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ABSTRACT
The thermal behavior of a spherical gas bubble in a liquid excited by an acoustic pressure signal is investigated by constructing an itera-
tive solution of the energy balance equations between the gas bubble and the surrounding liquid in the uniform pressure approximation.
This iterative solution leads to hierarchy equations for the radial partial derivatives of the temperature at the bubble wall, which control
the temporal rate of change of the gas pressure and gas temperature within the bubble. In particular, a closure relation for the hierarchy
equations is introduced based on the ansatz that approximates the rapid change of state during the collapse of the bubble from almost
isothermal to almost adiabatic behavior by time averaging the complex dynamics of change of state over a relatively short characteristic
time. This, in turn, leads to the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature
and on the bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter that is a func-
tion of the Péclet number and a characteristic time scale. Results of the linear theory for gas bubbles are recovered by identifying this
parameter as a function of the Péclet number based on the Minnaert frequency. The novel gas pressure law is then validated against the
near-isothermal solution and against the results of the numerical simulations of the original energy balance equations for large amplitude
oscillations using spectral methods. Consequently, an acoustic cavitation model that accounts for phase change but that neglects mass
diffusion is constructed by employing the reduced order gas pressure law together with the Plesset–Zwick solution for the bubble
wall temperature and the Keller–Miksis equation for spherical bubble dynamics. Results obtained using variable interface properties for
acoustically driven cavitation bubbles in water show that the time variations of the bubble radius and the bubble wall temperature lie
between those obtained by the isothermal and adiabatic laws depending on the value of the Péclet number and the characteristic time
scale.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0068152

I. INTRODUCTION

In nonlinear bubble dynamics, the thermal behavior of
bubbles during the final stage of collapse, where the pressure and
temperature within the bubble can reach extremely high values,
has received considerable interest because of its wide range of
applications in cavitation,1–3 sonochemistry,4 single-bubble
sonoluminescence,5,6 and medical ultrasound.7,8 In this case, the
equations of motion describing the dynamics of spherical gas or
gas/vapor bubbles are very complex, involving the solution of partial
differential equations for the conservation of mass and energy

together with momentum balance in both the gaseous and the
liquid phases linked by interface conditions and equations of phase
change. Although full numerical computations of these equations
are available for single bubbles,9,10 the complexity and accuracy
of the numerical solutions require the need for simplified equa-
tions and expressions. Early attempts of modifying the adiabatic
approximation for the gas pressure in spherical bubble dynamics by
artificially increasing the liquid viscosity were not found satisfactory
since the thermal damping affecting the nonlinear oscillations was
overestimated in comparison with experiments.11 Various models
that address the effect of the thermal behavior of the bubble on the

AIP Advances 11, 115309 (2021); doi: 10.1063/5.0068152 11, 115309-1

© Author(s) 2021

https://scitation.org/journal/adv
https://doi.org/10.1063/5.0068152
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0068152
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0068152&domain=pdf&date_stamp=2021-November-3
https://doi.org/10.1063/5.0068152
http://orcid.org/0000-0003-2655-8902
mailto:delalec@mef.edu.tr
mailto:pasinliogl@itu.edu.tr
https://doi.org/10.1063/5.0068152


AIP Advances ARTICLE scitation.org/journal/adv

gas pressure inside the bubble have been constructed,12–16 but either
they are still too complex to be easily and efficiently implemented
for a variety of applications or they rely on assumptions and
approximations that need to be verified. Recently, these models
and their extensions have also been compared with the results of
numerical simulations in various applications.17–20

The main objective of this investigation is twofold. First, we
try to simplify the complexity in determining the internal pressure
inside the spherical bubble by introducing a novel reduced order
gas pressure law from the well-known fundamental equations in the
uniform pressure approximation. This simplification is particularly
essential for the simulation of bubbly cavitating flows using bubble
dynamics models in complex geometries where reduced order mod-
els for the gas pressure inside the bubbles can enable realistic and
computationally feasible solutions. The novel reduced gas pressure
law obtained for single bubbles depends on the bubble wall temper-
ature, the bubble radius, the Péclet number based on a characteristic
time scale, and the isentropic exponent of the gas. This reduced
order gas pressure law, which characterizes the change of state of
the gas inside the bubble from nearly isothermal to nearly adiabatic
conditions, also provides physical insight into how the characteris-
tic time changes and thereby how the Péclet number changes during
this transition in response to acoustic pressure signals. Second, we
construct a simple acoustic cavitation model based on the novel
reduced order gas pressure law for various applications by account-
ing for phase change but neglecting gas and vapor diffusion. To
achieve these goals, we first consider the energy balance between a
spherical gas bubble and the surrounding liquid, neglecting phase
change and gas diffusion. In this case, we investigate the thermal
behavior inside the bubble in the uniform pressure approximation
by studying the well-known coupled equations for the gas pressure
and temperature, which we attempt to solve iteratively. The first iter-
ation, where the first order radial partial derivative of the tempera-
ture at the bubble wall is approximated by neglecting all higher order
radial partial derivatives of the temperature at the bubble wall, shows
that the gas pressure is a polytropic power law of the bubble wall
temperature and the bubble radius, with the polytropic index given
explicitly in terms of the isentropic exponent of the gas;21 however,
this first iterative reduced order gas pressure law turns out to be
oversimplified since it lacks the dependence on the Péclet number.
For this reason, iterative solutions that lead to hierarchy equations
for the radial partial derivatives of the temperature at the bubble
wall are constructed. These hierarchy equations are closed by a rela-
tion based on the ansatz that approximates the rapid change of state
during collapse from almost isothermal to almost adiabatic behav-
ior by time averaging the complex dynamics of change of state over
a relatively short characteristic time. This, in turn, upon exact inte-
gration, yields the desired reduced order gas pressure law exhibiting
power law dependence on the bubble wall temperature and on the
bubble radius, with power indices depending on the isentropic expo-
nent of the gas, the Péclet number, and a characteristic time scale
through a parameter.22 In particular, the reduced order gas pres-
sure law yields the classical isothermal law when this parameter takes
the value 1/2 and the bubble wall temperature assumes the value of
the bulk liquid temperature for low Péclet numbers (Pe→ 0) and to
the classical adiabatic pressure–radius relation when this parame-
ter tends to infinity for high Péclet numbers (Pe→∞). The bubble
wall temperature entering this reduced order gas pressure law can be

obtained from the Plesset–Zwick solution23 of the temperature dis-
tribution of the liquid side in the thin boundary layer approxima-
tion. The results for small amplitude oscillations of gas bubbles are
recovered by identifying the parameter of the novel reduced order
gas pressure law from the linear theory.24–29 The novel gas pres-
sure law is then validated against the near-isothermal solution of
Prosperetti12 by the numerical solution of the Keller–Miksis equa-
tion30 for spherical bubble dynamics under near-isothermal condi-
tions and constant bubble wall temperature. Numerical simulations
of the original energy balance equations for gas bubbles are then
carried out using spectral methods, and the results are compared to
those obtained by the novel reduced order gas pressure law. Excel-
lent agreement is reached for particular values of the model param-
eter. Using the novel reduced order gas pressure law, an acous-
tic cavitation model that couples spherical bubble dynamics by the
Keller–Miksis equation to the Plesset–Zwick equation for the bub-
ble wall temperature is constructed for noncondensable gas/vapor
bubbles by accounting for phase change but neglecting mass diffu-
sion. Results obtained for two different acoustically driven pressure
signals show that the temporal variations of the bubble radius lie
between those given by the classical isothermal and adiabatic laws
as the parameter of the proposed acoustic model is varied. When
constant interface properties (in particular, constant latent heat of
vaporization) are employed, the bubble wall temperatures increase
by an order of magnitude that suggest the use of variable interface
properties in the proposed model. When variable interface proper-
ties are used, the bubble wall temperatures are reduced to reasonable
values in agreement with the results of previous investigations.14

Moreover, the comparison between the results obtained by the adi-
abatic law and those by the present acoustic cavitation model using
sufficiently large values of the model parameter shows considerable
differences in the bubble wall temperature variations in contrast to
very good agreement in the bubble radius variations during initial
growth and subsequent rebounds, implying that the perfect gas law
is not satisfied at the interface due to phase change and the uniform
pressure approximation.

