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Abstract—The exponential increase of mobile data traffic
pushes mobile operators to seek more efficient heterogeneous
communication techniques. In this study, multi-user extension
methods for multiple attribute decision making algorithms for
network-assisted data offloading in heterogeneous wireless net-
works are developed and performance evaluations are performed
in the presence of Device-to-Device (D2D) connections. Eval-
uations are carried out using simulations to point out the
metrics and factors influencing data offloading in heteroge-
neous networks. The simulation results indicate the superiority
of incorporating network-based information besides user-based
information in offloading decisions. Additionally, up to 67%
increase in user satisfaction can be achieved when D2D density is
kept 68 % under a heavy load scenario. The simulation results also
indicate the existence of optimal D2D densities in heterogeneous
networks depending on the total number of users and available
network capacity.

Index Terms—data offloading, D2D, heterogeneous networks,
multiple attribute decision making.

I. INTRODUCTION

The diversity of the wireless networks has increased sub-
stantially during the last decade causing connectivity manage-
ment problems. In addition to the expansion in infrastructure
based wireless networks such as Long Term Evolution (LTE)
and Wi-Fi, D2D communications are also arising as an al-
ternative or complementary approach for data dissemination
opportunities in a cellular network. D2D communications can
be considered as a complementary approach to mobile data
offloading in parallel with traditional offloading techniques
such as Wireless Local Area Networks (WLANs) or small
cells (e.g. femtocells, picocells) that are deployed inside
cellular networks. In such heterogeneous networks, optimal
connectivity management for data dissemination becomes a
seriously challenging problem especially in multi-user scenar-
ios. Moreover, the dynamic behaviour of D2D connections
further increases the complexity of the problem.

In order to tackle with the optimal connectivity manage-
ment problem, several Multiple Attribute Decision Making
(MADM) algorithms are developed in the literature. Accord-
ingly, in [1] and [2], four major MADM algorithms, namely,
Multiplicative Exponent Weighting (MEW), Simple Additive
Weighting (SAW), Grey Relational Analysis (GRA), Total
Order Preference By Similarity to the Ideal Solution (TOPSIS)
are described and compared for utilization in heterogeneous
wireless networks. The results have shown that none of the
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MADM algorithms outperform the others and in general they
perform similar to each other.

Incorporating D2D communications concept into cellular
networks is a demanding research topic all by itself, irrespec-
tive of connectivity management. In this context, D2D com-
munications are currently being studied in conjunction with
mobile data offloading techniques in cellular networks in many
of the recent works [3], [4], [5], [6], [7], [8]. The authors in [3]
consider the problem of cellular data offloading scheme using
D2D communications and propose content sharing mechanism
among mobile devices. The authors in [4] consider resource
allocation problem for D2D communications in cellular net-
works for selecting the best resource sharing mode depending
on the different applications including file-sharing or streaming
like applications. In order to cope with data tsunami in cellular
networks, the authors in [5] have investigated multiple contents
with different popularity offloading via opportunistic D2D
communication and derived analytical models for calculating
the number of relay users for distributing multiple contents.
In [6], the benefits of network assisted D2D connections
are presented. Other existing solutions for network assisted
mobile data offloading (e.g. Push & Track [7] or EPICS [8])
are working on content dissemination with minimum delay
constraints. We refer our readers to [9] and [10] for recent
and more comprehensive surveys of mobile data offloading
strategies along with D2D based communication opportunities.

Although there exist several studies in the literature on
D2D communications and MADM, there exists lack of studies
that investigate the impact of D2D connections on MADM
algorithms for network-assisted (i.e., operator controlled) data
offloading. In fact, in our analysis we did not approach
the optimization problem from content dissemination delay
minimization point of view but tried to fill out a gap that exists
in the literature as well as industry by studying an offloading
framework that can accommodate MADM algorithms while
exploiting D2D communications. Accordingly in this study, we
focus on revealing the performance of MADM algorithms in
the presence of D2D connections. First, we propose two multi-
user extension methods for MADM algorithms. In the first
method, we consider a straightforward application of MADM
algorithm, where we optimize individual users performance
by sequential handling of the users. In the second method,
we take into consideration the network-wide performance by
integrating the remaining capacity in WLAN and cellular
networks. In order to focus on the performance of extension
methods and the impact of D2D connections we use one



MADM algorithm, namely TOPSIS [11], [12] algorithm.

