
Ultrasound in Med. & Biol., Vol. 46, No. 12, pp. 3327�3338, 2020
Copyright © 2020 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

Printed in the USA. All rights reserved.
0301-5629/$ - see front matter

https://doi.org/10.1016/j.ultrasmedbio.2020.08.012
� Original Contribution
ELASTIC DEFORMATION OF SOFT TISSUE-MIMICKING MATERIALS USING A

SINGLE MICROBUBBLE AND ACOUSTIC RADIATION FORCE

TAGGEDPJAMES H. BEZER,* HASAN KORUK,y CHRISTOPHER J. ROWLANDS,* and JAMES J. CHOI* TAGGEDEND
*Department of Bioengineering, Imperial College London, London, United Kingdom; and yMechanical Engineering Department,

MEF University, Istanbul, Turkey

(Received 17 June 2020; revised 7 August 2020; in final from 10 August 2020)
A
gineeri
2AZ, U
Abstract—Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications.
Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic
ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter:
25�100 mm, Young’s modulus: 2�8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse
length: 10 ms, peak-rarefactional pressures: 0.6�1.0 MPa). Using high-speed microscopy, each microbubble was
tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft
tissue-mimicking material by several micrometres, producing tissue loading�unloading curves that were similar
to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a
mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically
tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues
during ultrasound therapy and indicate a potential source of bio-effects. (E-mail: j.choi@imperial.ac.
uk) © 2020 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
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INTRODUCTION

Microbubbles are increasingly used as a contrast agent in

ultrasound imaging and as a therapeutic agent in ultra-

sound therapy. The most commonly used microbubbles

are composed of a heavy gas encased in a lipid shell.

They have a typical diameter of 1�10 mm, which is

small enough for them to pass freely through the smallest

blood vessels, but large enough that they remain con-

fined within the vasculature.

The most common clinical use of microbubbles is

in ultrasound imaging (Cosgrove 2006). They are espe-

cially valuable for their ability to image blood flow, and

have consequently found widespread applications in car-

diovascular medicine (Mulvagh et al. 2008) and in imag-

ing masses in abdominal organs such as the liver

(Wilson and Burns 2010). Imaging applications continue

to expand and include super-resolution to identify single

microbubbles at micrometre-scale spatial resolution
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(Christensen-Jeffries et al. 2015; Errico et al. 2015) and

molecular imaging, whereby ligand-coated microbubbles

bind to receptors expressed on vascular endothelial cells

(Deshpande et al. 2010; Abou-Elkacem et al. 2015). In

these applications, microbubbles increase the returned

ultrasound signal by oscillating in response to the imag-

ing pulse. The increased signal provides contrast to the

surrounding tissue, thereby enabling the many imaging

applications described.

Microbubbles also have a wide range of potential

therapeutic applications, including blood�brain barrier

permeabilisation (Hynynen et al. 2001; Burgess et al.

2015), thrombolysis (Mathias et al. 2019) and delivery

of drugs through cell membranes (van Wamel

et al. 2006; Helfield et al. 2016). The therapeutic effects

produced are believed to be related to the mechanical

forces that the microbubbles exert on vascular endothe-

lial cells, blood vessels and surrounding tissues

(Chen et al. 2014; Burgess et al. 2015). However, the

exact nature of the forces microbubbles exert on soft tis-

sues during therapy and how they lead to therapeutic

effects remain less understood (Roovers et al. 2019).
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Research on bubble physics in imaging and therapy

has focussed primarily on the volumetric oscillations of

microbubbles. The non-linear radial oscillations of bub-

bles are key to generating significant and distinctive pat-

terns of backscatter in imaging (Faez et al. 2013), and are

predicted to exert oscillatory forces on surrounding tissues

(Hosseinkhah et al. 2013). Theoretical studies have inves-

tigated the forces exerted via volumetric oscillations of

microbubbles (Hosseinkhah and Hynynen 2012;

Wang et al. 2013), which have been found experimentally

to deform the walls of blood vessels when exposed to

high-amplitude short pulses (Chen et al. 2011, 2012).

However, microbubbles exposed to ultrasound also

experience a translational force, typically in the direction

of sound propagation, known as the primary acoustic

radiation force (sometimes referred to as the primary

Bjerknes force) (Leighton 1994; Dayton et al. 2002).

The primary radiation force on microbubbles has previ-

ously received theoretical and experimental attention for

its ability to displace bubbles in a free fluid

(Dayton et al. 2002; Blue et al. 2018) and to bring bub-

bles toward a boundary, as a way of enhancing the con-

trast of molecular imaging with ligand-targeted

microbubbles (Shortencarier et al. 2004; Lum et al.

2006; Frinking et al. 2012).

