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EXECUTIVE SUMMARY 

 
A COMPARISON OF ENSEMBLE LEARNING METHODS  

IN RETAIL SALES FORECASTING 
 

Serhan Süer 
 

 
Advisor: Dr. Evren Güney 

 
 

SEPTEMBER, 2019, 37 pages 
 
 
 
Forecasting has always been an essential skill which companies try to have and 

implement in various areas. Sales forecasting is one of the major usage areas of forecasting 
which is used in almost all sectors. This study refers to forecasting sales of Walmart Stores 
based on several features such as store id, department id, date, and store size. Walmart sales 
data which was used in this study contains information of stores between 2010 and 2012. At 
the beginning of the study, the introduction of the dataset and exploratory data analysis were 
made to identify dependent/independent variables and their characteristics. To apply 
machine learning algorithms, data preprocessing methods such as missing value treatment, 
outlier treatment, and feature selection was applied. Ensemble learning methods in machine 
learning algorithms were applied in the modeling stage. These methods were addressed in 
three parts such as Bootstrap Aggregation, Boosting, and Stacked Generalization and these 
parts consist of six different algorithms in total. The models were compared based on four 
regression metrics as Root Mean Square Error, Mean Absolute Error, R-Squared, and 
runtime. After selecting the main metric which models were evaluated, cross-validation was 
applied to achieve unbiased estimates. Finally, parameters of the model which have the 
highest score in cross-validation were tuned in the hyperparameter optimization stage and a 
machine learning model which can be used in forecasting sales of Walmart stores and its 
success score were obtained. 

 
 
 
 
 
 
 
 
 
 
 
Key Words:  retail sales forecasting, regression, exploratory data analysis, ensemble 

learning methods.  
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ÖZET 

 
PERAKENDE SATIŞ TAHMİNLEMESİNDE 

TOPLULUK ÖĞRENME METODLARININ KARŞILAŞTIRILMASI 
 

Serhan Süer 
 

 
Tez Danışmanı: Dr. Evren Güney 

 
 

EYLÜL, 2019, 37 sayfa 
 
 
 
Tahminleme her zaman şirketlerin sahip olmaya çalıştığı ve birçok alanda uygulanan 

önemli bir beceri olmuştur. Satış tahminlemesi ise neredeyse bütün sektörlerde kullanılan 
tahminlemenin en büyük kullanım alanlarından biridir. Bu çalışma, Walmart mağazalarının 
mağaza numarası, reyon numarası, tarih, ve mağaza büyüklüğü gibi özellikler üzerinden 
satış tahminlemesinin yapılması ile ilgilidir. Bu çalışmada kullanılan Walmart satış verisi, 
2010 ve 2012 yılları arasındaki mağaza bilgilerini içerir. Çalışmanın başlangıcında bağımlı 
ve bağımsız değişkenlerinin özelliklerinin belirlenmesi için veri setinin tanıtılması ve keşifçi 
veri analizi yapılmıştır. Makine Öğrenmesi algoritmalarının uygulanabilmesi için kayıp veri 
iyileştirmesi, aykırı verilerin işlenmesi ve özellik seçimi gibi veri önişleme yöntemleri 
kullanıldı. Modelleme aşamasında makine öğrenmesi algoritmaları içinde bulunan Topluluk 
Öğrenme Yöntemleri uygulandı. Bu yöntemler, Torbalama, Yükseltme, ve İstifli 
Genelleştirme olarak üç farklı kısımda ele alındı ve toplamda altı farklı algoritma içerecek 
şekilde hazırlandı. Modeller, Hataların Ortalama Karekökü, Hataların Mutlak Ortalaması, 
R-Kare ve süre olmak üzere dört metriğe göre karşılaştırıldı. Modellerin değerlendirileceği 
temel regresyon metriğinin seçiminin ardından tarafsız tahminler elde etmek için çapraz-
doğrulama tekniği uygulandı. Son olarak, parametre eniyileme aşamasında en yüksek 
sonucu veren modelin parametreleri ayarlandı ve Walmart mağaza satışlarını tahminlemekte 
kullanılabilecek makine öğrenmesi modeli ve modelin başarı oranı elde edilmiş olundu. 

 
 
 

 
 
 
 
 
 
 
 
Anahtar Kelimeler:  perakende satış tahmini, regresyon, keşifçi veri analizi, , 

topluluk yöntemleri.  
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1. INTRODUCTION 

Forecasting has always been a significant skill which companies tried to have. The 

companies which have this skill made their planning more accurate, organized their labor, 

logistic structures, financial resources, and costs. This provides companies not only 

productivity and profitability but also a competitive advantage among their competitors.  

When the volume of the transactions, size of logistics organization and instability of 

the market are considered, one of the most important industries is retailing in terms of sales 

forecasting. Sales forecasting is an important skill which is generally required and used skill, 

especially in the retailing industry.  

The objectives of this study are comparing performances of ensemble learning 

methods on retail sales forecasting and investigating the importance and effects of 

independent variables on the target variable.  

The study consists of 9 main sections such as introduction, literature review, about 

the data, project definition, exploratory data analysis, methodology, conclusion, references, 

and appendix. Besides, exploratory data analysis was made in three parts: Univariate, 

Bivariate and Multivariate Analysis. In the methodology section, data preprocessing, model 

building and model evaluation stages were applied.  