II. THERMAL DIFFUSION THROUGH A GAS BUBBLE
IN THE UNIFORM PRESSURE APPROXIMATION

In this section, we focus on the thermal behavior inside the bub-
ble in the uniform pressure approximation. The partial differential
equation for the temperature field inside a gas bubble in the uni-
form pressure approximation is given by Prosperetti,12 which can be
written in normalized form31 as

p
T

⎧⎪⎪⎨⎪⎪⎩

∂T
∂t
+ 1
(Pe) p R2

⎡⎢⎢⎢⎢⎣
λ(T)∂T

∂y
− y(∂T

∂y
)

y=1−

⎤⎥⎥⎥⎥⎦

∂T
∂y

⎫⎪⎪⎬⎪⎪⎭

= (γ − 1)
γ

dp
dt
+ 1
(Pe)R2 y2

∂

∂y
[y2λ(T)∂T

∂y
]. (1)

In Eq. (1), T is the spherically symmetric temperature field inside the
bubble, normalized with respect to the bulk liquid temperature T′0;
p is the bubble gas pressure in the uniform pressure approximation,
normalized with respect to a reference pressure p′0; R is the bubble
radius, normalized with respect to the initial bubble radius R′0; λ(T)
is the thermal conductivity of the gas, normalized with respect to its
value λ′R at the bubble wall; γ is the isentropic exponent of the gas; y
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is the radial coordinate, measured from the bubble center and nor-
malized with respect to the instantaneous value of the bubble radius;
and t is the time, normalized with respect to a typical characteristic
time scale Θ′. The Péclet number Pe is based on the characteristic
time scale Θ′ and is defined by

Pe = γ p′0 R′0
2

(γ − 1)λ′R T′0 Θ′
, (2)

which is physically described as the ratio of the diffusion time scale
to the advection time scale. The gas pressure in the uniform pres-
sure approximation can then be found by solving the differential
equation

dp
dt
= 3γ

R

⎡⎢⎢⎢⎢⎣

1
(Pe)R

(∂T
∂y
)

y=1−
− p

dR
dt

⎤⎥⎥⎥⎥⎦
, (3)

which requires the solution of Eq. (1) together with the initial and
boundary conditions

T(t = 0, y) = 1, T(t, y = 1−) = TR(t), and (∂T
∂y
)

y=0
= 0 (4)

for the evaluation of the bubble wall radial temperature gradient
c(t; Pe) = (∂T/∂y)y=1− . It is important to mention that in arriving
at Eq. (3), no gas transport is allowed across the gas–liquid interface.
With this in mind, Eqs. (1) and (3) should be solved simultaneously
satisfying the initial and boundary conditions of the gas temperature
given by Eq. (4) together with an initial condition for the gas pres-
sure, supplemented by the solution of a spherical bubble dynamics
equation for the bubble radius.

In the rest of this paper, we derive a hierarchy of equations
for the radial partial derivatives of the gas temperature at the bub-
ble wall by carrying out a series expansion of the gas temperature
near the bubble wall and by substituting it into the energy equa-
tion (1). We then introduce a closure relation for the hierarchy
equations by time averaging the complex dynamics of change of
state over a characteristic time, arriving at the reduced order gas
pressure law by exact integration of Eq. (3). This novel reduced
order gas pressure law depends on the bubble radius R(t) (to be
obtained by solving the Keller–Miksis equation of spherical bub-
ble dynamics), the bubble wall temperature TR(t) (to be obtained
from the Plesset–Zwick solution in Sec. III), and a parameter
that is a function of the Péclet number and characteristic time.
Consequently, an acoustic cavitation model based on the novel
reduced order gas pressure law is constructed in Sec. IV, and
the results of the model for air bubbles in water are presented
in Sec. VI.

A. From isothermal to adiabatic change of state:
Hierarchy equations for the radial partial derivatives
of the gas temperature at the bubble wall

It is well-known from earlier numerical simulations9,10 that the
initial growth of the bubble is almost isothermal and that its final
collapse stage before rebound can exhibit almost adiabatic behavior.
To achieve such a change of state, we here adapt an iterative method
of solution by first carrying out an expansion for the temperature
field of the gas inside the bubble near the bubble wall as

T(t, y) = TR(t) + (
∂T
∂y
)

y=1−
(y − 1−)

+ 1
2!
(∂

2T
∂y2 )

y=1−
(y − 1−)2 + ⋅ ⋅ ⋅ (5)

together with a similar expansion for the thermal conductivity of the
gas

λ(T) = λ(TR) + (
dλ
dT
)

R
(∂T
∂y
)

y=1−
(y − 1−)

+ 1
2!

⎡⎢⎢⎢⎢⎣
( d2λ

dT2 )
R
(∂T
∂y
)

2

y=1−
+ ( dλ

dT
)

R
(∂

2T
∂y2 )

y=1−

⎤⎥⎥⎥⎥⎦
× (y − 1−)2 + ⋅ ⋅ ⋅ , (6)

where (dλ/dT)R = (dλ/dT)y=1− . Truncating the series expansions
(5) and (6) after two or three terms within a reasonable error would
yield results valid only for the near-isothermal change of state,
implying a relatively large near isothermal characteristic time scale
Θ′nis with Pe≪ 1. If a transition from a near isothermal (Pe≪ 1) to a
near adiabatic (Pe≫ 1) change of state is to be considered, the series
expansions given by Eqs. (5) and (6) have to be truncated after some
finite N-terms for convergence, N depending on the Péclet number
Pe. Therefore, the adiabatic change of state [Pe→∞, where all terms
in the series become of the same order of magnitude, and thus, the
series given by Eq. (5) diverges] is not considered. Substitution of
the above expansions into Eq. (1) and taking the limit y → 1− lead to
the following quadratic equation for the bubble wall gas temperature
gradient c(t; Pe):

( dλ
dT
)

R
c2(t; Pe) + 2 c(t; Pe) −

⎧⎪⎪⎨⎪⎪⎩
(Pe) p R2

× [ 1
TR

dTR

dt
− (γ − 1)

γ
1
p

dp
dt
] − (∂

2T
∂y2 )

y=1−

⎫⎪⎪⎬⎪⎪⎭
= 0. (7)

The solution of the quadratic equation for c yields the first hierar-
chy equation between the first order and second order radial partial
derivatives of the temperature at the bubble wall as

c(t; Pe) =
−1 +

√
1 + ( dλ

dT )R
{(Pe) p R2[ 1

TR

dTR
dt −

(γ−1)
γ

1
p

dp
dt ] − (

∂2T
∂y2 )

y=1−
}

( dλ
dT )R

. (8)
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When the temperature dependence of the thermal conductivity is
neglected, the first hierarchy equation (8) simplifies to

c(t; Pe) = (∂T
∂y
)

y=1−
= (Pe)R2

2
[ p

TR

dTR

dt
− (γ − 1)

γ
dp
dt
]

− 1
2
(∂

2T
∂y2 )

y=1−
. (9)