Less experimental attention has previously been

given to the effects that contrast agent microbubbles, at

interfaces, driven by acoustic radiation forces may have

on tissue. Radiation forces caused by 1-MHz ultrasound

have been reported to cause individual microbubbles to

tunnel into fibrin clots (Acconcia et al. 2013) and agarose

at pressures >1.2 MPa (Caskey et al. 2009). By use of

large, concentrated clouds of microbubbles, the primary

radiation force has been found to displace blood clots

(Wright et al. 2012).

The radiation force bubbles can exert on their sur-

roundings has been proposed as a method of estimating

material mechanical properties. Changes in tissue

mechanical properties are associated with many patholo-

gies. The radiation force on a single laser-induced bub-

ble embedded in a medium has been investigated as a

way to measure the stiffness of tissues, including soft

gels and the eye (Erpelding et al. 2005;

Ilinskii et al. 2006; Yoon et al. 2011; Shirota and Ando

2015). Large clouds of contrast agent microbubbles have

also been reported to reversibly deform soft gels,

enabling values related to material stiffness to be

extracted (Koruk et al. 2015; Saharkhiz et al. 2018).

Here, the dynamic responses of individual microbub-

bles at soft gel interfaces exposed to the primary acoustic

radiation force are investigated using ultrasound parame-

ters that are typical in therapeutic applications. This is

achieved by tracking, with high-speed optical microscopy

(frame rate of 4,858 or 31,197 fps), the elastic indentation
of a bubble into a soft hydrogel when exposed to ultra-

sound. The dynamic responses of individual bubbles at

three different hydrogel interfaces, with Young’s moduli

of 2, 4.5 and 8.7 kPa—bulk properties similar to those of

soft tissues such as the brain (Kaster et al. 2011; Mac�e
et al. 2011; McKee et al. 2011)—are investigated. In addi-

tion to the experimental investigation, a mathematical

model was used to extract the radiation force on the bub-

ble and the gel viscosity based on experimental results.

The ultrasound parameters used here (1-MHz centre fre-

quency, 10-ms pulse length, peak rarefactional pressures

of 0.6�1 MPa) are very similar to those used in applica-

tions such as blood�brain barrier permeabilization, both

in animals (McDannold et al. 2005; Choi et al. 2011) and

in humans (Carpentier et al. 2016; Idbaih et al. 2019).

They are also comparable to parameters used clinically in

sonothrombolysis (Leeman et al. 2012; De Saint Victor

et al. 2014).
METHODS

Individual microbubbles were introduced to wall-less

channels in soft hydrogels. When exposed to ultrasound,

their motion into the gel was tracked using high-speed

microscopy. Their maximum indentation depth and the

shape of the indentation curve were used to infer proper-

ties of the gel, and the force exerted by the bubble on the

gel, using a mathematical model. The maximum bubble

indentation depths into the gel are compared for three gel

stiffnesses and two channel diameters, to investigate

effects caused by confinement within a small and soft

blood vessel.
Microbubble preparation

Microbubbles were manufactured in-house using a

previously described protocol (Koruk et al. 2015;

Shamout et al. 2015). The microbubble shell consisted

of three lipids (Avanti Polar Lipids Inc., Alabaster, AL,

USA) from powder—dipalmitoylphosphatidylcholine

(DPPC), dipalmitoylphosphatidic acid (DPPA) and

dipalmitolyphosphatidylethanolamine�polyethylene

glycol 2000 (DPPE-PEG2000)—which were mixed and

diluted with glycerol (5% v/v) and saline (80% v/v).

Vial headspace was filled with perfluorobutane and

mechanically amalgamated for 45 s (Synergy Electron-

ics, Scottsdale, AZ, USA). Microbubbles were extracted

from the vial with a 20G syringe needle and then diluted

in 0.9% saline. Microbubbles were diluted such that they

were well spaced within the channel, at least 100 mm

between bubbles to reduce coupling (Schutt et al. 2014).

This was achieved at a concentration of approximately

106 microbubbles/mL. The mean bubble radius was 0.66

§ 0.38 mm (Koruk et al. 2015). However, only the larger

portion of bubbles were selected for optical tracking
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(radius >0.5 mm). This was because smaller bubbles did

not respond significantly and larger bubbles were better

resolved by the camera.
Gel channel preparation

Polyacrylamide was chosen for the experiments

here because of its high optical and acoustic transpar-

ency and tuneable mechanical properties allowing gels

to be produced with Young’s moduli similar to those of

soft tissues. Polyacrylamide gel was formed using pow-

dered acrylamide monomer and powdered N,N0-methy-

lene bisacrylamide as a cross-linker. Gels with three

different stiffnesses were produced, with acrylamide:bis

ratios of 4:0.1, 5:0.15 and 5:0.3 (percentage by mass in

de-ionised water). These ratios produced gels with

Young’s moduli of 2.01 § 0.75, 4.47 § 1.19 and 8.73 §
0.79 kPa, respectively, according to a published protocol

(Tse and Engler 2010). The solution was de-gassed and

then mixed at room temperature with 0.1 g/100 mL

ammonium persulphate and 100 mL/100 mL tetramethy-

lethylenediamine (TEMED) before being left to set for

several minutes. All reagents were obtained from Sigma-

Aldrich (Dorset, UK).

