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Abstract—It has become commonplace to observe frequent
multiple disk failures in big data centers in which thousands
of drives operate simultaneously. Disks are typically protected
by replication or erasure coding to guarantee a predetermined
reliability. However, in order to optimize data protection, real
life disk failure trends need to be modeled appropriately. The
classical approach to modeling is to estimate the probability
density function of failures using non-parametric estimation
techniques such as Kernel Density Estimation (KDE). However,
these techniques are suboptimal in the absence of the true
underlying density function. Moreover, insufficient data may lead
to overfitting. In this study, we propose to use a set of transfor-
mations to the collected failure data for almost perfect regression
in the transform domain. Then, by inverse transformation, we
analytically estimated the failure density through the efficient
computation of moment generating functions and hence the den-
sity functions. Moreover, we developed a visualization platform to
extract useful statistical information such as model-based mean
time to failure. Our results indicate that for other heavy-tailed
data, complex Gaussian Hypergeometric Distribution (GHD) and
classical KDE approach can perform best if overfitting problem
can be avoided and complexity burden is overtaken. On the other
hand, we show that the failure distribution exhibits less complex
Argus-like distribution after performing Box-Cox transformation
up to appropriate scaling and shifting operations.

Index Terms—Hard Disk Systems, Data Storage, Kernel Den-
sity Estimation, Modeling, Data Analytics.

I. INTRODUCTION

ARD drives and more recent Solid State Drives (SSDs)

have become the core/most common data storage units
of today’s data centers. These systems, that operate in close
proximity and share the same geographical area, are affected
by similar environmental factors, or the same hardware and
network infrastructure, which increases the likelihood of these
devices experiencing similar problems or undergoing close
fault scenarios [1]. In the same way, the methods and tech-
nology used by manufacturers during the building process
can create a faulty connection for storage devices. Therefore,
a hardware or network problem can cause multiple storage
devices to fail or become unavailable simultaneously in the
network.

Since the reliability function R(t) is closely related to
cumulative distribution function F(t) through the relationship
R(t) = 1 — F(t), it is of interest to estimate the probability
density function (PDF) of failures to be able to quantify
the reliability of storage devices. There are a number of
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challenges facing a reliability analyst to overcome in order
to accurately predict the remaining lifetime of the storage
devices in their data center. One of them is the hardness
of the prediction model which has to take into account the
correlated error scenarios [1]. This problem can be relieved
by working on collected data where the correlation of failures
would be captured by the data itself. On the other hand,
due to the lack of knowledge about the underlying joint
probability density function of failures, classical approaches to
density estimation problem seems not to be directly applicable
(smoothing parameter is usually missing).

Kernel Density Estimation (KDE) is one of the most
commonly used technique for PDF estimation [2]. In that
method, a kernel function along with a smoothing parameter
are selected to fit a density function on the given data. In fact,
the smoothing parameter is used to adjust the bias—variance
trade—off in the literature. However, the optimal selection of
the kernel function as well as the smoothing parameter depend
heavily on the underlying PDF structure (light-tail, heavy-tail,
etc). Since this PDF is usually unavailable, density estimation
becomes a hard problem to solve. Yet, if there is a prior
statistical knowledge about the data, then the selection of
the kernel as well as the smoothing parameter can be made
judiciously. For instance, if the underlying PDF is close to
Gaussian, the kernel function being Gaussian (zero—mean and
unit variance) and the smoothing parameter ~ 1.06 x o N ~%-2
are shown to perform best (in mean integrated square error
sense) in the density estimation process, where ¢ is the sample
standard deviation and [V is the number of data samples [3].

One of the other methods to tackle the density estimation
problem is to apply power transformations to the data so that
the transformed data follows closely one of the well known
distributions [4]. In other words, instead of solving the prob-
lem using non-parametric estimation techniques, we propose to
solve it with parametric estimation in the transformed domain.
In our study, we power transform the data using the Box-Cox
transformation. The aim of the Box-Cox transformations is to
ensure the usual assumptions for the linear model to hold that
is the conventional assumption about the input distribution to
be Guassian (Normal) distributed. Clearly not all data could
be power-transformed to Normal and in our study, we shall
demonstrate that the disk failure lifetime cannot be power-
transformed to Normal either. However, we have realized
that the transformed data (with slight scaling and translation)
follows closely the Argus distribution. Furthermore, we pro-
pose a method to accurately estimate the underlying PDF as
well as the related statistical properties efficiently. We have
utilized Backblaze’s publicly available dataset to confirm our



technique and quantify our results. It is important to note
that our proposed technique is not restricted to disk data.
Rather, any storage device failure data (particularly SSDs)
whose underlying power-transformed PDF follows an Argus-
like distribution can efficiently be estimated using the proposed
method.

A. Related Works

With novel firmware support, hardware monitoring is now
possible via low-level smart software modules that inspect
modern storage disk devices and generates health data, collec-
tively called SMART [5]. SMART data includes how long the
device has been operational, the health status of the running
hardware modules, operational data such as internal code
errors or working temperature, etc. Early works of [1], [6]
have demonstrated one of the pioneering analysis of hard disk
failures over the metrics of Mean Time To Failure (MTTF)
and field replacement rates of drives. As complementary to
this approach, machine learning and statistical approaches for
predictive modeling have surfaced in later analysis and devel-
opment stages [7]-[13]. The authors in [7], [14] have used
Bayesian network for Hard Disk Drives (HDD) failure predic-
tions using SMART attributes. The papers in [9], [10] study
remaining useful lifetime of HDD as a regression problem. The
authors in [15] have proposed a cost sensitive ranking based
machine learning method to select top-k faulty disk drives and
minimize disk failure prediction errors. Online random forest
based model in [13] and transfer learning modeling approaches
[14] are proposed for disk failure prediction based on SMART
attributes.

Many past studies have shown that SMART data can be
effective in determining the life span of the storage devices
and hence predict likely failures in the future. On the other
hand, SMART data may not be readily available at all times
or accurate enough for prediction use. In addition, in previous
works such as [16] and [17], the importance of predicting
major damage is emphasized and few techniques for predicting
the failures have been developed without using SMART data.
Once such a failure is predicted accurately, the data can readily
be moved to a different storage device which saves the data
from loss and necessitates no data repair action. This also
reduces the extra bandwidth consumption due to background
jobs such as rebuilding the lost data. To be able to eliminate
false alarms and hence redundant data migrations, the accuracy
of this operation is of great importance from an overall data
durability perspective. However in the literature, there are still
inefficiencies in many popular prediction models of real-life.
These deficiencies result in increased amount of data storage
due to the utilization of replication and/or erasure codes [18]
and associated Markov models for reliability prediction [19].
However, data protection boosting methods through excessive
redundancy (especially for replication) may lead to inefficient
use of storage resources. As a result, data centers would
need more storage devices which would result in more energy
consumption and thus generate elevated heat cycles. The heat
consumption level highly depends on the operating continuity
of these devices and duty cycles [20]. Increased heat con-
sumption not only shortens the lifetime of storage devices but

also increases the power consumption of the overall system.
Therefore, a right prediction model based on accurate failure
distributions is highly needed to address these challenges of
today’s data storage community in which the accuracy has to
be achieved based on the past failure trends.

