
SoftwareX 13 (2021) 100662

d
a
t
o
s
t
r
c
w

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Founsure 1.0: An erasure code librarywith efficient repair and update
features
Şuayb Ş. Arslan
MEF University, Maslak, Istanbul, Turkey

a r t i c l e i n f o

Article history:
Received 8 September 2020
Received in revised form 11 January 2021
Accepted 13 January 2021

Keywords:
Distributed storage
Erasure coding
Fountain coding
Single instruction multiple data (SIMD)
OpenMP
Reliability

a b s t r a c t

Founsure is an open-source software library that implements a multi-dimensional graph-based era-
sure coding entirely based on fast exclusive OR (XOR) logic. Its implementation utilizes compiler
optimizations and multi-threading to generate the right assembly code for the given multi-core
CPU architecture with vector processing capabilities. Founsure possesses important features that
shall find various applications in modern data storage, communication, and networked computer
systems, in which the data needs protection against device, hardware, and node failures. As data
size reached unprecedented levels, these systems have become hungry for network bandwidth,
computational resources, and average consumed power. To address that, the proposed library provides
a three-dimensional design space that trades off the computational complexity, coding overhead,
and data/node repair bandwidth to meet different requirements of modern distributed data storage
and processing systems. Founsure library enables efficient encoding, decoding, repairs/rebuilds, and
updates while all the required data storage and computations are distributed across the network nodes.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00043
Legal Code License LGPLv3
Code versioning system used git
Software code languages, tools, and services used C, Python, OpenMP, etc.
Compilation requirements, operating environments & dependencies Linux Runtime Environment and a C compiler (≥ 4.8.4). Python 2.3 or above.
If available Link to developer documentation/manual https://github.com/suaybarslan/founsure/blob/master/tests/Founsure_1_0_User_

Manual.pdf
Support email for questions arslans@mef.edu.tr

1. Motivation and significance

Erasure coding is a fault tolerance mechanism that provides
ata protection and high availability in distributed data stor-
ge and processing systems [1]. Reed–Solomon (RS) codes are
he conventional option for constructing erasure codes based on
verhead-optimal design. In other words, they use the storage
pace as efficiently as information-theoretically possible [2]. As
he modern data storage systems evolved to possess different
equirements, the set of constraints on the design of erasure
odes has dramatically changed. For instance, previous research
ork on erasure coding such as RS focused on optimizing the

E-mail address: arslans@mef.edu.tr.

coding overhead i.e., minimization of storage space for a given
target data reliability [2,3]. Moreover, some of the most popular
designs considered pure eXclusive Or (XOR) operations to provide
durability, and efficient computation [4]. More recently, locally
repairable codes have attracted attention due to their efficient
utilization of network resources and eventually achieve better
overall reliability [5] at the expense of suboptimal coding over-
head. Besides the proprietary implementations of advanced era-
sure coding algorithms, many open-source implementations with
different mathematical constructions become available online [6,
7]. Previous works provided overhead optimal and fast/efficient
erasure coding library functions. However, they did not take into
ttps://doi.org/10.1016/j.softx.2021.100662
352-7110/© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100662
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100662&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00043
https://github.com/suaybarslan/founsure/blob/master/tests/Founsure_1_0_User_Manual.pdf
https://github.com/suaybarslan/founsure/blob/master/tests/Founsure_1_0_User_Manual.pdf
mailto:arslans@mef.edu.tr
mailto:arslans@mef.edu.tr
https://doi.org/10.1016/j.softx.2021.100662
http://creativecommons.org/licenses/by/4.0/

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

a
p
s

n
s
c
w
h
p
J
p
l
c
a
b
t
t
d
c
F
t
F
d

d
s
o
g
b
a
p
s
p
f
p
t
c

c
c
W
r
c
o
r
g
f
(
c
e
b
d
i
d
t

p
p
t
c
s
t

ccount the peculiarities of the harnessed network, scarce com-
utational resources, and data/node regeneration in a distributed
etting.
In this study, we propose Founsure library which utilizes bi-

ary operations on a three-dimensional bipartite graph to con-
truct a multi-functional erasure code. The design space includes
omputational complexity, coding overhead, and repair band-
idth as different dimensions of optimization. If one prefers to
ave an overhead optimal design with a reasonable complexity
erformance, then it might be advisable to use the well known
erasure 2.0 [7] erasure coding library, which is now fully sup-
orted by the RedHat Ceph community [8]. Unfortunately, this
ibrary and the likes (e.g. zfec [9]) do not provide a sufficient
ode structure to address modern problems of distributed stor-
ge systems such as degraded reads, data repair/regeneration
andwidth, data security, etc. On the other hand, the main objec-
ive and purpose of developing the Founsure library have been
o provide different operating points in the three-dimensional
esign space based on the requirements of the storage appli-
ations through a set of parameter configurations. Therefore,
ounsure can be shown to demonstrate the huge potential for dis-
inct storage applications using smart/guided configuration steps.
or instance, Founsure is shown to be configured to a baseline
eduplication engine within an archival scenario [10].
The encoding process of Founsure begins by defining a two-

imensional conventional bipartite graph which leads to a non-
ystematic low-density generator matrix (LDGM) code. A version
f this class of codes, with appropriate input distributions, are
enerally known as fountain codes [11,12]. The degree distri-
ution of Founsure’s LDGM code is specially selected to meet
good trade-off operating point between computational com-
lexity, coding overhead, and repair bandwidth. The current ver-
ion (1.0) supports Robust Soliton Distribution (RSD) [12] (if one
refers good coding overhead design), as well as all possible
inite max-degree distributions (if one prefers different operating
oints) including the one in [13] by default. However, we note
hat the referred distributions are optimized for the minimum
oding overhead criterion only.
One of the building pillars of Founsure is genuine symbol

heck relationships. The terminology of check symbols is quite
ommon in Low Density Parity Check (LDPC) coding community.
hat check symbols do is that they provide a mathematical

elationship between a subset of data symbols to check a certain
ondition, usually a simple binary sum or equivalent Galois field
peration. The check idea is also quite beneficial for local data
epairs/rebuilds [14]. So on top of the two-dimensional bipartite
raph of Founsure, the encoding engine generates check nodes
or ‘‘data-only’’ (referred hereafter as check #1), ‘‘data & coding’’
referred as check #2) and ‘‘coding-only’’ (referred as check #3)
hunks/symbols. As can be imagined, these check nodes (math-
matical relationships) can be added to the two-dimensional
ipartite graph to give it a three-dimensional look. This new
ata representation shall be used to provide advanced decod-
ng, repair, and update features of the library. Throughout the
ocument, nodes typically contain multiple chunks and chunks
ypically contain multiple symbols.

Founsure uses Belief Propagation (BP) [15] (a.k.a. message
assing) algorithm to resolve or decode the user data, to re-
air the encoded data, or update the encoded data. Sticking
o BP as a design criterion is to ensure a low-complexity de-
oding process and allow fast/efficient operation. Library also
upports register-level parallelism through compiler optimiza-
ions as well as multi-threading using the open standard openMP
primitives with its encode, decode, repair and update functions.
The multi-threading feature, once properly configured and used,
allows parallel processing and ensures acceleration for shared-
memory architectures. By reducing the processing time, Founsure

secures quick responses to the common read/write requests of
any generic distributed storage system.