Gels were formed in a 3-D-printed U-shaped box

with a thin plastic coverslip on top. The volume of the

gel was 1.5 cm (width, perpendicular to direction of
Fig. 1. Materials and methods. (a) Experimental setup. A 25-
amide gel (Young’s modulus: 2�8.7 kPa) was filled with a dilu
motion of the bubble was tracked under a microscope with a hi
channels in 2-kPa Young’s modulus polyacrylamide gels imag
tion of quantum dots (left: 100-mm diameter channel, right: 25

of mathematical model illustrating a bubb
ultrasound propagation)£ 1.5 cm (height)£ 1 cm (axial

depth) (Fig. 1a). Two opposite ends of the gel remained

open, allowing a free acoustic path along the axial direc-

tion to minimise reflections. A coverslip was also fixed

over a hole in the bottom of the box, allowing the chan-

nel to be illuminated from below.

The channel was created using a 25- or 100-mm-

diameter nickel/chromium (80:20) wire. The box con-

tained two 30G hypodermic needles, placed facing each

other approximately 1 mm from the lower surface of the

coverslip, to ensure the channel could be placed close

enough to the lens to be imaged clearly. Thirty-gauge

needles were chosen, as a smaller diameter enabled bub-

bles to be more easily introduced into the narrow 25-mm

channel. The wire was passed through these needles, and

once the wire was in place, the polyacrylamide solution

was poured into the box and left to set. The wire was

then removed, and a dilute solution of microbubbles was

introduced into the channel through the needles using a

syringe pump (PHD Ultra, Harvard Apparatus, Holliston,

MA, USA) at a flow rate of 0.1 mL/min. No flow was

applied during the optical experiments.
Gel channel characterisation

Mechanical properties of hydrogels can be mea-

sured using nano-indentation, atomic force microscopy
or 100-mm-diameter wall-less channel in soft polyacryl-
te solution of microbubbles and sonicated at 1 MHz. The
gh-speed camera. (b) Example cross-sections of wall-less
ed with confocal microscopy after introduction of a solu-
-mm diameter channel, scale bar = 25 mm). (c) Schematic
le impacting a viscoelastic medium.
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(AFM) or oscillatory rheometry (Oyen 2014). The gels

were made from a published protocol based on the rela-

tive concentrations of acrylamide to bisacrylamide

(Tse and Engler 2010). The authors of the protocol tested

the Young’s modulus of polyacrylamide gels with

atomic force microscopy, and the values published in

this protocol are used here. It should be noted that a wide

variation in elasticity (>20%) was reported between

identically produced gels and different regions of the

same gel.

Polyacrylamide is a hydrogel, and properties of poly-

mers and hydrogels vary at very high frequencies

(Smyth et al. 2001). The relevance of low-frequency

indentation measurements to high-frequency deforma-

tions produced by bubble displacement and radial oscilla-

tions (kHz to MHz) is therefore unclear. A mismatch

between viscosity estimated from kilohertz-frequency

bubble dynamics and low-frequency oscillatory rheome-

try has previously been observed (Jamburidze et al. 2017).

The acoustic properties of the gel were tested to

ensure that the pressure within the gel channel was

approximately the same as measured by the hydrophone

when the gel was not present. Attenuation spectra of the

gels were produced, which confirmed there was minimal

scattering and attenuation compared with water. This

required use of a 2.25-MHz immersion transducer (Olym-

pus Industrial, Southend-on-Sea, Essex, UK) sending a

short broadband pulse (DPR300 pulser/receiver, JSR

Ultrasonics, Pittsford, NY, USA) through a 2-cm-thick

sample of gel, within a 3-D-printed chamber, to an alu-

minium reflector (Browne et al. 2003). The reflected pulse

was detected by the same transducer, and the frequency

spectrum was compared with that received for a pulse

transiting the chamber when filled with water. This

was performed for each gel stiffness used. There was

negligible attenuation by any of the three gels

(<<0.5 dB/cm) at 1 MHz, in agreement with previ-

ously published attenuation coefficients for polyacryl-

amide gels (Prokop et al. 2003; Takegami et al. 2004).

To confirm that the channels retained a cylindrical

shape when the wire was removed, the channels were

imaged with a confocal microscope (SP5 MP upright,

Leica Microsystems, Germany) (Fig. 1b). CdSe/ZnS

core-shell type quantum dots (Sigma-Aldrich), which

are large enough not to diffuse into the gel, enabling the

channel edge to be clearly delineated, were introduced

into the channel to provide fluorescence.