Many researchers and industrial partners have also focused
their efforts on analyzing real-world datasets. For example,
there are plenty of works in the literature that concentrated
on using Backblaze’s public dataset to extract some useful
models [21]-[28]. Other works such as [29] base their anal-
ysis (latent sector error analysis for reliability in this case)
on proprietary data collected from production-ready storage
systems. Backblaze’s dataset includes all these such effects
since it is collected from a real datacenter. However, such
errors are only sensed if they are accumulated to lead to drive
failures. Most of those studies are working on developing a
predictive model for hard drive failures using machine learning
and statistical approaches to improve storage reliability. A case
study for predicting hard disk’s time-to-failure using regression
analysis is given by [24]. The authors in [21] have used various
machine learning classification methods to predict hard drive
failures. On the other hand, [22] studies statistical techniques
to predict disk replacement with 98% accuracy using 30, 000
drives of Backblaze’s dataset. However, prediction accuracy
is closely tied with the accuracy of the PDF estimation of
failures' and hence the outcome of this study can be used to
complement these past literature works.

There are different metrics in the literature that are used to
measure the data storage system reliability. For example, the
authors in [30] propose NOrmalized Magnitude of Data Loss
(NOM DL;) metric (used to measure the expected amount of
data lost per usable terabyte within mission time ¢) as a better
alternative to standard Mean Time To Data Loss (MTTDL)
metric [31], [32] or a novel metric named NOrmalized Mag-
nitude of Data Unavailability (NOMDU) is proposed in [33] to
measure the availability of data storage systems. The authors in
[34] have used annualized failure rate (AFR) standard metric to
analyze SMART data for describing a disk’s fail-stop rate. We
use MTTF/MTTDL metric to quantify the average reliability
of a given protected array of storage devices. Although there
are studies arguing that MTTF/MTTDL is a deficient tool
for the absolute measurements and a system designer may
be interested in the probability of failure for the first few
years instead of MTTF/MTTDL. However, we argue that
MTTF/MTTDL is still one of the most widely used intuitive
reliability estimation metric that helps system designers to
make right decisions beforehand. Moreover, this notorious
reliability metric, based on exponential failure and repair
times, has been shown in [35] to be insensitive to the actual
distribution of failure/repair times as long as the constituent
storage devices have much larger mean failure time than the
mean repair time and operate independent of each other. Thus,

IKnowing the PDF implies that optimal detection/classifications can be
performed over the data set. For instance given the true PDF, Bayesian
classifier can perform MAP decoding and ensures optimal detection. Thus,
most of the difficulty lies in the estimation of potentially multi-variate PDF
that characterizes the system dynamics. However, the accuracy of the solution
is closely tied with the volume of the dataset and its peculiar feature richness.
Otherwise, other methods are preferred for classification and prediction.



using MTTF/MTTDL and known distributions, we can simply
generate an answer to the probability of failure for the first
few years pretty accurately. Plus, closed-form expressions for
MTTDL are shown to be possible in [19] for more complicated
general cases and such analytic expressions usually help our
intuition for modeling error-tolerant data storage systems.

To determine the distribution of failure lifetime, there also
exists various approaches for fitting the lifetime distribution of
failures into an existing distribution in the literature [27]. A
Generalized Limited Failure Population (GLFP) model using a
hierarchical modeling approach for the estimation of lifetime
distribution is studied in [27]. Enhancing reliability of hard
disk drives has also been the focus of research efforts in
recent decades [27], [36]. The authors in [36] develop an
analytic model that uses both contextual information and stor-
age utilization to increase overall storage reliability. However,
none of them utilizes a comparative approach in terms of
fitted distribution complexity evaluation by resorting to data
transformation methods by analyzing the widely available
recent BackBlaze dataset. Many reliability works lead by
Elerath et al. concentrate on modeling disk failures with a
Weibull distribution regarding the field data obtained from tens
of thousands of enterprise-class disks [31], [37]-[46]. Different
than those approaches, our work in this paper has evaluated
how other known distributions work with the collected field
dataset in comparison with Weibull distribution (e.g. Gaussian
Hypergeometric Distribution (GHD) before Box-Cox transfor-
mation and Argus distribution after Box-Cox transformation).

In this study, although the existing dataset can well fit into
a highly complex distributions such as GHD, we show that
Box-Cox transformed disk failure life time can resemble to
a less complex distribution such as Argus-like distribution
up to an appropriate scaling and shifting. In the past, Box-
Cox transformation has been observed to be useful for ap-
plications in Big Data [47], [48]. In the literature, known
distributions with larger parameter space has been applied to
different field data and experiments. For instance, the authors
in [49] have used Gaussian hypergeometric function to fit
real data with non-homogeneous profiles including data from
food stores in Ljubljana, insurance claims and number of
accidents. However, the pitfall associated with this approach
is the outstanding complexity of accurately estimating many
parameters of the system. In fact, transformation of data and
using a known distribution with less parameter space might
be usually preferable from the complexity point of view.

B. Our Contributions

There are several notable distinctions between the above
outlined papers and our contributions. In this paper, just
like several past research, we have utilized BackBlaze’s open
source dataset [50] to build our performance evaluation plat-
form for efficiently modeling the true behaviour of hard
disk failure lifetime. This platform is useful not only for
loading data and obtain quick analytics but also for efficient
indexing, finding, and determining required distributions for
the next modeling phase. Our contributions in this paper can
be summarized as follows:

o For the first time in literature, we have shown that hard
disk failure lifetime distribution of the observed dataset
closely follows GHD and that Box-Cox transformed data
closely follows an Argus-like distribution up to a proper
scaling and shifting where the transformation-Argus com-
bination is observed to be computationally more efficient
than the former.

o Contrary to classical approaches such as KDE, we derived
novel and alternative methods to find known statistical
metrics about the lifetime and hence the reliability such
as MTTF (in closed form) for non-repairable systems as
well as the density estimation of the transformed lifetime
data through moment generating functions (MGFs). Our
proposed scheme illustrates a practical data utilization
strategy and analytically derive closed form expressions
to estimate the reliability which in our opinion would be
quite valuable for reliability analysts as well as engineers
to quickly get a handle on their current system.

e« We have also considered/compared other distributions
such as exponential (single parameter estimation),
Weibull (two parameters estimation) as well as GHD
(four parameters estimation) functions to compare with
the performances of our proposed Argus-based MTTF es-
timations to extract the trade-off between complexity and
accuracy of distribution fitting on to the dataset (similar
to the well known high bias and variance trade-off). We
have observed that for heavy-tailed data, as the number of
estimated parameters increase, the chances of overfitting
gets lot higher. Hence, the proposed transformation for
Argus-like distribution estimation achieves a good trade-
off point.

Finally, thanks to the built-in data visualization module and
analysis platform, we manipulate and illustrate the hard disk
data where key findings can be reported using a user-friendly
Kibana interface. We have also detailed which model of the
hard disk manufacturer ean performs better than the others.

C. Notation and Organization

Throughout the document, Pr{.} denotes the probability,
E[.] is the expectation operator, o F; is Hypergeometric func-
tion, I;(.) is the Modified Bessel function of the first kind of
order one, My (.) is the moment generating function of Y,
fx(.) denotes the PDF whereas Fx(.) is the corresponding
Cumulative Distribution Function (CDF) of the random vari-
able X, BCy(.) denotes the Box-Cox transformation, sup{.}
and inf{.} denotes the infimum and supremum. The sets are
denoted by upper case calligraphic symbols. The scalars are
represented by regular symbols and vectors are denoted by
bold face regular letters, e.g., x where x(k) denotes the k-th
element of x.