Equation (9) shows that the radial temperature gradient at the bub-
ble wall depends on the bubble radius, the bubble wall temperature,
and the gas pressure as well as on the second order radial partial
derivative of the gas temperature at the bubble wall. Therefore, we
require the value of the second order radial partial derivative of the
gas temperature at the bubble wall in order to be able to solve for the

gas pressure from Eq. (3) using Eq. (9). For this reason, we differen-
tiate Eq. (1) with respect to y and take the limit y → 1− to arrive at
the second hierarchy equation between the second order and third
order radial partial derivatives of the temperature at the bubble wall,

(∂
2T
∂y2 )

y=1−
= c [ 1 + (Pe) p R2

2 TR

d
dt

ln∣ c/(2 TR)
1 − c/(2 TR)

∣ ]

− 1

2 (1 − c
2 TR
)
(∂

3T
∂y3 )

y=1−
, (10)

where the temperature dependence of the non-dimensional thermal
conductivity λ(T) in Eq. (1) is left out. Similarly, we find the third
hierarchy equation between the third order and fourth order radial
partial derivatives of the temperature at the bubble wall as

(∂
3T
∂y3 )

y=1−
= c
(2 TR − c) {

(Pe)2 p2 R4

c TR
(d2TR

dt2 ) +
3 (γ − 1) (Pe)2 p2 R3

c
(d2R

dt2 )

+ (6γ − 7) (Pe)2 p2 R3

c TR
(dTR

dt
) (dR
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) + 3 (γ − 1) (3γ − 5) (Pe)2 p2 R2

c
(dR

dt
)

2

+ 3 (γ − 1) (Pe) p R [ 4TR

c
− 2c

TR
− 9γ + 2 ] (dR

dt
) + (Pe) p R2 [ 4

c
− (6γ − 1)

TR
] (dTR

dt
)

− (Pe) p R2 [ 2
TR
+ (3γ − 1)

c
] (dc

dt
) − 12 γ TR + 6 γ (3 γ − 1) c + 6γ

TR
c2
⎫⎪⎪⎬⎪⎪⎭
− 1

2 (1 − c
2 TR
)
(∂

4T
∂y4 )

y=1−
. (11)

It is now clear that we need the fourth order partial derivative of
the temperature at the bubble wall in order to be able to solve
for the gas pressure. In principle, one can obtain higher (fourth
order, fifth order, etc.) hierarchy equations by differentiating Eq. (1)
with respect to the non-dimensional radial coordinate y successively
(three times, four times, etc.) and by taking the limit y → 1− after-
ward, leaving out the temperature dependence of the thermal con-
ductivity. In this manner, one can construct an infinite sequence of
hierarchy equations relating the nth order and the (n + 1)-th order
radial partial derivatives of the gas temperature at the bubble wall in
the form

(∂
nT
∂yn )

y=1−
= c(t ; Pe) Fn(t ; Pe)

+Gn(t ; Pe) (∂
n+1T
∂yn+1 )

y=1−
, n = 2, 3, 4, . . . . (12)

In particular, for n = 2 and n = 3, the functions F2(t; Pe), G2(t; Pe)
and F3(t; Pe), G3(t; Pe) can easily be identified from the sec-
ond and third hierarchy equations (10) and (11), respectively.
In principle, beginning with the second hierarchy equation (10),
one can successively substitute for the higher order radial par-
tial derivatives of the temperature at the bubble wall to arrive
at

(∂
2T
∂y2 )

y=1−
= c(t; Pe)

⎡⎢⎢⎢⎢⎣
F2(t; Pe) +

n−1

∑
j=2

Fj+1(t; Pe)

×
⎛
⎝

j

∏
i=2

Gi(t; Pe)
⎞
⎠

⎤⎥⎥⎥⎥⎦
+ (

n

∏
i=2

Gi(t; Pe) )(∂
n+1T
∂yn+1 )

y=1−

(13)

for n ≥ 3. On the other hand, in the limit as n→∞, we would have
pointwise convergence of the infinite sequence of the radial partial
derivatives of the gas temperature at the bubble wall so that, in this
limit, Eq. (12) yields

limn→∞(
∂nT
∂yn )

y=1−
= c(t ; Pe) limn→∞

Fn(t; Pe)
1 −Gn(t ; Pe) . (14)

Now, by taking the limit as n→∞ of Eq. (13) and by utilizing
Eq. (14), one can, in principle, obtain the expression

(∂
2T
∂y2 )

y=1−
= 2 c(t; Pe) H(t; Pe)

= c(t; Pe)
⎧⎪⎪⎨⎪⎪⎩

F2(t; Pe) + limn→∞

⎡⎢⎢⎢⎢⎣

n−1

∑
j=2

Fj+1(t; Pe)

×
⎛
⎝

j

∏
i=2

Gi(t; Pe)
⎞
⎠
+ Fn(t; Pe)

1 −Gn(t; Pe)(
n

∏
i=2

Gi(t; Pe) )
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,

(15)
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which defines the function H(t; Pe). Now, substitution from Eq. (15)
for (∂2T

∂y2 )
y=1−

into the first hierarchy equation (9) yields the exact

expression for c(t; Pe) as

c(t; Pe) = (∂T
∂y
)

y=1−
= (Pe)R2

2[1 +H(t; Pe)][
p

TR

dTR

dt
− (γ − 1)

γ
dp
dt
].

(16)
Consequently, the exact solution for the gas pressure in the uni-
form pressure approximation can be obtained by substituting from
Eq. (16) for c(t; Pe) into Eq. (3) and solving the resulting ordi-
nary differential equation (ODE) coupled to the evolution equa-
tions of the bubble wall temperature TR(t) and the bubble radius
R(t), provided that the function H(t; Pe) is known. However, it is
almost impossible to obtain the limiting function H(t; Pe) defined
by Eq. (15) explicitly since this would require knowledge of the
infinite sequence of all functions entering the hierarchy equations
for the radial partial derivatives of the temperature at the bub-
ble wall. Nevertheless, some information can be obtained from the
Péclet number dependence for the change of state from isothermal
to adiabatic behavior. The function H(t; Pe), which characterizes
possible changes due to nonlinear advection and thermal diffusion
inside the bubble, remains finite when the Péclet number is rela-
tively small in magnitude (the near isothermal approximation) since
the Taylor series given by Eq. (5) can then be truncated after a
few terms. However, the function H(t; Pe) becomes unbounded in
the adiabatic limit as Pe→∞. In this limit, all terms in the series
become of the same order of magnitude so that the series given by
Eq. (5) diverges (this means that the adiabatic limit can be reached
only asymptotically). In Subsection II B, these characteristics of the
function H(t; Pe) will be exploited for the closure of the hierarchy
equations.

With this in mind, we now discuss the limiting isothermal and
adiabatic change of states. Independent of the value of the Péclet
number Pe [and therefore, of the function H(t; Pe)], we first distin-
guish the special case where TR(t) = constant = Tc and γ = 1, with
Tc denoting the normalized critical temperature of the gas, which
presumably can be realized at the thermodynamic critical point. In
this case, the change of state is both isothermal and adiabatic.

1. The isothermal change of state
In this case, TR(t) = constant by definition. Besides the special

case discussed above, it follows that this can only be realized in the
limit as Pe→ 0 (or the isothermal characteristic time Θ′ = Θ′is →∞).
In this limit, substitution from Eq. (16) into Eq. (3) shows that the
isothermal change of state is realized if and only if the function
H(t; 0) assumes the constant value 1/2.

