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EXECUTIVE SUMMARY

A COMPARISON OF ENSEMBLE LEARNING METHODS
IN RETAIL SALES FORECASTING

Serhan Sier

Advisor: Dr. Evren Giiney

SEPTEMBER, 2019, 37 pages

Forecasting has always been an essential skill which companies try to have and
implement in various areas. Sales forecasting is one of the major usage areas of forecasting
which is used in almost all sectors. This study refers to forecasting sales of Walmart Stores
based on several features such as store id, department id, date, and store size. Walmart sales
data which was used in this study contains information of stores between 2010 and 2012. At
the beginning of the study, the introduction of the dataset and exploratory data analysis were
made to identify dependent/independent variables and their characteristics. To apply
machine learning algorithms, data preprocessing methods such as missing value treatment,
outlier treatment, and feature selection was applied. Ensemble learning methods in machine
learning algorithms were applied in the modeling stage. These methods were addressed in
three parts such as Bootstrap Aggregation, Boosting, and Stacked Generalization and these
parts consist of six different algorithms in total. The models were compared based on four
regression metrics as Root Mean Square Error, Mean Absolute Error, R-Squared, and
runtime. After selecting the main metric which models were evaluated, cross-validation was
applied to achieve unbiased estimates. Finally, parameters of the model which have the
highest score in cross-validation were tuned in the hyperparameter optimization stage and a
machine learning model which can be used in forecasting sales of Walmart stores and its
success score were obtained.

Key Words: retail sales forecasting, regression, exploratory data analysis, ensemble
learning methods.
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OZET

PERAKENDE SATIS TAHMINLEMESINDE
TOPLULUK OGRENME METODLARININ KARSILASTIRILMASI

Serhan Sier

Tez Danismani: Dr. Evren Giiney

EYLUL, 2019, 37 sayfa

Tahminleme her zaman sirketlerin sahip olmaya calistig1 ve bir¢ok alanda uygulanan
onemli bir beceri olmustur. Satis tahminlemesi ise neredeyse biitiin sektorlerde kullanilan
tahminlemenin en biiyiik kullanim alanlarindan biridir. Bu ¢aligma, Walmart magazalarinin
magaza numarasl, reyon numarasi, tarih, ve magaza biiyiikliigii gibi 6zellikler iizerinden
satis tahminlemesinin yapilmasi ile ilgilidir. Bu ¢alismada kullanilan Walmart satis verisi,
2010 ve 2012 yillar1 arasindaki magaza bilgilerini igerir. Calismanin baslangicinda bagimli
ve bagimsiz degiskenlerinin 6zelliklerinin belirlenmesi i¢in veri setinin tanitilmasi ve kesifci
veri analizi yapilmigtir. Makine Ogrenmesi algoritmalarmin uygulanabilmesi igin kayp veri
iyilestirmesi, aykir1 verilerin islenmesi ve 6zellik se¢imi gibi veri Onisleme yoOntemleri
kullanildi. Modelleme asamasinda makine 6grenmesi algoritmalari i¢inde bulunan Topluluk
Ogrenme Yontemleri uygulandi. Bu yontemler, Torbalama, Yiikseltme, ve Istifli
Genellestirme olarak ti¢ farkli kisimda ele alind1 ve toplamda alt1 farkli algoritma icerecek
sekilde hazirlandi. Modeller, Hatalarin Ortalama Karekoki, Hatalarin Mutlak Ortalamasi,
R-Kare ve siire olmak tizere dort metrige gore karsilastirildi. Modellerin degerlendirilecegi
temel regresyon metriginin se¢iminin ardindan tarafsiz tahminler elde etmek i¢in ¢apraz-
dogrulama teknigi uygulandi. Son olarak, parametre eniyileme asamasinda en yiiksek
sonucu veren modelin parametreleri ayarlandi ve Walmart magaza satislarini tahminlemekte
kullanilabilecek makine 6grenmesi modeli ve modelin basar1 orani elde edilmis olundu.

Anahtar Kelimeler: perakende satis tahmini, regresyon, kesif¢i veri analizi, |,
topluluk yontemleri.
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1. INTRODUCTION

Forecasting has always been a significant skill which companies tried to have. The
companies which have this skill made their planning more accurate, organized their labor,
logistic structures, financial resources, and costs. This provides companies not only

productivity and profitability but also a competitive advantage among their competitors.

When the volume of the transactions, size of logistics organization and instability of
the market are considered, one of the most important industries is retailing in terms of sales
forecasting. Sales forecasting is an important skill which is generally required and used skill,

especially in the retailing industry.

The objectives of this study are comparing performances of ensemble learning
methods on retail sales forecasting and investigating the importance and effects of

independent variables on the target variable.

The study consists of 9 main sections such as introduction, literature review, about
the data, project definition, exploratory data analysis, methodology, conclusion, references,
and appendix. Besides, exploratory data analysis was made in three parts: Univariate,
Bivariate and Multivariate Analysis. In the methodology section, data preprocessing, model

building and model evaluation stages were applied.

Six different ensemble learning methods which are Bootstrap Aggregation, Random
Forest, Extremely Randomized Trees, Adaptive Boosting, XGBoost, and Voting Regressor
were applied in modeling. Ensemble learning methods were compared based on not only
Root Mean Square Error (RMSE) but also Mean Absolute Error (MAE), R-Squared and
runtime. However, RMSE was selected as the main metric for evaluating the performance
of the methods. Furthermore, Python codes related to all steps of the study were presented

in the appendix section.



