installment debt like car loans divided by the sum of 

credit limits (Type: percentage)

12,0149

Age Inp2 Age of borrower in years (Type: integer) -3,11605

DebtRatio Inp4
Monthly debt payments, alimony, living costs divided by monthly 

gross income (Type: integer)
2,20085

MonthlyIncome Inp5 Monthly income (Type: real) -0,35006

NumberOfOpenCreditLinesAndLoans Inp6
Number of Open loans (installment like car loan or mortgage) and 

Lines of credit (e.g. credit cards) (Type: integer)
-0,0739745

NumberOfTimes90DaysLate Inp7
Number of times borrower has been 90 days or more past due. 

(Type: integer) 
3,27848

NumberRealEstateLoansOrLines Inp8
Number of mortgage and real estate loans including home equity 

lines of credit (Type: integer)
0,779585

NumberOfDependents Inp10
Number of dependents in family excluding themselves (spouse, 

children etc.). (Type: integer)
1,72528

Bias Bias Bias -1,39704
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6. DELIVERED VALUE AND FURTHER STEPS 

6.1. Project’s Delivered Value 

In this study, the customer credit delinquency prediction problem is solved through 

a machine learning algorithm to achieve utmost precision and simplicity. Following the 

exploratory data analysis, small number of features are eliminated which is correlated other 

ones, and with these 8 features a logistic regression model is developed. In the meantime, 

the analysis and measurement of existing algorithm’s performance is presented. Taking 

existing process of delinquency monitoring system inadequacies into consideration, this 

study positively improves the performance of the prediction of customer credit delinquency 

in 2 years. The outcome of this project is reliable, accurate and most importantly based on 

statistics unlike the monitoring weekly and monthly performance reports or expert-based 

approach. The used algorithm is easy to understand and implement, for this reason it is very 

useful for bank environments. The model is open for update any time based on business side 

preferences. 

 

 

6.2. Social and Ethical Aspects 

In environments like banks or other lending companies, the model inputs must be 

classified, and they should not have shared with the business units. Because when a business 

unit know the input list entirely, they can give a clue to branch or external customers to 

overtake the system with intentionally or not. It can ruin the model performance and it may 

drag the bank to wrong path in an irreversible way. Model performance should be monitored 

periodically, and the performance of the model won’t change in a mid-term, then model 

performance should be re-evaluated. Because this model also aims to change customer 

behaviour and teach them how should they behave when they got a credit from a bank. 



14 

 

 

 

 

6.3. Further Steps 

 As mentioned in the previous sections of problem statement and project scope, this 

study has the potential of further improvement through machine learning algorithms. The 

model performance is quite good and according to simplicity of the inputs, it can be very 

easy to understand by related managers and rest of the senior management. In further step, 

the number of data might be increased both in volume and variety to create more accurate 

prediction model. In addition to that, after increasing the data and changing the customer 

behaviour after 6-12 months from implementation, the model performance should be 

worsened naturally. In this situation, there are 2 ways to do, one of them creating similar 

model technique to boosting implementation process or trying other machine learning 

algorithms to predict customer credit delinquency in 2 years better. 
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APPENDIX 

Microsoft Azure Machine Learning Studio Modelling Diagram 
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Codes 

EDA 

 
import os 

 

os.chdir("D:\Kişisel\BIG DATA\Capstone_Project") 

 

 

import pandas as pd 

 

my_data = pd.read_csv('data.csv', sep=',') 

 

 

my_data.head(15) 

''' 

   ID         ...          NumberOfDependents 

0    1         ...                         2.0 

1    2         ...                         1.0 

2    3         ...                         0.0 

3    4         ...                         0.0 

4    5         ...                         0.0 

5    6         ...                         1.0 

6    7         ...                         0.0 

7    8         ...                         0.0 

8    9         ...                         NaN 

9   10         ...                         2.0 

10  11         ...                         0.0 

11  12         ...                         2.0 

12  13         ...                         2.0 

13  14         ...                         2.0 

14  15         ...                         0.0 

[15 rows x 12 columns] 