With the current release, the original user data does not ap-
pear in the output files. Instead, all output files are a mathemati-
cal function of the user data due to the so-called non-systematic
encoding. In other words, one cannot read off data from the
encoder output without any further decoding. Therefore, using
Founsure, one can think of the user data encrypted automatically
after encoding operation. Note that we use pseudo-random num-
ber generators (based on linear congruential generator) and seed
(integers of long type) to build edges of the underlying bipartite
graph. So without the seed number (we can treat them as keys
in an encryption context), there is no way to recover original
user data simply because the underlying graph generation is
contingent upon the seed availability. Therefore, the Founsure
software package also provides a user-configurable lightweight
built-in encryption feature. Unlike systematic codes in which
the data is explicit at the encoder output, Founsure comes with
the non-systematic format as mentioned before. This, however,
provides data security in return in addition to data protection.
As long as decoding is fast using various novel techniques we
discuss in this study, non-systematic codes should not be an
overall performance bottleneck for the rest of the system.

This paper shall briefly describe the details of the software
architecture, a set of functionalities provided with the library as
well as some of the associated advanced features. The source
code, a comprehensive user guide, few test results, and all related
documentation are available also from github and the web link
http://www.suaybarslan.com/founsure.html.

2. Software description and architecture

2.1. Software functionalities

Founsure has the following three executable main components
that implement four important functionalities.

• founsureEnc: Encoder engine that generates s number of
data chunks (to be stored in s different failure domains)
under a local Coding directory and a metadata file that
includes information about the file, coding parameters, and
the seed information.
• founsureDec: Decoder engine that requires a local Coding

directory with enough number of files, a valid file name, and
an associated metadata file to run multiple Belief Propaga-
tion (BP) passes in order to decode the user data.
• founsureRep: Repair engine that also requires a Coding

directory with sufficient number of files and

– fixes/repairs one or more data chunks should they have
been erased, corrupted, or flagged as unavailable.

– generates extra coding chunks should a code update
has been requested. The system update is triggered
if data reliability is decreased/degraded overtime or
increased due to equipment replacements.

These functions are used to execute encoding, decoding, re-
pair, and update operations. There are also utility functions of
Founsure used to help system admins to make correct design
choices on degree distributions, required reliability, desired com-
plexity, and storage space efficiency. We also use utility functions
to trigger update functionality as will be demonstrated later. One
of the distinctive features of utility functions is that they do not
directly process user data, instead, they help us configure right
parameters for the main functions to modify and process the user
data properly. The current version supports two utility functions
as listed below.
2

https://github.com/suaybarslan/founsure
http://www.suaybarslan.com/founsure.html

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

r
d
F
p
a

2

a
t
i
n
o
f
a
m
A
X
s
f
o
d
n
n

t
d
c
t
c
m
t
h
l

p
s
l
m
a
a
a
t

w
t

• simDisk: This function can be used to exhaust all possible
combinations of disk failures for a given set of coding pa-
rameters. In other words, this function checks whether the
provided coding parameters are sufficient to achieve a user-
defined reliability goal. Therefore, running this function can
help us design target-policy erasure codes by configuring
degree distributions for achieving various system-level goals
besides reliability.
• genChecks: This utility function is crucial for two different

important functionalities: (1) fast/efficient repair/rebuild of
data and (2) seamless on-the-fly update. For the repair pro-
cess, it generates two types of checks: check #2 and check
#3 and registers them into a <testfile>_check.data file using
a format described within this document. In case of an
update, it modifies the metadata and <testfile>_check.data
files so that the coding chunks can be updated by running
founsureRep function.

Next, we provide the details of Founsure encoding, decoding,
epair and update operations, particularly the implementation
etails of founsureEnc, founsureDec and founsureRep functions.
or more details on underlying theory and computational com-
lexity, we refer the reader to the appropriate documents such
s [16].

.2. Implementation details of encoding/decoding operations

In graph theory terminology, nodes (sometimes referred to
s equations) are represented by graph vertices and node rela-
ionships by edges of the graph. There are three types of nodes
n a 3-D bipartite graph; data nodes, coding nodes and check
odes. The coding nodes represent a set of linear combinations
f data nodes generated through a predetermined mathematical
unction such as XOR logic operation. Check nodes represent
ll the local sets of data and coding nodes for which a certain
athematical relationship is satisfied such as even or odd parity.
simple mathematical function used by Founsure is the region
OR operation that operates over multiple data blocks of the
ame size and generates a single block of information. We use
flag to indicate the file name, k to indicate the total number
f data nodes/symbols where b of these are the original user
ata nodes/symbols, n to indicate the total number of coding
odes/symbols, and t to indicate the number of bytes to store per
ode/symbol.
In founsureEnc function, data file with filesize bytes is parti-

ioned into multiple b× t bytes and each partition is encoded in-
ependently as shown in Fig. 1. With the current version, partition
oupling is not supported between distinct partitions i.e., parti-
ions are processed independently of each other. This technique is
urrently under investigation and might have interesting perfor-
ance improvements to our design/implementation in analogy

o spatially-coupled LDPC codes [17]. However, the coupling may
ave different effects for partial disk failures and may eventually
ead to non-uniform decoding performances across partitions.

If filesize is not a multiple of b × t bytes, then we use zero
adding to make filesize a multiple. On the other hand, foun-
ureEnc also checks whether s divides n (s|n). If not, the least
argest n is selected automatically to satisfy s|n. Such a require-
ent enables us to store exact same amount of information bytes
cross different failure domains. This is particularly relevant to
balanced system design where the underlying storage devices
re of the same type, quality and equally resilient against various
ypes of failures.

Encoding proceeds as follows. First, a memory space (a buffer)
orth (k + n)t bytes is allocated, and the buffer content is ini-
ialized to zero. Next, check # 1 equations are generated by an

efficient array LDPC encoding [18,19]. The choice of array LDPC
as the precode is to enable efficient encoding operation and fast
processing. As a result of this operation, an extra k − b chunks
are created to make up a total of k chunks of data. The precoding
process is shown as 1⃝in Fig. 1. Later, a total of n coding chunks
are generated from the whole set of k data chunks based on
an LDGM base code with a configured ‘‘FiniteDist’’ degree and
pseudo-random selection distributions. This process is shown as
2⃝in Fig. 1. Finally, n coding chunks are distributed (striped)
equally across distinct output files for allocation on s number of
drives. We repeat this process for each data partition in a loop
and append coding chunks at the end of the corresponding output
files. For a given <filename>.ext file, we use <filename>_disk0..0i.ext
to refer to the ith output file. The number of zeros that appear
in the name of output files is set by the ‘‘parameter.h’’ variable
DISK_INDX_STRNG_LEN.

In Founsure implementation, we have distinct object defini-
tions for encoding, decoding, and repair operations. These objects
have the trailer ‘‘*Obj’’ in common and include the same set
of parameters in their object fields. For instance, both encoding
and/or decoding functions accept EncoderObj and/or DecoderObj
constructs as inputs. Similarly, b and k variables can be accessed
using the standard way EncoderObj.sizesb and EncoderObj.sizek.

Each encoding/decoding object is associated with a seed value
(EncoderObj.seed1) from which other seed values and the local
sets of data chunks are pseudo-randomly generated. Each coding
chunk within EncoderObj and DecoderObj has their own unique
ID. These IDs are used to identify the erased coding chunks. The
seed value is used by the pseudorandom generator to create a
sequence of integers. These integers form the basis of coding
chunk degree number assignment and the selected data chunks
for coding chunk computations. These numbers are stored as part
of the object and can be regenerated using the same initial seed
number followed by the regular recurrence relationship. Let us
assume we have s number of output files (failure domains), then
we use the default value EncoderObj.seed + i as the seed of the ith
output file with 0 ≤ i < s.