2. LITERATURE REVIEW

Since the scope of this study is ensemble learning methods in terms of machine
learning algorithms, articles related to these methods in the scientific literature were scanned

and the ones which can contribute to the study were selected in the literature review section.

Bootstrap Aggregation -also known as Bagging- is an ensemble learning method
which is used for both classification and regression. Breiman (1996) stated that the main
functions which Bootstrap Aggregation offers are improving the stability and accuracy of
the model, reducing variance and avoiding overfitting. However, the most important
drawback of Bootstrap Aggregation is reducing the simplicity and interpretability of the

model. The formulation of Bootstrap Aggregation can be described as below:

: 1<
Veac =5 Y 0(x;Tp)
B b=1

The study which was published by Rapach & Strauss (2010) and a well-known article in the
literature shows that Bootstrap Aggregation model performs better than the combination
forecasts in terms of accuracy in U.S. employment growth. In addition, the study of D’Haen,
Van den Poel & Thorleuchter (2012) shows that Bootstrap Aggregation gave the highest
performance regardless of the data source. Extremely Randomized Trees is a type of
Bootstrap Aggregation in ensemble learning methods. Geurts, Ernst & Wehenkel (2006)
declared that while decision trees have very high standard deviations of the errors, Extremely
Randomized Trees can offer reduce bias and variance. Another boosting algorithm which
was used in this study is Random Forest. Breiman (2001) explains that avoiding overfitting,
being an accurate predictive model and using out-of-bag estimation make Random Forest a
powerful ensemble learning method. Another benefit which is offered by Random Forest is

reducing bias and variance and this allows improving the model performance.

Boosting algorithms are very powerful machine learning models which have been
used for a large number of Kaggle competitions. The result of the study which published by
Ruiz-Abellon, Gabaldon & Guillamoén (2018) illustrates the impressiveness and importance
of both Random Forest and XGBoost methods for load forecasting for a university. In

addition, Jain, Menon & Chandra (2015) states that XGBoost gave the best result in



compared to Linear Regression and Random Forest Regression for retail sales forecasting.
Catal, Ece, Arslan & Akbulut (2019) compared several regression machine learning
algorithms which are Bayesian Linear Regression, Linear Regression, Decision Forest
Regression, Boosted Decision Tree Regression and Neural Network Regression and time
series analysis techniques such as Seasonal ARIMA, Non-Seasonal ARIMA and Seasonal
ETS for sales forecasting. The result of the study shows that Boosted Decision Tree
Regression algorithm performed better than other models in predicting sales of retail stores.
Furthermore, the study which was published by Barboza, Kimura, and Altman (2017)
showed that Bagging, Boosting and Random Forest algorithms are effective tools which can
enhance the decision-making process in the banking industry. Another study which indicates
similar results has published by Son, Hyun, Phan, and Hwang, (2019), and shows that
machine learning algorithms such as XGBoost and Random Forest performed better than
traditional models for bankruptcy forecasting. Another type of boosting algorithms is
Adaptive Boosting also known as AdaBoost. AdaBoost was explained by the article of
Freund, & Schapire (1997) and the study shows that it can be a powerful algorithm for both
classification and regression problems. The formulation of AdaBoost for regression is as

below:

hy(x)=inf <yeY: > log(1/8,) =3 log(1/B8,)

t:h(x)<y

Krishna and Hegde (2018) showed that AdaBoost performed better than other algorithms

based on Root Mean Square Error in their study related to sales forecasting of retail stores.

The last type of ensemble learning method which is in the scope of this study is
stacked generalization also known as stacking. Wolpert (1992) explained how stacked
generalization works and showed that it could be powerful at overcoming errors. Breiman
(1996) stated that stacking algorithms performed better when the models which will be used

as estimators are not much similar.



3.ABOUT THE DATA

This report contains an analysis of historical sales data for 45 Walmart stores and
their departments located in different regions from February 2010 to October 2012. The
dataset contains 3 files providing several features related to Walmart retail sales. Walmart
runs several promotional markdown events throughout the year. These markdowns precede
prominent holidays, the four largest of which are the Super Bowl, Labor Day, Thanksgiving,

and Christmas.

“train.csv” file, which is shown in Table 1, is historical training data, which covers
to 2010-02-05 to 2012-10-26. It consists of 421570 rows and 5 columns such as store id -
the store number, department id - the department number, date - the date of sales,
weekly sales - sales for the given department in the given store and is_holiday - whether the

week is a special holiday week.

Table 1. First 5 rows of “train.csv” data file

store_id department_id date weekly sales is_holiday
0 1 1 2010-02-05 24924.50 False
1 1 1 2010-02-12 46039.49 True
2 1 1 2010-02-19 41595.55 False
3 1 1 2010-02-26 19403.54 False
4 1 1 2010-03-05 21827.90 False

“features.csv” file, which can be seen in Table 2, contains additional data related to
the store, department, and regional activity. It consists of 8190 rows and 8 columns such as
store id - the store number, date - the date of sales, temperature - average temperature in the
region, fuel price - cost of fuel in the region, markdown 1-5 - anonymized data related to
promotional markdowns that Walmart is running, cpi - the consumer price index,
unemployment - the unemployment rate and is_holiday - whether the week is a special

holiday week.