''' 

 

my_data[1:1] 

 

""" 

Columns: [ID, SeriousDlqin2yrs, RevolvingUtilizationOfUnsecuredLines, 

Age, NumberOfTime30-59DaysPastDueNotWorse, DebtRatio, MonthlyIncome, 

NumberOfOpenCreditLinesAndLoans, NumberOfTimes90DaysLate, 

NumberRealEstateLoansOrLines, NumberOfTime60-89DaysPastDueNotWorse, 

NumberOfDependents] 

""" 

 

my_data.shape 

##(150000, 12) 

 

 

 

 

##Descriptive analysis 

 

##Firstly let's look at our target input which is SeriousDlqin2yrs 

 

my_data['SeriousDlqin2yrs'].describe() 
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""" 

count    150000.000000 

mean          0.066840 

std           0.249746 

min           0.000000 

25%           0.000000 

50%           0.000000 

75%           0.000000 

max           1.000000 

 

dtype: float64 

""" 

 

##As we can see in here our target rate is 6.7% which is enough to 

creating a predictive model 

 

##And let's continue to describing the other inputs 

 

my_data['RevolvingUtilizationOfUnsecuredLines'].describe() 

 

""" 

count    150000.000000 

mean          6.048438 

std         249.755371 

min           0.000000 

25%           0.029867 

50%           0.154181 

75%           0.559046 

max       50708.000000 

 

dtype: float64 

""" 

 

my_data['Age'].describe() 

 

""" 

count    150000.000000 

mean         52.295207 

std          14.771866 

min           0.000000 

25%          41.000000 

50%          52.000000 

75%          63.000000 

max         109.000000 

Name: Age, dtype: float64 

""" 

 

##We will working on a population with old age, It can be a helpful 

information to understand our model outputs 

 

my_data['NumberOfTime30-59DaysPastDueNotWorse'].describe() 

 

""" 

count    150000.000000 

mean          0.421033 

std           4.192781 

min           0.000000 

25%           0.000000 

50%           0.000000 



20 

 

75%           0.000000 

max          98.000000 

Name: NumberOfTime30-59DaysPastDueNotWorse, dtype: float64 

""" 

 

my_data['DebtRatio'].describe() 

 

""" 

count    150000.000000 

mean        353.005076 

std        2037.818523 

min           0.000000 

25%           0.175074 

50%           0.366508 

75%           0.868254 

max      329664.000000 

Name: DebtRatio, dtype: float64 

""" 

 

my_data[my_data['DebtRatio']>1].count() 

##DebtRatio   35137 

 

#as we can see here, there are 35137(23%) borrowers has a debtratio 

greater than 1. It is a huge number of rows. So we have to taking account 

this situation while creating model 

 

my_data['MonthlyIncome'].describe() 

""" 

my_data['MonthlyIncome'].describe() 

count    1.202690e+05 

mean     6.670221e+03 

std      1.438467e+04 

min      0.000000e+00 

25%      3.400000e+03 

50%      5.400000e+03 

75%      8.249000e+03 

max      3.008750e+06 

Name: MonthlyIncome, dtype: float64 

""" 

 

(my_data.MonthlyIncome)[:50].describe() 

 

""" 

count       45.000000 

mean      7139.266667 

std       9892.955353 

min          0.000000 

25%       2600.000000 

50%       3661.000000 

75%       8800.000000 

max      63588.000000 

Name: MonthlyIncome, dtype: float64 

""" 

 

##as we can see here when we have some NA rows, descriptive functions 

doesn't work true 

 

my_data['NumberOfOpenCreditLinesAndLoans'].describe() 
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""" 

count    150000.000000 

mean          8.452760 

std           5.145951 

min           0.000000 

25%           5.000000 

50%           8.000000 

75%          11.000000 

max          58.000000 

Name: NumberOfOpenCreditLinesAndLoans, dtype: float64 

""" 

 

my_data['NumberOfTimes90DaysLate'].describe() 

 