Ultrasound experiments

The hydrogel (containing the channel) was placed

in a tank of de-gassed and de-ionised water under a

40£water immersion objective lens (model:

LUMPLFLN, numerical aperture: 0.8, working distance:

3.3 mm; Olympus, Tokyo, Japan). A focused transducer
(model: A303 S-SU, diameter: 13 mm, focal distance:

15.2 mm, centre frequency: 1 MHz; Olympus, Essex,

UK) was placed to target the centre of the focal plane of

the lens. This alignment was performed using a needle

hydrophone (diameter: 0.2 mm, Precision Acoustics,

UK). The hydrophone was also used to calibrate the

peak-rarefactional pressure in situ. An LED light source

(KL 2500, Schott, Dorset, UK) provided illumination

from below (Fig. 1a).

Each sample was sonicated with a single pulse

(pulse length: 10 ms, centre frequency: 1 MHz, peak-rar-

efactional pressure: 600 kPa). The transducer was driven

by sinusoidal pulses generated by a function generator

(33500 B Series, Agilent Technologies, Santa Clara, CA,

USA) and passed through a 50-dB amplifier (E&I,

Rochester, NY, USA). A frequency of 1 MHz was cho-

sen as it is commonly used in clinical systems and many

proposed applications. Lower-frequency pulses can also

penetrate deeper into the body. For the stiffest gels

(E = 8.7 kPa), a peak-rarefactional pressure of 1 MPa

was used instead, as no deformation could be seen at

lower pressures.
Optical imaging of bubbles

Individual microbubbles were optically tracked

before, during and after each ultrasound pulse using

high-speed microscopy. Videos were obtained using a

Chronos 1.4 monochrome high-speed camera (Kron

Technologies Inc., Burnaby, BC, Canada), connected to

the objective lens via a custom optical setup incorporat-

ing a tube lens and corner mirror (ThorLabs, Newton,

NJ, USA). The setup was placed on an actively damped

vibration isolation table (Vision Isostation, Newport,

Irvine, CA, USA). The pixel pitch on all videos was 0.16

mm. Most videos were captured at 4,858 fps (Figs. 2a

and 3), with a frame size of 304£ 600 pixels, although

some images of single bubbles were taken at 31,197 fps

(Fig. 2b�d), with a frame size of 336£ 120 pixels, to

track the shape of the deformation curve in more detail.

The videos and still images shown in the figures were

cropped to a size of 304£ 120 pixels to focus on the

bubble in the image centre.
Analysis of raw videos

Bubble movement from the videos was tracked in

MATLAB (The MathWorks, Natick, MA, USA). Bub-

bles were identified in images using an arbitrary intensity

threshold technique, which was generally reliable as

bubbles had a high contrast compared with the homoge-

neous background of the channel. Bubbles were isolated

from the images using a Hough transform (Duda and

Hart 1972). This transform fits a circle to the bubbles,

providing a bubble radius and centroid for each frame.



Fig. 2. Example indentation curves for four individual bubbles impacting gels with different stiffnesses. Frames from each video
are shown on the left, with the x-coordinate of the centre of the bubble shown over time in a plot on the right. Arrows indicate the
points at which each still was taken. The duration of the pulse is shaded in blue. Curves fitted to the data based on the mathemati-
cal model are represented by dashed lines in red. These curves were used to extract the radiation force on each bubble and the
viscosity of the gel. Thewhite arrow indicates the direction of wave propagation (left�right in all images). (a) Example deforma-
tion curve for a 2.0-mm radius bubble indenting a gel with a Young’s modulus of 2 kPa. Frame rate: 4,858 frames per second
(fps). Parameters extracted from the model are radiation force = 19 nN and viscosity = 0.12 Pa¢s. Taken from Supplementary
Video S1 (online only). (b) Bubble radius = 1.5 mm. Gel Young’s modulus = 2 kPa. Frame rate = 31,197 fps. Radiation
force = 13 nN, viscosity = 0.18 Pa¢s. Taken from Supplementary Video S2. (c) Bubble radius = 1.5 mm. Gel Young’s modu-
lus = 4.5 kPa. Frame rate = 31,197 fps. Radiation force =15 nN, viscosity = 0.12 Pa¢s. Taken from Supplementary Video S3
(online only). (d) Bubble radius = 1.6 mm. Gel Young’s modulus = 8.7 kPa. Frame rate = 31,197 fps. Force = 4.5 nN, viscos-

ity = 0.2 Pa¢s. Taken from Supplementary Video S4 (online only).
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Fig. 3. Bubble maximum indentation depth (top row) and radiation force (bottom row) versus bubble radius for three
different gel stiffnesses. (a) Maximum indentation depth and force for bubbles in 25-mm-diameter channels in gels with
Young’s modulus of 2 kPa. (b�d) Maximum indentation depth and force for bubbles in 100-mm-diameter channels in
gels with Young’s moduli of (b) 2 kPa, exposed to a 600-kPa pulse, (c) 4.5 kPa, exposed to a 600-kPa pulse, and (d) 8.7
kPa, exposed to a 1-MPa pulse. There is no significant difference in values of force or indentation depth between gels
with Young’s moduli of 2 and 4.7 kPa. Both force and maximum indentation depth were significantly lower in the 8.7-
kPa gel channels. There is no significant difference in values of force or indentation depth between the two channel

diameters.
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Analysis was based on an initial radius of the bubble

taken from the first frame of each video.