Table 2. First 5 rows of “features.csv” data file

store_id date temperature fuel price markdown 1 markdown 2 markdown 3 markdown 4 markdown_ 5 cpi unemployment is_holiday
0 1 2010-02-05 42.31 2.57 nan nan nan nan nan 211.10 8.11 False
1 1 2010-02-12 38.51 2.55 nan nan nan nan nan 211.24 8.1 True
2 1 2010-02-19 39.93 2.51 nan nan nan nan nan 211.29 8.11 False
3 1 2010-02-26 46.63 2.56 nan nan nan nan nan 211.32 8.11 False
4 1 2010-03-05 46.50 2.62 nan nan nan nan nan 211.35 8.11 False

“stores.csv” file, which is shown in Table 3, contains anonymized information about
the 45 stores, indicating the type and the size of stores. There are 3 types of stores such as
A, B, and C. While store id column represents the store number, type and size columns

represents the type of the store and the size of the store.

Table 3. First 5 rows of “stores.csv” data file

store_id type store size

0 1 A 151315
1 2 A 202307
2 3 B 37392
3 < A 205863
4 5 B 34875

At the beginning of the project, these three files were merged to make a proper
analysis. After that, merged data, which is shown in Table 4, has 16 columns and 421570

observations.

Table 4. First 5 rows of the merged data

date store id department id is_holiday fuel_price 1 markdown 2 markdown 3 markdown 4 markdown 5 cpi unemployment type store size weekly sales
o 210 1 1 False 4231 2.57 nan nan nan nan nan 211.10 811 A 151315 2492450
1 2 False 23 257 nan nan nan nan nan 211.10 811 A 151315 5060527
2WN 1 3 False 231 257 nan nan nan nan nan 211.10 811 A 151315 13740.12
§ 2000 1 4 False 4231 257 nan nan nan nan nan 211.10 811 A 151315 3995404
4R 2010- 1 5 False 4231 257 nan nan nan nan nan 211.10 811 A 151315 3222038



4. PROJECT DEFINITION

The analysis aims to compare the ensemble learning methods in machine learning by

their performance on sales forecasting in the retailing industry.

The main objective of the project is to observe which ensemble learning method
provides more accurate results in retail sales forecasting. On the other hand, the other
objective of the project is investigating the importance and effects of the independent

variables on the target variable using feature engineering techniques.

In the analysis, Bagging, Random Forest, Extremely Randomized Trees, AdaBoost,
XGBoost and Voting Regressor have been used as ensemble learning methods. However,
traditional machine learning models such as linear regression, decision tree, k-nearest
neighbors were left out of scope. Besides, both relationships among independent variables
and relationships between dependent and independent variables were examined. Throughout

the analysis, the effect of holidays on the sales was analyzed.



5. EXPLORATORY DATA ANALYSIS

5.1. Univariate Analysis

In univariate analysis; unique values, mode, frequency table, histogram and pie chart
of the categorical features, mean, median, minimum, maximum, standard deviation,
variance, skewness, kurtosis, distributions and box plot of the numerical features have been

analyzed.

Date column consists of 143 unique values from 2010-02-05 to 2012-10-26. So the
period of the data can be considered as 143 weeks or 2 years and 9 months. In store id
column, there are 45 unique values, from 1 to 45, which means that data contains information
related to 45 different Walmart stores. The dataset contains 81 different departments in the
stores. Furthermore, it can be understood that while some departments exist in most stores,
some exists in only few stores. is_holiday variable has a boolean type with a ratio of 93%
False and 7% True which also can be seen in Figure 1. Thus, "is_holiday" variable is highly
unbalanced since 93% of the weekly sales did not occur in the holidays. Stores in the dataset
have 3 types such as A, B, and C. Figure 2 shows that while roundly half of the weekly sales
records are related to Type A stores, almost 40% of them occurred in Type B stores and

Type C stores have only 10 percent.

True

type

is_holiday

False

Figure 1. Pie Chart of is_holiday variable Figure 2. Pie Chart of type variable



After categorical variables were analyzed, numerical variables including the target
variable were observed in univariate analysis. In this section, mean, median, minimum,
maximum and standard deviation of each numerical variable were investigated. Weekly
sales column in the dataset which is shown in Figure 3 has a highly skewed distribution and
has negative values which mean that the value of return products exceeds the weekly sales

on several dates.

0.00004

0.00003

0.00002

0.00001 A

0.00000 T T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000

weekly_sales

Figure 3. The Distribution of Target Variable

Store size varies from 34875 to 219622 and has a mean of 136727.92. In addition,
there are several variables such as temperature, consumer price index, fuel price which may

help to predict weekly sales of retail stores in the dataset.

5.2. Bivariate Analysis

Since the distribution of the data is skewed, non-parametric tests were preferred in
the bivariate analysis section. While bivariate analysis between categorical and numerical
was made, Kruskal Wallis test was applied. According to the Kruskal Wallis test result, it
can be understood that sample distributions in the categorical variables are not equal.
Correlations between numerical variables were analyzed based on the "Spearman" method

since numerical features don't have Gaussian distribution.
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Figure 4. Spearman Correlation Analysis

According to the result of the correlation analysis which can be seen in Figure 4, it

can be seen that markdown features are highly correlated with each other.

5.3. Multivariate Analysis

For Multivariate Analysis, Analysis of covariance (ANCOVA), which is shown in

Figure 5, will be used since data has both categorical and numerical features.