2. The adiabatic change of state
In this case, c = 0 by definition. Independent of the value of

the Péclet number Pe, it follows from Eq. (16) that this change of
state is naturally satisfied by the isentropic pressure–temperature
relation of the gas (p∝ Tγ/(γ−1)

R ), and it consistently yields the
adiabatic pressure–radius relation pR3γ = constant upon integra-
tion of Eq. (3) together with c = 0. However, as mentioned above
in the preceding paragraph, in the adiabatic limit (c = 0), the
pressure–radius relation pR3γ = constant can also be realized as the
function H(t; Pe) becomes unbounded, which is physically realized

in the limit as Pe→∞ (or the adiabatic characteristic time Θ′
= Θ′ad → 0). In this case, we also obtain the adiabatic pressure–radius
relation pR3γ = constant upon exact integration of Eq. (3) but not
necessarily satisfying the isentropic pressure–temperature relation
(violation of the ideal gas equation at the gas/liquid interface).
This case has also been discussed in the theory of single bubble
sonoluminescence.32

Equations (1), (3), and (16) together with an approximation
for the function H(t; Pe) can now be solved iteratively for the gas
temperature and gas pressure utilizing the initial and boundary con-
ditions for the gas temperature and an initial condition for the gas
pressure, provided that the bubble wall temperature TR(t) and the
bubble radius R(t) are known. In what follows, the function H(t; Pe)
will be approximated by its average value over a characteristic time,
the bubble wall temperature TR(t) will be obtained from the solu-
tion of the thermal diffusion equation of the liquid side by utilizing
the interface conditions, and the bubble radius R(t) will be evalu-
ated from the solution of a Rayleigh–Plesset type bubble dynamics
equation with appropriate initial conditions.

B. Closure of the hierarchy equations: A reduced
order gas pressure law

It is well-known from early numerical simulations9,10 that the
initial growth of a bubble in thermodynamic equilibrium excited by
an acoustic pressure signal is almost isothermal and that its final
collapse stage before rebound may exhibit adiabatic behavior. The
growth and collapse of the bubble followed by subsequent rebounds
usually involve multiple characteristic time scales, resulting in differ-
ent Péclet numbers for growth and collapse. Actually, the change in
characteristic time scale reflects on the change in magnitude of the
value of the function H(t; Pe) from 1/2 (Pe→ 0 implying isother-
mal change of state) to infinity (Pe→∞ implying adiabatic change
of state). It is thus expected that the function H(t; Pe) can vary con-
siderably with time. In order to get around this difficulty, we select
a typical normalized characteristic time scale ϑ, which is likely to
reflect the mean behavior of the change of state of the gas. It may now
be possible to capture the dominant features of the nonlinear advec-
tion and thermal diffusion effects on bubble motion by averaging
the function H(t; Pe) during this characteristic time. If we denote by
t1 the normalized time where the function H(t; Pe) begins to devi-
ate from its isothermal behavior and by t2 = t1 + ϑ the normalized
time just after the characteristic time period, we can define the aver-
age value f (Pe; ϑ) of the function H(t; Pe) over the characteristic
interval (t1, t2) as

f (Pe; ϑ) = 1
ϑ∫

t1+ϑ

t1

H(t; Pe) dt, (17)

where the normalized characteristic time is ϑ = (t′2 − t′1)/Θ′ = t2
− t1. We can now approximate H(t, Pe) by its average value f (Pe; ϑ)
so that the radial temperature gradient at the bubble wall c(t; Pe)
given by Eq. (16) becomes

c(t; Pe) = (∂T
∂y
)

y=1−
= (Pe)R2

2 [1 + f (Pe; ϑ)][
p

TR

dTR

dt
− (γ − 1)

γ
dp
dt
].

(18)
Furthermore, if we substitute from Eq. (18) for c(t; Pe) into Eq. (3),
upon exact integration, we arrive at the reduced order gas pressure
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law in the form

p = pg0 [
(TR)1/2(1+ f )

R
]

3 Γ

, (19)

where the polytropic exponent Γ in this case is given by

Γ = 2γ (1 + f )
(3γ − 1 + 2 f ) , (20)

where 1/2 < f = f (Pe; ϑ) <∞. Figure 1 shows the variation of the
polytropic exponent Γ against the function f for air (γ = 1.4) and
for a monatomic gas (γ = 5/3). Independent of the bubble wall tem-
perature TR, it can be shown that the reduced order gas pressure
law given by Eqs. (19) and (20) reduces to the classical adiabatic
pressure–radius relation as f →∞, which is known to be valid as
Pe→∞. One can also show that for f = 1/2 and TR = 1, the classical
isothermal law, valid as Pe→ 0, is recovered. From physical consid-
erations, it is now obvious that the function f (Pe; ϑ) is an increasing
function of Péclet number Pe. Depending on the value of the charac-
teristic time ϑ (or Péclet number Pe), we can now distinguish three
different regimes of change of state.

1. The nearly isothermal change of state
This is realized when the characteristic time is large enough

implying small Péclet number (Pe≪ 1). Thus, in this case, the
function f (Pe; ϑ) is near the isothermal value 1/2 [say 1/2 < f
= f (Pe; ϑ) < 1].

2. The nearly adiabatic change of state
This is realized when the characteristic time is small enough,

implying large Péclet number (Pe≫ 1). Thus, in this case, the func-
tion f (Pe; ϑ)≫ 1 (say f > 10 for air and f > 15 for a monatomic gas,
referring to Fig. 1).

FIG. 1. Variation of the function Γ given by Eq. (20) with respect to f for air and for
a monatomic gas.

3. The transition change of state
This is realized when the characteristic time is of the order

of unity in magnitude [ϑ = O(1)], implying a Péclet number being
of the order of unity [Pe = O(1)]. Thus, in this case, the func-
tion f (Pe; ϑ) = O(1) [say 1 < f = f (Pe; ϑ) < 10 for air and 1 < f
= f (Pe; ϑ) < 15 for a monatomic gas, referring to Fig. 1].

In general, the change of state during the growth and collapse
of the bubble may involve a sequence of the above regimes with mul-
tiple characteristic times (corresponding to different Péclet num-
bers) for averaging the function H(t; Pe) over different characteristic
times. In what follows, for simplicity, we choose a single characteris-
tic time (corresponding to a fixed Péclet number) for averaging the
function H(t; Pe), resulting in an optimized change of state. More-
over, in cases where the difference between the bubble wall tempera-
ture and the bulk liquid temperature is sufficiently small, the bubble
wall temperature can be taken as the bulk liquid temperature.9,12 The
reduced order gas pressure law then takes the simplified form

p = pg0

R3 Γ , (21)

where the polytropic exponent Γ is given by Eq. (20). In this case,
the isothermal law is recovered when f = 1/2 and the adiabatic
pressure–radius relation is approached as f →∞. The simplified
reduced order gas pressure given by Eq. (21) can be very use-
ful for bubble dynamic models where the bubble wall temperature
is near the bulk liquid temperature and where simplifications are
necessary to avoid long computation times. Estimates of the func-
tion f depending on the Péclet number Pe and on the normalized
characteristic time ϑ are discussed in Sec. V.