Although the displacement of the boundary in con-

tact with the bubble will likely be slightly greater than the

displacement of the centre of the bubble owing to the

bubble’s volumetric expansion during the pulse, tracking

the centre was deemed to be the most reliable approach to

tracking displacement at these frame rates, because of the

blurring of the bubble edge due to its radial oscillations.

Background motion of the gel was observed and

was owing primarily to environmental vibrations.

Because the rapid relaxation of the bubble after the pulse

occurred over far shorter timescales than the motion of

the background, this background motion did not affect

estimates of maximum indentation depth. However,

motion correction of the video background was per-

formed using a cross-correlation technique, by tracking

the movement of a region of channel wall far from the

bubble. This provided an additional control to ensure the

motion recorded was of the bubble relative to the chan-

nel and did not include any motion of the surroundings.

It also enabled the shape of the deformation curves to be

assessed more reliably.

Bubbles were excluded from analysis under several

conditions: they exhibited no clear response to ultra-

sound at all; their diameters were <1 mm (as they could

not then be reliably identified as spherical bubbles, as

opposed to lipid droplets or solid fragments); they did

not return back into the channel after the pulse
(indicative of gel disruption); they had obvious interac-

tions with neighbouring bubbles or were within 100 mm

of another bubble; they were near an obvious imperfec-

tion in the gel; or they were significantly out of focus in

the initial or final frames.

For each video, the maximum indentation depth

was calculated from the relaxation of the bubble after

the pulse. The x-coordinate of the videos was used as

this is the direction of sound propagation. To reduce the

effect of noise, the maximum x-coordinate was taken

from the average value over the last 1 ms of the pulse.

The final resting state was taken as the average x-coordi-

nate between 2 and 3 ms after the pulse, to ensure the

bubble had enough time to stop moving. The maximum

indentation depth was defined as the difference between

these maximum x-coordinates and the final resting state.

The relaxation of the bubble after the pulse (rather

than at the start) was chosen as reference as the bubble

can be assumed to be in direct contact with the gel during

this. This may not necessarily be the case before the

pulse. Because of their small size and consequent low

Reynolds number, bubbles will generally not move

unless driven directly by either the ultrasound or an elas-

tic force from the gel, over the short timescales of the

pulse during which buoyancy can be ignored.

Modelling

The dynamic response of each bubble was exam-

ined using a mathematical model of a bubble indenting
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into a tissue interface. In this model, the displacement, u,

of a bubble of radius R at a viscoelastic interface

(Fig. 1c), exposed to an external force with an amplitude

f0 and duration t, is given by the equation (Koruk and

Choi 2018, 2019)

u ¼� jf0

6pR 1� 1�u
R

� �3h iF�1 ejvt�1
� �

3�jkRð Þ
v G�jhvð Þ 1�jkR�1

6
k2R2 þ 1

18
jk3R3

� �
" #

ð1Þ
where G, r and h are the gel shear modulus, density and

viscosity, respectively, k ¼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðG=rÞð1�jvh=GÞp

is the

wavenumber of the shear wave with frequency v and F�1

represents the inverse Fourier transform. The shear modu-

lus, G, is related to the Young’s modulus, E, by G = E/2

(1 + n), where n is Poisson’s ratio, taken as 0.45 for the

gels. Here, the excitation duration t was divided into N

points (e.g., 1000), and the calculations were repeated

over the entire period of interest using MATLAB.

In this model, the gel is modelled as a linear visco-

elastic medium and is assumed to be isotropic, homoge-

neous and incompressible. The model does not account

for bubble radial oscillations, which occur in the experi-

ment. The model assumes that the bubble is indenting a

plane boundary. In the experiment, the boundary is

slightly curved, because the channel is cylindrical.

Because the bubble diameter is significantly less than the

channel radius of 100 mm, this was assumed to be of

minimal significance in modelling.