OLS Regression Results

Dep. Variable: weekly_sales R-squared: 0.206
Model: OLS  Adj. R-squared: 0.206
Method: Least Squares F-statistic: 3214,
Date: Mon, 26 Aug 2019 Prob (F-statistic): 0.00
Time: 14:35:48  Log-Likelihood: -4.7782e+06
No. Observations: 421570 AIC:  9.556e+06
Df Residuals: 421535 BIC:  9.557e+06
Df Model: 34
Covariance Type: nonrobust
Omnibus: 302865.229 Durbin-Watson: 1.517
Prob(Omnibus): 0.000 Jarque-Bera (JB): 13509317.665
Skew: 2.971 Prob(JB): 0.00
Kurtosis: 30.088 Cond. No. 2.77e+06

Figure 5. Analysis of Covariance (ANCOVA)

The reason why ANCOVA was chosen is that it combines features of both ANOVA
and regression. It increases the model of ANOVA with quantitative factors, called
covariates, linked to the target variable. The covariates are included to decrease the variance
in the error terms and provide more accurate measurement of the treatment effects.
ANCOVA is used to test the main and interaction effects of the factors while controlling for

the effects of the covariate.

10



6. METHODOLOGY

6.1. Data Preprocessing

Firstly, variables were split into two sets as features and target to implement
preprocessing easily. Missing values in markdown columns were filled with 0 for missing
value treatment. Outliers in all columns were identified and it was seen that markdown
columns, unemployment, and target variable have outliers. To avoid data loss, doing outlier
treatment after feature selection stage was decided. In Feature Engineering, week number as
a new feature was created from Date column. Afterward, variables were transformed into

proper types. Date column was dropped since the week number variable will be used instead.

For categorical features which have string values, Label Encoding was applied. Since
the scope of this study contains only tree-based models, One-Hot Encoding and feature
scaling will not be applied. In the feature selection stage, is holiday column was dropped
since week number represents the information which is_holiday variable offers. Highly
correlated variables such as markdown 3, markdown 2, markdown 5, markdown 1, and
type were dropped based on their correlation with the target variable. Since fuel price
variable has very low variation (0.21), it was dropped. After the importance of features were
identified thanks to the Random Forest algorithm, markdown_4 was dropped. Finally, data
was split into three parts such as train, validation, and test set with the ratio of 60%, 20%,

and 20% respectively.

6.2. Model Building

Ensemble Learning Methods such as bootstrap aggregation, boosting and stacked
generalization methods were applied after data preprocessing stage. For bootstrap
aggregation method Bagging Regressor, Random Forest Regressor and Extremely
Randomized Trees; for Boosting method AdaBoost and XGBoost were used and models
were compared based on their Root Mean Square Error, Mean Absolute Error, R-Squared
scores, and runtimes. In stacked generalization, XGBoost, AdaBoost and Random Forest

will be used since they have higher scores than other models. In order to obtain a reasonable

11



comparison, the maximum depth was selected the same in all models as 7 for the beginning.

Different values of depth will be tried in the stage of hyperparameter tuning.

6.3. Model Evaluation

In the model evaluation stage of the analysis, mean absolute error was selected as the
main performance metric in order to reduce the effect of the outliers to the model
performance. The results of the models after cross-validation, which is shown in Table 5 and
Figure 6, were compared based on all metrics. XGBoost gave a more successful performance
in Root Mean Square Error, Mean Absolute Error, and R-Squared. However, Extremely

Randomized Trees performed better in terms of model runtime.

Table 5. The Performances of Models with Cross-Validation
Model MAE RMSE R2 Time(sec)

4 XGBoost 3238.91 5792.23 0.93 11
5 \VotingReg 5269.71 8309.80 0.87 94
1 RandomF. 6434.12 10808.14 0.77 15
0 Bagging 6434.12 10808.14 0.77 19
3 AdaBoost 7230.23 10350.51 0.79 70
2 ExtraT. 9510.82 15397.08 0.54 8
. R2
XGBoost N RMSE
. MAE
VotingReg
Random F.
z
2
Bagging
AdaBoost
Extra T.
10° 10 10: 10° 10°

Figure 6. Bar Chart of Comparison of Models

12



In the final part of the evaluation stage, hyperparameter optimization will be applied
to XGBoost method which is more successful based on the results in the cross-validation
part. Parameters such as n_estimators, learning_rate, max_depth, gamma, subsample and
colsample bytree were tuned after trying different reasonable values. While trying values in
hyperparameter optimization, 5-fold cross-validation was used to obtain consistent results.
Best parameters of XGBoost model were 0.05 for learning rate, 4200 for the number of
estimators, 10 for maximum depth, 1 for gamma, 0.8 for subsample and 1 for subsample
ratio of columns. With these parameters, XGBoost model gave the result of 1298.86 of
Mean Absolute Error and 0.98 of R-Squared.

13



7. CONCLUSION

In this study, the weekly sales of departments in 45 Walmart stores from February
2010 to October 2012 were analyzed and forecasting of weekly sales by using statistical
techniques and machine learning algorithms was aimed. After introducing the general
structure of the data, characteristics of dependent and independent variables and

relationships between them were analyzed by using exploratory data analysis techniques.

Missing value treatment, outlier treatment, the encoding of categorical features,
feature engineering, feature selection, and train-validation-test split were applied in data
preprocessing stage. As considering the scope of this study, ensemble learning methods in
machine learning were performed in three parts as Bootstrap Aggregation, Boosting and
Stacked Generalization. Bagging Regressor, Random Forest Regressor, Extra Trees
Regressor, AdaBoost, XGBoost and Voting Regressor are the machine learning methods
which were compared by Root Mean Square Error, Mean Absolute Error, R-Squared, and
runtime with cross-validation in the modeling section. After realizing that XGBoost
performed better than other models in all metrics, the best parameters for XGBoost were
determined by trying different parameters in the hyperparameter tuning section. Finally, the
model with the best parameters was applied to the test data and the result of the model was
recorded. In further studies, Artificial Neural Network and Time Series Analysis may be

applied to improve the results in terms of performance metrics.