""" 

count    150000.000000 

mean          0.265973 

std           4.169304 

min           0.000000 

25%           0.000000 

50%           0.000000 

75%           0.000000 

max          98.000000 

Name: NumberOfTimes90DaysLate, dtype: float64 

""" 

 

my_data['NumberRealEstateLoansOrLines'].describe() 

 

""" 

count    150000.000000 

mean          1.018240 

std           1.129771 

min           0.000000 

25%           0.000000 

50%           1.000000 

75%           2.000000 

max          54.000000 

Name: NumberRealEstateLoansOrLines, dtype: float64 

""" 

 

my_data['NumberOfTime60-89DaysPastDueNotWorse'].describe() 

 

""" 

count    150000.000000 

mean          0.240387 

std           4.155179 

min           0.000000 

25%           0.000000 

50%           0.000000 

75%           0.000000 

max          98.000000 

Name: NumberOfTime60-89DaysPastDueNotWorse, dtype: float64 

""" 

 

my_data['NumberOfDependents'].describe() 

 

""" 

count    146076.000000 

mean          0.757222 
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std           1.115086 

min           0.000000 

25%           0.000000 

50%           0.000000 

75%           1.000000 

max          20.000000 

Name: NumberOfDependents, dtype: float64 

""" 

 

##Let's look at number of NA counts 

 

##NULL ANALYSIS AND HANDLING WITH THEM### 

#NULL row control 

 

my_data.isnull().sum() 

""" 

ID                                          0 

SeriousDlqin2yrs                            0 

RevolvingUtilizationOfUnsecuredLines        0 

Age                                         0 

NumberOfTime30-59DaysPastDueNotWorse        0 

DebtRatio                                   0 

MonthlyIncome                           29731 

NumberOfOpenCreditLinesAndLoans             0 

NumberOfTimes90DaysLate                     0 

NumberRealEstateLoansOrLines                0 

NumberOfTime60-89DaysPastDueNotWorse        0 

NumberOfDependents                       3924 

""" 

 

##as we can see in here there are some NA rows in only 2 inputs 

 

 

#as we can see here, there too much NA rows in 'MonthlyIncome' input. So 

we cannot delete these rows, because we can lose too much data. 

#so we have 2 options, we can delete this input from our dataset or we 

can replace NA's into the mean of the total 'MonthlyIncome' 

#But replacing mean value is a little bit dangerous way, because we 

manipulating the data and model can learn very wrong from these data. 

#Let's look the mean of 'MonthlyIncome' 

 

my_data['MonthlyIncome'].mean() 

##6670.221237392844 

 

my_data['MonthlyIncome'].max() 

##3008750.0 

 

(my_data[my_data['MonthlyIncome'].isnull()]).groupby(['SeriousDlqin2yrs']

).size() 

""" 

SeriousDlqin2yrs 

0    28062 

1     1669 

dtype: int64 

""" 

##so we can see that the target ratio of NA rows of  is 'MonthlyIncome' 

is nearly 6%. So it is very similar to our total target ratio 6.7% 

##Then we can change assume that these NA rows are similar to other rows, 



23 

 

then we can replace them as the average. 

 

##alternative way to find NA rows target ratio 

""" 

b=my_data[my_data['MonthlyIncome'].isnull()] 

c=pd.merge(my_data,b,on=['ID']) 

c.groupby(['SeriousDlqin2yrs_y']).size() 

0    28062 

1     1669 

""" 

 

 

##replacing NA's their's mean value 

 

my_data.mean() 

 

""" 

ID                                      75000.500000 

SeriousDlqin2yrs                            0.066840 

RevolvingUtilizationOfUnsecuredLines        6.048438 

Age                                        52.295207 

NumberOfTime30-59DaysPastDueNotWorse        0.421033 

DebtRatio                                 353.005076 

MonthlyIncome                            6670.221237 

NumberOfOpenCreditLinesAndLoans             8.452760 

NumberOfTimes90DaysLate                     0.265973 

NumberRealEstateLoansOrLines                1.018240 

NumberOfTime60-89DaysPastDueNotWorse        0.240387 

NumberOfDependents                          0.757222 

dtype: float64 

""" 