The rest of the paper is organized as follows: In Section II,
we introduce some of the basic definitions and review few
applicable distributions for modeling the disk failure lifetime.
Additionally, Box-Cox transformation is generalized and asso-
ciated mean and moment generating functions are derived. In
Section III, we provide the details of data preprocessing, esti-
mation of statistical information and a novel low-cost iterative



mean time to failure procedure. In Section IV, we provide the
details and properties of the hard disk data evaluation platform
developed specifically for our study. Section V outlines some
of the numerical results using Backblaze’s data. Finally in
Section VI, we present conclusions and some of the potential
future directions.

II. DiSK FAILURE LIFETIME DISTRIBUTION

In our system, the set of multiple hard disk manufacturers
is represented by the set D = {mi,ms,,...,mp} with D
different manufacturers. Each hard disk manufacturer m; with
1 < ¢ < D has a set of serial numbers given by the set
S; = {s1,892,...,85,} with S; different serial numbers for a
given manufacturer m; and the set of lifetime for each serial
number in S; is represented by the set J; = {01, 02,,...,0g, }.
In general, the disk failure lifetime is defined as follows,

y; =T — Ty with 1<j <5, (1)

where Tbsj and 7.’ represent the disk’s production time
(beginning of operation) and failure time (end of operation)
stamps, respectively. In this paper, y; will be expressed in unit
of days.

Definition 2.1 (Heavy Tailed (HT) distribution [51]). For a
random variable X if
lim sup e (1 — Fx(x)) = oo, VA >0, (2)
T 00
where Fx(x) = Pr(X < z) denotes the cumulative distribu-
tion of random variable X, then random variable X is HT
distributed.

In other words, for HT distributions E[e**] = co, VA > 0.
An HT distributed random variable (e.g, Pareto, Cauchy,
log-normal and Weibull) has a slower tail variance decay
compared to that of exponential distribution which explains
the name “heavy tail”. Let us start by defining few important
distributions for our study from the theory of statistics in the
next subsections.

A. Gaussian Hypergeometric Distribution (GHD)

The probability density function for a dummy random
variable A which has the four-parameters («, 3,7, z) for GHD
is given as,

fa(zya, B,7,2) = Cz* (1

where 0 < 2 < 1, @« > 0, 8 > 0 and C =
B(a,8) LaFy(v,05a + B;—2)"! and o Fy is the hyperge-
ometric function defined as

— Jc)ﬁ_l(l +z22)77, (3

n

2Fi(a,8,7,2) = ) (“EZ)@)”;, “)
n=0 n :

and (),, is the Pochhammer symbol [52].

Note that many discrete probability distributions such as
Poisson, Binomial have probability generating functions which
can be expressed as a special case of the Gaussian hypergeo-
metric function as outlined in [49].

B. Argus Distribution

The probability density function for a dummy random vari-
able A which has two-parameters (', ¢) for Argus distribution,
is given for 0 < z < ¢,

3 x x2 1 x?

fa(zsx,c) = mxjxp(x)cjv - et {—2X2 <1 - c2) },

®)
where U(x) = ®(x) — x¢(x) — 1/2. Moreover, ®(x) and
@(x) denote the cumulative probability and density functions
for the normalized Gaussian (standard Normal) distribution,
respectively. In that regard, as ¢,z — 0o, we can easily show
that Argus has HT distribution by observing,

1 — Fy(z) Y(xy/1—2?/c?)

x,lcl'1—>noo e~z - }.1_%12 \I/(X)€7>‘m ©
N Ac
> tim 20 _ o 7
eoe W(x)

where Fa(z) =1—U(x+/1—22/c?)/¥(x). In recent years,
it has been observed that most of the data collected from many
real world scenarios exhibit statistical behaviours that can be
best described by HT distributions. These examples include
file size distributions [53], connection times [54], and web
page sizes of the Internet [53]. In this paper, we will show
that the hard disk failure lifetime distribution also follows a
HT distribution behavior using the real-world data.

C. Weibull Distribution

Previous works conducted on HDD lifetime have demon-
strated that the disk failure may be better specified by Weibull
distribution using the field data of over 120,000 HDDs that
operated for up to 6,000 hours [40]. A two-parameter Weibull
probability density function, with shape parameter c,, and the
scale parameter a, can be described as

Cw [T\ Cw—1 T\c
w) = |\ —(=)" 8
e = = (@) e f-@7) @

In a Weibull distribution, the shape parameter c,, indicates
whether the HDD failure rate is decreasing (in case of ¢,, <
1.0), constant (in case of ¢,, = 1), or increasing (in case of
cw > 1.0) [31].

D. Exponential Distribution

For the sake of completeness, we also provide a popular
single-parameter distribution i.e., exponential distribution. The
probability density function for a dummy random variable
A which has one-parameter A for exponential distribution is
given by

fa(z,A) = Xe™® 9)

which is typically used with Poisson distribution and models
inter-arrival times of many real-time processes.



E. Power Transformations

In this study, we propose to apply a Box-Cox power
transformation to the hard disk failure lifetime data, denoted
by y;, to demonstrate that the transformed disk failure lifetime
may be distributed according to Argus distribution. More
formally, let Y denote the lifetime distribution of a set of disk
drives (realizations are represented by y;), then we define the
new random variable X = BCy(Y’) which is the Box-Cox
transformed version of Y where

(Y0 —1)/6 if 0 #0

(10
log(Y) if0=0

BCy(Y) = {

and 6 is the parameter of the transformation. For inverse Box-
Cox transformation, i.e., Y = BC’;I(X), we use

14+0X)Y9 if0+£0
B (X {( ) #

(11)
eX if 6 =0

One of the objectives of this study is to show that the dis-
tribution X can closely be characterized by Argus distribution
using real-world data. Note that we have

)<y} = Pr{X <BC(y)}
= Fa(BC(y)) (12)

Pr{Y <y} = Pr{BC Y(X

Thus, the probability density function of Y shall be given by
the derivative

d d
——Fa(BCy(y)) = fa(BCy(y), x,c)—-BCu(y)  (13)
dy dy

which can be explicitly expressed as,
Faly’ = 1)/8.x,¢)y’~" i >0
fY(y797X7c) = { . (14)
fA(log(y),X,c)/y ifd=0

where 1 <y <+v/cl+1for >0and 1 <y < e for § = 0.
Note that it is not hard to show that fy(y, 6, x,c) is a valid
distribution.

If we let y; to be the data samples and z; to be the
transformed version of these data samplesz, the transformation
parameter 6 (optimal to be denoted by 6*) is chosen to
maximize the Box-Cox log-likelihood function [55] which is
given by

* 0—1
0" = arg ;naXXj:log(yj)
N 1 (15)

—Eln NZ(IJ-—E)Q

where N is the total number of data samples used in the
optimization and T = % > ;%5 is the mean. For instance,
if we only consider the disk manufacturer m;, then N = S;.
We could alternatively consider all of the manufacturers in
which case we shall have N = 3. S;.