Six different ensemble learning methods which are Bootstrap Aggregation, Random 

Forest, Extremely Randomized Trees, Adaptive Boosting, XGBoost, and Voting Regressor 

were applied in modeling. Ensemble learning methods were compared based on not only 

Root Mean Square Error (RMSE) but also Mean Absolute Error (MAE), R-Squared and 

runtime. However, RMSE was selected as the main metric for evaluating the performance 

of the methods. Furthermore, Python codes related to all steps of the study were presented 

in the appendix section. 
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2. LITERATURE REVIEW 

Since the scope of this study is ensemble learning methods in terms of machine 

learning algorithms, articles related to these methods in the scientific literature were scanned 

and the ones which can contribute to the study were selected in the literature review section.  

Bootstrap Aggregation -also known as Bagging- is an ensemble learning method 

which is used for both classification and regression. Breiman (1996) stated that the main 

functions which Bootstrap Aggregation offers are improving the stability and accuracy of 

the model, reducing variance and avoiding overfitting. However, the most important 

drawback of Bootstrap Aggregation is reducing the simplicity and interpretability of the 

model. The formulation of Bootstrap Aggregation can be described as below: 

 

 

The study which was published by Rapach & Strauss (2010) and a well-known article in the 

literature shows that Bootstrap Aggregation model performs better than the combination 

forecasts in terms of accuracy in U.S. employment growth. In addition, the study of D’Haen, 

Van den Poel & Thorleuchter (2012) shows that Bootstrap Aggregation gave the highest 

performance regardless of the data source. Extremely Randomized Trees is a type of 

Bootstrap Aggregation in ensemble learning methods. Geurts, Ernst & Wehenkel (2006) 

declared that while decision trees have very high standard deviations of the errors, Extremely 

Randomized Trees can offer reduce bias and variance. Another boosting algorithm which 

was used in this study is Random Forest. Breiman (2001) explains that avoiding overfitting, 

being an accurate predictive model and using out-of-bag estimation make Random Forest a 

powerful ensemble learning method. Another benefit which is offered by Random Forest is 

reducing bias and variance and this allows improving the model performance.  

Boosting algorithms are very powerful machine learning models which have been 

used for a large number of Kaggle competitions. The result of the study which published by 

Ruiz-Abellón, Gabaldón & Guillamón (2018) illustrates the impressiveness and importance 

of both Random Forest and XGBoost methods for load forecasting for a university. In 

addition, Jain, Menon & Chandra (2015) states that XGBoost gave the best result in 
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compared to Linear Regression and Random Forest Regression for retail sales forecasting. 

Catal, Ece, Arslan & Akbulut (2019) compared several regression machine learning 

algorithms which are Bayesian Linear Regression, Linear Regression, Decision Forest 

Regression, Boosted Decision Tree Regression and Neural Network Regression and time 

series analysis techniques such as Seasonal ARIMA, Non-Seasonal ARIMA and Seasonal 

ETS for sales forecasting. The result of the study shows that Boosted Decision Tree 

Regression algorithm performed better than other models in predicting sales of retail stores. 

Furthermore, the study which was published by Barboza, Kimura, and Altman (2017) 

showed that Bagging, Boosting and Random Forest algorithms are effective tools which can 

enhance the decision-making process in the banking industry. Another study which indicates 

similar results has published by Son, Hyun, Phan, and Hwang, (2019), and shows that 

machine learning algorithms such as XGBoost and Random Forest performed better than 

traditional models for bankruptcy forecasting. Another type of boosting algorithms is 

Adaptive Boosting also known as AdaBoost. AdaBoost was explained by the article of 

Freund, & Schapire (1997) and the study shows that it can be a powerful algorithm for both 

classification and regression problems. The formulation of AdaBoost for regression is as 

below: 

 

 

Krishna and Hegde (2018) showed that AdaBoost performed better than other algorithms 

based on Root Mean Square Error in their study related to sales forecasting of retail stores. 

The last type of ensemble learning method which is in the scope of this study is 

stacked generalization also known as stacking. Wolpert (1992) explained how stacked 

generalization works and showed that it could be powerful at overcoming errors. Breiman 

(1996) stated that stacking algorithms performed better when the models which will be used 

as estimators are not much similar. 
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3. ABOUT THE DATA 

This report contains an analysis of historical sales data for 45 Walmart stores and 

their departments located in different regions from February 2010 to October 2012. The 

dataset contains 3 files providing several features related to Walmart retail sales. Walmart 

runs several promotional markdown events throughout the year. These markdowns precede 

prominent holidays, the four largest of which are the Super Bowl, Labor Day, Thanksgiving, 

and Christmas. 

 “train.csv” file, which is shown in Table 1, is historical training data, which covers 

to 2010-02-05 to 2012-10-26. It consists of 421570 rows and 5 columns such as store_id - 

the store number, department_id - the department number, date - the date of sales, 

weekly_sales - sales for the given department in the given store and is_holiday - whether the 

week is a special holiday week.  

 

Table 1. First 5 rows of “train.csv” data file 

 

 

 

 

 

“features.csv” file, which can be seen in Table 2, contains additional data related to 

the store, department, and regional activity. It consists of 8190 rows and 8 columns such as 

store_id - the store number, date - the date of sales, temperature - average temperature in the 

region, fuel_price - cost of fuel in the region, markdown_1-5 - anonymized data related to 

promotional markdowns that Walmart is running, cpi - the consumer price index, 

unemployment - the unemployment rate and is_holiday - whether the week is a special 

holiday week.   
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Table 2. First 5 rows of “features.csv” data file 

 

 

 

“stores.csv” file, which is shown in Table 3, contains anonymized information about 

the 45 stores, indicating the type and the size of stores. There are 3 types of stores such as 

A, B, and C. While store_id column represents the store number, type and size columns 

represents the type of the store and the size of the store. 

 

Table 3. First 5 rows of “stores.csv” data file 
 

 

 

 

 

 

 

 

At the beginning of the project, these three files were merged to make a proper 

analysis. After that, merged data, which is shown in Table 4, has 16 columns and 421570 

observations. 