 

my_data_2=my_data.fillna(my_data.mean()) 

 

 

my_data_2.mean() 

 

""" 

ID                                      75000.500000 

SeriousDlqin2yrs                            0.066840 

RevolvingUtilizationOfUnsecuredLines        6.048438 

Age                                        52.295207 

NumberOfTime30-59DaysPastDueNotWorse        0.421033 

DebtRatio                                 353.005076 

MonthlyIncome                            6670.221237 

NumberOfOpenCreditLinesAndLoans             8.452760 

NumberOfTimes90DaysLate                     0.265973 

NumberRealEstateLoansOrLines                1.018240 

NumberOfTime60-89DaysPastDueNotWorse        0.240387 

NumberOfDependents                          0.757222 

dtype: float64 

""" 

 

my_data_2.isnull().sum() 

 

""" 

ID                                      0 

SeriousDlqin2yrs                        0 

RevolvingUtilizationOfUnsecuredLines    0 
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Age                                     0 

NumberOfTime30-59DaysPastDueNotWorse    0 

DebtRatio                               0 

MonthlyIncome                           0 

NumberOfOpenCreditLinesAndLoans         0 

NumberOfTimes90DaysLate                 0 

NumberRealEstateLoansOrLines            0 

NumberOfTime60-89DaysPastDueNotWorse    0 

NumberOfDependents                      0 

dtype: int64 

""" 

##So as we can see here, the mean of the inputs did not change and now 

there are no NA rows in our data 

 

 

##Let's look at the correlation between inputs 

 

my_data_model = pd.read_csv('data_2.csv', sep=',') 

 

my_data_model_2=my_data_model.fillna(my_data_model.mean()) 

 

target=my_data_model_2.iloc[:,-1:] 

labels=my_data_model_2.iloc[:,:-1] 

 

 

#CORRELATION 

 

import matplotlib.pyplot as plt 

import numpy 

correlations = labels.corr() 

# plotting correlation matrix 

fig = plt.figure() 

ax = fig.add_subplot(111) 

cax = ax.matshow(correlations, vmin=-1, vmax=1) 

fig.colorbar(cax) 

ticks = numpy.arange(0,11,1) 

ax.set_xticks(ticks) 

ax.set_yticks(ticks) 

ax.set_xticklabels(labels.head(0)) 

ax.set_yticklabels(labels.head(0)) 

plt.show() 

 

 

 

#as we can see in the matrix there are high correlation between 

 

### 1-) inp3 and inp7 

### 2-) inp3 and inp9 

### 3-) inp7 and inp9 

 

# so if we eliminate inp3(NumberOfTime30-59DaysPastDueNotWorse) and 

inp9(NumberOfTime60-89DaysPastDueNotWorse) then we have none-correlation 

input list 

 

labels_new=labels.drop(columns=['Inp3', 'Inp9']) 

labels_new.head(0) 

 

""" 
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Columns: [ID, Inp1, Inp2, Inp4, Inp5, Inp6, Inp7, Inp8, Inp10] 

""" 

 

##let's look at the correlation again and making sure there is no 

correlations between inputs 

 

 

correlations2 = labels_new.corr() 

# plotting correlation matrix 

fig = plt.figure() 

ax = fig.add_subplot(111) 

cax = ax.matshow(correlations2, vmin=-1, vmax=1) 

fig.colorbar(cax) 

ticks = numpy.arange(0,9,1) 

ax.set_xticks(ticks) 

ax.set_yticks(ticks) 

ax.set_xticklabels(labels_new.head(0)) 

ax.set_yticklabels(labels_new.head(0)) 

plt.show() 

 

 

 

#and we can see that there is no high correlations now 

 

##Let's creating some models and try to understand prediction power with 

these inputs 

 