In order to demonstrate the performance of the extension
methods and the impact of D2D connections, we take benefit
of computer simulations. The primary goal of the simulations
is to provide an assessment of the impact of D2D connections
to offloading algorithms in terms of user satisfaction metrics.
The simulation results reveal the performance comparisons
of the two extension methods. Concurrently, the results also
reveal how the user satisfaction fluctuates in the presence
of D2D connections under different total load levels in the
network.

The rest of the paper is organized as follows. In Section II,
the generic scenario and the studied use case are described. In
Secion III, the two multi-user extensions to MADM algorithms
are explained. Then, in Section IV, the simulation results of
the MADM algorithm extensions in the presence of D2D
connections is presented. Finally, in Section V, we give
conclusions and potential future work extensions.

II. SCENARIO AND USE CASE

In this study, we consider the case where users may either be
served by an operator through a cellular or a WiFi infrastruc-
ture, or D2D communications. Based on this, we investigate
how to schedule users across these technologies in an optimal
manner. A centralized platform calculates the best infrastruc-
ture connection (WiFi or eNodeB) for the users, using a
MADM algorithm, provided that a certain ratio of the users
communicate via D2D. The target heterogeneous network
scenario is shown in Figure 1 where access technologies, LTE
and Wi-Fi together with D2D nodes are depicted. The black
dashed circles demonstrate the assumed range of Wi-Fi Access
Points (APs). The eNodeB range is assumed to cover all users,
and D2D range is short so that it can only cover neighbouring
users. Based on this scenario, users receiving data from the
evolved Node-B (eNodeB) (green dashed arrows) or Wi-Fi AP
(blue dashed arrows) can disseminate the data to nearby users
via D2D connections as depicted with yellow dashed arrows
in Figure 1.

The considered scenario is more common in crowded envi-
ronments, such as stadiums and shopping malls. These type of
environments include different types of access networks and
technologies together with numerous users. In such heteroge-
neous environments, data dissemination to users by offloading
via Wi-Fi or D2D saves user and network based resources and
consequently increases system level efficiency.

III. MADM ALGORITHM AND ITS EXTENSIONS

MADM techniques are extensively used in making au-
tomated decisions between several options with several at-
tributes. Applications of MADM techniques extend a wide
range from selection of ideal construction location to selection
of ideal oil tanker. A MADM technique needs two inputs for
decision making; attribute value matrix and weights of each
attribute. Attribute matrix is composed of measured values of
attributes per each option and the weights can be adjusted
based on the needs of decision makers. Mode details on
MADM methods are given in [13].
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Fig. 1: Heterogeneous Network Scenario with eNodeB, Wi-Fi
APs and D2D connections.

MADM techniques can be also used for selecting the ideal
network when a mobile user can access a heterogeneous
network [2], [14]. The process of selecting the ideal net-
work can be centrally controlled by the cellular operators
to maximize system level performance. As presented in the
scenario definition provided in Section II, the centralized
platform executes a MADM algorithm to perform selection
on the best network connection. All MADM algorithms need
an attribute matrix A = [aij]pxm’ where m refers to size of
the multiple attribute set S = {s1, s2, ..., $; } consisting of
elements such as backhaul remaining capcity, quality of radio
link, e2e latency, etc., whereas p refers to size of the multiple
decision set E = {ei,eq,...,e,} which consists of candidate
networks such as LTE, WLAN, or femtocell technologies for
a given user. In this paper, for our analysis we transform all
the attributes to have positive impact with increasing value.

The aim of a MADM algorithm is to decide on the optimal
e* € E based on the attribute matrix A at any given time
instant. In the following sections, we define two extensions
for MADM algorithms, Standard MADM (S-MADM) and
Capacity Aware MADM (CA-MADM), to cover multiple users
in a realistic heterogeneous network scenario.