  
Table 4. First 5 rows of the merged data 
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4. PROJECT DEFINITION 

The analysis aims to compare the ensemble learning methods in machine learning by 

their performance on sales forecasting in the retailing industry.  

The main objective of the project is to observe which ensemble learning method 

provides more accurate results in retail sales forecasting. On the other hand, the other 

objective of the project is investigating the importance and effects of the independent 

variables on the target variable using feature engineering techniques. 

In the analysis, Bagging, Random Forest, Extremely Randomized Trees, AdaBoost, 

XGBoost and Voting Regressor have been used as ensemble learning methods. However, 

traditional machine learning models such as linear regression, decision tree, k-nearest 

neighbors were left out of scope. Besides, both relationships among independent variables 

and relationships between dependent and independent variables were examined. Throughout 

the analysis, the effect of holidays on the sales was analyzed. 
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5. EXPLORATORY DATA ANALYSIS 

5.1. Univariate Analysis 

In univariate analysis; unique values, mode, frequency table, histogram and pie chart 

of the categorical features, mean, median, minimum, maximum, standard deviation, 

variance, skewness, kurtosis, distributions and box plot of the numerical features have been 

analyzed.  

Date column consists of 143 unique values from 2010-02-05 to 2012-10-26. So the 

period of the data can be considered as 143 weeks or 2 years and 9 months. In store_id 

column, there are 45 unique values, from 1 to 45, which means that data contains information 

related to 45 different Walmart stores. The dataset contains 81 different departments in the 

stores. Furthermore, it can be understood that while some departments exist in most stores, 

some exists in only few stores. is_holiday variable has a boolean type with a ratio of 93% 

False and 7% True which also can be seen in Figure 1. Thus, "is_holiday" variable is highly 

unbalanced since 93% of the weekly sales did not occur in the holidays. Stores in the dataset 

have 3 types such as A, B, and C. Figure 2 shows that while roundly half of the weekly sales 

records are related to Type A stores, almost 40% of them occurred in Type B stores and 

Type C stores have only 10 percent.  

 

 

 

 

 

 

 Figure 1. Pie Chart of is_holiday variable  Figure 2. Pie Chart of type variable 
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After categorical variables were analyzed, numerical variables including the target 

variable were observed in univariate analysis. In this section, mean, median, minimum, 

maximum and standard deviation of each numerical variable were investigated. Weekly 

sales column in the dataset which is shown in Figure 3 has a highly skewed distribution and 

has negative values which mean that the value of return products exceeds the weekly sales 

on several dates.  

 

 

 

 Figure 3. The Distribution of Target Variable 

Store size varies from 34875 to 219622 and has a mean of 136727.92. In addition, 

there are several variables such as temperature, consumer price index, fuel price which may 

help to predict weekly sales of retail stores in the dataset. 

 

5.2. Bivariate Analysis 

Since the distribution of the data is skewed, non-parametric tests were preferred in 

the bivariate analysis section. While bivariate analysis between categorical and numerical 

was made, Kruskal Wallis test was applied. According to the Kruskal Wallis test result, it 

can be understood that sample distributions in the categorical variables are not equal. 

Correlations between numerical variables were analyzed based on the "Spearman" method 

since numerical features don't have Gaussian distribution.  
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Figure 4. Spearman Correlation Analysis 

 

According to the result of the correlation analysis which can be seen in Figure 4, it 

can be seen that markdown features are highly correlated with each other.  

 

 

5.3. Multivariate Analysis 

For Multivariate Analysis, Analysis of covariance (ANCOVA), which is shown in 

Figure 5, will be used since data has both categorical and numerical features.  

 



 

 10  

 

 

Figure 5. Analysis of Covariance (ANCOVA) 

 

The reason why ANCOVA was chosen is that it combines features of both ANOVA 

and regression. It increases the model of ANOVA with quantitative factors, called 

covariates, linked to the target variable. The covariates are included to decrease the variance 

in the error terms and provide more accurate measurement of the treatment effects. 

ANCOVA is used to test the main and interaction effects of the factors while controlling for 

the effects of the covariate. 
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6. METHODOLOGY 

6.1. Data Preprocessing 

Firstly, variables were split into two sets as features and target to implement 

preprocessing easily. Missing values in markdown columns were filled with 0 for missing 

value treatment. Outliers in all columns were identified and it was seen that markdown 

columns, unemployment, and target variable have outliers. To avoid data loss, doing outlier 

treatment after feature selection stage was decided. In Feature Engineering, week number as 

a new feature was created from Date column. Afterward, variables were transformed into 

proper types. Date column was dropped since the week number variable will be used instead. 

For categorical features which have string values, Label Encoding was applied. Since 

the scope of this study contains only tree-based models, One-Hot Encoding and feature 

scaling will not be applied. In the feature selection stage, is_holiday column was dropped 

since week_number represents the information which is_holiday variable offers. Highly 

correlated variables such as markdown_3, markdown_2, markdown_5, markdown_1, and 

type were dropped based on their correlation with the target variable. Since fuel_price 

variable has very low variation (0.21), it was dropped. After the importance of features were 

identified thanks to the Random Forest algorithm, markdown_4 was dropped. Finally, data 

was split into three parts such as train, validation, and test set with the ratio of 60%, 20%, 

and 20% respectively. 

 

6.2. Model Building 

Ensemble Learning Methods such as bootstrap aggregation, boosting and stacked 

generalization methods were applied after data preprocessing stage. For bootstrap 

aggregation method Bagging Regressor, Random Forest Regressor and Extremely 

Randomized Trees; for Boosting method AdaBoost and XGBoost were used and models 

were compared based on their Root Mean Square Error, Mean Absolute Error, R-Squared 

scores, and runtimes. In stacked generalization, XGBoost, AdaBoost and Random Forest 

will be used since they have higher scores than other models. In order to obtain a reasonable 
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comparison, the maximum depth was selected the same in all models as 7 for the beginning. 