Each check node c is associated with a degree number cd
(chosen according to an appropriate degree distribution Ω(x) =∑

i Ωi where Ωi is the probability of choosing degree i) and cd
data node neighbors are selected to be involved in final symbol
computation. The degree distribution Ω(x) is typically selected to
minimize the coding overhead. For instance, the following degree
distribution is proposed for Raptor codes [13]

Ω(x) = 0.007969x+ 0.49357x2 + 0.16622x3

+0.072646x4 + 0.082558x5

+0.056058x8 + 0.037229x9 + 0.05559x19

+0.025023x64 + 0.003135x65

where Ω1 = .007969, Ω2 = .49357, Ω3 = 0.16622, Ω4 =

.072646, Ω5 = .082558, Ω8 = .056058, Ω9 = .037229, Ω19 =

.05559, Ω64 = .025023, Ω65 = .003135.
However, Founsure does not necessarily minimize overhead.

It may optimize overhead, repair bandwidth, and complexity at
the same time. We recommend choosing degree distributions
that will give us a good trade-off point between these three
objectives. A systematic optimization procedure to achieve the
desired operating point is the subject of further investigation.
Although there is no optimal point for all applications, Founsure is
designed to be highly configurable to fit in different requirements
and sensitivities of modern storage ecosystems.

1 The default value selected for the see is 1389488782 which is
experimentally observed to give good recovery performance.
3

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

t

o
b
p

b
I
r

Fig. 1. The function founsureEnc allocates (n + k)t bytes of buffer, generates coding chunks, and write them to a shaded area on memory before they are written
to distinct drives. The file on disk is striped and processed in a looped subprocess as shown. The number of stripes is stored in the readin variable and written to
he metadata file.

Fig. 2. Founsure symbols are t bytes each and a precode is applied to find check #1 equations. We add k − b extra symbols to satisfy check equations as shown.
Founsure encoding engine generates n coding chunks from k chunks as shown.

Algorithm 1 Belief Propagation (BP) Algorithm (Skeleton)

1: procedure BP(B, E , maxit) ▷ Inputs: B ∈ Fk×n
2 , E ⊂ N : The set of erasures.

2: N = {1, . . . , n} ▷ Initialize indexes.
3: K = {1, . . . , k} ▷ Initialize indexes.
4: C← b:,N\E ▷ Find survival matrix.
5: F ← K ▷ Initialization: F holds the unrecovered indexes.
6: while F ̸= ∅ and i < maxit do
7: for g = 1, . . . , |N\E| do
8: cK\F,: ← 0 ▷ Zero-out rows for decoded symbols.
9: if weight(c:,g) = 1 then ▷ Find degree-1 coding symbols.

10: F ← F − {f : cf ,g = 1 for f ∈ F}
11: return F ▷ Return unrecovered indexes.

We run founsureDec when we want to collect a subset of
utput data files and recover the input data file. Decoder is
ased on belief propagation algorithm a summary of which is
rovided in Algorithm 1. BP function admits DecoderObj, indexes

of erasures E ⊂ N = {1, 2, . . . , n}, the generator matrix of the
ase code B ∈ Fk×n

2 and a maximum number of iterations maxit.
n Algorithm 1, we use bi,: to refer to the ith row of B and b:,i to
efer to the ith column of B. Additionally, b refers to a matrix

whose rows and columns are given by the rows and columns of B
indexed by the sets A and B. The decoder utilizes the information
contained in metadata file to generate (prepare) the contents of
DecoderObj, particularly the underlying coding graph. It works in
a similar fashion to founsureEnc i.e., it reads the striped coding
chunks, loads the buffer, and runs BP algorithm at most twice
(once for the outer graph code and if need be, additional one for
the inner Array LDPC precode) and recovers the bt bytes at each
A,B

4

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

t
f

c
t
c
r
c
t
u
a

c
s
i
c
a
a
f
t
a
c
f
d

2

s
b
s

o
c
2
a
a
b

Fig. 3. Summary of software blocks of Founsure Encoder and Decoder.

urn. Finally, these bytes are written to decoded/recovered data
ile by calling standard kernel I/O commands.

To summarize the software architecture of Founsure’s en-
oding and decoding schemes, we provide Fig. 3 to illustrate
he order of software building blocks that take place to en-
ode/decode the user data. The repair operation’s architecture
esembles a lot to this figure and hence omitted to save space. As
an be seen, we used different colors for blocks to differentiate
he encoding and decoding processes. Some of these blocks are
sed only by one of the functions. On the other hand, some blocks
re used by both the encoder and decoder processes.
Having all computation based on pseudorandomly selected

hunks and carrying out these computations solely in terms of
imple XOR logic has the cost of making the code non-optimal
n terms of overhead (though it might be near-optimal through
hoosing appropriate degree distributions). If n coding symbols
re distributed over s drives and when one of the drives fail,
subset of coding symbols are lost. To find what fraction of

-failure combinations can be tolerated for a given degree dis-
ribution, we provide a utility function simDisk that exhausts
ll possible combinations of failures to report which failures
ases are tolerable by the code and which are not. Such a utility
unction is extremely useful for determining the reliability of the
ata protected by the Founsure library.

.3. Check equations and the data repair process

Given the three-dimensional Founsure graph representation as
hown in Fig. 4, we have three types of check nodes as mentioned
efore. We provide the details of such a checking process in this
ubsection.
Checks #1: These check equations are defined by the precode

f the Founsure (for version 1.0, we selected an Array LPDC
ode family [18] for efficient processing as given in Algorithm
). Based on the selection of good precodes, the mathematical
nd coding parameter selections etc., the graph connections are
utomatically determined. Founsure includes a precode support
ased on a binary array LDPC code. Future releases of the library

Fig. 4. Founsure graph code is three dimensional bipartite graph with three sets
of check equations.

shall include external precode support which can be provided by
the user using a preformatted input file. Please see the precoding
subsection to find more information about the construction of
these check equations.

Checks #2: These check equations are generated as given in
Algorithm 4. One of the special features of these checks is that
only one neighbor is selected from the data nodes and the rest
of the neighbors of the check node are from the coding nodes.
This special feature can be used to partially decode the input
data without running the complete decoder and reconstruct the
unnecessary parts of the input data. An application of this could
be securely stored multimedia source in which the Region of
Interest (RoI) can be directly reconstructed using this type of
check equations.

Checks #3: These check equations are generated as given in
Algorithm 4. These checks form the local groups based on the
coding nodes. These checks are primarily used to repair the per-
manently erased, long-time unavailable, or unresponsive coding
nodes in case of hardware, software, and network failures.

2.4. Precoding process - generation of check #1 equations

As shown in Fig. 2, a (b, k, n) Founsure code takes b data
symbols (a total of bt bytes) and initially generates k − b check
#1 parity symbols based on the binary array LDPC encoding [18].
This special choice of array LDPC codes enables efficient encoding
operation (linear with blocklength) and improves the complexity
performance of the overall Founsure library.

The procedure outlined in Algorithm 2 uses a generic function
largest_prime_factor(.) which chooses the largest prime factor of
the argument. The rate of the array LDPC is defined as rLDPC = b/k.
The user can choose any k, n and rLDPC and hence we can calculate
the appropriate b = ⌊krLDPC⌋. Let p = largest_prime_factor(k),
we may not be able to get the quantity ⌊krLDPC⌋/p equal to an
integer. We can use the floor function to get an estimate of j′.
However, the array LDPC code performance is heavily dependent
on k′ and j′ values and there is no array LDPC code for all (k, rLDPC)
pairs. If (j′, k′) pair are small, the code performance is observed to
be pretty bad. For this reason, we provide an algorithm that rea-
sonably chooses a good performing array LDPC code and satisfies
(within some error margin) the user-provided parameters k, n
and rLDPC at the same time. One can see the chosen parameters
by adding ‘‘-v’’ flag at the end of Founsure main functions.