A. S-MADM Method

S-MADM method is a simple extension of MADM. It takes
into account the individual channel utilization demands of
users in a multi-user environment. The details are as follows:
Method’s Input Parameters: The attribute matrix of n-th
user A", 1 < n < N, and the multiple decision set (set of
networks) E, where N is total number of users registered to
the offloading platform.

Method’s Output Parameters: Channel utilization vector for
one-user channel CU® = [CU%,...,CUg], e € E.

1) For A" 1 < n < N, simultaneously use MADM
algorithm for all the users in the network to select the
optimal decision points e*.

2) By summing each users’ channel utilization demands
over the selected decision point, update the channel
utilization vector CU®.



B. CA-MADM Method

In this method, for all users a new network-based attribute
vector @ = [U1, ..., Q| is utilized in the attribute matrix A.
The decision for each user is handled sequentially by the
centralized platform. Therefore, the system level performance
can be maximized using this method. The remaining available
capacity in the decision point e; is kept in the network-based
attribute @; and can be obtained by

N
i; = CUgjy — Y CUS, 1<i<p (1)
n=1

where CUyj; represents the capacity threshold of network
option e;. The algorithm details are as follows:

Method’s Input Parameters: nt" arriving user’s extended
attribute matrix A = [A™, ﬁT], 1 < n < N and the multiple
decision set (set of networks) E.

Method’s Output Parameters: Channel utilization vector
CU°¢ = [CUq,...,CUg], e € E for one-user channel.

1) Set CU® =0, j = 0 where j < N is both the number
of arrived users and number of iterations

2) Set j = j + 1 when a new user accesses the network

3) For A’ use the MADM algorithm where the optimal
decision point e* is selected.

4) Recalculate the channel utilization vector CU® using

CU Je = channel demand of user j

5) Update the network-based attribute vector u using (1).
6) If j = N, stop, else goto Step 2.

IV. SIMULATIONS AND RESULTS
A. Simulation Scenario

Opportunistic D2D offloading platforms target dense het-
erogeneous networks where bandwidth is scarce. In this study,
we use a stadium scenario to simulate a dense heterogeneous
network. The stadium is assumed to hold 10K audience with
several Wi-Fi APs and eNodeBs access nodes. We denote
the users that are registered to the opportunistic offloading
platform as MOTO' users (or terminals). Out of the 10K
audience in the stadium 50, 100 or 200 terminals are selected
at random to as the MOTO users. A sample user distribution
for 100 MOTO users in a 10K capacity stadium is provided in
Figure 3 depicting the locations of Wi-Fi APs and eNodeBs
access nodes.

It should be noted that our MOTO platform is not providing
MOTO service to all users in the stadium but to subset of
users that are subscribed to MOTO platform apriori. In real
network settings, as shown in Fig. 2 each eNodeB will also
have multiple sectors (generally 3 Sectors) and each sector can
include different number of carriers (or cells) e.g. in Fig. 2,
sector-1 can have 5 cells, sector-2 can have 7 cells and sector-
3 can have 5 cells. Hence, multiple cell-IDs with each cell
having different frequencies can accommodate multiple users.
Considering the fact that each microcell can accommodate up

IMOTO is the acronym for the FP7 project named Mobile Opportunistic
Traffic Offloading

Sector-1including 5
carriers

Sector-2including 7
carriers

Sector-3including 5
carriers

Fig. 2: Sectors in an eNodeB.

to 256 eNodeB users in real-life scenarios [15], the assump-
tions on number of MOTO users and their corresponding BSs
and APs made in our simulations are realistic. The locations
of Wi-Fi APs are chosen heuristically equally spaced in the
mid of the rows of the stadium. However, the locations can
also be modified based on operator requirements. The reserved
bandwidth (capacity) for MOTO users per each eNodeB and
Wi-Fi AP are 75 Mbps and 36 Mbps, respectively. The rest of
the bandwidth, if any, can be utilized by non-MOTO users.