For every bubble, the time-averaged force was esti-

mated based on the maximum indentation depth, bubble

initial radius and gel Young’s modulus. For a small sam-

ple of bubbles which were imaged at higher frame rates,

the viscosity of the gel was also inferred from the shape

of the deformation curve including the rate of relaxation

after the pulse by minimising the error between the exper-

imental and theoretical dynamic responses of the bubble.
RESULTS

Feasibility and qualitative observations

Many instances of a single bubble reversibly

deforming a gel boundary were observed. Four different

example cases are illustrated in Figure 2, in which the

microbubble (1.5�2.0 mm in radius) reversibly

deformed a hydrogel (E = 2, 4.5 and 8.7 kPa) when

exposed to ultrasound. These bubbles produced tissue

loading�unloading curves that were similar to those pro-

duced by other indentation-based methods

(Briscoe et al. 1998; Cheng and Cheng 2005): (i) initial

position, (ii) rapid tissue deformation (loading), (iii) a

maximum or steady-state deformation (holding), (iv)

relaxation of the deformation (unloading) and (v) the

final position. The maximum indentation depth of
several micrometres was reached rapidly after the start

of the pulse. For some bubbles, this was achieved after

only tens of microseconds (Fig. 2a, 2c), whereas others

had a slightly more gradual increase (Fig. 2b, 2d). In

general, we can see a very rapid initial motion, followed

by a much slower motion over several milliseconds to

the steady-state displacement. The bubbles remained in

this position until rapidly relaxing to close to their initial

state at the end of the pulse. Microbubbles almost always

returned to within the channel after the pulse, typically

over 1�2 ms.

Several control videos were obtained of gels with-

out any bubbles, to track the motion of the channel wall

caused by the radiation force on the gel alone. No motion

could be identified as being caused by the pulse, beyond

some slight background vibrations that were present

without the ultrasound.

Radiation force and gel viscosity estimation

The response of each bubble was studied using the

mathematical model described previously to infer the

radiation force on the bubble and the viscosity of the gel

based on experimental observations of the bubble inden-

tation curve.

When exposed to a 600-kPa ultrasound pulse, the

force for a 2-mm-radius bubble reaching a maximum dis-

placement of around 2.2 mm in a 2-kPa gel was estimated

to be 19 nN (Fig. 2a). The viscosity of the gel was esti-

mated to be 0.12 Pa¢s for this experiment. The force

decreased to 13 nN for a 1.5-mm-radius bubble, and a

maximum displacement of around 1.9 mm was produced

(Fig. 2b). The viscosity of the gel for this setup was pre-

dicted to be 0.18 Pa¢s. The force was estimated to be

15 nN for a 1.5-mm-radius bubble and a maximum dis-

placement of around 1 mm for a 4.5-kPa gel (Fig. 2c), the

viscosity being 0.12 Pa¢s. The force was 4.5 nN for a 1.6-

mm-radius bubble and a maximum displacement of

around 0.3 mm for an 8.7-kPa gel, when exposed to

1-MPa-peak-rarefactional-pressure ultrasound pulse

(Fig. 2d), where the viscosity is 0.2 Pa¢s.
The maximum displacement depends on gel stiffness

and bubble radius, as well as the force magnitude. As

expected, displacement decreases as gel stiffness

increases to 8.7 kPa. It is seen that the force level also

decreases with gel stiffness, however, even when the

ultrasound pressure was increased. Potential reasons for

this, including the assumed material properties, are listed

later in the Discussion. Overall, it was seen that the force

was typically of the order of 10 nN, and the viscosities of

all three gels were estimated at between 0.1 and 0.2 Pa s.

Quantitative measurements

The maximum displacements into the gel of more

than 150 individual bubbles were measured (Fig. 3). The
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majority of these bubbles were between 1 and 3 mm in

radius, because larger bubbles were scarce. Maximum

indentation depths for these bubbles were typically less

than 4 mm, although this varied significantly, even

between bubbles of very similar sizes.

The indentation depths of the bubbles plotted in

Figure 3 were compared across the different gel stiff-

nesses and channel diameters. In general, the maximum

displacement decreased as the gel stiffness increased

(Fig. 3b�d). The indentation depths of bubbles in the

100-mm channel of 2 kPa at 600 kPa were significantly

higher than the indentation depths of bubbles in the 100-

mm channel of 8.7 kPa at 1 MPa (one-way multivariant

analysis of variance (MANOVA) p value: 0.00015)

(Fig. 3b, 3d). There was no statistically significant differ-

ence between indentation depths of bubbles in the 100-

mm channels of 2 and 4.5 kPa (p = 0.12) (Fig. 3b, 3c).

There was no statistically significant difference between

the 25- and 100-mm channels of 2 kPa (p = 0.26)