DATA ANALYSIS 

####DATASPLITTING#### 

 

from sklearn.model_selection import train_test_split 

 

y=target.Target_Inp 

X=labels_new 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, 

random_state=10) 

 

####DATA SCALING#### 

 

from sklearn.preprocessing import StandardScaler 

sc_x = StandardScaler() 

X_train = sc_x.fit_transform(X_train) 

X_test = sc_x.transform(X_test) 

 

#########LOGISTIC REGRESSION############# 

 



26 

 

from sklearn.linear_model import LogisticRegression 

 

logreg = LogisticRegression().fit(X_train, y_train) 

print("Training set score: {:.3f}".format(logreg.score(X_train, y_train))) 

print("Test set score: {:.3f}".format(logreg.score(X_test, y_test))) 

 

""" 

Training set score: 0.945 

Test set score: 0.933 

""" 

 

#As we can see in here, the performance of the model is quite good with 

Logistic regression algorithm 

 

 

logreg2 = LogisticRegression(C=0.0001).fit(X_train, y_train) 

print("Training set score: {:.3f}".format(logreg2.score(X_train, 

y_train))) 

print("Test set score: {:.3f}".format(logreg2.score(X_test, y_test))) 

 

""" 

Training set score: 0.945 

Test set score: 0.933 

""" 

 

#as we can see in here it makes no difference to change C parameters. 

 

 

 

##########DECISION TREE########## 

 

from sklearn.tree import DecisionTreeClassifier 

 

tree1 = DecisionTreeClassifier(random_state=0) 

tree1.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(tree1.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(tree1.score(X_test, y_test))) 
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""" 

Accuracy on training set: 1.000 

Accuracy on test set: 0.901 

""" 

 

 

 

tree2 = DecisionTreeClassifier(max_depth=4,random_state=0) 

tree2.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(tree2.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(tree2.score(X_test, y_test))) 

 

""" 

Accuracy on training set: 0.947 

Accuracy on test set: 0.935 

""" 

 

tree3 = DecisionTreeClassifier(max_depth=5,random_state=0) 

tree3.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(tree3.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(tree3.score(X_test, y_test))) 

 

""" 

Accuracy on training set: 0.947 

Accuracy on test set: 0.933 

""" 

 

 

######RANDOM FOREST###### 

 

from sklearn.ensemble import RandomForestClassifier 

 

forest = RandomForestClassifier(n_estimators=100, random_state=0) 

forest.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(forest.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test))) 
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""" 

Accuracy on training set: 1.000 

Accuracy on test set: 0.935 

""" 

 

forest2 = RandomForestClassifier(n_estimators=5, random_state=0) 

forest2.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(forest2.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(forest2.score(X_test, 

y_test))) 

 

""" 

Accuracy on training set: 0.990 

Accuracy on test set: 0.930 

""" 

 

 

forest3 = RandomForestClassifier(n_estimators=4, random_state=0) 

forest3.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(forest3.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(forest3.score(X_test, 

y_test))) 

 

""" 

Accuracy on training set: 0.981 

Accuracy on test set: 0.932 

""" 

 

 

###########GRADIENT BOOSTING####### 

 

from sklearn.ensemble import GradientBoostingClassifier 

 

gbrt = GradientBoostingClassifier(random_state=0) 

gbrt.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, 
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y_train))) 

print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test))) 

 

""" 

Accuracy on training set: 0.948 

Accuracy on test set: 0.936 

""" 

 

 

gbrt2 = GradientBoostingClassifier(random_state=0, max_depth=4) 

gbrt2.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(gbrt2.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(gbrt2.score(X_test, y_test))) 

 

""" 

Accuracy on training set: 0.949 

Accuracy on test set: 0.935 

""" 

 

 

gbrt3 = GradientBoostingClassifier(random_state=0, max_depth=5) 

gbrt3.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(gbrt3.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(gbrt3.score(X_test, y_test))) 

 

""" 

Accuracy on training set: 0.951 

Accuracy on test set: 0.934 

""" 

 