2One can think of x; and y; as realizations of random variables X and
Y, respectively

F. Mean Time To Failure (MTTF)

In this subsection, we will argue that MTTF can be calcu-
lated using the moments of Argus distribution paramaterized
by c and x. MTTF, being the most commonly used reliability
metric, is defined to be the length of time a disk device is
expected to last its healthy operation. Although MTTF is one
of many ways to evaluate the reliability of hard disk drives, it
is probably the most commonly known. Simply put, MTTF can
be calculated as the arithmetic mean (average) time between
the initial onset and the instant when the driver fails for the
first time. The following theorem characterizes it explicitly.

Theorem 2.2. For a given transformation parameter 6 > 0,
the mean time to failure (the mean value of the lifetime
distribution defined on x) is given by

Zzio uAT(l) if o=
Soto ()0 patk) i 0 >0

where 14 (i) represents the ith moment of the Argus distribu-
tion and the equality for 6 > 0 in (16) converges for any real
0 satisfying —1/6 < x < 1/6.

MTTF = { (16)

Proof: Using the definition, we have

/yfy(yﬂ,xyc)dy
- [ B @ as)

Since Box-Cox transformation is invertible, using Taylor
series expansion, we can rewrite equation (18) in terms of an
infinite sum for different values of the parameter 6. If 6 = 0
using equation (10), we can rewrite it as

MTTF =E[Y] = a7

where we used distribution law and p A(i) represents the
ith moment of the Argus distribution given by pa(i) =
J @ fa(x;x, c)dx. The first and second moments can be
expressed in closed form as follows,

B)= [0 he+ Db )t

pon e,X2/41 2
pa(l) = c\/;X \P(IX)(X /4 (20)
na2 = & (1—5#‘5&?) @1)

where I1(.) is the Modified Bessel function of the first kind
of order one. Similarly for 6 > 0, we can write

/C(l + x@)l/GfA(x;X, c)dx

e

= Z (1,/f> 0% (k)

k=0

E[y] = (22)

(1/9) 0)* fa(z; x,c)dz  (23)

(24)

where the equality in (23) converges for any real 6 satisfying
—1/6 < x < 1/6 and hence the condition. |

If we make sure |cf]| < 1, then we will guarantee that the
infinite sum will converge and MTTF can be found using



Y BOX_COX. X Translation| Z
— | Transformation & Scalin
BCy(.) s

Fig. 1: Summary of generalized Box-Cox Transformation.
Translation and Scaling is introduced to better adapt to data
and improve accuracy.

Equation (24). In other words, enough number of terms in
the sum shall yield a good estimate of the MTTF using the
parameters of the Argus distribution which are extracted from
the data through parameter estimation techniques. Note that
since 1/6 is real, we need to use the Gamma function to
generalize the binomial coefficient for non-integer arguments
by using the following equality,

1/0\ r1/6+1)

( k ) T+ D10 —k+1)
where I'(z) is readily available in various software tools and
computes the integral I'(t) = [;° s'~te~*ds.

It is typical that the parameter c is assumed to be known,
and x is estimated from the samples x; using the maximum
likelihood approach. The estimator turns out to be a function

of the sample second moment, and is given as a solution to
the following non-linear equation

(25)

3, xe0) _ 15~

R TR Y 0
which can simply be obtained by setting the second moment
of the distribution to the sample second moment>.

G. Generalization of Box-Cox Transformation

Due to real world translation and scaling effects, we need
a generalization of the Box-Cox transformation that includes
these effects to boost accuracy. As summarized in Fig. 1,
we have two forms of transformations one of which is the
basic Box-Cox transformation (BCpy(.)) which is followed
by translation and scaling operations, collectively referred as
GBCy(.). Accordingly, let us define a new random variable

Z:=GBCy(Y) = (BCy(Y)-
= (X -

where we shall denote loc as [ and scale as s from now on and
GBC)y stands for the generalized box-cox transformation. In
this case, the distribution of the random variable Z is deemed
to be closely characterized by Argus distribution.

loc)/scale  (27)

loc)/scale (28)

Theorem 2.3. For given transformation, translation and scal-
ing parameters, i.e., 0,s,l, respectively, the mean of the

3In most of the software tools, c is set to some constant and X is estimated
for the set of given data samples which reduces it to single parameter
estimation. For instance c is set to unity in scipy python library without loss
of generality.

lifetime distribution defined on x is given by

L 0o s'pa(i) .

MTTF = e+Zil(; i . ifo=0
Srto (U0 iy (5) (3)" pali) if6>0

(29)

where 14 (i) represents the ith moment of the Argus distribu-
tion and the equality for 6 > 0 in (29) converges for any real
0 satisfying —1/0 < sx+1<1/6.

Proof: The probability density function of Y can be com-
puted by taking the derivative of the cumulative distribution
function of Z as given by

Fy (4,6, x.0) = %MGBOQ(y))

d dz

- %FA(GB@(y))d% (P
_ fA(GBCQ(y)a X5 C) i
S dy

BCy(y)

and we can similarly express MTTF as

E[Y] = /yfy(yﬂ,xyc)dy (30)

= /GBC
e

/BC’Q_ (sz+ 1) fa(z; x,c)dz.

2)fal(x = 1)/s; x, c)dx. (31)

z)fa((z —1)/s;x;c)dz. (32)

(33)

where if s = 1 and [ = 0, this becomes identical to Equation
(18) of Theorem 2.2. Using this equation, we can finally get

e T fa(zx, 0)d if =0
E[Y} _ f() € fA(Z7XvC) Z 1 (34)
Jo L+ 0(sz+ )Y fa(z; x,c)dz if 6 >0

We can further use the Taylor expansions as before to obtain
sum-only expressions. Since different cases require different
treatment, we will explore both cases separately.

1) Case 8 = 0. It can be shown to be of the form for [ > 0

ayl - [ " (2 ) de (35)
0

c 22’2
= el+/ <1+sz++
O 2

_ +ZSMA

) falz;x, c)dz

(36)



2) Case 6 > 0: In this case, we have

EW]Z([O+W%+W“&@W@ 37

L5
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Note that if —1/0 < sc+ 1 < 1/6 and together with
Equation (25) (for >";7, (%e)), we can use (40) to calculate
MTTF. Later in numerical results section, for all practical
cases this inequality will be shown to be typically satisfied
which makes Eqn. (40) applicable.

H. Higher order statistics and Moment generating function

It is of interest to estimate the higher order of moments of Y
to calculate the moment generating function of the underlying
probability distribution function of the data. Fortunately, it
turns out that computation of higher moments are not very
different than Theorem 2.3 and can be used to estimate the
moment generating function. The following corollary charac-
terizes it explicitly.

Corollary 2.4. The moment generating function of the disk
lifetime, denoted by My (t), is given by

Z IE V& 1)
n= 0
where
nl s'nipua(i s'n"pa(i) . -
+ 1 9 = 0
[Yn] _ 27 0 7! f

S (M0 S (B) (5) pali) i8>0
(42)

Proof: Similar to Theorem 2.3, for § > 0 and —n/f <
sc+1<n/6, we have

- /h+wM D falzixee) ()
- [2(n

+
) 52+ 1)*0F f4(z; x, €)dz(45)
=0

- ;(“g)z()zzk WFuali)  (46)
= kfj:o("é )( 0)* g(f) (?)ium (47)

Note that if |sc + ] < 1/6, then the necessary condition
—n/0 < sc+1 < n/f is automatically satisfied for n >

1. Additionally, similar extension can be done for § — 0 to
finally obtain

E[Y"] lim /C(l +0(sz+ 1) fa(z; x, ¢)

_ nl+25n:uz4

Finally, the moment generating function of Y, denoted as
My (t), is defined to be of the form

(48)

My (t) = E[Y™"] (49)
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We can compute the moments by simply taking derivatives

of My (t). In the next section, we provide how to use the data

in light of our findings in this section, after preprocessing,

in order to estimate MTTF, MGF and CDF using a low
complexity iterative method.