14
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APPENDIX

PYTHON CODES

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt
get_ipython().run_line magic('matplotlib', 'inline")

import time

from math import sqrt

import statistics

from scipy import stats

import category encoders as ce

import statsmodels.api as sm

from statsmodels.formula.api import ols

from statsmodels.stats.outliers_influence import variance inflation_factor
from statsmodels.tools.tools import add constant

from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.feature selection import VarianceThreshold, SelectKBest, f regression
from sklearn.model selection import train_test split, KFold, GridSearchCV,
RandomizedSearchCV

from sklearn.decomposition import PCA

from sklearn.linear model import LinearRegression
from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR

from sklearn.svm import libsvm

from sklearn.linear model import SGDRegressor

from sklearn.ensemble import BaggingRegressor

from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingRegressor
import xgboost as xgb

from sklearn.ensemble import VotingRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import mean_absolute error, mean_squared_error, r2_score

import warnings

warnings.filterwarnings('ignore')
pd.options.mode.chained assignment = None
pd.options.display.max_columns = None
pd.set_option('display.float format', '{:.2f}".format)
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print('Versions')

print('Pandas  :', pd. version )
print(Numpy  :',np. version )
print('Seaborn  :', sns. version )

print('Matplotlib :', plt. version )
print('Statsmodels : ', sm.  version_ )
print('Sklearn  :', sk. version )

# Reading the data files:
train = pd.read_csv("data/train.csv", sep=',", header=0,

names=|'store id', 'department id', 'date’, 'weekly sales', 'is_holiday'])
features = pd.read_csv("data/features.csv", sep=",', header=0,

names=['store_id', 'date', 'temperature', 'fuel price', 'markdown_1',
'markdown_2',
'markdown_3', 'markdown_4', 'markdown_5', 'cpi', 'unemployment',

'is_holiday'])
stores = pd.read_csv("data/stores.csv", sep=',', header=0,

names=|'store_id', 'type', 'store size'])

print(train.shape)
print(features.shape)
print(stores.shape)
train.head()
features.head()
stores.head()

# Merging all data files:

data = pd.merge(train, features, on=['store_id', 'date’, 'is_holiday'], how="left')
data = pd.merge(data, stores, on=['store_id'], how="left'")

del train, features, stores

# Sorting data by date/store number/department number, moving date column to the
beginning and weekly sales column to the end:

data = data.sort_values(['date’, 'store id', 'department id']).reset index(drop=True)
data = pd.concat([data.date, data.drop('date’, axis=1)], axis=1)

data = pd.concat([data.drop(‘'weekly sales', axis=1), data.weekly sales], axis=1)
data.shape

# The merged data contains 421570 rows and 16 columns.
# Looking at the first 5 rows of data:
data.head()

data.info()

data.apply(lambda x: [x.nunique()])
data.apply(lambda x: [x.unique()])
data.isna().mean()
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# <br>
# skkk

# <br>
# <h1>2. Exploratory Data Analysis</h1><br>
# <h2>2.1. Univariate Analysis</h2>

cats = data[['date', 'store_id', 'department id', 'is_holiday', 'type']]
nums = data.drop(cats.columns, axis=1).fillna(0)

# <br>
# <h3>- Categorical</h3>

pd.DataFrame( {'Categorical Variables':cats.columns})

def analyze cats(dataframe, column name):
print('-' * 100 + "\n' + Number of Unique Values:')
print(str(dataframe[column_name].nunique()) + "\n' +'-' * 100)
print('Unique Values:")
print(np.sort(dataframe[column_name].unique()), "n' +'-' * 100)
uniques = list(dataframe[column_name].value counts().index)
counts = list(dataframe[column_name].value counts().values)
percentages = list(dataframe[column_name].value counts(normalize=True).values)
freq table list = list(zip(uniques, counts, percentages))
freq_table = pd.DataFrame(freq table list, columns = [column_name.capitalize(),
'Count', 'Count%'])
plt.figure(figsize=(18, 8))
if len(dataframe[column_name].unique()) < 5:
display(freq_table, dataframe[column_name].value counts(normalize =
True).plot(kind='pie',
labels=dataframe[column_name].unique(),
autopct="%1.1{%%",
startangle=90))
else:
display(freq_table, dataframe[column_name].value counts(normalize =
True).plot(kind='bar', legend=True))

# <br>

# <b>date</b>

analyze cats(data, 'date")

# Dataset consists of weekly sales of Wallmart Stores from 2010-02-05 to 2012-10-26.
# So time period of the data can be considered as 2 years and 9 months or 143 weeks.

# <br>

# <b>store id</b>

analyze cats(data, 'store id')

# There are 45 Wallmart Stores in the dataset.
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# <br>

# <b>department id</b>

analyze cats(data, 'department id')

# Dataset contains 81 different departments in the stores.

# Furthermore, it can be understood that while some departments exists in most of stores,
some exists in only few stores.

# <br>

# <b>is_holiday</b>

analyze cats(data, 'is_holiday")

# The outputs show that "is_holiday" variable is highly unbalanced since 93% of the
weekly sales did not occur in the holidays.

# <br>

# <b>type</b>

analyze cats(data, 'type')

# While roundly half of the weekly sales records are related to Type A stores, almost 40%
of them occurred in Type B stores and Type C stores have only 10 percentage.