Different values of depth will be tried in the stage of hyperparameter tuning. 

 

6.3. Model Evaluation 

In the model evaluation stage of the analysis, mean absolute error was selected as the 

main performance metric in order to reduce the effect of the outliers to the model 

performance. The results of the models after cross-validation, which is shown in Table 5 and 

Figure 6, were compared based on all metrics. XGBoost gave a more successful performance 

in Root Mean Square Error, Mean Absolute Error, and R-Squared. However, Extremely 

Randomized Trees performed better in terms of model runtime. 

 

Table 5. The Performances of Models with Cross-Validation  

 

 

 

 

 

 

 

 

 

 

Figure 6. Bar Chart of Comparison of Models 
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In the final part of the evaluation stage, hyperparameter optimization will be applied 

to XGBoost method which is more successful based on the results in the cross-validation 

part. Parameters such as n_estimators, learning_rate, max_depth, gamma, subsample and 

colsample_bytree were tuned after trying different reasonable values. While trying values in 

hyperparameter optimization, 5-fold cross-validation was used to obtain consistent results. 

Best parameters of XGBoost model were 0.05 for learning rate, 4200 for the number of 

estimators, 10 for maximum depth, 1 for gamma, 0.8 for subsample and 1 for subsample 

ratio of columns.  With these parameters, XGBoost model gave the result of 1298.86 of 

Mean Absolute Error and 0.98 of R-Squared.  
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7. CONCLUSION 

In this study, the weekly sales of departments in 45 Walmart stores from February 

2010 to October 2012 were analyzed and forecasting of weekly sales by using statistical 

techniques and machine learning algorithms was aimed. After introducing the general 

structure of the data, characteristics of dependent and independent variables and 

relationships between them were analyzed by using exploratory data analysis techniques.  

Missing value treatment, outlier treatment, the encoding of categorical features, 

feature engineering, feature selection, and train-validation-test split were applied in data 

preprocessing stage. As considering the scope of this study, ensemble learning methods in 

machine learning were performed in three parts as Bootstrap Aggregation, Boosting and 

Stacked Generalization. Bagging Regressor, Random Forest Regressor, Extra Trees 

Regressor, AdaBoost, XGBoost and Voting Regressor are the machine learning methods 

which were compared by Root Mean Square Error, Mean Absolute Error, R-Squared, and 

runtime with cross-validation in the modeling section. After realizing that XGBoost 

performed better than other models in all metrics, the best parameters for XGBoost were 

determined by trying different parameters in the hyperparameter tuning section. Finally, the 

model with the best parameters was applied to the test data and the result of the model was 

recorded. In further studies, Artificial Neural Network and Time Series Analysis may be 

applied to improve the results in terms of performance metrics. 
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APPENDIX 

PYTHON CODES 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
get_ipython().run_line_magic('matplotlib', 'inline') 
 
import time 
from math import sqrt 
import statistics 
from scipy import stats 
import category_encoders as ce 
import statsmodels.api as sm 
from statsmodels.formula.api import ols 
from statsmodels.stats.outliers_influence import variance_inflation_factor 
from statsmodels.tools.tools import add_constant 
 
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler 
from sklearn.feature_selection import VarianceThreshold, SelectKBest, f_regression 
from sklearn.model_selection import train_test_split, KFold, GridSearchCV, 
RandomizedSearchCV 
from sklearn.decomposition import PCA 
 
from sklearn.linear_model import LinearRegression 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.svm import SVR 
from sklearn.svm import libsvm 
from sklearn.linear_model import SGDRegressor 
from sklearn.ensemble import BaggingRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.ensemble import ExtraTreesRegressor 
from sklearn.ensemble import AdaBoostRegressor 
from sklearn.ensemble import GradientBoostingRegressor 
import xgboost as xgb 
from sklearn.ensemble import VotingRegressor 
from sklearn.tree import DecisionTreeRegressor 
 
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 
 
import warnings 
warnings.filterwarnings('ignore') 
pd.options.mode.chained_assignment = None 
pd.options.display.max_columns = None 
pd.set_option('display.float_format', '{:.2f}'.format) 
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print('Versions') 
print('Pandas      : ', pd.__version__) 
print('Numpy       : ', np.__version__) 
print('Seaborn     : ', sns.__version__) 
print('Matplotlib  : ', plt.__version__) 
print('Statsmodels : ', sm.__version__) 
print('Sklearn     : ', sk.__version__) 
 
# Reading the data files: 
train = pd.read_csv("data/train.csv", sep=',', header=0,  
                    names=['store_id', 'department_id', 'date', 'weekly_sales', 'is_holiday']) 
features = pd.read_csv("data/features.csv", sep=',', header=0,  
                       names=['store_id', 'date', 'temperature', 'fuel_price', 'markdown_1', 
'markdown_2',  
                              'markdown_3', 'markdown_4', 'markdown_5', 'cpi', 'unemployment', 
'is_holiday']) 
stores = pd.read_csv("data/stores.csv", sep=',', header=0,  
                     names=['store_id', 'type', 'store_size']) 
 
print(train.shape) 
print(features.shape) 
print(stores.shape) 
train.head() 
features.head() 
stores.head() 
 
# Merging all data files: 
data = pd.merge(train, features, on=['store_id', 'date', 'is_holiday'], how='left') 
data = pd.merge(data, stores, on=['store_id'], how='left') 
del train, features, stores 
 