III. THERMAL DIFFUSION IN THE SURROUNDING
LIQUID: THE PLESSET–ZWICK SOLUTION

The bubble wall temperature can be significantly different from
the ambient liquid temperature, especially during the violent col-
lapse of the bubble. In such a case, the consideration of the energy
equation in the surrounding liquid is essential. If Tℓ(y, t) denotes the
temperature distribution inside the liquid phase, normalized with
respect to the ambient liquid temperature T′0, at time t and at a nor-
malized distance y = r′/R′ ≥ 1, where r′ is the radial distance from
the bubble center, the energy equation in the liquid can be written
as1

∂Tℓ

∂t
+ R2

y2
dR
dt

∂Tℓ

∂y
= ( α′ℓ0 Θ′

R′ 2
0
) 1

R2 y2
∂

∂y
( y2 ∂Tℓ

∂y
), (22)

where α′ℓ0 is the thermal diffusivity of the liquid at the cold liquid
temperature, R′0 is the initial bubble radius, and Θ′ is a characteris-
tic time. Assuming that the bubble wall temperature is continuous
across the gas/liquid interface [TR = (Tℓ)y=1+ ], the normalized bub-
ble wall temperature TR can be obtained by the Plesset and Zwick23

solution

TR(t) = 1 − (α′ℓ0 Θ′

π R′0
2 )

1/2

∫
t

0

R(ξ)(∂Tℓ/∂y)y=1+

[∫ t
ξ R4(τ)dτ]

1/2 dξ. (23)

Equation (23) relates the bubble wall temperature TR to bubble
dynamics and to the heat flux at the bubble wall conducted to the
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liquid through the bubble wall. For a gas bubble, the heat flux at the
bubble wall is also continuous, relating the radial liquid temperature
to the radial gas temperature gradient c(t; Pe) at the bubble by

( ∂Tℓ

∂y
)

y=1+
= ( λ′(T′R)

λ′ℓ(T′R)
) ( ∂T

∂y
)

y=1−
= A c(t; Pe), (24)

where A = (λ′(T′R)/λ′ℓ(T′R)) denotes the ratio of the gas thermal
conductivity to that of the liquid at the bubble wall. Substitution
from Eq. (24) for (∂Tℓ/∂y)y=1+ into Eq. (23) yields

TR(t) = 1 − (α′ℓ0 Θ′

π R′0
2 )

1/2

∫
t

0

R(ξ)A(ξ) c(ξ; Pe)

[∫ t
ξ R4(τ)dτ]

1/2 dξ. (25)

Equations (18)–(20) and (25) coupled to spherical bubble dynamics
form an integro-differential system for the uniform gas pressure p(t)
within the bubble and for the bubble wall temperature TR(t) and can
be solved iteratively by employing a Rayleigh–Plesset type equation
for spherical bubble dynamics.

IV. A REDUCED ORDER ACOUSTIC CAVITATION
MODEL

In this section, we consider acoustic cavitation (gas–vapor)
bubbles where the mixture pressure pb inside the bubble is taken as
the sum of the partial vapor pressure pv and the partial gas pressure
pg assuming a gas mixture of ideal gases, which in normalized form
can be written as

pb = pv + pg . (26)

Within the framework of the uniform pressure approximation, the
normalized vapor pressure can be taken as the normalized satu-
ration vapor pressure at the normalized bubble wall temperature
TR, i.e., pv = pv,sat(TR). In order to be able to use the results of
the reduced order model of Sec. II for the normalized gas pres-
sure pg , it is important to note that no mass transport between the
bubble and the surrounding liquid is allowed at the bubble wall in
the balance equations (1) and (3). For gas–vapor bubbles, in gen-
eral, mass transport for the noncondensable gas and phase change
(evaporation/condensation) at the bubble wall should be taken into
account. Thus, Eqs. (1) and (3), and consequently, the reduced order
gas pressure law given by Eqs. (19) and (20), have to be modified
when phase change and mass transport effects between the bubble
and the surrounding liquid become comparable to that of thermal
conduction through the bubble wall. Recently, a reduced order, sin-
gle bubble acoustic cavitation model that takes into account heat
as well as mass transfer with uniform spatial distribution of ther-
modynamic variables everywhere except within boundary layers
near the bubble wall has been carried out by Kreider et al.16 uti-
lizing an ODE similar to Eq. (3) for the time rate of change of
the mixture pressure modified by the effect of mass transfer of the
gas and vapor. However, as the authors state, experimental obser-
vations were used to tune and test model parameters. We herein
construct a simple reduced-order acoustic cavitation model, based

on the results of Secs. II and III, which aim to fulfill the need for
avoiding lengthy and expensive numerical simulations of the com-
plex multiphase flow equations together with interface conditions
for cases where the assumptions and simplifications made remain
valid. For this reason, we first assume an insoluble noncondens-
able gas where the solubility of the gas in the liquid is small enough
not to effect bubble dynamics and the thermodynamic state of the
multiphase mixture (such an assumption is valid for air bubbles in
water at room temperature14). This simplification already enables
us to avoid solving the diffusion equation for the air concentra-
tion in the liquid, similar to Eq. (22) where the liquid temperature
is replaced by the non-condensable concentration and the thermal
diffusivity of the liquid is replaced by the diffusion coefficient of
the noncondensable gas in the liquid together with the interfacial
Henry law condition. Despite this simplification for the air–water
system, the effect of the vapor mass transfer at the interface due
to evaporation and condensation has to be taken into account in
the balance equations (1) and (3) for gas–vapor bubbles. For this
reason, we first discuss the interfacial conditions for the tempera-
ture. We still assume the continuity of the temperature at the inter-
face, i.e., the equality of the temperatures of the gas–vapor mixture
and of the liquid at the interface (TR = TℓR), as usually accepted
(Kreider et al.16 also discussed the case of a temperature jump with
a temperature-jump coefficient at the gas–liquid interface in their
reduced order model, but they are skeptical in extrapolating the tem-
perature jump coefficient from kinetic theory). However, the conti-
nuity of the heat flux at the gas–liquid interface given by Eq. (24) for
gas bubbles is no longer valid due to evaporation and condensation
at the gas–liquid interface and has to be replaced by the normalized
condition

(∂Tℓ

∂y
)

y=1+
− (λ′b(T′R)

λ′ℓ(T′R)
)(∂T

∂y
)

y=1−
= (R′0m′′vL′(T′R)

T′0λ′ℓ(T′R)
)R, (27)

where L′(T′R) is the latent heat of condensation at the bubble wall
temperature, λ′b(T′R) is the thermal conductivity of the gas–vapor
mixture at the interface, λ′ℓ(T′R) is the thermal conductivity of the
liquid at the interface, and m′′v is the vapor mass flux across the
interface (it is positive for flow into the bubble during evapora-
tion). The vapor mass flux at the interface is, in principle, deter-
mined from kinetic theory;9,14,16 however, the value of the accom-
modation equation to be used, which is usually obtained from
molecular simulations under different conditions, presents a seri-
ous difficulty. Here, we, instead, determine the vapor mass flux
m′′v using an approximate lumped energy balance at the inter-
face. In this balance, we can assume that the heat supplied from
the liquid to the interface during growth is almost totally used
for vaporization and that the heat released by condensation dur-
ing collapse is almost totally transferred from the interface to
the liquid by neglecting the heat used in heating or cooling the
bubble contents since the thermal conductivity of the liquid is
much larger in magnitude than that of the vapor. Therefore, one
can relate the rate of change of vapor mass production to the
rate of change of volume increase arriving at the normalized
relation1,31,33
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ρ′v0,satL
′(T′R)

3Θ′
d
dt
[ρv,sat(TR)R3] = (T′0λ′ℓ(T′R)