In our analysis, we are assuming that MOTO specific APN
(Access Point Name) is used inside the core network of the
MNO to define the type of service each MOTO user gets.
Therefore, MOTO services provided by MOTO platform to
MOTO users inside stadium are provided using different and
isolated resources, i.e. using the eNodeBs and APs used in
the simulations. Therefore, we have used the remaining non-
MOTO users in our simulations only for randomization pur-
poses based on location during each Monte-Carlo simulations.
We also assume that the number of operators who has agreed
with MOTO platform providers is out of scope this paper.

In the scenario, MOTO users request to download streaming
video content among the qualities 360p - 1080p similar to
YouTube [16]. MOTO users are able to download the content
directly from the nearest Wi-Fi AP or eNodeB. The MOTO
users that download the content from an infrastructure based
access node (Wi-Fi AP or eNodeB) can disseminate the data
to nearby users via D2D. The number of MOTO users that
will download the content from other MOTO users via D2D
is assumed to be fixed for each simulation round. Given the
number of such D2D users, the D2D users are selected among
the MOTO users that are farther away from the Wi-Fi APs
and eNodeBs. If a MOTO user is selected to use D2D, the
connection range is assumed to be 10m, similar to that of
low-power Bluetooth. D2D users download the content only
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Fig. 3: A sample of MOTO users distribution and locations of
Wi-Fi APs and eNodeB

via surrounding MOTO users that are assigned to Wi-Fi APs
or eNodeBs.

In the simulations, we use TOPSIS algorithm [11], [12]
as the core MADM algorithm and focus on revealing the
behaviour of S-MADM and CA-MADM methods in the pres-
ence of varying D2D user density. The S-MADM and CA-
MADM TOPSIS algorithms are denoted as Standart Multi-
User TOPSIS (ST) and Capacity-Aware Multi-User TOPSIS
(CAT). The attributes that are mostly related to video transmis-
sion are chosen for our MADM algorithms for the simulations.
First attribute is the received signal strength calculated by
free space propagation principles (i.e., line-of-sight channel)
based on the distance between the access node (Wi-Fi or
eNodeB) and the MOTO terminal. The second attribute is the
requested throughput (i.e., video bitrate) calculated using a
received signal strength - bitrate mapping table. Third attribute
is the latency which is fixed for a given type of access node.
The final attribute is the remaining reserved bandwidth in the
access node. Note that, final attribute is only used for the CAT
algorithm.

In order to achieve a well-balanced offloading outcome
following attributes and weights are used. Received Signal
Strength, Throughput, Latency, Remaining Capacity: [0.3,
0.3, 0.3, 0.1]. The latency attribute has lowest weight since
our scenario is less sensitive to latency compared to other
attributes. The simulation results demonstrate the average of
500 simulations for varying D2D density percentage defined

as B number of D2D users @)
7~ humber of MOTO users’

All simulation tools, models and results are implemented
and generated on MATLAB programming environment.

B. Performance Metrics

We present the simulation results using two performance
metrics. First metric is MOTO users’ cumulative bandwidth
demand from the access nodes. Total bandwidth demand

results that are above 100% show that the the network load is
above the reserved bandwidth and access nodes can not serve
all MOTO users properly. Second metric is user satisfaction
ratio. Users connected to Wi-Fi/eNodeB that can successfully
download the content are recorded as satisfied. Other users
assigned to download the content from nearby seed MOTO
users are satisfied if the seed MOTO user is satisfied.

C. Results

Simulations are performed and presented under three dif-
ferent categories. First category of results, given in Table I,
show the MOTO users’s distribution among Wi-Fi and eNodeB
access nodes when the number of D2D users is zero. The
results also show the resulting total bandwidth demands. The
results in Table I present the offloading distribution between
3GPP and WLAN networks for CAT and ST algorithms for
50, 100 and 200 MOTO users. As the number of MOTO
users increases, the network (with the available capacity stated
above) becomes more congested and user satisfaction degrades
as expected. We define a metric for capacity per user ratio as

available capacity
- Mbps).
number of MOTO users( ) 3

In the first category of results, p = 8.76,4.38,2.19 for
50, 100 and 200 MOTO users respectively. For all three
different capacity per user ratios, the CAT method yields
improved balance between user distributions and bandwidth
demand, as well as better user satisfactions. The results show
that CAT algorithm performs significantly better by using the
information on remaining available bandwidth.