Let us define the following system parameters. After that,
we shall formally provide the algorithm that determines the
closest good-performing array LDPC code for the user-provided
parameters k, n and rLDPC . These system parameters with their
default values are defined in ‘‘parameter.h’’ file and can easily be
modified.

• DIFF_TH: Allowed error threshold between the estimated
and user provided b values.
5

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

1

o
c

2

i
e
m
a
s
d
c
c
t
o
c
i

Algorithm 2 Array LDPC Checks (check # 1)

1: procedure checkone(b, k) ▷ Inputs: b, k
2: L(1) ← 0k×k−b ▷ Initial zero matrix
3: p← largest_prime_factor(k)
4: k′ ← k/p
5: j′ ← k′ − b/p
6: for j = 0; j < j′; j++ do
7: for i = 0; i < p; i++ do
8: for m = 1;m < k′ − j′ + 1;m++ do
9: l(1)i+jp,m−1 ← k′p− (j′ − j+m− 1)p− (m(j′ − j− 1)− i− 1+ p) (mod p)− 1

0: return L(1) ▷ L(1): check #1 sets.

• RRATE_TH: Allowed error threshold between the estimated
and user provided precode rate.
• RED_BYTE_TH: Allowed redundant zero bytes to be ap-

pended at the end of the file for parameter consistency.
• RAND_WIN_MAX: Random number search window maxi-

mum value.
• RAND_WIN_MIN: Random number search window mini-

mum value.
• ARRAY_MIN_JJ: Minimum Array LDPC ‘‘j′’’ parameter value.
• ARRAY_MIN_KK: Minimum Array LDPC ‘‘k′’’ parameter

value.
• TRIES_TH: Threshold on the number of tries before incre-

menting DIFF_TH and RRATE_TH.
• DELTA_DIFF_TH: Step size increment for DIFF_TH
• DELTA_RRATE_TH: Step size increment for RRATE_TH.

Next, we provide the algorithm that returns the estimated val-
ues of b, k, and the redundant number of zeros (redundantzeros)
that need to be appended to the input user data. The algorithm
admits four inputs, namely rLDPC , filesize, b and t . Initial values
f system parameters shall be set by ‘‘parameter.h’’ file and are
hanged locally within the function implementing Algorithm 3.

.5. Generating information for efficient repair

To efficiently repair the lost data, we need to extract repair
nformation from the underlying graphical content of the gen-
rated Founsure code. We observe that check #3 nodes are the
ost suitable node type for the repair process since it establishes
direct relationship between the coded symbols. It is not hard to
ee having more of these node types (created independently or
ependently) gives alternative ways of repairing a given node in
ase of different combinations of node failures happening in the
ommunication network. In other words, the more of these check
ypes we find, the more potential we have for the regeneration
f the lost coded chunks. With regard to this observation, we
an use two techniques to increase the number of check #3 type
nformation based on check #1 and check #2 equations:

• The first method is as follows. We identify the coded nodes
with degree one (say we have M of those nodes). Identify
their data node neighbors. There are M check #2 equations
that connect these data nodes with the coding nodes. Since
the corresponding M coding nodes carry the same informa-
tion, we can use these check #2 type check equations as
additional check #3 check equations. Note that since check
#2 and check #3 equations are derived from the same base
graph, this technique is likely to generate already existent
local recovery groups or local groups that can be derived
from existent local groups for the coding nodes.
• The second method is as follows. Note that check #1 is

user-defined although subject to a predefined structure. This

Algorithm 3 Adjust Parameters with Precode (APP)

1: procedure app(rLDPC , filesize, b, t)
2: b̂ ← b, b ← 0, k ← 1, k′ ← 1e9, j′ ← 1e9, p ←

2, blocks← 1, tries← 0, iter ← 0
3: while (|b−b̂| > DIFF_TH || |b/k - rLDPC | > RRATE_TH || k′ > p

|| j′ > p
4: || k′ < j′ || |blocks× t × b − filesize| > RED_BYTE_TH do
5: k ← ⌊b̂/rLDPC⌋ + rand() mod (RAND_WIN_MAX +

RAND_WIN_MIN) - RAND_WIN_MIN
6: p← largest_prime_factor(k)
7: k′ ← k/p, j′ ← k′ − b̂/p
8: if j′ < ARRAY_MIN_JJ then
9: j′ ← 2

10: b← (k′ − j′)p
11: if b > 0 then
12: blocks← filesize / tb + 1
13: tries++
14: if tries > TRIES_TH then
15: DIFF_TH← DIFF_TH + DELTA_DIFF_TH
16: RRATE_TH← RRATE_TH + DELTA_RRATE_TH
17: tries← 0
18: iter ++
19: if iter > 1e7 then
20: print error and exit.
21: blocks← filesize / (tb) + 1
22: redundantzeros← bt × blocks - filesize
23: return b, k, redundantzeros

each data node is linked to local recovery groups of coded
nodes through check #2, we can use this relationship to
derive check #3 type check equations. For example, suppose
we have the following check #1 local recovery group defined
for data nodes D0, D1 and D2: (D0,D1,D2). Also, suppose that
we have the following check #2 equations:

⇒ D0 = C0 ⊕ C1 ⊕ C2 (1)
⇒ D1 = C1 ⊕ C12 ⊕ C17 ⊕ C20 ⊕ C99 (2)
⇒ D2 = C0 ⊕ C21 ⊕ C99 (3)

Thus, we can find a check #3 type equation given by (C2, C12,

C17, C20, C21) by observing the following equivalence,

C2 ⊕ C12 ⊕ C17 ⊕ C20 ⊕ C21 = D0 ⊕ D1 ⊕ D2 (4)

Note that since this technique uses check #1 equations, it
is likely to generate distinct check #3 local recovery groups
and help improve repair performance dramatically. These
additional check #3 local recovery groups (for instance the
operation of Eq. (4)) are efficiently computed by the set
union function setXOR given in ‘‘encoder.c’’ file.
defines local recovery groups over the data nodes. Since

6

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

2
t

c
u
i
t
o
a
g
z
f

e
l

w
r
W
o
t
l
o
s
h
f

2
g
p

L
t
r
d

p
e
n
e
T
b
g
s
e
T
e

g
g
f
a
T
<
s
b
w

a
t
f

.6. Algorithm for jointly generating check #2 and check #3 equa-
ions

We propose a heuristic algorithm to generate check #2 and
heck #3 equations at the same time for efficiency. This algorithm
ses XOR operation (⊕) to sparsify the generator matrix B. If B
s full rank, i.e., rank(B)= k then the algorithm is guaranteed
o converge successfully. This is due to elementary matrix row
perations shall generate n − k zero columns for a full rank B
nd hence the algorithm will leave the main while loop and
enerating a modified B with column weights k ones and n − k
eros. In mathematical terms at the end, we should be able to
ind a permutation matrix P such that BP = [Ik×k | 0k×n−k]. Also,
L̃(2,3) = L(2,3)P shall hold all the local recovery sets i.e., check #2
quations in the first k columns and check #3 equations in the
ast n − k columns. We can express different types of checks as
the union of all check #2 and check #3 equations as given by⋃
i<k

(Di, {Cs : l̃
(2,3)
s,i ̸= 0}) ∪

⋃
i≥k

({Cs : l̃
(2,3)
s,i ̸= 0}) (5)

here l̃(2,3)s,i denote sth row and ith column entry of L̃(2,3). In Algo-
ithm 4 we provide the details of the algorithm using pseudocode.
e use a simple function zero_columns(.) that finds the number
f nonzero columns of the matrix in the argument. Since B is
ypically sparse, we use a sparse representation of matrices in the
ibrary implementation for efficient memory utilization. We also
rder the local recovery groups based on their cardinality i.e., the
et with the smallest cardinality comes first. Such an arrangement
elps us reduce the repair/update complexity since the repair
unction processes local groups in sequential order.