ITI. UTILIZATION OF REAL DATA
A. Support mapping and an iterative solution

One of the things we notice in the analysis of the previous
section is that the support of Y needs to be [1,v/cf + 1) which
stems from the fact that the random variable that is modelled
to be distributed according to Argus distribution needs to have
support [0, ¢). In addition, without such scaling operation on
the support, we would not be able to use equations (16) and
(29) because the associated conditions would not be met.

Suppose that the random variable that represents the real
data is represented by Y, with a support not necessarily equal
to [1,v/cf +1). Also let y§d> to be the real data samples
(collected field data) and z; to be the transformed version of
scaled samples y;, introduced earlier as data samples. Since

real data samples yj(-d) needs to be appropriately scaled to
meet the condition imposed by the support of Y, it needs
to go through a transformation. It is not hard to find that
the following transformation refines the expected support for

0 >0,

vy = (0 + 1)V~ g} +1 (50)
where y;d) is the scaled version of yj(»d) and is given by
d .
@ _ " —inf{Ya) sh
YT Sup{Ya) -

inf{Yd} '
and sup{Yd? and inf{Y;} represents the maximum and min-
imum of yjd, respectively. Note that if § — 0, we have
(cf + 1)*/? — e° which will not have any 6 dependence.
The transformation parameter 6 (optimal to be denoted by 6*)
is chosen to maximize the Box-Cox log-likelihood function
which is given by our previous optimization problem in
equation (15), where x; = BCjy(y;) is as defined earlier and
N is the total number of data samples used in the optimization
with 7 = % 3, ;.

However, the issue is that this one—shot optimization can
be hard to solve. An alternative is to iteratively optimize 6 to
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Fig. 2: Iterative optimization of @ using real data sets which loops until #¥+!

— 0% < € where ¢ is some small tolerance.

Iterations are defined for ¢6®) + 1 > 0 otherwise, iterations cease.

obtain 6* by using BCy(.) as a standard block as shown in

Fig. 2. The initial value (1) is obtained by setting y( ) = ggd)
where for k£ > 0 we have
g = (8™ + 1)/ _1yg(® 11 (52)

where 6(%) is the value of 6 at the k-th iteration. Note here that
the subsequent iterations are defined only for #*) > —1/c.
The (k + 1)-th value of 6 is given by

9+ = arg max log (3
81 Zj: gy,

Ryo-1 glnaék) (53)

where

1
ylc _ ¥ ; (k) ZBCG (k)

Iterations continue until a preset threshold () is exceeded
i.e., we can find minimum k* € N such that §¢*"+1) — (") <
€. Thus, the final support-mapped data is given by

Y = yj(k ) yj(k +1)

(54)

= ((e8®) 4 1)V _ 1yl 41 (55)

We note that convergence is established if cf*) 41 > 0.
Otherwise the limit does not exist i.e., limsup,,_,__ 6! (k) ) #
lim infj,_o #*) and we cease iterations in the algorithm.

B. Estimation of MTTF, MGF and CDF

In order to find important statistical information from the
lifetime data, we need to tie random variables Y and Y,; which
can be established using Equations (50) and (55). In other
words,

Yy — min{yj(-d)}

. (&%)
= ((e0®) )V 1) +1
max{y{} — min{y{”}
(56)
For notation simplicity, let a((ff) = (max{yj(-d)} -

. d * (k%)
min{y(})/((e0*) + 1)1/
of Y, can be calculated as

— 1), then the expected value

E[Yq) = afVE[Y] — af? + min{y|®} (57)

Similarly, moment generating functions also satisfy the
following relationship

—(ax (d)_mm{y(d)}) ( (d)t)

My, (t) = (58)

from which we can deduce all of the moments of the lifetime
data (and hence the distribution of the lifetime data) provided
the moments of Y, which is inverse-Box-Cox-transformed
Argus distributed. Note that My (t) is given by (49) and E[Y™]
can be computed using either Equation (47) or (48) for § > 0
and # = 0, respectively. As for the density estimation, we
state an important theorem from [56] below that establishes a
simple relation between moment generating function and the
cumulative distribution function.

Theorem 3.1 ([56]). Let G be a continuous random variable
with positive support and A be another independent random

variable exponentially distributed with the expected value of
1. Let T = A/G, then

P(T <t)=1- Mg(—t) (59)

where Mg (t) denotes the moment generating function of G.

Applying the result of this theorem (i.e., by setting G = Yy)
in our case, we will evaluate the CDF of Y, as follows.

<T):1—P(T<%)

(60)

_

P(Ya<t) T

<t) :P(%

where we can find P(T < A/t) by conditioning on the random
variable and then averaging as shown below

Ay

P(T <7 61)

/OO P(T < Mt)fa(\)dA

0

- / My, (~\/8)fANdA (62)
0

- 1—/00Myd(f)\/t)e*’\d/\ (63)
0

Using equation (60) by plugging in equation (63), we can



express the cumulative distribution function of Y as follows

P(Yy<t)= /OOO My, (—)\/t)e” A
:Z (;;)ZE[YJ] /OOO Ne AdA

- E[Y]

—ﬁi“jyfjg)wﬁb

j=0
(min{y ¥} —

where the last equality follows from Equatlon (57) and the
standard Binomial theorem. Finally, by taking derivative of
P(Y; < t), we can calculate the probability density function
estimate of Y, as follows,

(64)

S YEN ]
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co . 1+1 7
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where the moments of Y i.e., E[Y~7] can be calculated by
using either equations (47) or (48) based on the value of 6.

C. Non-Parametric Kernel Density Estimation

Before showing few numerical results, it is instructive to
provide one of the classical non-parametric density evaluation
techniques called KDE. In the classical approach to KDE,
deriving useful statistics out of data does not involve any type
of transformation i.e., it attempts to estimate the probability
distribution directly by summing properly scaled kernel func-
tions. KDE requires no prior knowledge of the underlying
density function and automatically learns the shape of the
density from the data. In our case, the estimate of Y; would

be given by
d
) (65)

Fra'?) = thlc<

where h is known as the smoothing bandwidth and K(.) is the
kernel function. There are two key parameters to choose in a
successful KDE. The choice of the kernel function K(.) and
the smoothing bandwidth parameter. For a given kernel £(.),
the optimal A that minimizes the asymptotic mean integrated
square error is given by [57]

R . (R(K) 1
h* = arg min (nh + ZﬁfcR(de (y(d)))h>
—0.2 (66)
B R(IC)
Nog R(f{,(y'))
where f{ (.) denotes the second derivative and
R(L) = /LQ(x)da: and o = /x2lC(ac)d$ (67)
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Fig. 3: Data classification over the BackBlaze data based on
manufacturers and models. SN: Serial Number.
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Unfortunately, the optimal h involves the unknown density
function of Y; which led the literature to look for data-
based methods for selecting a suboptimal bandwidth parameter
that will work well in practice [58], [15]. In addition it is
shown in [59] that bandwidth estimation for KDE of heavy-
tailed distributions is relatively a hard problem which requires
additional generalized transformations and forms the basis
of our motivation for this study. Given that the Box-Cox
transformed data exhibits Argus-like distribution which is
shown to have heavy tail, the proposed method in [59], which
is not optimized for this particular distribution, will require
additional complication in the density estimation process. Our
scheme is comparably lower complexity which ensures good
accuracy (and hence achieves a good trade-off point) as shall
be demonstrated in the performance evaluation platform.