The next two categories of simulation results that includes
the effect of D2D users are presented in Figure 4 and Figure 5.
In these results, the number of D2D users increases from zero
to number of MOTO users to present the impact of D2D users
density on the user satisfaction metric. In Figure 4, for each
simulation result corresponding to different number of MOTO
users, a capacity of 75 Mbps per eNodeB and 36 Mbps per
Wi-Fi AP are available for MOTO users which corresponds
to p = 8.76,4.38,2.19 for 50, 100 and 200 MOTO users
respectively. As the number of users increases, the network
becomes more congested. When the number of MOTO users is
50, the total demand is lower than the available capacity. Thus,
it is possible to satisfy all users if users are properly assigned
(offloaded) to the access networks. The demand/capacity ratios
of eNodeBs and WLAN APs on the optimal o points (i.e.,
the peak points in Figure 4) are provided in Table II. This
table depicts the best load-balance points with maximum
user satisfaction. In addition to the demand/capacity ratio in
percentages, the results in Table II further provide average
offloaded traffic on the the optimal o points for the users that
access to content via 3GPP, WLAN and D2D.

As observed from Table II and Figure 4, when the total
number of MOTO users is 50, CAT algorithm satisfies nearly
all users (99.8%) without the need to utilize D2D. On the
other hand, ST algorithm is unsuccessful at satisfying all
users (74.26%) despite the available capacity. However, as
the number of MOTO users increases, the demand of users

p



TABLE I: User distribution, bandwidth demands and user satisfaction for CAT and ST at zero ¢ for increasing p

# of Type of Users’ Distribution Total Bandwidth Demand User Sat

U NKEDM (avg.%) (Mbps — demand/capacity %) s %) ’
sers 3GPP_| WLAN 3GPP [ WLAN ¢

50 CAT 37.34% 62.66% 114.2 Mbps — 76.13% 153.3 Mbps — 53.25% 99.80%

ST 80.82% 19.18% 237.6 Mbps — 158.40% 60.5 Mbps — 21.01% 67.50%

100 CAT 36.87% 63.13% 227.2 Mbps — 151.50% 310.4 Mbps — 107.80% 73.31%

ST 80.33% 19.67% 474.9 Mbps — 316.90% 120.7 Mbps — 41.92% 40.47%

200 CAT 36.52% 63.48% 454.65 Mbps — 303.10% | 624.96 Mbps — 217.10% 34.29%

ST 80.69% 19.40% 947.70 Mbps — 631.80% | 243.67 Mbps — 84.61% 23.08%

TABLE II: User distribution, bandwidth demands and user satisfaction for CAT and ST at optimal ¢ for increasing p

# of Type of Optimal & Users’ Distribution Total Bandwidth Demand User Sat
(avg.%) (Mbps offloaded — demand/capacity %) ) '

Users MADM (% of users — Mbps) 3GPP [ WLAN 3GPP [ WLAN (%)
50 CAT 0% — 0 Mbps 37.34% 62.66% 114.20 Mbps — 76.13% 153.30 Mbps — 53.25% 99.80%
ST 28% — 84.89 Mbps 52.82% 19.18% 156.52 Mbps — 104.35% 61.77 Mbps — 21.45% 74.26%
100 CAT 24% — 135.00 Mbps 23.62% 52.38% 146.19 Mbps — 97.46% 281.32 Mbps — 97.68% 82.67%
ST 58% — 365.89 Mbps 23.73% 18.27% 148.90 Mbps — 99.27% 116.06 Mbps — 40.30% 57.62%
200 CAT 68% — 828.21 Mbps 8.73% 23.27% 110.74 Mbps — 73.83% 279.01 Mbps — 96.88% 57.56%
ST 74% — 986.05 Mbps 11.43% 14.57% 153.15 Mbps — 102.10% | 193.30 Mbps — 67.12% 50.49%