.7. Management of check #2 and check #3 equations and the
eneration of <filename>_check.data file for efficient repair/update
rocess

Check #1 equations are determined through a binary array
DPC code as explained before. The user-defined number of equa-
ions are selected from a set of precode rates based on the
eliability imposed by the application. The graph connections are
eterministic and given by the constraints of the array code.
Unlike check #1, check #2 and check #3 are determined

seudo-randomly by the Founsure base code. Based on the gen-
rator matrix of the code B, Algorithm 4 is run to determine
equations. If the algorithm converges, then we should have k
quations for check #2 type and n−k equations for check #3 type.
he algorithm produces a correct set of local equations (sets)
ut does not guarantee those equations to be independent. In
enerating those equations, we do not employ any matrix inver-
ions (which is quite costly for large size matrices) to find check
quations and hence we trade off the efficiency by performance.
he function that generates check #2 and check #3 local recovery
quations is the utility function genChecks.
The function genChecks assumes that a metadata file is already

enerated by a previous run of the encoder founsureEnc. Hence
enChecks generates check groups and modifies the meta_data
ile (appends the size of check data in terms of sizeof(int) bytes
t the end of the metadata file if ‘‘-m’’ flag parameter is True).
he check information is stored in another binary file called
filename>_check.data. This file stores an integer array with a
pecific format. The reason for introducing a format is to use
ulk read/write capabilities of fread and fwrite C library functions
hich will make kernel’s I/O performance acceptable.
The proposed format in this study is pretty straightforward

nd can be improved. We use flag bits to differentiate between
he two distinct check equations. Thus, the integer value of the

• If it is 1 (Check #2), then the next integer value (next
sizeof(int) bytes) gives the data symbol index which is in-
volved within a local recovery group whose degree is given
by the following integer (next sizeof(int) bytes). This degree
also indicates the next ‘‘degree’’ number, i.e., the number of
integers to be read as part of one local recovery group for
the coded symbols.
• If it is 0 (Check #3), then the next integer value (next

sizeof(int) bytes) gives the degree number i.e., the number
of integers to be read as part of one local recovery group for
coding symbols.

The nice thing about Algorithm 4 is that if it converges, then all
of the data symbols are covered exactly by one particular Check
#2 local recovery equation. Let us provide an example to illustrate
the working principle and suppose that we have the following
integer array stored in <filename>_check.data:

0 4 13 56 17 66 1 19 2 11 13 0 2 39 88 . . .

If we decode this integer array, we will be able to say that the
first local set is of type check #3 and this set has four elements.
In other words, 13th, 56th,17th, and 66th coding symbols form
a local recovery group i.e., their binary sum should produce all-
zero content. The next local set belongs to check #2 and the
associated data symbol index is 19. This data symbol along with
11th and 13th coded symbols (two coding symbols) forms a local
recovery group. This way we can decode the whole integer array
stored in <filename>_check.data. If the algorithm converges, there
should be k leading 1’s and n− k leading 0’s in the integer array
not necessarily written in sequential order. Note that the total
number of integers contained in the array is given by

N =
n−1∑
c=0

Lc + k+ 2n (6)

where Lc is the total number of elements in check #2 (exclud-
ing the data symbols) and check #3 indexed by c . Note that
even if the algorithm does not converge, the maximum memory
occupancy possible is N× sizeof(int) bytes. So it is sufficient to
allocate the size of memory given by Eq. (6) for the file without
encountering a segmentation fault.

Fig. 5 summarizes how different functions of Founsure interact
with each other, what other metadata is generated/used, and
what type of read/write permissions are granted to each of these
functions for the proper operation of the Founsure library.

2.8. Reading/formatting the contents of <filename>_check.data file

When the repair process is initiated, memory allocation, and
repair object (RepairObj) preparation, begins. The main repair en-
gine shall look for <filename>_check.data under /Coding directory.
If it finds one and if the metadata is appropriately formatted
(after a successful format check), it will read-in the metadata
and format the check # 2 and check # 3 equations for the
preparation of RepairObj. A bulk read kernel call is performed
and all the content is transferred to memory (inside the buffer
pointed by content2read). Since Founsure’s decoding, repair, and
update operations are solely based on the BP algorithm, it se-
quentially searches only one unknown over the available local
sets in a loop. To reduce the computation and bandwidth, the
repair/decode process must use small size check # 3 equations
first so that we do not have to run through the end of the loop
to complete the overall repair process. Founsure implementation
extracts check # 3 equations from the buffer (content2read) using
the standard qsort(.) function and then fills in the appropriate
fields of RepairObj. The ordering can be enabled or disabled for
check # 2 and # 3 equations using parameters ORDER_CHECK_2
and ORDER_CHECK_3 in ‘‘parameter.h’’ file.
irst sizeof(int) bytes in <filename>_check.data is either 0 or 1.

7

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

1
1

1
1

1

2

s
c
r
i
i
c
a
m
s

a

t

Algorithm 4 Check Generation Algorithm (CGA)

1: procedure CGA(B) ▷ Input matrix B ∈ Fk×n
2

2: L(2,3) ← In×n ▷ Identity matrix
3: while zero_columns(B) < n− k do ▷ Number of zero-columns is checked.
4: temp← 0
5: for j = 0; j<n; j++ do
6: for i = 0; i<n; i++ do
7: if j ̸= i and 2w(b:,j) > w(b:,i) then
8: if w(b:,j ⊕ b:,i) < w(b:,j) then
9: b:,j ← b:,j ⊕ b:,i
0: l(2,3)

:,j ← l(2,3)
:,j ⊕ l(2,3)

:,i
1: temp← 1
2: if temp = 0 then
3: break;
4: return B, L(2,3) ▷ B:Check type, L(2,3):Local sets.

Fig. 5. Summary of interactions between different functions of Founsure.

.9. Update process

An update process is about making the existing Founsure code
tronger or weaker by either generating more redundancy (in
ase of increased failures or wear-out) or taking away unwanted
edundancy (in case of using more reliable devices for storing
nformation). If we would like to make the existing code weaker,
t would not be hard. We just need to modify the metadata ac-
ordingly and erase the redundancy manually. Founsure does not
utomatically erase files and leave them to upper layer software
anagement. So for the rest of this section, updating the code
tructure would mean making the code stronger.
The desirable features of a generic update process can be listed

s follows.

• An update process should minimize the modification of the
data generated by the encoding operation.
• An update process should generate extra redundancy con-

sistent with the encoded data with minimum processing
effort.
• An update process should have a minimum limit on the

extent of extra redundancy that can be generated.
• An update process should not violate the rules set by the

encoding and decoding processes.

Founsure’s update mechanism poses no modification changes
o the already encoded data. In that sense, its update process

functions as ideal as possible. Founsure update process is tightly
related to the repair process. This is mainly because updating a
code is about repairing the missing blocks of information to help
increase the reliability of data. We call genChecks to update the
current code using the flag ‘-e’. There must be valid metadata
associated with the code at the time genChecks is called. The
code update process will rewrite n, the number of bytes used
for the integer array due to check #2 and check #3 equations
and update <filename>_check.data. Hence the repair process uses
the metadata (the rule set) generated by the previous runs of the
encoder/decoder pair. This series of modifications do not make
any changes to the existent data/coding chunks. To trigger/sync
changes with data, we finally need to call founsureRep function
with the appropriate file name. Since the existent data is only
read and we use minimum cardinality, local recovery groups,
while updating, the processing effort is minimized. We finally
note that since Founsure is based on fountain-like codes, there
is no practical limit to the number of coding symbols that can be
generated. As can be seen, the update functionality of Founsure
is designed and implemented in the observation of desirable
features listed above.
8

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

3

p
s
s

3

b
o
t
f
J
d
f
o

o
n
s
s
t
o
i
d
a

O
t
t
w
e
m
b
r
t
i
d
b
f
m
f
C

s
m
s

d
I
t
w

d
e
k
o

. Advanced features

Although many advanced features of Founsure are described in
revious sections, we have two more important implementation-
pecific advanced features that make Founsure’s performance
tand out.