# <br>
# <h3>- Numerical</h3>

pd.DataFrame({'Numerical Variables':nums.columns})
nums.describe()

pd.DataFrame({'Features':nums.var().index,
'Variance":nums.var().values}).sort_values('Variance')

pd.DataFrame({'Features':(nums.std() / nums.mean()).index,
'CV':(nums.std() / nums.mean()).values}).sort_values('CV', ascending=False)

pd.DataFrame({'Features':nums.skew().index,
'Skewness':nums.skew().values}).sort_values('Skewness')

pd.DataFrame({'Features':nums.kurtosis().index,
'Kurtosis':nums.kurtosis().values}).sort_values('Kurtosis')

for 1 in nums.columns:

plt.figure(figsize=(12, 2))

sns.distplot(nums|[i])
nums.hist(figsize=(20, 15), bins=20, xlabelsize=9, ylabelsize=9);
for 1 in nums.columns:

plt.figure(figsize=(12, 2))
sns.boxplot(x=nums[i])
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# <br><br>
# <h2>2.2. Bivariate Analysis</h2><br>
# <h3>- Categorical & Numerical</h3>

cats['is_holiday'] = cats['is_holiday'].replace({False:0, True:1})
cats['type'] = cats['type'].replace({'A":3, 'B":2, 'C":1})

cats = cats.astype({'date":'category'})

cats['date'] = cats['date'].cat.codes

for i in cats.columns:
print(i)
print(stats.kruskal(cats[1], nums['weekly sales']))
print("\n')

# According to Kruskal Wallis test result, sample distributions in the categorical variables
are not equal.

# <br>
# <h3>- Numerical & Numerical</h3>

# Correlation Analysis based on "Spearman" method will be used since numerical features

don't have gaussian distribution.

plt.figure(figsize=(12, 12))

sns.heatmap(round(abs(nums.corr(method ='spearman')), 2), vmin=0, vmax=1,
center=0.5, annot=True, cmap=plt.cm.Reds, square=True);

round(abs(nums.corr(method ='spearman')), 2)[round(abs(nums.corr(method
='spearman')), 2) > 0.7] [round(abs(nums.corr(method ='spearman')), 2) <
1.0].dropna(how="all', axis=[0, 1])
for 1 in nums.drop(‘'weekly sales', axis=1).columns:

plt.figure(figsize=(12, 2))

sns.scatterplot(x=i, y="weekly sales", data=nums);

# <br><br>
# <h2>2.3. Multivariate Analysis</h2>

# For Multivariate Analysis, ANCOVA will be used since data has both categorical and
numerical features.

encoder = ce.BinaryEncoder(cols=['date', 'store id', 'department id', 'type'],
drop_invariant=True)

cats = encoder.fit_transform(cats)
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all columns =" + ".join(pd.concat([cats, nums], axis=1).columns)[:-15]

formula = "weekly sales ~" + " + " join(pd.concat([cats, nums], axis=1).columns)[:-15]
results = ols(formula, data=pd.concat([cats, nums], axis=1)).fit()

results.summary()

# <br>

# skskok

# <br>

# <h1>3. Methodology</h1><br>

# <h2>3.1. Data Preprocessing</h2>

# Firstly, variables will be split into two sets as "features" and "target" in order to
implement preprocessing easily.

features = data.drop('weekly sales', axis=1)
target = pd.DataFrame(data['weekly sales'], columns=['weekly sales'])

# <br>
# <h3>- Missing Value Treatment</h3>

features.isna().mean()
target.isna().mean()

features[['markdown 1','markdown_2''markdown_ 3''markdown_4', 'markdown_5'l] =
features[['markdown_1','markdown_2''markdown 3','markdown_4',
'markdown_5']].fillna(0)

features.isna().sum()

# <br>
# <h3>- Outlier Treatment</h3>

# Identifying the outliers in continuous variables based on IQR Score Method:
def find outliers(data, column_list):
for i in column_list:
Q1 = data[i].quantile(0.25)
Q3 = data[i].quantile(0.75)
IQR=Q3-Q1
print(i+"'"* (13 -len(i)) + " '+
str(len(data[i][(data[i] < (Q1 - 3 * IQR)) | (data[i] > (Q3 + 3 * IQR))])))

find outliers(features, features.select dtypes(include=['int64', 'float64']).columns)
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find outliers(features[features > 0], ['markdown_1', 'markdown_2', 'markdown_3',
'markdown_4', 'markdown_5')

find_outliers(target, ['weekly sales'])

# <br>
# <h3>- Feature Engineering</h3>

features = features.astype({'date':'datetime64'})
features['week number'] = features['date'].dt.week
features = features.drop('date’, axis=1)

# <br>

# <h3>- Label Encoding</h3>

le = LabelEncoder()

features['is_holiday'] = le.fit_transform(features['is_holiday'])
features['type'] = le.fit_transform(features['type'])

# <br>

# <h3>- Feature Selection</h3>

print(sorted(features[features['is_holiday'] == True]['week number'].unique()))
print(sorted(features[features['is_holiday'] == False]['week number'].unique()))

# Since "week number" represents the information which "is_holiday" variable offers,
"is_holiday" will be dropped.

features = features.drop('is_holiday', axis=1)

# <br>

# <b>Based on Pairwise Correlation</b>

corr_data = round(abs(pd.concat([ features, target], axis=1).corr(method ='spearman')), 2)

plt.figure(figsize=(12, 12))

sns.heatmap(corr data, vmin=0, vmax=1, center=0.5, annot=True, cmap=plt.cm.Reds,

square=True);

corr_data[corr_data > 0.7][corr_data < 1.0].dropna(how="all', axis=[0, 1])

pd.DataFrame({'Features':corr data['weekly sales'].sort values(ascending=False).index,
'Corr. with