R′20
)R(∂Tℓ

∂y
)

y=1+
, (28)

where ρv,sat(TR) = ρ′v,sat(T
′
R)/ρ′v0,sat is the normalized saturated

vapor density evaluated at the bubble wall temperature, with ρ′v0,sat
denoting the saturated vapor density at the bulk liquid temperature.
Within this approximation, the vapor mass flux m′′v can be written
as

m′′v = (
R′0 ρ′v0,sat

3 Θ′
) 1

R2
d
dt
[ ρv,sat(TR)R3 ] (29)

by eliminating (∂Tℓ/∂y)y=1+ between Eqs. (27) and (28). If we fur-
ther assume that the rate of vapor mass transfer to or from the bubble
is small enough to change the initial vapor concentration C0 within
the bubble, the energy balance equations (1) and (3) can be mod-
ified to include the effect of the initial vapor concentration C0 for

gas–vapor bubbles. From the modified balance equations [Eqs. (A1)
and (A2) in Appendix A], we can now identify the validity of the
reduced order gas pressure law given by Eq. (19) in Sec. II as the
condition given by Eq. (A8), as worked out in detail in Appendix A.
Under these conditions, the normalized bubble mixture pressure pb
can now be written as

pb = pv + pg = pv,sat(TR) + pg0 [
(TR)1/2(1+ f )

R1−C0
]

3 Γ

, (30)

where pv,sat(TR) is the normalized saturated vapor pressure at the
bubble wall, pg0 is the initial normalized partial gas pressure, and
Γ is given by Eq. (20). For the normalized bubble wall temperature
TR, we can still employ the Plesset–Zwick equation (23). Substitut-
ing for the normalized bubble wall temperature gradient of the liquid
side from Eq. (28) together with Eq. (29) into the Plesset–Zwick
equation (23), we obtain

TR(t) = 1 − B∫
t

0

L(ξ) [ ρv,sat(ξ)R2(ξ) (dR/dξ) + R3(ξ) (dρv,sat/dTR) (dTR/dξ)/3 ]

λℓ(ξ) [∫ t
ξ R4(τ)dτ]

1/2 dξ (31)

for acoustic cavitation bubbles. In the above equation, the dimen-
sionless constant B is given by

B =
⎛
⎝

L′0
T′0 c′pℓ0

⎞
⎠
(ρ′v0,sat

ρ′ℓ0
) R′0
(π Θ′ α′ℓ0)1/2 , (32)

where c′pℓ0 and ρ′ℓ0 are, respectively, the specific heat of the liquid
and the density of the liquid at the cold liquid temperature, with
L′0 and ρ′v0,sat denoting, respectively, the latent heat of condensation
and the saturated vapor density at the cold liquid temperature, and
L(TR) = L′(T′R)/L′0 is the normalized latent heat of condensation at
the bubble wall, ρv,sat(TR) = ρ′v,sat(T

′
R)/ρ′v0,sat is the normalized sat-

urated vapor density at the bubble wall, and λℓ(TR) = λ′ℓ(T′R)/λ′ℓ0
is the normalized thermal conductivity of the liquid at the bubble
wall temperature, with λ′ℓ0 denoting its value at the cold liquid tem-
perature. For liquids of negligible heating/cooling rates, the second

term in the numerator of the integrand in Eq. (31) can be neglected.
Equations (30)–(32) form the model equations of the reduced order
gas pressure law for acoustic cavitation bubbles coupled to spher-
ical bubble dynamics that accounts for liquid compressibility. Sev-
eral equations of spherical bubble dynamics that account for liquid
compressibility30,34,35 have been proposed. Prosperetti and Lezzi36

shown that all belong to a family of spherical bubble dynamic mod-
els obtained by the asymptotic expansion of the small wall Mach
number corresponding to weak compressibility of a barotropic liq-
uid ignoring thermal effects in the liquid. Nevertheless, as pointed
out by Prosperetti and Lezzi36 and exploited by Ando et al.,37 the use
of Gilmore’s equation for spherical bubble dynamics in a compress-
ible liquid yields more accurate results because the speed of sound is
not taken to be constant but depends on the liquid pressure. In this
study, we use the Keller–Miksis equation30 for a weak compressible
liquid, which takes the normalized form

[1 −MṘ + 4M
R Re(TR)

]RR̈ + 3
2
[1 − M

3
Ṙ − 8M

3 Re(TR)R
] Ṙ2 + [4(1 +MṘ)

Re(TR)
− 2M

We(TR)
] Ṙ

R

+ 2 (1 +MṘ)
⎧⎪⎪⎨⎪⎪⎩

1
R We(TR)

− 1
We(1)[

(TR)1/2(1+ f )

R1−C0
]

3 Γ⎫⎪⎪⎬⎪⎪⎭
+ (1 +MṘ)

2

⎧⎪⎪⎨⎪⎪⎩
σ(TR) − σ(1)[(TR)1/2(1+ f )

R1−C0
]

3 Γ⎫⎪⎪⎬⎪⎪⎭
+ (1 +MṘ)Cp

2

+ MR
2

dCp

dt
− ( 2

We(1) +
σ(1)

2
) M R

d
dt
[(TR)1/2(1+ f )

R1−C0
]

3 Γ

+ MR
2

dσ
dTR

dTR

dt
− 2M
[We(TR)]2

dWe
dTR

dTR

dt
− 4M Ṙ
[Re(TR)]2

dRe
dTR

dTR

dt
= 0,

(33)
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where M = U′0/a′ℓ0 is a characteristic Mach number, with a′ℓ0 denot-
ing the speed of sound in the liquid at the cold liquid tempera-
ture, σ(TR) is the cavitation number, Re(TR) is a typical Reynolds
number, and We(TR) is the Weber number, all evaluated at the
normalized bubble wall temperature, which are defined by

σ(TR) =
p′0 − p′v,sat(T′R)

1
2 ρ′ℓ0U′0

2 , Re(TR) =
ρ′ℓ0U′0R′0
μ′ℓ(T′R)

,

and

We(TR) =
ρ′ℓ0U′0

2R′0
S′(T′R)

(34)

and where Cp(t) is the pressure coefficient given by

Cp(t) =
p′0 − p′∞(t′)

1
2 ρ′ℓ0U′0

2 , (35)

with p′∞(t′) denoting the driving acoustic pressure. Furthermore, p′0
is the reference background pressure, U′0 = R′0/Θ′ is a typical speed
for normalization, p′v,sat(T′R) is the saturated vapor pressure at the
bubble wall temperature, S′(T′R) is the surface tension coefficient
at the bubble wall temperature, and μ′ℓ(T′R) is the liquid viscos-
ity at the bubble wall temperature. The normalized Keller–Miksis
equation (33) can be employed only when the wall Mach number
remains sufficiently small. Before applying the above acoustic cavi-
tation model based on the novel gas pressure law, given by Eqs. (19)
and (20), to single acoustic cavitation bubbles, we wish to discuss
estimates of the function f (Pe, ϑ) entering the model through the
novel gas pressure law.

V. ESTIMATES OF THE FUNCTION f(Pe, ϑ)
In this section, we identify the function f (Pe, ϑ) for small

amplitude oscillations of the acoustic bubble by utilizing the

well-established linear theory, and we attempt to obtain its esti-
mates for large amplitude oscillations by the numerical simulations
of Eqs. (1)–(3) with appropriate initial and boundary conditions.