.1. Shared memory parallelism

In shared-memory multiprocessor architectures, threads can
e used to implement parallelism. The shared-memory standard
penMP is a high-level and portable interface that makes it easier
o use multi-threading capability and obtain satisfactory per-
ormance improvements. Many erasure coding libraries such as
erasure 2.0 [7] has encoding/decoding engines that comprise in-
ependent ‘‘for’’ loop iterations and hence possess huge potential
or multi-threaded processing. Multi-threaded implementations
f Jerasure 2.0 are studied in [20] and [21].
As can be seen in Fig. 3 for founsureEnc, the software consists

f three stages executed in a loop. However, two of these stages,
amely reading the data into the EncoderObj and DecoderObj that
tay on memory and writing the object contents to the persistent
torage devices require kernel I/O calls. As a result of these calls,
he performance will be inhibited by the throughput performance
f the underlying storage devices I/O bandwidth. Thus, our focus
s essentially the second stage, namely the pure encoding and
ecoding in which the data traverses only between CPU caches
nd the main memory.
Founsure utilizes the shared memory approach standard

penMP library directives to help use multiple threads to handle
he workload of encoding, decoding, repair, and update opera-
ions in parallel. However, to use OpenMP directives effectively,
e needed to implement encoding/decoding operations differ-
ntly. We use ‘-m’ flag to set the number of threads in the
ain functions of Founsure. This parameter can independently
e assigned but we provide recommendations for picking out the
ight number of threads for each main function because selecting
he wrong number could result in degraded performance. For
nstance, we recommend it to be equal to the number of failure
omains (disks for instance) for founsureEnc so that each data
lock is generated by a different thread. Considering each output
ile gets written to a different disk or storage node, we can
aximize the overall throughput of the system if ‘-m’ and ‘-s’

lags are set to the same number provided that the underlying
PU architecture supports that many concurrent threads.
In founsureDec, remember that we use Algorithm 1 to re-

olve the user data in an iterative manner. Suppose that for a
aximum of convergent tm iterations, we decode a set of data
ymbols (also known as the ripple size) Gi at the ith iteration
for i ∈ 0, 1, . . . , tm. However, we note that a decoded data
symbol s ∈ Gi might be using another symbol h ∈ Gi while
ecoding, which results in intra-iteration decoding dependency.
f we let jth iteration to use only decoded symbols in ∪j−1

i=0Gi,
his would lead to another decoded set sequence G0, G1, . . . , Gtm
here G0 = G0 and tm > tm. Note that upon convergence,

we should have ∪tm
i=0|Gj| = ∪

tm
i=0|Gj|. Although this new delayed

BP will converge late compared to original version with single
thread, this observation is not necessarily true with multi-threads
as Gis can be computed by multiple threads because data symbols
in Gi are decoded completely independent of each other and
ecoding process for each only share data for read operations
liminating potential race conditions. We note that for a given
, if we increase the block length n we would need less number
f iterations i.e., smaller tm and tm with larger ripple sizes in each

iteration. Finally, we note that we have many calls of Algorithm
1 for decoding independent partitions of the user data. Using a

shared memory approach, we use multi-threading to compute Gi
in parallel in each iteration. Thus, the larger is ripple size, the
better would become the performance of our implementation. It
is recommended to use more threads as the number of coding
blocks n increases. We also recommend testing the best number
of threads for a given n to find the optimal value because this
number is heavily dependent on the degree distribution. Finally,
the multi-threaded implementation of repair/update operations
is similar to decoding since in both cases, we resolve the re-
paired/updated data using the BP algorithm. For founsureRep
function, the recommended number of threads equal to either the
number of repaired coding blocks or the number of extra coding
blocks generated out of an update operation.

We have two functions that take advantage of the multi-core
multi-threaded systems and carry out the main operations of
Founsure in parallel. These functions are EncodeComputeFast_mt
for performing the data encoding and generating output files
simultaneously and runBP_mt which runs the BP algorithm as
parallel as possible. In our revised BP implementation, we remove
the intra-iteration decoding dependency (see also Algorithm 5) by

• allowing BP to proceed using only the decoded symbols in
∪

j−1
i=0Gi in jth iteration or decoding step,

• allowing only one particular (lowest-degree) coding symbol
to decode each source symbol in Gj,

where the latter eliminates the possibility of race conditions
(double writes by different threads) and optimizes the com-
plexity performance by reducing the number of XOR operations.
Note that as the number of failures increases, the number of
coded symbols decreases, and hence finding the lowest degree
coding symbol will not usually end up with much performance
improvement. We finally note that, since different threads deal
with different levels of workloads, we use dynamic scheduling of
threads in openMP.

3.2. Optimal decoding path generation

In this section, we assume that node degree and selection
distributions of Founsure is determined by different requirements
of the system. Also, DP represents the set of source and coding
symbol pairs in which the coding symbol is used to decode the
paired up source symbol. Thus, in the case of convergence of
BP, we should expect |DP| = 2k. The elements of DP is found
according to Algorithm 5. A careful look at the algorithm reveals
that the following line does the local optimization of finding
the lowest-degree coding symbol that decodes a specific source
symbol.

DP ← DP ∪ {(f , g) : For each f ∈ F, g ∈ Gi

s.t. cf ,g = 1 and gd is minimum. } (7)

One another note about Algorithm 5 is that by keeping unre-
covered symbols in F , we do not allow the same source symbol to
be decoded more than once. This leads to suboptimality but helps
us with multi-threaded implementation since it will save us from
dealing with race conditions that would otherwise be handled
with time-consuming locks. Also comparing it with Algorithm 1,
we can observe that symbol decodings are done one iteration at
a time and hence symbols that are decoded at a given iteration
do not help with other symbols that could have potentially be
decoded within the same iteration. This approach is adapted to
help with the shared memory implementation of the previous
subsection.
9

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

1
1

d
F
c
M
a

F
f

F
t
c

i
b
c
l
i
s
f

s
g
p
t
a
o

J

Algorithm 5 Decoding Path Generation (DPG) Algorithm.

1: procedure DPG(B, E , maxit) ▷ Inputs: B ∈ Fk×n
2 , E ⊂ N : The set of erasures.

2: N = {1, . . . , n} ▷ Initialize indexes.
3: K = {1, . . . , k} ▷ Initialize indexes.
4: i← 0, DP ← ∅
5: C← b:,N\E ▷ Find survival matrix.
6: F ← K ▷ Initialization: F holds the unrecovered indexes.
7: while F ̸= ∅ and i < maxit do
8: cK\F,: ← 0 ▷ Zero-out rows for decoded symbols.
9: Gi ← {g : weight(c:,g) = 1 for g = 1, . . . , |N\E|} ▷ Find degree-1 coding symbols.
0: DP ← DP ∪ {(f , g) : For each f ∈ F, g ∈ Gi s.t. cf ,g = 1 and gd is minimum.}
1: F ← {f : weight(cf ,Gi) = 0 for f ∈ F} ▷ Update F

12: i← i+ 1
13: return F ▷ Return unrecovered indexes.