# Sorting data by date/store number/department number, moving date column to the 
beginning and weekly_sales column to the end: 
data = data.sort_values(['date', 'store_id', 'department_id']).reset_index(drop=True) 
data = pd.concat([data.date, data.drop('date', axis=1)], axis=1) 
data = pd.concat([data.drop('weekly_sales', axis=1), data.weekly_sales], axis=1) 
data.shape 
 
# The merged data contains 421570 rows and 16 columns. 
# Looking at the first 5 rows of data: 
data.head() 
 
data.info() 
data.apply(lambda x: [x.nunique()]) 
data.apply(lambda x: [x.unique()]) 
data.isna().mean() 
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# <br> 
# *** 
# <br> 
 
# <h1>2. Exploratory Data Analysis</h1><br> 
 
# <h2>2.1. Univariate Analysis</h2> 
 
cats = data[['date', 'store_id', 'department_id', 'is_holiday', 'type']] 
nums = data.drop(cats.columns, axis=1).fillna(0) 
 
# <br> 
# <h3>- Categorical</h3> 
 
pd.DataFrame({'Categorical Variables':cats.columns}) 
 
def analyze_cats(dataframe, column_name): 
    print('-' * 100 + '\n' + 'Number of Unique Values:') 
    print(str(dataframe[column_name].nunique()) + '\n' + '-' * 100) 
    print('Unique Values:') 
    print(np.sort(dataframe[column_name].unique()), '\n' + '-' * 100) 
    uniques = list(dataframe[column_name].value_counts().index) 
    counts = list(dataframe[column_name].value_counts().values) 
    percentages = list(dataframe[column_name].value_counts(normalize=True).values) 
    freq_table_list =  list(zip(uniques, counts, percentages)) 
    freq_table = pd.DataFrame(freq_table_list, columns = [column_name.capitalize(), 
'Count' , 'Count%']) 
    plt.figure(figsize=(18, 8)) 
    if len(dataframe[column_name].unique()) < 5: 
        display(freq_table, dataframe[column_name].value_counts(normalize = 
True).plot(kind='pie',  
                                                          labels=dataframe[column_name].unique(),  
                                                          autopct='%1.1f%%',  
                                                          startangle=90)) 
    else: 
        display(freq_table, dataframe[column_name].value_counts(normalize = 
True).plot(kind='bar', legend=True)) 
 
# <br> 
# <b>date</b> 
analyze_cats(data, 'date') 
# Dataset consists of weekly sales of Wallmart Stores from 2010-02-05 to 2012-10-26.   
# So time period of the data can be considered as 2 years and 9 months or 143 weeks. 
 
# <br> 
# <b>store_id</b> 
analyze_cats(data, 'store_id') 
# There are 45 Wallmart Stores in the dataset. 
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# <br> 
# <b>department_id</b> 
analyze_cats(data, 'department_id') 
# Dataset contains 81 different departments in the stores.   
# Furthermore, it can be understood that while some departments exists in most of stores, 
some exists in only few stores. 
 
# <br> 
# <b>is_holiday</b> 
analyze_cats(data, 'is_holiday') 
# The outputs show that "is_holiday" variable is highly unbalanced since 93% of the 
weekly sales did not occur in the holidays. 
 
# <br> 
# <b>type</b> 
analyze_cats(data, 'type') 
# While roundly half of the weekly sales records are related to Type A stores, almost 40% 
of them occurred in Type B stores and Type C stores have only 10 percentage. 
 
# <br> 
# <h3>- Numerical</h3> 
 
pd.DataFrame({'Numerical Variables':nums.columns}) 
 
nums.describe() 
 
pd.DataFrame({'Features':nums.var().index, 
'Variance':nums.var().values}).sort_values('Variance') 
 
pd.DataFrame({'Features':(nums.std() / nums.mean()).index,  
              'CV':(nums.std() / nums.mean()).values}).sort_values('CV', ascending=False) 
 
pd.DataFrame({'Features':nums.skew().index, 
'Skewness':nums.skew().values}).sort_values('Skewness') 
 
pd.DataFrame({'Features':nums.kurtosis().index, 
'Kurtosis':nums.kurtosis().values}).sort_values('Kurtosis') 
 
for i in nums.columns: 
    plt.figure(figsize=(12, 2)) 
    sns.distplot(nums[i]) 
 
nums.hist(figsize=(20, 15), bins=20, xlabelsize=9, ylabelsize=9); 
 
for i in nums.columns: 
    plt.figure(figsize=(12, 2)) 
    sns.boxplot(x=nums[i]) 
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# <br><br> 
# <h2>2.2. Bivariate Analysis</h2><br> 
# <h3>- Categorical & Numerical</h3> 
 
cats['is_holiday'] = cats['is_holiday'].replace({False:0, True:1}) 
 
cats['type'] = cats['type'].replace({'A':3, 'B':2, 'C':1}) 
 
cats = cats.astype({'date':'category'}) 
 
cats['date'] = cats['date'].cat.codes 
 
for i in cats.columns: 
    print(i) 
    print(stats.kruskal(cats[i], nums['weekly_sales'])) 
    print('\n') 
 
# According to Kruskal Wallis test result, sample distributions in the categorical variables 
are not equal. 
 
# <br> 
# <h3>- Numerical & Numerical</h3> 
 
# Correlation Analysis based on "Spearman" method will be used since numerical features 
don't have gaussian distribution. 
plt.figure(figsize=(12, 12)) 
sns.heatmap(round(abs(nums.corr(method ='spearman')), 2), vmin=0, vmax=1,  
            center=0.5, annot=True, cmap=plt.cm.Reds, square=True); 
 
round(abs(nums.corr(method ='spearman')), 2)[round(abs(nums.corr(method 
='spearman')), 2) > 0.7]     [round(abs(nums.corr(method ='spearman')), 2) < 
1.0].dropna(how='all', axis=[0, 1]) 
 
for i in nums.drop('weekly_sales', axis=1).columns: 
    plt.figure(figsize=(12, 2)) 
    sns.scatterplot(x=i, y="weekly_sales", data=nums); 
 