 

gbrt4 = GradientBoostingClassifier(random_state=0, learning_rate=0.01) 

gbrt4.fit(X_train, y_train) 

print("Accuracy on training set: {:.3f}".format(gbrt4.score(X_train, 

y_train))) 

print("Accuracy on test set: {:.3f}".format(gbrt4.score(X_test, y_test))) 
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""" 

Accuracy on training set: 0.945 

Accuracy on test set: 0.933 

""" 

 

#######FEATURE SELECTION####### 

 

#We will try 2 different feature selection. Let's start with percentile 

selection 

 

#1-PERCENTILE SELECTION# 

 

from sklearn.feature_selection import SelectPercentile 

 

select_perc = SelectPercentile(percentile=50) 

select_perc.fit(X_train, y_train) 

# transform training set 

X_train_selected_perc = select_perc.transform(X_train) 

print("X_train.shape: {}".format(X_train.shape)) 

print("X_train_selected_perc.shape: 

{}".format(X_train_selected_perc.shape)) 

 

""" 

X_train.shape: (137943, 9) 

X_train_selected_perc.shape: (137943, 4) 

 

""" 

 

 

 

logreg.fit(X_train, y_train) 

print("Score with all features: {:.3f}".format(logreg.score(X_test, 

y_test))) 

##Score with all features: 0.933 

X_test_selected_perc = select_perc.transform(X_test) 

logreg.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(logreg.score(X_test_selected_perc, y_test))) 
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##Score with only selected features: 0.933 

 

##In logistic regression, there is no difference. Let's try for decision 

tree 

 

print("Score with all features: {:.3f}".format(tree1.score(X_test, 

y_test))) 

##Score with all features: 0.901 

tree1.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(tree1.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.933 

 

#As you can see in here, when eliminate some inputs, decision tree's 

performance is increased. 

 

#So let's continue with the other models 

 

print("Score with all features: {:.3f}".format(tree2.score(X_test, 

y_test))) 

##Score with all features: 0.935 

tree2.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(tree2.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.934 

##Increased again 

 

 

print("Score with all features: {:.3f}".format(tree3.score(X_test, 

y_test))) 

##Score with all features: 0.933 

tree3.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(tree3.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.935 

##Increased again 

 

 

print("Score with all features: {:.3f}".format(forest.score(X_test, 
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y_test))) 

##Score with all features: 0.933 

forest.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(forest.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.935 

##Increased again 

 

 

 

print("Score with all features: {:.3f}".format(forest2.score(X_test, 

y_test))) 

##Score with all features: 0.930 

forest2.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(forest2.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.934 

##Increased again 

 

 

print("Score with all features: {:.3f}".format(forest3.score(X_test, 

y_test))) 

##Score with all features: 0.931 

forest3.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(forest3.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.933 

##Increased again 

 

 

print("Score with all features: {:.3f}".format(gbrt.score(X_test, 

y_test))) 

##Score with all features: 0.932 

gbrt.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.935 

##Increased again 
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print("Score with all features: {:.3f}".format(gbrt2.score(X_test, 

y_test))) 

##Score with all features: 0.935 

gbrt2.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt2.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.935 

##stable 

 

gbrt3.fit(X_train,y_train) 

print("Score with all features: {:.3f}".format(gbrt3.score(X_test, 

y_test))) 

##Score with all features: 0.934 

gbrt3.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt3.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.935 

##Increased again 

 

 

print("Score with all features: {:.3f}".format(gbrt4.score(X_test, 

y_test))) 

##Score with all features: 0.933 

gbrt4.fit(X_train_selected_perc, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt4.score(X_test_selected_perc, y_test))) 

##Score with only selected features: 0.933 

##Stable 

 

 

#2-Model-based Feature Selection# 

 

from sklearn.feature_selection import SelectFromModel 

from sklearn.ensemble import RandomForestClassifier 

select_model = SelectFromModel( 

    RandomForestClassifier(n_estimators=100, random_state=42), 

    threshold="median") 
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select_model.fit(X_train, y_train) 