TABLE III: User distribution, bandwidth demands and user satis

faction for CAT and ST at optimal o for fixed p = 4.38

Users’ Distribution

Total Bandwidth Demand

# of Type of Optimal o B . User Sat.
Users MADM (% of users — Mbps) 3GPP (a[\/g'qu,L AN (M:’E)g;lgfﬂoaded [demand/cag?;:jX/N%) (%)

50 CAT 14% — 38.60 Mbps 30.62% 55.38% 92.70 Mbps — 123.60% | 144.43 Mbps — 100.30% 73.03%

ST 56% — 175.89 Mbps 25.54% 18.46% 80.02 Mbps — 106.70% 58.17 Mbps — 40.40% 46.30%

100 CAT 24% — 135.00 Mbps 23.62% 52.38% 146.19 Mbps — 97.46% 281.31 Mbps — 97.68% 82.67%

ST 58% — 365.89 Mbps 23.73% 18.27% 145.90 Mbps — 99.27% 116.06 Mbps — 40.30% 57.62%

200 CAT 24% — 271.58 Mbps 23.11% 52.89% 287.60 Mbps — 95.87% 572.42 Mbps — 99.38% 89.27%

ST 58% — 732.34 Mbps 23.68% 18.32% 296.36 Mbps — 98.79% 233.96 Mbps — 40.62% 67.96%

exceeds available capacity leading to high congestion where
100% user satisfaction via Wi-Fi APs and eNodeBs is im-
possible. Comparing CAT with ST, it is clear from results
that CAT algorithm clearly outperforms ST in distributing
and balancing the MOTO users’ demand on Wi-Fi APs and
eNodeB. Moreover, D2D offloading shows positive impact
on the user satisfaction. For example, comparing the results
in Table I and Table II for 200 MOTO users (a heavy load
scenario with p = 2.19), it is observed that user satisfaction
increases from 34.29% (¢ = 0%) to 57.56% (0 = 68%)
corresponding to an increase of 67% using the CAT algorithm.

In Figure 5, simulation results for fixed capacity per user
ratio is presented, i.e. p = 4.38. The rationale behind this
simulation is to demonstrate the benefit of D2D offloading
as the number of MOTO users increases in a heterogeneous
network. The results demonstrate that for same p, the user
satisfaction increases with increasing number of MOTO users.
This is mainly caused by the increase in the probability of the
existence of 3GPP/WLAN users in the range of D2D users.

The utilization rate of APs on the optimal o points are
provided in Table III which depicts the best load-balance
points with maximum user satisfaction for fixed p. As the
number of MOTO users increases from 50 to 200, the user
satisfaction percentage increases from 73.03% to 89.27%
for CAT algorithm. Additionally, comparing the results in
Table I and Table III for 100 MOTO users for CAT algorithm,
it is observed that user satisfaction increases from 73.31%

(0 = 0%) to 82.67% (o = 24%) corresponding to an increase
around 20%. Similar to the increasing p case, the results in
Table III provide average offloaded traffic for all types of
connections. The results indicate that for CAT algorithm, as
number of users increases from 50 to 200, the total bandwidth
demand on eNodeB increases from 92.70 Mbps to 287.60
Mbps. At the same time, the demand per capacity ratio
decreases from 123.60% to 95.87% which increases the user
satisfaction owing to more efficient D2D offloading. Similar
to previous results, CAT performs significantly better than ST
in all scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this study, we analyzed the performance of two pro-
posed MADM extension algorithms in the presence of D2D
connections based on user satisfaction metric. The capacity-
aware algorithm that takes into account the network-based
attribute of remaining capacity in network nodes besides user-
based attributes yielded better performance in terms of the two
metrics. The impact of D2D communications on the MADM
algorithms are presented and the existence of optimal user
satisfaction rate per the density of D2D users is depicted via
simulation results. As a future work, an integrated algorithm
that can adaptively and automatically decide on the optimal
D2D density based on the underlying MADM algorithm and
user parameters can be developed. Moreover, content dissem-
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ination delay considerations can also be considered to be an
additional metric into the MADM algorithms.
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