# <br><br> 
# <h2>2.3. Multivariate Analysis</h2> 
 
# For Multivariate Analysis, ANCOVA will be used since data has both categorical and 
numerical features. 
 
encoder = ce.BinaryEncoder(cols=['date', 'store_id', 'department_id', 'type'], 
drop_invariant=True) 
 
cats = encoder.fit_transform(cats) 
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all_columns = " + ".join(pd.concat([cats, nums], axis=1).columns)[:-15] 
 
formula = "weekly_sales ~ " + " + ".join(pd.concat([cats, nums], axis=1).columns)[:-15] 
 
results = ols(formula, data=pd.concat([cats, nums], axis=1)).fit() 
 
results.summary() 
 
# <br> 
# *** 
# <br> 
 
# <h1>3. Methodology</h1><br> 
 
# <h2>3.1. Data Preprocessing</h2> 
 
# Firstly, variables will be split into two sets as "features" and "target" in order to 
implement preprocessing easily. 
 
features = data.drop('weekly_sales', axis=1) 
target = pd.DataFrame(data['weekly_sales'], columns=['weekly_sales']) 
 
# <br> 
# <h3>- Missing Value Treatment</h3> 
 
features.isna().mean() 
 
target.isna().mean() 
 
features[['markdown_1','markdown_2','markdown_3','markdown_4', 'markdown_5']] =     
features[['markdown_1','markdown_2','markdown_3','markdown_4', 
'markdown_5']].fillna(0) 
 
features.isna().sum() 
 
# <br> 
# <h3>- Outlier Treatment</h3> 
 
# Identifying the outliers in continuous variables based on IQR Score Method: 
def find_outliers(data, column_list): 
    for i in column_list: 
        Q1 = data[i].quantile(0.25) 
        Q3 = data[i].quantile(0.75) 
        IQR = Q3 - Q1 
        print(i + ' ' * (13 - len(i)) + ': ' +  
              str(len(data[i][(data[i] < (Q1 - 3 * IQR)) | (data[i] > (Q3 + 3 * IQR))]))) 
         
find_outliers(features, features.select_dtypes(include=['int64', 'float64']).columns) 
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find_outliers(features[features > 0], ['markdown_1', 'markdown_2', 'markdown_3', 
'markdown_4', 'markdown_5']) 
 
find_outliers(target, ['weekly_sales']) 
 
# <br> 
# <h3>- Feature Engineering</h3> 
 
features = features.astype({'date':'datetime64'}) 
features['week_number'] = features['date'].dt.week 
features = features.drop('date', axis=1) 
 
# <br> 
# <h3>- Label Encoding</h3> 
le = LabelEncoder() 
features['is_holiday'] = le.fit_transform(features['is_holiday']) 
features['type'] = le.fit_transform(features['type']) 
 
# <br> 
# <h3>- Feature Selection</h3> 
print(sorted(features[features['is_holiday'] == True]['week_number'].unique())) 
print(sorted(features[features['is_holiday'] == False]['week_number'].unique())) 
# Since "week_number" represents the information which "is_holiday" variable offers, 
"is_holiday" will be dropped. 
features = features.drop('is_holiday', axis=1) 
 
# <br> 
# <b>Based on Pairwise Correlation</b> 
corr_data = round(abs(pd.concat([features, target], axis=1).corr(method ='spearman')), 2) 
plt.figure(figsize=(12, 12)) 
sns.heatmap(corr_data, vmin=0, vmax=1, center=0.5, annot=True, cmap=plt.cm.Reds, 
square=True); 
corr_data[corr_data > 0.7][corr_data < 1.0].dropna(how='all', axis=[0, 1]) 
pd.DataFrame({'Features':corr_data['weekly_sales'].sort_values(ascending=False).index,  
              'Corr. with 
Target':corr_data['weekly_sales'].sort_values(ascending=False).values}).drop(0, axis=0) 
# Since "markdown_4" and "store_size" features have higher correlation with the target, 
other variables having high correlation will be dropped: 
features = features.drop(['markdown_3', 'markdown_2', 'markdown_5', 'markdown_1', 
'type'], axis=1) 
 
# <br> 
# <b>Based on Variance</b> 
pd.DataFrame({'Features':features.var().index, 
'Variance':features.var().values}).sort_values('Variance') 
# Since "fuel_price" has very low variation, it will be dropped. 
features = features.drop('fuel_price', axis=1) 
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# <br> 
# <b>Based on Feature Importance</b> 
model = RandomForestRegressor(random_state=1) 
model.fit(features, target) 
feat_importances = pd.Series(model.feature_importances_, index=features.columns) 
plt.figure(figsize=(12, 6)) 
feat_importances.sort_values().plot(kind='barh', grid=True) 
plt.show() 
pd.DataFrame({'Features':feat_importances.sort_values(ascending=False).index,  
              'Importances':feat_importances.sort_values(ascending=False).values}) 
# According to feature importance output, 'markdown_4' will be dropped since it doesn't 
have a significant feature importance. 
features = features.drop('markdown_4', axis=1) 
 
# <br> 
# <h3>- One Hot Encoding</h3> 
# Since the scope of this study contains only tree-based models, one hot encoding will not 
be applied. 
 