Target':corr_data['weekly sales'].sort values(ascending=False).values}).drop(0, axis=0)

# Since "markdown_4" and "store size" features have higher correlation with the target,

other variables having high correlation will be dropped:

features = features.drop(['markdown_3', 'markdown_2', 'markdown_5', 'markdown 1',

'type'], axis=1)

# <br>

# <b>Based on Variance</b>
pd.DataFrame({'Features':features.var().index,
'"Variance':features.var().values}).sort_values("Variance')

# Since "fuel price" has very low variation, it will be dropped.
features = features.drop('fuel price', axis=1)
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# <br>

# <b>Based on Feature Importance</b>

model = RandomForestRegressor(random_state=1)

model.fit(features, target)

feat_importances = pd.Series(model.feature importances , index=features.columns)

plt.figure(figsize=(12, 6))

feat importances.sort values().plot(kind='barh', grid=True)

plt.show()

pd.DataFrame({'Features':feat importances.sort values(ascending=False).index,
'Tmportances’:feat importances.sort values(ascending=False).values})

# According to feature importance output, 'markdown_4' will be dropped since it doesn't

have a significant feature importance.

features = features.drop(‘'markdown_4', axis=1)

# <br>

# <h3>- One Hot Encoding</h3>

# Since the scope of this study contains only tree-based models, one hot encoding will not
be applied.

# <br>

# <h3>- Feature Scaling</h3>

# Since the scope of this study contains only tree-based models, feature scaling will not be
applied.

# <br>

# <h3>- Train-Test Split</h3>

X_train_val, x_test, y train val,y test=train test split(features, target, test size=0.2,
random_state=0)

X_train, x_val,y train, y val = train_test split(x train val, y train val, test size=0.25,
random_state=0)

print('x_train : {0:.{1}f}%'.format(x train.shape[0] / features.shape[0] * 100, 0))
print('y_train : {0:.{1}f}%'.format(y_train.shape[0] / target.shape[0] * 100, 0))
print("\n')

print('x_val : {0:.{1}f}%'"format(x val.shape[0] / features.shape[0] * 100, 0))
print('y_val : {0:.{1}f}%'format(y val.shape[0] / target.shape[0] * 100, 0))
print("\n')

print('x_test : {0:.{1}f}%'.format(x test.shape[0] / features.shape[0] * 100, 0))
print('y_test : {0:.{1}f}%'.format(y test.shape[0] / target.shape[0] * 100, 0))

# <br><br>
# <h2>3.2. Model Building</h2>

# <b>A. Bootstrap Aggregation</b>

# --- Bagging (BaggingRegressor)

# --- Random Forest (RandomForestRegressor)

# --- Extremely Randomized Trees (ExtraTreesRegressor)

# <b>B. Boosting</b>
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# --- Adaptive Boosting (AdaBoostRegressor)
# --- Extreme Gradient Boosting (XGBoost)

# <b>C. Stacked Generalization</b>
# --- Voting Regressor (VotingRegressor)
# <br>

# In order to obtain reasonable comparison, the maximum depths of the model was
selected same in all models as 7 for the beginning.
# Different values of depth will be tried in the stage of hyperparameter tuning.

models = {'Bagging' :
BaggingRegressor(base estimator=DecisionTreeRegressor(max_depth=7,
random_state=1),
n_estimators=100,
n_jobs=-1,
random_state=1),
'Random F.' : RandomForestRegressor(n_estimators=100,
max_depth=7,
n_jobs=-1,
random_state=1),
'Extra T.' : ExtraTreesRegressor(n_estimators=100,
max_depth=7,
n_jobs=-1,
random_state=1),
'AdaBoost' :
AdaBoostRegressor(base estimator=DecisionTreeRegressor(max_depth=7,
random_state=1),
n_estimators=100,
learning_rate=0.1,
random_state=1),
"XGBoost' : xgb.XGBRegressor(n_estimators=100,
learning_rate=0.1,
max_depth=7,
n_jobs=-1,
random_state=1)}

model name = list(models.keys())
mae_scores = []

rmse_scores = [ ]

r2_scores = []

times = []

for 1 in models:
start = time.time()
model = models][i]
model.fit(x_train, y train)
y_pred = model.predict(x_val)
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mae_scores.append(mean_absolute error(y val, y pred))
rmse_scores.append(sqrt(mean_squared_error(y val, y pred)))
r2_scores.append(r2_score(y_val, y pred))

end = time.time()

times.append(end - start)

compare list = list(zip(model name, mae scores, rmse_scores, r2_scores, times))
compare = pd.DataFrame(compare list, columns = ['Model', ' MAE', 'RMSE', 'R2',
'"Time(sec)'])

compare

# In stacked generalization algorithm, XGBoost, AdaBoost and Random Forest will be
used since they have higher scores than other models.

model = VotingRegressor(estimators=[('xg', xgb.XGBRegressor(n_estimators=100,
learning_rate=0.1,
max_depth=7,
n_jobs=-1,
random_state=1)),
(‘ad',
AdaBoostRegressor(base estimator=DecisionTreeRegressor(max_depth=7,
random_state=1),
n_estimators=100,
learning_rate=0.1,
random_state=1)),
('rf, RandomForestRegressor(n_estimators=100,
max_depth=7,
n_jobs=-1,
random_state=1))],
n_jobs=-1)

model name.append('VotingReg'")

models["VotingReg'] = model

start = time.time()

model.fit(x_train, y train)

y_pred = model.predict(x_val)
mae_scores.append(mean_absolute error(y val,y pred))
rmse_scores.append(sqrt(mean_squared_error(y val, y pred)))
r2_scores.append(r2_score(y_val, y pred))

end = time.time()

times.append(end - start)

compare list = list(zip(model name, mae scores, rmse_scores, r2_scores, times))
compare = pd.DataFrame(compare list, columns = ['Model', ' MAE', 'RMSE', 'R2',
'"Time(sec)'])

compare
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compare.plot(kind="barh’,
x='Model',
y=['MAE', 'RMSE', 'R2'],
figsize=(14, 8),
logx=True,
grid=True,
legend="reverse');