X_train_selected_model = select_model.transform(X_train) 

print("X_train.shape: {}".format(X_train.shape)) 

print("X_train_selected_model.shape: 

{}".format(X_train_selected_model.shape)) 

 

""" 

X_train.shape: (137943, 9) 

X_train_selected_model.shape: (137943, 5) 

""" 

 

logreg.fit(X_train, y_train) 

X_test_selected_model = select_model.transform(X_test) 

print("Score with all features: {:.3f}".format(logreg.score(X_test, 

y_test))) 

##Score with all features: 0.933 

 

logreg.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(logreg.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.933 

 

##In logistic regression, there is no difference. Let's try for decision 

tree 

 

print("Score with all features: {:.3f}".format(tree1.score(X_test, 

y_test))) 

##Score with all features: 0.901 

tree1.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(tree1.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.893 

 

#As you can see in here, when eliminate some inputs, decision tree's 

performance is decreased. So with selected features 

# based on randomforest model is not performed as well as whole feature 

set. 
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#So let's continue with the other models 

 

 

print("Score with all features: {:.3f}".format(tree2.score(X_test, 

y_test))) 

##Score with all features: 0.935 

tree2.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(tree2.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.933 

##Decreased again 

 

 

print("Score with all features: {:.3f}".format(tree3.score(X_test, 

y_test))) 

##Score with all features: 0.933 

tree3.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(tree3.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.934 

##Increased this time 

 

 

print("Score with all features: {:.3f}".format(forest.score(X_test, 

y_test))) 

##Score with all features: 0.933 

forest.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(forest.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.933 

##Stable 

 

 

 

print("Score with all features: {:.3f}".format(forest2.score(X_test, 

y_test))) 

##Score with all features: 0.930 

forest2.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 
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{:.3f}".format(forest2.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.928 

##Decreased 

 

 

print("Score with all features: {:.3f}".format(forest3.score(X_test, 

y_test))) 

##Score with all features: 0.931 

forest3.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(forest3.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.930 

##Decreased again 

 

 

print("Score with all features: {:.3f}".format(gbrt.score(X_test, 

y_test))) 

##Score with all features: 0.932 

gbrt.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.934 

##Increased 

 

gbrt2.fit(X_train,y_train) 

print("Score with all features: {:.3f}".format(gbrt2.score(X_test, 

y_test))) 

##Score with all features: 0.935 

gbrt2.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt2.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.933 

##Decreased 

 

 

print("Score with all features: {:.3f}".format(gbrt3.score(X_test, 

y_test))) 

##Score with all features: 0.934 

gbrt3.fit(X_train_selected_model, y_train) 



37 

 

print("Score with only selected features: 

{:.3f}".format(gbrt3.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.934 

##Stable 

 

 

print("Score with all features: {:.3f}".format(gbrt4.score(X_test, 

y_test))) 

##Score with all features: 0.933 

gbrt4.fit(X_train_selected_model, y_train) 

print("Score with only selected features: 

{:.3f}".format(gbrt4.score(X_test_selected_model, y_test))) 

##Score with only selected features: 0.933 

##Stable 

 

 

 

 

 

####MODEL SELECTION##### 

 

##Based on the accuracy score, I selected one version from every model 

types 

 

# Confusion matrices 

 

logreg.fit(X_train,y_train) 

y_predicted_logreg = logreg.predict(X_test) 

 

tree2.fit(X_train,y_train) 

y_predicted_tree2 = tree2.predict(X_test) 

 

forest2.fit(X_train_selected_perc,y_train) 

y_predicted_forest2 = forest2.predict(X_test_selected_perc) 

 

gbrt2.fit(X_train,y_train) 

y_predicted_gbrt2 = gbrt2.predict(X_test) 
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from sklearn.metrics import confusion_matrix 

print("Logistic Regression:") 

print(confusion_matrix(y_test, y_predicted_logreg)) 

print("\nDecision Tree:") 

print(confusion_matrix(y_test, y_predicted_tree2)) 

print("\nRandom Fores:") 

print(confusion_matrix(y_test, y_predicted_forest2)) 

print("\nGradient Boosting") 

print(confusion_matrix(y_test, y_predicted_gbrt2)) 