# <br> 
# <h3>- Feature Scaling</h3> 
# Since the scope of this study contains only tree-based models, feature scaling will not be 
applied. 
 
# <br> 
# <h3>- Train-Test Split</h3> 
x_train_val, x_test, y_train_val, y_test = train_test_split(features, target, test_size=0.2, 
random_state=0) 
x_train, x_val, y_train, y_val = train_test_split(x_train_val, y_train_val, test_size=0.25, 
random_state=0) 
print('x_train : {0:.{1}f}%'.format(x_train.shape[0] / features.shape[0] * 100, 0)) 
print('y_train : {0:.{1}f}%'.format(y_train.shape[0] / target.shape[0] * 100, 0)) 
print('\n') 
print('x_val   : {0:.{1}f}%'.format(x_val.shape[0] / features.shape[0] * 100, 0)) 
print('y_val   : {0:.{1}f}%'.format(y_val.shape[0] / target.shape[0] * 100, 0)) 
print('\n') 
print('x_test  : {0:.{1}f}%'.format(x_test.shape[0] / features.shape[0] * 100, 0)) 
print('y_test  : {0:.{1}f}%'.format(y_test.shape[0] / target.shape[0] * 100, 0)) 
 
# <br><br> 
# <h2>3.2. Model Building</h2> 
 
# <b>A. Bootstrap Aggregation</b>   
# --- Bagging (BaggingRegressor)   
# --- Random Forest (RandomForestRegressor)   
# --- Extremely Randomized Trees (ExtraTreesRegressor) 
 
# <b>B. Boosting</b>   
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# --- Adaptive Boosting (AdaBoostRegressor)   
# --- Extreme Gradient Boosting (XGBoost) 
 
# <b>C. Stacked Generalization</b>   
# --- Voting Regressor (VotingRegressor)   
# <br> 
 
# In order to obtain reasonable comparison, the maximum depths of the model was 
selected same in all models as 7 for the beginning.   
# Different values of depth will be tried in the stage of hyperparameter tuning. 
 
models = {'Bagging' : 
BaggingRegressor(base_estimator=DecisionTreeRegressor(max_depth=7, 
random_state=1),  
                                       n_estimators=100,  
                                       n_jobs=-1,  
                                       random_state=1),  
          'Random F.' : RandomForestRegressor(n_estimators=100,  
                                              max_depth=7,  
                                              n_jobs=-1,  
                                              random_state=1), 
          'Extra T.' : ExtraTreesRegressor(n_estimators=100,  
                                           max_depth=7,  
                                           n_jobs=-1,  
                                           random_state=1), 
          'AdaBoost' : 
AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=7, 
random_state=1),  
                                         n_estimators=100,  
                                         learning_rate=0.1,  
                                         random_state=1), 
          'XGBoost' : xgb.XGBRegressor(n_estimators=100,  
                                       learning_rate=0.1, 
                                       max_depth=7,  
                                       n_jobs=-1,  
                                       random_state=1)} 
 
model_name = list(models.keys()) 
mae_scores = [] 
rmse_scores = [] 
r2_scores = [] 
times = [] 
 
for i in models: 
    start = time.time() 
    model = models[i] 
    model.fit(x_train, y_train) 
    y_pred = model.predict(x_val) 
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    mae_scores.append(mean_absolute_error(y_val, y_pred)) 
    rmse_scores.append(sqrt(mean_squared_error(y_val, y_pred))) 
    r2_scores.append(r2_score(y_val, y_pred)) 
    end = time.time() 
    times.append(end - start) 
 
compare_list =  list(zip(model_name, mae_scores, rmse_scores, r2_scores, times)) 
compare = pd.DataFrame(compare_list, columns = ['Model', 'MAE' , 'RMSE', 'R2', 
'Time(sec)']) 
compare 
 
# In stacked generalization algorithm, XGBoost, AdaBoost and Random Forest will be 
used since they have higher scores than other models. 
 
model = VotingRegressor(estimators=[('xg', xgb.XGBRegressor(n_estimators=100,  
                                                             learning_rate=0.1,  
                                                             max_depth=7,  
                                                             n_jobs=-1,  
                                                             random_state=1)),  
                                    ('ad', 
AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=7,  
                                                                                                  random_state=1), 
                                                             n_estimators=100,  
                                                             learning_rate=0.1,  
                                                             random_state=1)), 
                                    ('rf', RandomForestRegressor(n_estimators=100,  
                                                                 max_depth=7,  
                                                                 n_jobs=-1,  
                                                                 random_state=1))],  
                        n_jobs=-1) 
 
model_name.append('VotingReg') 
models['VotingReg'] = model 
start = time.time() 
model.fit(x_train, y_train) 
y_pred = model.predict(x_val) 
mae_scores.append(mean_absolute_error(y_val, y_pred)) 
rmse_scores.append(sqrt(mean_squared_error(y_val, y_pred))) 
r2_scores.append(r2_score(y_val, y_pred)) 
end = time.time() 
times.append(end - start) 
 
compare_list =  list(zip(model_name, mae_scores, rmse_scores, r2_scores, times)) 
compare = pd.DataFrame(compare_list, columns = ['Model', 'MAE' , 'RMSE', 'R2', 
'Time(sec)']) 
compare 
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compare.plot(kind='barh',  
             x='Model',  
             y=['MAE' , 'RMSE', 'R2'],  
             figsize=(14, 8),  
             logx=True, 
             grid=True,  
             legend='reverse'); 
 