IV. PERFORMANCE EVALUATION PLATFORM
A. Utilized BackBlaze Dataset

The data we use consists of around 80000 disk snapshots
in the BackBlaze’s data center collected over the last few
years [50]. This data is stored as a database, including the
date, serial numbers, model, capacity, working state, as well as
SMART-based indicators. We have also added our dataset into
Kaggle platform [60]. The statistical information may differ
according to the manufacturer, model and serial numbers. In
order to obtain a distribution, the data itself should be grouped
together. An example grouping is shown in Fig. 3. In addition,
capacity-based classifications can be made. Finally, within the
use of SMART data, different model and manufacturer’s disks
can be used for our grouping and modeling operations.

B. Properties of Proposed Platform

The proposed platform interactively handles the collected
hard drive data statistics of multiple disks which is pre-
collected from multiple hard drive devices located in Back-
blaze the data center. Fig. 4 shows the general architecture of
our platform solution so that proper analysis (such as MTTF
calculation using the hard drive lifetime statistics) over the
analytical framework can be performed. This structure consists
of five basic modules: Data Source Layer, Data Collection
Layer, (c) Data Processing and Storage Layer, (d) Visualization
Layer, (e) Analysis Results.
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Fig. 4: Architectural structure that enables the stored data to be processed by the ElasticSearch framework

The proposed platform integrates data storage and search
engine solutions with open source data analysis software
(computational storage). After the data has been collected as in
step-(1) from the data center that holds the hard drive data and
their statistics as in Fig. 4, the data is processed sequentially
inside the Data Source Layer marked as steps-(2) and (3). A
pre-processing step is performed on the data as shown in step-
(2) of Fig. 4. In the Pre-Processing phase, data summation
such as aggregation of all data received in storage centers
of various manufacturers, serial number, fault records, etc.,
filtering, is performed. After pre-processing, the data is stored
in step-3 as a CSV file in a File System.

There is a Logstash component in the Data Collection
Layer marked as step-(4) in Fig. 4 with two sub-components:
Logstash Listener and Logstash Transformer. Logstash is a log
parsing engine that performs logging, parsing and conversion
operations [61]. Logstash Listener listens to the file generated
in step-(3) and sends the records to Logstash Transformer.
Logstash Transformer is used to convert the CSV data format
of the File System to the ElasticSearch data format for later
storage and analysis purposes. We use ElasticSearch, an open
source, scalable full-text search and data analysis engine, in
Data Processing & Storage, which is marked as step-(5) in
Fig. 4. ElasticSearch enables query processing through struc-
tured and unstructured data storage. Inside data processing and
storage layer, data enrichment, storage, access and analysis are
executed. Hence, all computations regarding density analysis
for fitting into the best PDFs, MTTF estimations (for failure
prediction or classification purposes), Box-Cox transforma-
tions etc. are calculated in this layer. Elasticsearch indexes the
data for further fast, reliable and distributed data processing
purposes and provides simple RESTful Application Program-
ming Interfaces (APIs). Using Python Elasticsearch Client API
library [62], the density estimation and statistical analysis over
the prior collected disk statistics data in ElasticSearch are
done. The analysis results are later stored in ElasticSearch for

further visualization purposes via Kibana. In the Visualization
Layer marked as step-(6), we use Kibana, an analytical and
visualization platform. In step-(7) marked in Analysis Results
Layer, a user interacts with the platform via the platform’s
user interface. Pandas data analysis [63], which is marked as
step-(8) and is in communication with ElasticSearch via API
access in Data Processing & Storage Layer.

Note that system events (including SMART) have already
been collected periodically for analysis and visualization in
data centers today, and the common practice is to store
the various logs in databases for easy queries. However,
due to nature of the analyzed dataset that only includes
meta-data information of storage failure statistics traditional
approaches need to be extended for large scale analytics
purposes. The proposed platform that includes data processing
pipelines with data ingestion, analysis and process, storage
and visualization layers can also be implemented with other
existing open source tools such as Apache Hadoop, Spark, Pig,
Hive, Kafka. For data ingestion, tools such as Apache Kafka,
AWS Kinessis or RabbitMG, for data analysis and process
tools such as Hadoop or AWS Map-Reduce, Apache Spark
and AWS lambda, for data storage Hadoop HDFS, Hbase,
Amazon S3 or DynamoDB and for data visualization Tableua,
PowerBI can be some options. In this paper, we have chosen
ElasticSearch stack which is designed as a scalable search
engine to manage enormous volumes of diverse data, provides
good performance for fast analytical query of the dataset that
includes meta-data on storage system logs. Moreover, our
analysis is based on building batch-data processing pipeline
to capture, store, prepare, and analyze the failure storage data
where ElasticSearch can be suitable option. ElasticSearch has
also a large ecosystem of community.

V. NUMERICAL RESULTS

In this section, we numerically present our estimations of
the hard disk lifetime distributions using the Backbaze’s open



TABLE I: Analyzed disk Data Statistical Results

Total number of entries 54943404
Total number of failure records 2987
Failure percentage % 0.0055
Average storage area (TB) 4.073
Average storage area of defective records (TB) 3.72
Number of different models 87
Defective number of different models 54
Average disk lifetime of defective models (days) | 308.56
Total Duration of Records 2 years

dataset [50] and provide complexity and sensitivity analysis
of the proposed platform.

A. Data Analytics Results

We use open source ElasticSearch data analytics tool to
obtain the distributions of drive faults based on the models and
manufacturers over time. ElasticSearch’s Kibana visualization
tool allows the visualization of disk properties in the system
such as total disk capacity, usage details, failure figures
and daily drive status information. In our analysis, we have
ElasticSearch’s query service to extract the lifetime of each
disk model/series using Python libraries such as Pandas [63]
and SciPY [64].

Table I provides an overview of the disk data statistics in the
system. The analyzed data includes data between January 2016
and December 2017 (2 years) totalling up to around 55 million
entries. Fig. 5(a) shows the comparison of the disk failure
lifetime distributions between different and all brands using
box-plot which includes Seagate (ST), Hitachi Global Storage
Technologies (HGST), Hitachi, Western Digital Corporation
(WDC) and Toshiba brands. Disk failure lifetime values are
calculated using (1) by observing the elapsed time until a
failure occurs. These values are extracted directly from the
observed open source dataset. Fig. 5(a) shows that in the
dataset, the disk failure lifetime of ST manufacturers is the
highest with a median and mean values of 329 and 330.82
respectively, whereas the lifetime of Toshiba brand is the
lowest with median and mean values of 74.50 and 111.31,
respectively. Note that the median and mean lifetimes of all
brands are 293 and 310.95, respectively. Furthermore, Fig. 5(b)
shows the distribution of hard disk failure lifetime of all
manufacturers as a histogram plot as well as the KDE applied
where a high-tail characteristics of the distribution can clearly
be observed.