(Fig. 3a, 3b).
Additional qualitative observations

In addition to the bubble indentation results pre-

sented above, several behaviours were observed that are

important to note. Many of the largest bubbles (radius

>5 mm) exhibited surface modes or non-spherical

behaviours, which could clearly be seen even at the low

frame rates used here. These surface modes may have

been present in smaller bubbles, but the spatial resolu-

tion made this impossible to verify. The higher reso-

nance frequency of smaller bubbles makes this less

likely, however. Bubbles sometimes fragmented during

the pulse or dissolved shortly (<1 s) thereafter. Bubble

dissolution or fragmentation was most often observed in

large bubbles (radius >3 mm) as a result of the 1-MPa

pulses used in the stiffest gel. Bubbles sometimes moved

rapidly along the channel wall in preference to penetrat-

ing it. This was most commonly seen in large bubbles

and stiffer gels, and may be due to imperfect alignment

of the angle of the transducer.
DISCUSSION

Single microbubbles have been found to reversibly

deform soft gels. This indicates that, under the acoustic

parameters tested, which are typical of those used in

many therapies, the radiation force on a bubble is likely

to generate significant local tissue stresses, and poten-

tially micron-scale displacements, in very soft tissues,

such as brain tissue. Thus, radial oscillations are not the

only way single microbubbles can exert forces on tissue

during therapy. The primary radiation force provides a

different mechanical interaction, as its force is unidirec-

tional and sustained.
Mechanical effects of microbubbles

The forces estimated from the mathematical model

were typically of the order of a few tens of nanonewtons

in the 2- and 4.5-kPa gels (Fig. 3). For the 8.7-kPa gel,

these forces were estimated to be lower, even though the

bubbles in the stiffer gel were being exposed to higher

acoustic pressures. For the parameters tested in our

study, almost all bubbles returned to close to their initial

position within the channel after the pulse, and so we

assume no permanent structural changes were imparted

to the gel, as has previously been reported in agarose at

higher pressures (Caskey et al. 2009).

There may be several reasons for the smaller defor-

mation with the 8.7-kPa gel. It could be related to effects

on the bubble because of the proximity of the more rigid

boundary. When a bubble is in contact with a very soft

boundary, the effect of the boundary on its acoustic

response is relatively small (Doinikov et al. 2012;

Helfield et al. 2014), compared with the very significant

damping of oscillations and a reduction in natural fre-

quency when a bubble is in contact with a rigid boundary

(Garbin et al. 2007; Overvelde et al. 2011). However, the

stiffness whereby bubble oscillations become signifi-

cantly influenced is unclear. It is also plausible that the

effective gel stiffness at our indentation frequencies was

much higher than the values measured with AFM.

We noticed variation in the rate at which bubbles

reached their maximum displacement. This may be due

to variations in gel viscosity and stiffness between differ-

ent gels or regions of the same gel, as a lower gel elastic-

ity with a higher viscosity causes a slower increase in

indentation (Koruk and Choi 2018, 2019). Other possible

explanations include motion of the bubble relative to the

curvature of the channel wall and change in the bubbles’

gas content or shell structures during the long pulse soni-

cations, meaning the force level may not be constant

over time.

No difference was observed between bubbles in the

25- and 100-mm-diameter channels of 2 kPa. This indi-

cates, as has been suggested previously (Qin and Ferrara

2007; Hosseinkhah and Hynynen 2012), that confine-

ment within a very soft, acoustically transparent channel,

even one that is very small, does not significantly damp

bubble oscillations, as would be predicted in a rigid tube.

Very little deformation was observed in stiffer gels

(E = 8.7 kPa). Small deformations could only be

observed at high mechanical index (�1). However,

many lipid-shelled microbubbles rapidly dissolve or

fragment at these pressures, as has been reported previ-

ously (Borden et al. 2005; Cox and Thomas 2010, 2013;

Kwan and Borden 2010). Enabling microbubble-induced

indentation of stiffer tissues may therefore require

microbubbles that are more resilient to high acoustic

pressures. In stiffer tissues, therefore, such as arteries,
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direct mechanical effects of lipid-shelled microbubbles

caused by radiation force are likely to be confined to

close to the vascular wall.

Limitations

There was significant variation in the amplitudes of

deformation between apparently identical bubbles, and it

was difficult to observe a clear trend with bubble initial

radius. There are many potential reasons for this. The stiff-

ness of each gel measured via AFM can vary significantly

in different regions (Tse and Engler 2010). Previous studies

on acoustic radiation force in a free fluid have also reported

similar degrees of variation (Dayton et al. 2002), suggest-

ing intrinsic variation in acoustic response between bubbles

of similar size. This could be due to differences in shell

structure between bubbles (Borden et al. 2006). The bub-

bles may also partially dissolve or change shell structures

during the long pulse sonications, meaning the force level

may not be constant over time. Other reasons may include

variable formation of standing waves around the lens; inho-

mogeneities in the acoustic pressure field caused by scatter-

ing between different surfaces near the channel; and

imperfect alignment of the angle of the transducer.

The shape of the deformation curves predicted by

the mathematical model approximately matched those

observed experimentally. However, the values of radia-

tion force and viscosity estimated from the model could

not be independently verified, and so these results cannot

conclusively establish the quantitative validity of the

model. Values for the viscosity of the gel can be esti-

mated with low-frequency oscillatory rheometry or

indentation tests. However, the relevance of such values

to the micron-scale, high-frequency material properties

experienced by the bubble here is unclear.