 
# <br><br> 
# <h2>3.3. Model Evaluation</h2> 
 
# <h3>3.3.1. Performance Metrics</h3> 
def take_second(x): 
    return x[1] 
 
# <br> 
# <b>Mean Absolute Error</b> 
for i, j in sorted(zip(model_name, mae_scores), key=take_second, reverse=False): 
    print(i + ' ' * (12 - len(i)) + ': {0:.{1}f}'.format(j, 2)) 
compare.sort_values('MAE', ascending=False).plot(kind='barh',  
                                                 x='Model',  
                                                 y='MAE',  
                                                 figsize=(12, 6),  
                                                 legend=False); 
 
# <br> 
# <b>Root Mean Squared Error</b> 
for i, j in sorted(zip(model_name, rmse_scores), key=take_second, reverse=False): 
    print(i + ' ' * (12 - len(i)) + ': {0:.{1}f}'.format(j, 2)) 
compare.sort_values('RMSE', ascending=False).plot(kind='barh',  
                                                  x='Model',  
                                                  y='RMSE',  
                                                  figsize=(12, 6), 
                                                  legend=False); 
 
# <br> 
# <b>R-Squared</b> 
for i, j in sorted(zip(model_name, r2_scores), key=take_second, reverse=True): 
    print(i + ' ' * (12 - len(i)) + ': {0:.{1}f}'.format(j, 2)) 
compare.sort_values('R2').plot(kind='barh',  
                               x='Model',  
                               y='R2',  
                               figsize=(12, 6), 
                               legend=False); 
 
# <br> 
# <b>Runtime</b> 
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for i, j in sorted(zip(model_name, times), key=take_second, reverse=False): 
    print(i + ' ' * (12 - len(i)) + ': {0:.{1}f}'.format(j, 2)) 
compare.sort_values('Time(sec)', ascending=False).plot(kind='barh',  
                                                       x='Model',  
                                                       y='Time(sec)',  
                                                       figsize=(12, 6),  
                                                       legend=False); 
 
# <br><br> 
# <h3>3.3.2. Cross-Validation</h3> 
# In order to achieve an unbiased estimate of the model performance, 5-fold cross-
validation will be used. 
all_mae_scores = [] 
all_rmse_scores = [] 
all_r2_scores = [] 
all_times = [] 
 
for i in models: 
    mae_scores = [] 
    rmse_scores = [] 
    r2_scores = [] 
    times = []  
    model = models[i] 
    cv = KFold(n_splits=5) 
    for train_index, test_index in cv.split(x_train_val.values): 
        start = time.time() 
        x_train, x_val, y_train, y_val = x_train_val.iloc[train_index], 
x_train_val.iloc[test_index],                                             y_train_val.iloc[train_index], 
y_train_val.iloc[test_index]        
        model.fit(x_train, y_train) 
        y_pred = model.predict(x_val)     
        mae_scores.append(mean_absolute_error(y_val, y_pred)) 
        rmse_scores.append(sqrt(mean_squared_error(y_val, y_pred))) 
        r2_scores.append(r2_score(y_val, y_pred)) 
        end = time.time() 
        times.append(end - start) 
    all_mae_scores.append(sum(mae_scores) / len(mae_scores)) 
    all_rmse_scores.append(sum(rmse_scores) / len(rmse_scores)) 
    all_r2_scores.append(sum(r2_scores) / len(r2_scores)) 
    all_times.append(round(sum(times) / len(times))) 
 
compare_list_cv =  list(zip(model_name, all_mae_scores, all_rmse_scores, all_r2_scores, 
all_times)) 
compare_cv = pd.DataFrame(compare_list_cv, columns = ['Model', 'MAE' , 'RMSE', 'R2', 
'Time(sec)']) 
compare_cv.sort_values('MAE') 
compare_cv.sort_values('MAE', ascending=False).plot(kind='barh',  
                                                    x='Model',  
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                                                    y=['MAE' , 'RMSE', 'R2'],  
                                                    logx=True,  
                                                    legend='reverse', 
                                                    figsize=(12, 6)); 
 
# <br><br> 
# <h3>3.3.3. Hyperparameter Optimization</h3> 
grid_param = {'n_estimators'     : range(100, 1000, 100),  
              'learning_rate'    : [0.01, 0.05, 0.1],  
              'max_depth'        : range(3, 11),  
              'gamma'            : [0, 1, 5],  
              'subsample'        : [0.8, 0.9, 1.0],  
              'colsample_bytree' : [0.8, 0.9, 1.0]} 
xgb_grid = xgb.XGBRegressor(n_jobs=-1,  
                            random_state=1) 
cv = KFold(n_splits=5) 
grid = RandomizedSearchCV(estimator=xgb_grid, 
                          param_distributions=grid_param, 
                          scoring='neg_mean_absolute_error', 
                          cv=cv, 
                          n_iter=5, 
                          n_jobs=-1, 
                          random_state=1) 
 
grid.fit(x_train, y_train) 
print(grid.best_params_, -grid.best_score_) 
 
y_pred = grid.best_estimator_.predict(x_val)  
print('Mean Absolute Error for Validation: {0:.{1}f}'.format(mean_absolute_error(y_val, 
y_pred), 2)) 
 
y_pred_test = grid.best_estimator_.predict(x_test) 
print('Mean Absolute Error for Test: {0:.{1}f}'.format(mean_absolute_error(y_test, 
y_pred_test), 2)) 
 
model = xgb.XGBRegressor(learning_rate=0.05,  
                         n_estimators=200, 
                         max_depth=10, 
                         gamma=1, 
                         subsample=0.8, 
                         colsample_bytree=1, 
                         n_jobs=-1,  
                         random_state=1) 
model.fit(x_train, y_train) 
y_pred_test = model.predict(x_test) 
print('Final Mean Absolute Error: {0:.{1}f}'.format(mean_absolute_error(y_test, 
y_pred_test), 2)) 
 