4. Illustrative examples

In this section, we provide a set of commands to use encoding,
ecoding, repair, and update features of Founsure. Note that
ounsure comes with man pages or you can always use ‘‘-h’’ flag
ommand for immediate help when you call Founsure functions.
oreover, these examples are also included in the GitHub page
long with several performances and unit tests.
The following command will encode a test file testfile.txt with

k = 500 data chunks with each chunk occupying t = 512
bytes. The encoder generates n = 1000 coding chunks using
d =‘FiniteDist’ degree distribution and p =‘ArrayLDPC’ precoding.
inally, generated chunks are striped/written to s = 10 distinct
iles for default disk/drive allocation under /Coding directory.2
The flag ‘‘-v’’ is used to output parameter information used during
the encoding operation. Founsure encoder also generates a meta-
data file with critical coding parameters which will later be useful
for decoding, repair, and update operations. Without appropriate
metadata, Founsure cannot operate on files.

founsureEnc -f testfile.txt -k 500 -n 1000 -t 512
-d ’FiniteDist’ -p ’ArrayLDPC’ -s 10 -v

Now, let us erase one of the coding chunks and run the
ounsure decoder. The decoder shall generate a decoded file
est_file_decoded.txt under /Coding directory. You can use ‘‘diff’’
ommand to compare this file with the original.

rm -rf Coding/testfile_disk0007.txt
founsureDec -f testfile.txt -v

One of the things we notice about founsureDec function is that
t does not recover the lost drive data Coding/testfile_disk0007.txt,
ecause this function is responsible only for the original data re-
overy process. In storage systems, however, we need to recover
ost data to maintain acceptable data reliability. In Founsure,
t is extremely easy to initiate the repair (current version only
upports exact repair at the moment) process by running the
ollowing command.

founsureRep -f testfile.txt -v

This would trigger the conventional repair operation and first
hall decode the entire data and then re-run partial encoding to
enerate the lost chunks. In addition, founsureRep outputs the
ure computation speed as well as the bandwidth consumed due
o repair. We observe that conventional repair is a heavily time
nd bandwidth-consuming operation. In fact, due to non-optimal
verhead, the number of bytes that need to be transferred for the

2 This directory naming is conventional and maintained for the legacy of
erasure erasure code library.

conventional repair is a little larger than the size of the original
user file. Founsure supports fast and efficient repair as well. In
order to use this feature, one needs to modify the metadata
file and create an extra helping data/file called testfile_check.data
which shall contain information for fast repair. Details can be
found later in the document. To make these changes, we primarily
run genChecks function. Finally, we can re-run the repair func-
tion as before and you will realize from the comments pointed
out that the function will be able to recognize that there is
available information for fast/efficient repair and will run that
process instead of switching to conventional repair. You should be
able to observe the reduced bandwidth consumed by the repair
operation.

genChecks -f testfile.txt -m 1 -v
founsureRep -f testfile.txt -v

We can also use genChecks to trigger ‘update’ functionality.
For example, let us assume that the system reliability is de-
graded due to drive wear and we want to generate an extra
two drive-worth information, in addition to already generated 10
drive-worth information. We use ‘-e’ flag to modify metadata file
as well as testfile_check.data for the update operation. This shall
change the code and all its related parameters. However, in order
to apply it to encoded data, we shall use founsureRep to generate
new coding chunks and output files. Alternatively, you can erase
drive info as well by supplying negative values for ‘-e’ flag. In
this case, you do not need to call founsureRep because there is
nothing to generate. You can simply erase corresponding drive
chunks after you scale the system down.

genChecks -f testfile -m 1 -v -e 2
founsureRep -f testfile.txt -v

5. Numerical results and impact

To check the set-up, accuracy, functionality of the library,
several tests are included with the software package. Besides, to
measure the encoding/decoding speed and bandwidth consumed
in case of a data repair, we included several performance tests
as well. Our performance tests are run on a server system the
details of which are given in Table 1. To be able to draw a
summary of the library performance, we provide Table 2 for
quantification of Encoding/Decoding speed. In our test, we used a
64MiB file, and encoded data are spread across 10 disks equally.
We have used multi-threading support and set -m parameter set
to 12. While decoding, we have removed 2, 3, and 4 disk worth
of information before running the decoder. The -t parameter is
judiciously chosen in powers of two to enable hardware-friendly

operation. No exhaustive optimization is carried out. As can be

10

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

T
S

t
t
2

g

t
a
a
d
1

able 1
erver System CPU features.
Property Name:Intel Xeon CPU E5-2620

Value Explanation

Socket 2
Core 12 6 in each socket
Clock speed 2.4 GHz (Max.)
Threads 24 2 in each core
Arc. IA64 X86_64
L1 cache 32KiB
L2 cache 256KiB
L3 cache 15360KiB
Main memory ≈ 8GiB

Table 2
Encoder/Decoder Performance in MB/sec.
k n Rate t Encoder

performance
(MB/sec)

Failure # Decoder
performance
(MB/sec)

1036 2180 0.4752 1024 2722
2 3291

3 2852

4 2340

10246 21800 0.47 512 1691
2 2668

3 2496

4 2356

seen, with almost a half code rate, we could achieve super-fast
encoding and decoding speeds with the current implementation.

While the execution performance of the library is quite attrac-
ive, we can also show that it is also bandwidth friendly when
he data is repaired. We considered the case k = 10246 and n =
1800 with a 100MiB= 104,857,600 bytes file while all the rest of

the parameters are the same as before. If we consider double disk
failures, the conventional repair method requires us to transfer
108,267,520 bytes of data for the repair to be successful. This is
a little over 100MiB as expected due to overhead sub-optimality
of the code used in Founsure. On the other hand, if we use the
improved repair scheme suggested in this study, we can achieve a
maximum of 65,952,320 bytes of transfer for successful recovery,
which is almost 2× more efficient use of bandwidth over that
of the conventional method. Note again that no optimization is
performed in terms of degree distribution Ω(x) and advanced
raph partitioning to minimize repair bandwidth.
Finally in Table 3, we have run a simple test to compare

he performance of Founsure against two of the most efficient
nd heavily used erasure coding libraries, namely Jerasure 2.03
nd ISA-L of Intel,4 based on RS codes (using Cauchy and Van-
ermonde Matrix constructions). This time, we used a 1GiB =
,073,741,824 bytes. We realize that the parameters k and n can-

not be selected too large for these libraries, due to their algebraic
constructions which makes it extremely complex to deal with
such low-level sub-packetizations. We set k = 10 and n = 20 to
simulate half code-rate RS codes which are closest to Founsure’s
0.47 code rate previously selected. Note that with this selection,
the number of disks used to store the generated content can be
20 at most (Parameter n also characterizes the number of disks).
Having more disks to distribute data would make the presented
encoding/decoding performances worse. On the other hand, the
number of disks does not change the performance of Founsure.
Parameters of Jerasure and ISA-L libraries are selected to give
the best performance on the same system defined in Table 1.
The decoding of these libraries is set to decode 8 blocks (4 disks

3 https://github.com/ceph/jerasure.
4 https://github.com/intel/isa-l.

Table 3
Performance comparisons between different erasure code libraries.
Library name Worst/Best Time

complexity
Encoder
performance
(MB/sec)

Decoder
performance
(MB/sec)

Repair BW
(MB)

ISA-L O(n2)/O(n log2(n))
[22]

1420 1390 1073,7

Jerasure 2.0 O(n2)/O(n log2(n))
[22]

780 870 1073,7

Founsure 1.0 O(n log(n))/O(n)
[16]

1620 2245 675,35

worth information). We also know that there is no simple repair
mechanism defined for these RS-based constructions in publicly
available libraries and hence adopted the conventional decoding-
based repair while we compare the bandwidth consumed for
repairing a single failed disk content in Table 3. Finally, we also
provided approximate best and worst-case time complexity of
encoding/decoding for RS and fountain codes as available from
other research works in literature [22].