Using real disk failure lifetime data, we have observed that
the distribution of disk failure lifetime statistically follows
a HT distribution. After our analysis involving distribution
fitting, parameter estimations and subsequent quantile-quantile
(Q-Q) plots, we obtain the best fit values using sample
distributions including GHD, Argus and Exponential both
before and after transforming the original hard disk data
failure lifetime values via the Box-Cox function (BCy(y)).
For this transformation, scaling (s) and scrolling (translation)
parameters loc (I) help to obtain the distribution using,

fA(Z§X7C) :fA((y_l)/S§XvC)/s (68)

While making the choice of the fitted distribution, we
have investigated 98 different continuous distributions given in
Scipy statistical functions library [64]. In the best-fit evaluation
process, we have used Sum Square Error (SSE) as the metric
which is formulated as follows,

N
SSE = (z; — &), (69)
i=1

where N is the size of the bin, x; is the actual observation and
Z; 1s the estimate of the fitted distribution. In our numerical
evaluations, we use CDF for actual and fitted observations. For
comparisons of different PDFs, we have also utilized fit/test
split where the dataset is split into fit and test datasets. In these
calculations of SSE, the fitting distribution values Z; (using
the relevant parameters of each distributions) are obtained
using the fit dataset and the data values z; are calculated
from the test dataset. For fitting a probability distribution to
data, we have utilized SciPy library in the hard disk data
analysis platform in step-8 as given in Fig. 4. The fit function
calculates the distribution of parameters that best matches to
data (i.e. with the lowest level of error). In addition to Q-
Q plots which are used to check how well the distribution
fits into the data visually, we have also run a Kolmogorov-
Smirnov (KS) test to measure goodness of fit using SciPy [64].
The overall evaluation methodology using the hard disk data
analysis platform and how the best-fit parameters are obtained
is summarized in Algorithm 1.

Algorithm 1: SSE evaluation methodology using best-
fit parameters of the given PDFs.

Input: Pre-processed Backblaze open dataset, fit/test split ratio, set
of PDFs, P = {1,2,..., P}
Output: SSE(p), Vpe P

1 Initialization: Total number of iterations, iter_tot

2 Split: Dataset into fit/test portions using split ratio

3 foreach n € {1,...,iter_tot} do

4 foreach PDF—p € P do

5 Fit: PDF—p to dataset (fit portion) with SciPy’s fit APIs
[64]

6 Obtain: The best fit parameters

7 Build: CDF using the best fit parameters inside (68).

8 Calculate: SSE’(n,p) value between dataset (using test
portion) and CDF using (69).

9 end

10 end

1 Average: SSE(p) = S 110 SSE! (n, p).
12 return SSE(p)

TABLE II: Estimated Argus values for MTTF (model), MTTF
(Argus fit), MTTF (data) and MTTF (KDE)

Brands MTTF MTTF | MTTF | MTTF
(model) (fit) (data) (KDE)
All 280.53 370.8 310.95 | 319.67

Fig. 6 presents the results of fitting the GHD (after scaling
and shifting) over the hard-disk failure lifetime histogram data
(both before and after Box-Cox transformation operation as
shown in Fig. 6 (a) and Fig. 6 (c)), as well as the Q-Q diagrams
which are obtained by taking the whole brands’ disk lifetime
into consideration as given in Fig. 6 (b) and Fig. 6 (d). From
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Fig. 5: (a) Comparison of disk lifetime box-plots of different manufacturers (b) Distribution of hard disk failure lifetime with
KDE plot.

—— GHD PDF

0.005 Data (Before Box-Cox)
10 - mmm Theoretical Data
HEl Sample Data
2 0.004
g 048 -
[}
s 2
0.003 -
E E 0.6
=4
g =
5 0.002 B 041
5 7
0.001 021
0.0
0.000 : . . . . . . . T T T T T T
0 100 200 300 400 500 600 700 0.0 0.2 04 06 0a 10
LifeTime (days) Theoretical Quantiles
(@) (b)
0.025
—— GHD PDF
Data (After Box-Cox)
10 = Theoretical Data
0.020 B Sample Data
>
g ER
[]
8 @
3 0.015 %
2 S 06
=
5 &
")
§ 0010 Y
= |
[}
h i
0.005 024
004
0.0004 10 20 30 40 50 60 70 00 02 04 06 08 10
LifeTime (days) Theoretical Quantiles
(©) (d)

Fig. 6: Hard-disk failure lifetime with best fit distribution (a) GHD PDF v.s. the histogram of disk failure lifetime (before
Box-Cox transformation) (b) Q-Q diagram (before Box-Cox transformation) (c) GHD PDF v.s. the histogram of disk failure
lifetime (after Box-Cox transformation) (d) Q-Q diagram (after Box-Cox transformation)

these figures, we can easily observe that before and after Box- as the Q-Q diagram which is obtained by taking the whole
Cox transformations, the hard-disk failure lifetime data shows brands’ disk lifetime into consideration. We can observe that
close fit to GHD. before Box-Cox transformation, the hard-disk failure lifetime

Fig. 7(a) and Fig. 7(b) show the results of fitting the Argus data do not fit well to Argus distribution. Fig. 7(c) and
distribution (after scaling and shifting) over the hard-disk Fig. 7(d), on the other hand demonstrate the Argus PDF v.s.
failure lifetime data (before Box-Cox transformation), as well
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TABLE III: Best fit parameters of GHD, Argus, Exponential and Weibull distributions and the corresponding MTTF values

calculated by fitting each distribution into dataset.

All MTTF
Brands | ¢ B 0% z A 6 X Cw a l s (fit)
GHD 072 | 1.32 | 1.65 | -0.39 | - - - - - 1 734 307.33
Argus - - - - - 0.16 | 2e4 | - - -0.17 | 1.18 370.80
Exp. - - - - 32e-4 | - - - - 1 309.95 | 310.95
Weibull | - - - - - - - 130 | 333 | O 1 307.76

the histogram of disk failure lifetime and the resulting Q-Q
diagram after Box-Cox transformation. Fig. 7(d) shows that
the data presents a better fit to Argus distribution after Box-
Cox transformation despite some discrepancy at low quantiles.
The Box-Cox transformation uses the parameter § = 0.5545
that is selected to maximize the associated log-likelihood
function. Note that with these values, it can be verified
that we satisfy the prementioned condition |6(sc + )| < 1
in the text. Table II summarizes the fit parameters of the
Argus distribution as well as the calculated values of the
MTTF (using values obtained from equation (57), fitted to
Argus distribution, dataset and KDE methods) for all disk
manufacturers combined. As the amount of data increases, we
can obtain better MTTF estimations.

Fig. 8 shows the hard-disk failure lifetime with Exponential

distribution fitting before and after Box-Cox transformations.
We can observe from these figures that the hard-disk failure
lifetime does not fit to a simple distribution such as exponential
i.e., there is large discrepancy over large quantile ranges.
Finally, Fig. 9 shows the dataset fitting results into Weibull
distribution before and after Box-Cox transformation. Similar
to exponential fit results, we can observe that the dataset do
not fit well into the Weibull distribution (especially at high
quantiles) with the best fitting parameters as given in Table
1.