 

""" 

Logistic Regression: 

[[8593   39] 

 [ 562   57]] 

Decision Tree: 

[[8583   49] 

 [ 554   65]] 

Random Fores: 

[[8567   65] 

 [ 544   75]] 

Gradient Boosting 

[[8593   39] 

 [ 562   57]] 

""" 

 

# Precision, recall and f-score 

from sklearn.metrics import f1_score 

print("f1 score Logistic Regression: {:.2f}".format(f1_score(y_test, 

y_predicted_logreg))) 

print("f1 score Decision Tree: {:.2f}".format(f1_score(y_test, 

y_predicted_tree2))) 

print("f1 score Random Forest: {:.2f}".format(f1_score(y_test, 

y_predicted_forest2))) 

print("f1 score Gradient Boosting: {:.2f}".format(f1_score(y_test, 

y_predicted_gbrt2))) 

 

""" 
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f1 score Logistic Regression: 0.16 

f1 score Decision Tree: 0.18 

f1 score Random Forest: 0.20 

f1 score Gradient Boosting: 0.16 

""" 

 

 

from sklearn.metrics import classification_report 

print(classification_report(y_test,  y_predicted_logreg, 

                            target_names=["not delinquent", 

"delinquent"])) 

""" 

                precision    recall  f1-score   support 

not delinquent       0.94      1.00      0.97      8632 

    delinquent       0.59      0.09      0.16       619 

   avg / total       0.92      0.94      0.91      9251 

""" 

 

print(classification_report(y_test,  y_predicted_tree2, 

                            target_names=["not delinquent", 

"delinquent"])) 

 

""" 

                precision    recall  f1-score   support 

not delinquent       0.94      0.99      0.97      8632 

    delinquent       0.57      0.11      0.18       619 

   avg / total       0.91      0.93      0.91      9251 

""" 

 

print(classification_report(y_test,  y_predicted_forest2, 

                            target_names=["not delinquent", 

"delinquent"])) 

 

""" 

                precision    recall  f1-score   support 

not delinquent       0.94      0.99      0.97      8632 

    delinquent       0.54      0.12      0.20       619 

   avg / total       0.91      0.93      0.91      9251 

""" 
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print(classification_report(y_test,  y_predicted_gbrt2, 

                            target_names=["not delinquent", 

"delinquent"])) 

 

""" 

                precision    recall  f1-score   support 

not delinquent       0.94      1.00      0.97      8632 

    delinquent       0.59      0.09      0.16       619 

   avg / total       0.92      0.94      0.91      9251 

""" 

 

##AS WE CAN SEE IN HERE LOGISTIC REGRESSION AND GRADIENT BOOSTING MODELS 

ARE THE BEST 

##I SELECTED LOGISTIC REGRESSION 

 

########CONFUSION MATRIX######## 

 

logreg.fit(X_train,y_train) 

y_predicted_logreg = logreg.predict(X_test) 

 

from sklearn.metrics import confusion_matrix 

 

cm = confusion_matrix(y_test, y_predicted_logreg) 

print(cm) 

 

""" 

[[8614   18] 

 [ 602   17]] 

""" 

 

plt.clf() 

plt.imshow(cm,interpolation='nearest',cmap=plt.cm.Wistia) 

classNames=['Negative','Positive'] 

plt.title('Logistic Reg. Serious Delinquency in 2 years or Not Confusion 

Matrix') 

plt.ylabel('True label') 

plt.xlabel('Predicted label') 

tick_marks = np.arange(len(classNames)) 
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plt.xticks(tick_marks, classNames, rotation=45) 

plt.yticks(tick_marks, classNames) 

s = [['TN','FP'], ['FN', 'TP']] 

for i in range(2): 

    for j in range(2): 

        plt.text(j,i, str(s[i][j])+" = "+str(cm[i][j])) 

plt.show() 

 

 