A. Identification of the function f(Pe, ϑ) for small
amplitude oscillations

For small amplitude oscillations of the bubble, the normalized
bubble wall temperature TR, which enters the novel reduced order
gas pressure law given by Eq. (19), can be taken to be unity so that
the reduced order gas pressure law reduces to the polytropic gas law
with the polytropic index Γ given by Eq. (20). In this case, the nor-
malization time scale Θ′ can be identified as the reciprocal of the
forcing frequency ω′ so that the Péclet number Pe, given by Eq. (2),
takes the form

Pe = R′20 ω′

α′g
, (36)

where α′g is the thermal diffusivity of the gas. Furthermore, by solv-
ing from Eq. (20) for the function f in terms of the isentropic index γ
and the polytropic index Γ, we arrive at

f = (3γ − 1) Γ − 2γ
2 (γ − Γ) , (37)

where the polytropic index Γ, in general, depends on the Péclet num-
ber Pe and the normalized characteristic time ϑ. It can readily be
seen that in the isothermal limit as Γ→ 1, f (Pe, ϑ)→ 1/2 and in the
adiabatic limit as Γ→ γ, f (Pe, ϑ)→∞, as demonstrated before. The
solution of small amplitude oscillations of a single bubble under an
acoustic pressure signal is well-known. Devin,24 following Pfriem,25

considered the thermal damping of an acoustic bubble in the uni-
form pressure approximation near resonance using the polytropic
expansion and compression of the gas. Under these conditions, he
related the polytropic index Γ to the Péclet number Pe throughout
the relation

Γ = γ (2 Pe)3/2 [ (2 Pe)1/2 + 3 (γ − 1)A− ]
(2 Pe) [(2 Pe)1/2 + 3 (γ − 1)A−]2 + 9 (γ − 1)2 [(2 Pe)1/2 A+ − 2]2 , (38)

whereA± is given by

A± =
sinh(

√
2 Pe) ± sin(

√
2 Pe)

cosh(
√

2 Pe) − cos(
√

2 Pe)
. (39)

In this case, the forcing angular frequency ω′ in Eq. (36) for the
Péclet number is replaced by the surface tension-free Minnaert fre-
quency ω′M . The resonance frequency ω′0 then deviates from the
Minnaert frequency ω′M due to the inclusion of thermal damping
and, possibly, of surface tension (for details, see Leighton3 and Pros-
peretti26). The corresponding thermal damping coefficient can also
be found in the references therein and is shown to vanish in both
of the cases as Pe→ 0 (the isothermal case, Γ→ 1 or f → 1/2) and
Pe→∞ (the adiabatic case, Γ→ γ or f →∞), showing a maximum

in between. Eller27 extended Devin’s work under the same assump-
tions for the damping of bubbles driven by off-resonance frequencies
and found the same expression (38) for the polytropic index Γ. Pros-
peretti28 presented a general linearized theory of small amplitude
pulsations of a bubble, allowing for pressure variations within the
bubble where he describes the thermal effects in terms of a poly-
tropic index and a thermal damping coefficient. His results for the
polytropic index showed dependence on the gas parameters G1 and
G2, where G1 = ω′/(c′g/ℓ′) (a normalized time scale) is the ratio of
the forced angular frequency to the mean collision frequency of the
gas molecules. with c′g denoting the speed of sound in the gas and
ℓ′ denoting the mean free path of the gas molecules, and where
G2 is precisely the Péclet number given by Eq. (36). In particu-
lar, Prosperetti showed, when (G1 G2)1/2 is sufficiently small, the
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uniform pressure approximation within the bubble holds, and the
polytropic index given by Prosperetti28 (depending on G1 and the
Péclet number) becomes the polytropic index Γ previously given for
small amplitude oscillations. Results for the polytropic index Γ as a
function of G2 (the Péclet number) with different values of G1 can
be found in various studies3,28 for different values of the isentropic
exponent γ. Furthermore, Crum29 showed that Prosperetti’s formu-
lation for the polytropic index reduces to that given by Devin24

and Eller27 [Eqs. (38) and (39)] under the same assumptions in
the uniform pressure approximation. It should be emphasized that
Prosperetti’s results of small amplitude bubble pulsations are more
general as they apply at high insonation frequencies where pres-
sure nonuniformities become important. Except for high insonation
frequencies, we have shown how the present formulation recovers
the small amplitude pulsation results by identifying the polytropic
index Γ (and thus the function f ) as a function of the Péclet number
Pe = G2.

B. Estimates of the function f(Pe, ϑ) for large
amplitude oscillations

We now consider the numerical solution of the original system
of partial/ordinary differential equations for large amplitude oscilla-
tions of a single gas bubble in the uniform pressure approximation
and compare the results against those obtained by the reduced order
gas pressure law in order to obtain estimates of the function f cor-
responding to particular Péclet numbers and characteristic times.
Before we proceed, we would like to obtain estimates of f in the
nearly isothermal case, where an asymptotic expression for the gas
pressure is available from the near isothermal model of Prosperetti.12

In this model, the original equations (1) and (3) are solved asymptot-
ically by carrying out regular perturbation expansions of the Péclet
number for the temperature and pressure inside the bubble but using
prescribed values for the bubble radius. Consequently, the equation
for the gas pressure, to O(Pe), takes the simple form

p
pg0
= 1

R3 [ 1 − (γ − 1) (Pe)
5 γ

Ṙ
R2 ]. (40)

In Eq. (40), the O(1) term of the gas pressure is the isothermal gas
pressure law, where the prescribed radius can be obtained from the
isothermal solution of the Keller–Miksis equation (33). If, in addi-
tion to the gas pressure and temperature perturbation expansions, a
regular perturbation expansion of the Péclet number for the bubble
radius R was carried out in the solution of Eqs. (1) and (3) together
with the Keller–Miksis equation, we would arrive at the gas pressure
expression (the consistent near isothermal expression)

p
pg0
= 1

R3
is
{ 1 − (Pe)[(γ − 1)

5 γ
Ṙis

R2
is
+ 3

R1

Ris
]}, (41)

where Ris is the isothermal bubble radius and R1 is the bubble radius
contribution in the O(Pe) term of the bubble perturbation expan-
sion (for details, see Appendix B). In particular, Ris is obtained from
the isothermal solution of the Keller–Miksis equation (B15), and R1
is obtained from the solution of the linear equation (B16) given in
Appendix B. A typical validation of the above near isothermal gas
pressure expression given by Prosperetti12 against full computations

using a spectral collocation method based on orthogonal Cheby-
shev polynomials has already been carried out by Preston.38 We here
compare the solutions of the reduced order gas pressure law given
by Eqs. (19) and (20) with the gas pressure expression (40) given by

FIG. 2. (a) Time variations of the pressure signal coefficients given, respectively,
by Eq. (42) (dashed line) and Eq. (56) (solid line). (b) Variation of the pressure
signal coefficient given by Eq. (57) with respect to normalized time.
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Prosperetti and with the consistent near isothermal expression (41)
carried out in Appendix B using the Keller–Miksis equation (33) for
spherical bubble dynamics under the same driving acoustic pressure
signal,

Cp(t) = −0.54 exp[−( t − 100
40

)
2
], 0 < t < 300, (42)

plotted in Fig. 2(a) for an air bubble with initial equilibrium radius
R′0 = 40 μm in water at 25 ○C. For the numerical computations by
the fifth order Runge–Kutta–Fehlberg method, we use the normal-
ization time Θ′ = 2.0 × 10−7 s corresponding to the Péclet number
Pe = 3.55. The results of the temporal variations of the normalized
bubble radius and gas pressure obtained by the near isothermal
gas pressure solution of Prosperetti by the consistent near isother-
mal solution and by the novel gas pressure law for f = 0.6 [the
value obtained from the linear theory of Eqs. (37)–(39)] using the
Keller–Miksis equation of spherical bubble dynamics are plotted in
Figs. 3(a) and 3(b). Excellent agreement is achieved, with almost
no differences, for the temporal variations of the normalized bub-
ble radius and of the normalized gas pressure between those of the
present model and the near isothermal Prosperetti model, whereas
relatively small deviations arise in the results of the consistent near
isothermal model. It seems that the value of the parameter f for rel-
atively low Péclet numbers (near isothermal change of state) can be
approximated by the value obtained from Eqs. (37)–(39) of the lin-
ear theory, provided that the computational time scale Θ′ is used in
the definition of the Péclet number instead of the reciprocal of the
Minnaert frequency.