Table III summarizes the fit parameters of GHD, Ex-
ponential, Argus, and Weibull distributions as well as the
corresponding calculated MTTF values for each distribution.
We have used Scipy library to do all of our regression work.
The mean values, which corresponds to MTTF (fit) values in
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Table III, are 371, 307, 311 and 307 days for Argus, GHD,
Exponential and Weibull distributions respectively. Notice that
with smaller estimate compared to the data mean, GHD might
be overfitting. Note also that the best fitting shape parameter in
a Weibull distribution is calculated to be ¢,, = 1.30 and since
cw > 1.0 the HDD failure rate is observed to be increasing
[31].

Fig. 10(a) and Fig. 10(b) show the CDF plots of all models
including GHD, Argus, Exponential, Weibull distributions as
well as KDE by fitting to dataset of Table I before and after
Box-Cox transformation. First of all, before Box-Cox trans-
formation as shown in Fig. 10(a) among all the distributions,
we can observe that GHD distribution and KDE yield better fit
to dataset than other distributions. This can also be validated
with the SSE values where in terms of SSE values, GHD and
KDE distributions yield the lowest SSE values with 0.06 and
0.02 respectively. Second, after Box Cox transformation as
shown in Fig. 10(b) among all the distributions, GHD and
KDE distributions show better fit to the Box-Cox transformed
dataset. In this case, the SSE values for GHD and KDE
distributions are around 0.05 and 0.01 respectively. Finally,
Fig. 10(a) depicts that Argus distribution yields higher lifetime
estimations compared to other distributions. For example, for

a value of 0.5 on y-axis (corresponding to median values),
Argus distribution yields 376 days, GHD yields 288 days,
Exponential distribution yields 216 days and Weibull distri-
bution yields 293 days. However, note that GHD achieves this
middle ground by using four different optimized parameters
(with the potential risk of overfitting) whereas Argus uses only
two parameters.

Finally as a side note, Fig. 11 shows the evolution of «
and MTTF values over time of our iterative algorithm given
for Argus distribution in Fig. 2, for all brands, ST and HGST
in particular. We also observe that convergences are achieved
with only few iterations validating the low complexity nature
of the proposed iterative scheme. More specifically, Fig. 11(a)
shows that for all brands, ST and HGST, MTTF convergence is
achieved in 4, 3 and 5 iterations respectively using (57). Fig. 11
(b) shows that for all brands, ST and HGST, 6 convergence
is achieved in 8, 5 and 53 iterations respectively.

Table IV shows the KS test results to evaluate the goodness
of fit for each considered distributions [65]. KS test is used to
measure the goodness of fit between the collected dataset and
the considered models to find their similarity. It then outputs
a distance value that shows the maximum difference between
CDFs. Using KS test, we obtained both KS distance statistic
and p-value. Table IV shows that Argus-data KS distance is
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again observed to be the smallest distance (with a value of that the difference between the two distributions is significant
0.07) after Box-Cox transformation for all fit/test split ratios. ~with a near certainty.
The p-values are also observed to be around zero suggesting
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TABLE IV: Comparisons of PDFs and dataset in terms of KS distance and p values

Box-Cox Fit/Test GHD-data Argus-data Exp.-data Weibull-data
split ratio | (KS dist., p-value) | (KS dist., p-value) | (KS dist., p-value) | (KS dist., p-value)
Before 90%/10% (0.07,0) (0.29,0) (0.22,0) (0.10,0)
After (0.08,0) (0.07,0) (0.25,0) (0.86,0)
Before 80%/20% (0.07,0) (0.31,0) (0.22,0) (0.10,0)
After (0.08,0) (0.07,0) (0.25,0) (0.86,0)
Before 70%/30% (0.08,0) (0.20,0) (0.22,0) (0.10,0)
After (0.08,0) (0.07,0) (0.25,0) (0.86,0)
Before 50%/50% (0.07,0) (0.25,0) (0.22,0) (0.10,0)
After (0.08,0) (0.07,0) (0.25,0) (0.86,0)

B. Complexity and Sensitivity Analysis

Although providing a detailed complexity analysis is beyond
the scope of this paper, we would like to indicate the connec-
tion between parameter size of the underlying distribution and
the complexity of fitting. As the model complexity (the number
of parameters and the distribution) increases, the goodness of
fitting increases [66]. However, the increase is not linear but
rather concave giving us diminishing returns. We also see the
similar trends in our case.

Let us also present the shuffled data on the SSE of the

distributions over a bigger data set this time. This data set
contains all the failures (a total of 162, 649 failures of unique
serial numbers) during the time period between april 10th,
2013 to march 31st, 2019. We have run our experiments
iter_tot = 100 times and SSE averages are presented in
Fig. 12 before and after Box-cox transformation. We have
included SSE values of different distributions when the dataset
is split into fit and test samples indicated by the fit/test
split ratios. Over all fit/test data split cases, before Box Cox
transformation, we can observe that KDE performs the best



followed by GHD, Exponential and Argus PDFs. Note that
KDE uses a combination of multiple Gaussian distributions
(instead of single one) to achieve this performance and it is
included in our table for reference purposes. After Box-Cox
transformation, again KDE performs the best but this time it is
followed by Argus, GHD and Exponential PDFs respectively.
Note that Argus distribution yields smaller SSE values com-
pared to GHD after Box-Cox transformation. This is due to the
fact that Argus distribution does not overfit the data and yields
better performance on the unseen test dataset (achiving the
minimal generalization error). This validates our assumption
that Argus distribution can give better bias/variance trade-off
compared to other complex distributions such as GHD which
are likely to overfit the model to the fit dataset with more
complex operation. Finally, as the fit/test split decreases to
50%/50%, no significant change can be observed on SSE gap
values.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the probabilistic modeling of
real-life disk failure lifetime as well as analyzed the storage
statistics. Contrary to classical approaches such as KDE, we
derived novel and alternative methods to find known statistical
metrics about the lifetime and hence the reliability such as
MTTF (in a closed form) for non-repairable systems as well
as the density estimation of the transformed input data through
MGFs. Our thorough analysis demonstrates that the hard disk
failure lifetime distribution of the observed dataset closely
follows GHD and that Box-Cox transformed data closely
follows an Argus-like distribution up to a proper scaling
and shifting which achieves a good bias/variance trade-off.
To this end, we have also considered/compared other dis-
tributions such as exponential (single-parameter estimation),
Weibull (two-parameter estimation) as well as GHD (four-
parameter estimation) functions to fit to data with and without
transformations. Our proposed scheme illustrates a practical
data utilization strategy and analytically derive closed form
expressions to estimate the reliability which in our opinion
would be quite valuable for reliability analysts as well as
engineers to quickly get a handle on their system. Note that our
scheme do not use disk-specific health monitoring data (such
as SMART). We basically focus on more basic indicators such
as lifetime. Hence, we believe that our study would directly
be applicable to SSDs drive data without much of a major
change. For instance, the bit error predictive modelling of
[67] can be thought in accordance with an appropriate error
correction coding mechanism to estimate the failure times of
such devices such as a threshold error rate beyond which the
data is not longer recoverable. Thus, this time period can be
considered as an input to our prediction model to accurately
estimate the corresponding lifetime. In our future work, we ar
e planning to include the SMART data that shall complement
our failure error prediction model proposed in this study to
dynamically supplement the decision mechanism real-time.
The results of this study will be more like fitting data to resolve
the relationship between SMART data and the lifetime through
the known deep learning techniques.
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