# <br><br>
# <h2>3.3. Model Evaluation</h2>

# <h3>3.3.1. Performance Metrics</h3>
def take second(x):
return x[1]

# <br>
# <b>Mean Absolute Error</b>
for 1, j in sorted(zip(model name, mae scores), key=take second, reverse=False):
print(i+"'"* (12 - len(i)) +': {0:.{1}f}".format(j, 2))
compare.sort_values('MAE', ascending=False).plot(kind='barh',
x='Model',
y=MAE,
figsize=(12, 6),
legend=False);

# <br>
# <b>Root Mean Squared Error</b>
for 1, j in sorted(zip(model name, rmse scores), key=take second, reverse=False):
print(i+'"* (12 - len(i)) +': {0:.{1}f}".format(j, 2))
compare.sort_values('(RMSE', ascending=False).plot(kind="barh',
x='Model',
y="RMSE,
figsize=(12, 6),
legend=False);

# <br>
# <b>R-Squared</b>
for 1, j in sorted(zip(model name, 12 scores), key=take second, reverse=True):
print(i+"'"* (12 - len(i)) +": {0:.{1}f}".format(j, 2))
compare.sort_values('R2").plot(kind="barh’,
x='Model',
y='R2,
figsize=(12, 6),
legend=False);

# <br>
# <b>Runtime</b>
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for i, j in sorted(zip(model name, times), key=take second, reverse=False):
print(i+"'"* (12 - len(i)) +": {0:.{1}f}".format(j, 2))
compare.sort_values('Time(sec)', ascending=False).plot(kind='barh',
x='Model',
y="Time(sec)',
figsize=(12, 6),
legend=False);

# <br><br>

# <h3>3.3.2. Cross-Validation</h3>

# In order to achieve an unbiased estimate of the model performance, 5-fold cross-
validation will be used.

all mae scores =[]

all rmse scores =[]

all 2 scores =[]

all times =[]

for 1 in models:
mae_scores = []
rmse_scores = [ ]
r2_scores = []
times = []
model = models][i]
cv =KFold(n_splits=5)
for train_index, test_index in cv.split(x_train_val.values):

start = time.time()

X_train, x_val,y train,y val =x_train_val.iloc[train_index],
x_train_val.iloc[test index], y_train val.iloc[train_index],
y_train_val.iloc[test index]

model.fit(x_train, y train)

y_pred = model.predict(x_val)

mae_scores.append(mean_absolute error(y val,y pred))

rmse_scores.append(sqrt(mean_squared_error(y val, y pred)))
r2_scores.append(r2_score(y_val, y pred))

end = time.time()

times.append(end - start)

all mae scores.append(sum(mae_scores) / len(mae_scores))
all rmse scores.append(sum(rmse_scores) / len(rmse_scores))
all r2 scores.append(sum(r2_scores) / len(r2_scores))

all times.append(round(sum(times) / len(times)))

compare_list cv = list(zip(model name, all mae scores, all rmse scores, all 12 scores,
all_times))
compare_cv = pd.DataFrame(compare list cv, columns = ['Model', 'MAE', 'RMSE', 'R2',
'"Time(sec)'])
compare _cv.sort_values('MAE")
compare_cv.sort values('MAE', ascending=False).plot(kind='barh',

x='Model',
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y=['MAE', 'RMSE', 'R2'],
logx=True,
legend='reverse',
figsize=(12, 6));

# <br><br>
# <h3>3.3.3. Hyperparameter Optimization</h3>
grid param = {'n_estimators' : range(100, 1000, 100),
'learning_rate' :[0.01, 0.05, 0.1],
'max_depth' : range(3, 11),
'gamma’ 1[0, 1, 5],
'subsample’ 0.8, 0.9, 1.0],
'colsample_bytree' : [0.8, 0.9, 1.0]}
xgb_grid = xgb.XGBRegressor(n_jobs=-1,
random_state=1)
cv =KFold(n_splits=5)
grid = RandomizedSearchCV (estimator=xgb_grid,
param_distributions=grid_param,
scoring="neg_mean_absolute error’,
cv=cv,
n_iter=5,
n_jobs=-1,
random_state=1)

grid.fit(x_train, y train)
print(grid.best_params_, -grid.best_score )

y_pred = grid.best_estimator .predict(x_val)
print('Mean Absolute Error for Validation: {0:.{1}f}'.format(mean_absolute error(y val,
y_pred), 2))

y_pred_test = grid.best _estimator .predict(x_test)
print('Mean Absolute Error for Test: {0:.{1}f}'.format(mean_absolute error(y_test,

y_pred_test), 2))

model = xgb.XGBRegressor(learning_rate=0.05,
n_estimators=200,
max_depth=10,
gamma=1,
subsample=0.8,
colsample bytree=I,
n_jobs=-1,
random_state=1)
model.fit(x_train, y train)
y_pred test = model.predict(x_test)
print('Final Mean Absolute Error: {0:.{1}f}'.format(mean_absolute error(y_test,

y_pred_test), 2))
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