To the best of my knowledge, Founsure is the most flexible
erasure coding library that is open source and can be config-
ured based on the requirements of the application. With the
current software architecture, many more functionalities can be
integrated such as partial user data construction and advanced
error detection for failure localization. Also, as numerical results
suggest even if many more optimizations are possible to make
the performance better, the current version’s performance in
terms of execution speed and repair bandwidth still stand out.
Founsure has highly parallel architecture and lends itself to par-
allel programming. Unlike Founsure, existing research is mostly
focused on overhead optimal designs using the inherent nature
of the parallel hardware. Originally, Founsure is developed for
data storage systems, it can simply be adapted to packet-switched
networks in which the underlying channel is erasure channel
or sporadic erasure channels [23]. With advanced features such
as error detection, erased content reconstruction, multi-threaded
support, advanced decoding, Founsure can further be used for
error correction which could open up more areas of applications
such as image reconstruction and data protection over noisy com-
munication channels. Consequently, we believe that Founsure
could be a strong candidate to be used for any system that secures
data protection and recovery in one way or another.

6. Conclusions

In this work, we have developed and presented an erasure
coding library that can be used to operate on various points of the
trade-off between computational complexity, coding overhead,
and repair bandwidth. For example, through the right selection
of coding parameters, the Founsure library can be used to save
storage space and minimize the data storage overhead. On the
other hand, by allowing some overhead again through tweak-
ing parameters, Founsure can reduce the data repair bandwidth.
Unlike previous software packages, such freedom of parameter
selections makes Founsure library more application-centric and
configurable for future generation reliable system design.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
11

https://github.com/ceph/jerasure
https://github.com/intel/isa-l

Şuayb Ş. Arslan SoftwareX 13 (2021) 100662

A

c
b
i
e

R

cknowledgments

This research is funded by The Scientific and Technologi-
al Research Council of Turkey (TUBITAK) under grant num-
ers 115C111, 119E235 and supported by Quantum Corporation
n reaching out the necessary hardware platforms on time for
xtensive testing.

eferences

[1] Nisbet B. FAS storage systems: Laying the foundation for application
availability, Network Appliance white paper. Available online: http://www.
netapp.com/us/library/analyst-reports/ar1056.html, February. 2008.

[2] Reed IS, Solomon G. Polynomial codes over certain finite fields. J Soc Ind
Appl Math 1960;8:300–4.

[3] Blomer J, Kalfane M, Karpinski M, Karp R, Luby M, Zuckerman D. An
XOR-Based Erasure-Resilient Coding Scheme. Technical Report TR-95-048,
International Computer Science Institute; 1995, August.

[4] Blaum M, Brady J, Bruck J, Menon J. EVENODD: An efficient scheme for
tolerating double disk failures in RAID architectures. IEEE Trans Comput
1995;44(2):192–202, February.

[5] Asteris M, Papailiopoulos D, Dimakis AG, Vadali R, Chen S, Borthakur D.
XOring elephants: Novel erasure codes for big data. Proc VLDB Endow
(PVLDB) 2013;6(5).

[6] Partow A. Schifra reed-solomon ECC library. 2000-2007, Open source code
distribution: http://www.schifra.com/downloads.html.

[7] Plank JS, Simmerman S, Schuman CD. Jerasure: A Library in C/C++ Facil-
itating Erasure Coding for Storage Applications - Version 1.2. Tech. Rep.
CS-08-627, University of Tennessee; 2008, August.

[8] CEPH software-defined storage. Available online: http://www.ceph.com.
[9] Wilcox-O’Hearn Z. Zfec 1.4.0. 2008, Open source code distribution:

Available online: http://pypi.python.org/pypi/zfec.
[10] Arslan SS, Goker T, Wideman R. A joint dedupe-fountain coded archival

storage. In: IEEE ICC’17. Paris, France. 2017. p . 1–7.

[11] MacKay DJC. Fountain codes. IEE Proc Commun 2005;152:1062–8, Dec.
[12] Luby M. LT-codes. In: Proc. 43rd annu. IEEE symp. foundations of computer

science. Vancouver, BC, Canada. Nov. 2002. p. 271–80.
[13] Shokrollahi A. Raptor codes. IEEE Trans Inform Theory 2006;52(6):2551–67.
[14] Lee D, Park H, Moon J. Reducing repair-bandwidth using codes based on

factor graphs. In: IEEE international conference on communications. Kuala
Lumpur, Malaysia. 2016. p. 1–6.

[15] Pearl J. Reverend Bayes on inference engines: A distributed hierarchical
approach. In: Second national conference on artificial intelligence. Menlo
Park, California: AAAI Press; 1982, p. 133–6.

[16] Arslan SS. Incremental redundancy, fountain codes and advanced topics.
2014, Avaialable online: arXiv:1402.6016.

[17] Felstrom AJ, Zigangirov KS. Time-varying periodic convolutional codes
with low-density parity-check matrix. IEEE Trans Inform Theory
1999;45(6):2181–90, Sep.

[18] Eleftheriou E, Olcer S. Low-density parity-check codes for digital subscriber
lines. In: Proc. IEEE int. conf. communications, vol. 3. 2002. p. 1752–57.

[19] Fan JL. Array codes as low-density parity-check codes. In: Proc. 2nd
international symposium on turbo codes and related topics. Brest, France.
Sept. 2000. p. 543–46.

[20] Arslan SS. Implementation of multi-threaded erasure coding under multi-
processing environments. In: 24th Signal processing and communication
application conference. Zonguldak. 2016. p. 1773–76.

[21] Arslan SS, Le H, Landman J, Goker T. OpenMP and POSIX thread imple-
mentation of Jerasure 2.0. In: IEEE international black sea conference on
communications and networking. Istanbul, Turkey. 2017. p. 1–5.

[22] Chen N, Yan Z. Complexity analysis of Reed–Solomon decoding over G
F(2m) without using syndromes. EURASIP J Wireless Commun Networking
2008;2008(16):1–11.

[23] Liva G, Paolini E, Matuz B, Chiani M. A decoding algorithm for LDPC
codes over erasure channels with sporadic errors. In: 48th Annual Allerton
conference on communication, control, and computing. Allerton, IL. 2010.
p. 458–65.
12

http://www.netapp.com/us/library/analyst-reports/ar1056.html
http://www.netapp.com/us/library/analyst-reports/ar1056.html
http://www.netapp.com/us/library/analyst-reports/ar1056.html
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb2
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb2
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb2
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb3
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb3
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb3
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb3
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb3
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb4
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb4
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb4
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb4
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb4
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb5
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb5
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb5
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb5
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb5
http://www.schifra.com/downloads.html
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb7
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb7
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb7
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb7
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb7
http://www.ceph.com
http://pypi.python.org/pypi/zfec
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb11
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb13
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb15
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb15
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb15
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb15
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb15
http://arxiv.org/abs/1402.6016
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb17
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb17
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb17
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb17
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb17
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb22
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb22
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb22
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb22
http://refhub.elsevier.com/S2352-7110(21)00007-8/sb22

	Founsure 1.0: An erasure code library with efficient repair and update features
	Motivation and significance
	Software description and architecture
	Software functionalities
	Implementation details of encoding/decoding operations
	Check equations and the data repair process
	Precoding process - generation of check #1 equations
	Generating information for efficient repair
	Algorithm for jointly generating check #2 and check #3 equations
	Management of check #2 and check #3 equations and the generation of <filename>check.data file for efficient repair/update process
	Reading/formatting the contents of <filename>check.data file
	Update process

	Advanced features
	Shared memory parallelism
	Optimal decoding path generation

	Illustrative examples
	Numerical results and impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