In the supplementary videos (online only), the edge

of the channel at the level of the bubble is not precisely

delineated because of its curvature in the vertical plane

(Fig. 2). For many bubbles, such as in Figure 2a, it is

very clear that the bubble passes beyond the channel

boundary and into the gel during the pulse. We therefore

assume that the relaxation of all bubbles is due to the

rebound of the gel after it is deformed. For very small

deformations, however, it is difficult to state conclu-

sively whether the bubble relaxation is due to the elastic-

ity of the gel, to deformation of the bubble itself or to

continued fluid streaming, without much higher spatial

and temporal resolution than was available here. There

was often a small discrepancy in initial and final bubble

positions. This may be because the bubble was close to,

but not quite in contact with, the wall before the pulse,

or because of movement along the curved channel wall

in the vertical direction parallel to the imaging plane. It

may also be due to slight plastic deformation of the gel.

This small discrepancy did not affect the data analysis to
compare bubbles and extract parameters, as only the

motion of the bubble around the end of the pulse was

used, during which the bubble can be assumed to be in

contact with the gel.

Clinical relevance

The ultrasound parameters used here are compara-

ble to those used in therapies such as ultrasound blood�-

brain barrier permeabilisation. These observations

indicate that microbubbles have the potential to induce

directional micron-scale displacements of tissues in the

vicinity of small blood vessels in soft tissues. We have

also found an experimental method to estimate the mag-

nitude of microbubble-induced radiation forces on tis-

sues. This research therefore provides a deeper

understanding of the forces microbubbles are exerting

when generating therapeutic effects.

It is difficult to state conclusively what biological

effects such a local force and strain may have on tissue

because of the lack of direct optical observation of

acoustic cavitation in capillaries. Tight junction disrup-

tion is believed to be part of the mechanism of ultra-

sound blood�brain barrier opening (Sheikov et al.

2004). Tests carried out on tight junction proteins have

found that they unfold when extended by less than

500 nm (Spadaro et al. 2017). Although this was tested

only on individual proteins, it is still therefore plausible

that tissue deformations of several micrometres could

disrupt tight junctional integrity.

The material Young’s moduli used here are very

relevant to an in vivo setting. The precise values of

Young’s modulus estimated for tissue can vary based on

the measurement techniques used. However, our gel

Young’s moduli of 2�8.7 kPa fit well within the range

of those measured for several types of healthy soft tissue.

In the porcine brain, Young’s moduli of 1.787 § 0.186

and 1.195 § 0.157 kPa have been measured using inden-

tation techniques for ex vivo white matter and gray mat-

ter, respectively (Kaster et al. 2011). By use of

ultrasound elastography in vivo, a Young’s modulus of

4.756 § 0.271 kPa was measured in rabbit brains

(Liu et al. 2018). Bovine healthy liver and muscle

Young’s moduli were measured from 0.43 to 3.15 kPa

depending on the sample and method used

(Chen et al. 1996).

This study may have relevance to radiation force

targeting in molecular ultrasound imaging, as a way of

estimating any potential mechanical effects on tissues.

The radiation force pulse parameters under investigation

for use in molecular imaging vary widely. However, the

very rapid motion of the bubbles into the gel observed in

these results indicates that significant displacements do

not necessarily require long pulses and could instead be

imparted on shorter time scales of tens of microseconds.
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Much larger pressures (>>1 MPa) were not tested,

and so it is unknown whether reversible deformations

could be achieved in stiffer materials. However, bubble

fragmentation and dissolution were frequently observed

at 1 MPa, making it likely that only a small proportion

of the bubble type used here would be able to survive

long enough at high pressures to reach a stable maximum

equilibrium displacement in the gel.

Potential applications

This study indicates the potential for the radiation

force on a microbubble to probe the mechanical proper-

ties of soft materials or in vivo tissue at micron-scale spa-

tial resolution. If the radius of a microbubble is known,

and its radiation force can be independently calibrated,

the elasticity of the medium could be estimated from the

bubble’s maximum indentation depth. Bubbles rapidly

reach a stable maximum depth, which is dependent on

tissue stiffness and is maintained over several millisec-

onds during the pulse. Unlike conventional indentation

testing, this method could be performed remotely, with-

out requiring clear access to the surface of the material.

It could also be performed at far higher frequencies. The

rate of relaxation could be measured with a higher-

frame-rate optical or acoustic imaging system, meaning

microbubble indentation could also be used to estimate

material viscosity in vitro or in superficial tissues.

CONCLUSIONS

Sustained, localised and reversible material indenta-

tion resulting from the primary acoustic radiation force on

single microbubbles has been observed in soft tissue-

mimicking materials when exposed to typical therapeutic

ultrasound pulses. The indentation of a bubble into a soft

material has been used to estimate the force on the bubble

and the mechanical properties of the medium. This

research provides insight into the nature of the forces that

microbubbles may exert on tissues during therapy and the

degree of tissue displacement that may be induced by sin-

gle microbubbles within the microvasculature. Finally, if

the primary acoustic radiation force applied by a batch of

microbubbles could be made more consistent, then this

technique could be used to estimate the mechanical prop-

erties of soft materials and in vivo tissue.
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