We now return to the full numerical solution of the system of
equations [(1) and (3)] subject to the initial and boundary condi-
tions given by Eq. (4) to obtain estimates of the function f (Pe, ϑ).
For simplicity, we use the boundary condition T(t, 1) = TR(t) = 1
so that the temperature distribution within the thin liquid boundary
layer becomes uniform [Tℓ(t, y) = 1 for y > 1]. This avoids the use
of the energy equation (22) in the surrounding liquid and simpli-
fies the reduced order gas pressure law to that given by Eq. (21). By
eliminating dp/dt between Eqs. (1) and (3), we can write the energy
equation in the bubble interior as

∂T
∂t
= 1
(Pe) p R2

⎧⎪⎪⎨⎪⎪⎩
[3 (γ − 1)T + y

∂T
∂y
](∂T

∂y
)

y=1−

+ (2
y

T − ∂T
∂y
) ∂T
∂y
+ T

∂2T
∂y2 } −

3 (γ − 1)
R

dR
dt

T (43)

coupled to Eq. (3) for the gas pressure and to the Keller–Miksis equa-
tion (33) for spherical bubble dynamics. The boundary conditions
for Eq. (43) become

T(t, y = 1−) = 1 and (∂T
∂y
)

y=0
= 0. (44)

We use the spectral method to reduce the energy partial differential
equation (43), subject to the boundary conditions (44) and cou-
pled to the ordinary differential equations (3) and (33) for the gas
pressure and for the bubble radius, to a system of ordinary differ-
ential equations. For this reason, we expand the temperature field

FIG. 3. (a) Comparison of the temporal evolution of the normalized bubble radius
driven by the acoustic pressure given by Eq. (42) for an air bubble in water
with the initial equilibrium radius R′0 = 40 μm, the Weber number We(1) = 166,
the Reynolds number Re(1) = 780, and the Péclet number Pe = 3.55 using the
present reduced order gas pressure law given by Eq. (21) for f = 0.6, the near
isothermal solution of Prosperetti12 given by Eq. (40), and the consistent near
isothermal solution given by Eq. (41). (b) Comparison of the temporal evolution of
the normalized gas pressure under the conditions stated in (a) using the present
reduced order gas pressure law given by Eq. (21) for f = 0.6, the near isother-
mal solution of Prosperetti12 given by Eq. (40), and the consistent near isothermal
solution given by Eq. (41).
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T(t, y) in terms of the orthogonal Chebyshev polynomials Tk(y) in
the form15,33

T(t, y) =
N

∑
k=0

ak(t) T2k(y) (45)

for sufficiently large N where even orders of the Chebyshev
polynomials are chosen to ensure that the boundary condition
(∂T/∂y)y=0 = 0 at the bubble center is automatically satisfied. By
substituting the relations,

∂T
∂t
=

N

∑
k=0

ȧk T2k(y), (46)

∂T
∂y
=

N

∑
k=0

ak(t)
∂T2k

∂y
=

N

∑
k=0

2k sin(2kz)
sinz

ak(t), (47)

and

∂2T
∂y2 =

N

∑
k=0

ak(t)
∂2T2k

∂y2

=
N

∑
k=0

2k [cos z sin(2kz) − 2k sin z cos(2kz)]
sin3 z

ak(t), (48)

where z = arccos(y) into Eq. (43), we arrive at a system of first order
ODEs for the time dependent coefficients ak(t),

ȧk =
1

(Pe) p R2 { [12(γ − 1) + 8k y sin(2kz)
sin z T2k(y)

] (
N

∑
ℓ=0

ℓ2 aℓ )

+ [ 4
y
− 4k sin(2kz)
(sin z) T2k(y)

](
N

∑
ℓ=0

ℓ sin(2ℓz)
sin z

aℓ )

+
N

∑
ℓ=0

(2ℓ)[cos z sin(2ℓz) − 2 ℓ sin z cos(2ℓz)]
sin3 z

× aℓ − 3 (γ − 1) (Pe) p R Ṙ} ak (49)

for k = 0, 1, 2, . . . , N and fixed y. The boundary condition T(t, 1) = 1
now becomes

N

∑
k=0

ak(t) = 1. (50)

Equations (3) and (49) together with (47) at the bubble wall (y = 1)
and the Keller–Miksis equation (33) for spherical bubble dynamics
with specified initial radius and initial radius velocity then form an
initial value problem (IVP) for the bubble radius R(t), the uniform
gas pressure p(t), and the temperature field T(t, y); 0 < y < 1 and
can be solved by conventional Runge–Kutta methods. The results of
the pressure and temperature fields using full numerical simulations
of the underlying fundamental equations in the uniform pressure
approximation under similar conditions by the proper orthogonal
decomposition method are already available.38 The velocity field in
the uniform pressure approximation can then be obtained by the
well-known exact formula11 using the solutions of the bubble radius,
the pressure field, and the temperature field. For the validation of the

reduced order gas pressure law, we only need to consider the system
of ODEs for ak(t) at the bubble wall (y = 1), which reduces to

ȧk =
1

(Pe) p R2 { 4 (3γ − 1) [N2 (1 − a0) −
N−1

∑
ℓ=1
(N2 − ℓ2) aℓ ]

+ 4
3
[N2 (4N2 − 1) (1 − a0)

−
N−1

∑
ℓ=1
(N2(4N2 − 1) − ℓ2(4ℓ2 − 1)) aℓ ]

− 3 (γ − 1) (Pe) p R Ṙ} ak (51)

for k = 0, 1, 2, . . . , N − 1 since aN(t) = 1 −∑N−1
k=0 ak(t). Using

Eq. (47) for the temperature gradient at the bubble wall (y = 1), the
ODE for the gas pressure given by Eq. (3) becomes

ṗ = 3γ
(Pe)R2 [ 4 N2 (1 − a0) − 4

N−1

∑
ℓ=1
(N2 − ℓ2) aℓ − (Pe) p R Ṙ ].

(52)
Moreover, in order to be able to consider the initial value prob-
lem of the system of ODEs given by Eqs. (51) and (52) coupled
to the Keller–Miksis equation (33), we need to specify initial con-
ditions for the spherically symmetric temperature distribution as
well as for the pressure and for the bubble radius together with the
bubble wall velocity. For the spherically symmetric initial tempera-
ture distribution, we here assume a uniform isothermal temperature
distribution T(0, y) = ∑N

k=0ak(0) T2k(y) = 1 for sufficiently large N.
Using orthogonality relations of the even order Chebyshev poly-
nomials on (0,1), we obtain the initial values for the coefficients
ak(t); k = 0, 1, 2, 3, . . . , (N − 1) as

a0(0) = 1 and ak(0) = 0 for k = 1, 2, 3, . . . , (N − 1)
(53)

for the system of ODEs given by Eq. (51). It then follows from the
boundary condition at the bubble wall that aN(0) = 0. The initial
conditions for the gas pressure and for the bubble radius together
with the bubble wall velocity can be taken as

p(0) = pg0 and R(0) = 1 , Ṙ(0) = 0 (54)

for a bubble in equilibrium where the initial equilibrium gas pres-
sure pg0 is obtained from the mechanical equilibrium condition
(Laplace’s equation). The nonlinear system of N + 3 first order
ordinary differential equations (51) and (52) together with the
Keller–Miksis equation (33) subject to the initial conditions given by
Eqs. (53) and (54) constitute an initial value problem (IVP) for the
coefficients ak(t); k = 0, 1, 2, 3, . . . , (N − 1), the normalized uniform
gas pressure p(t), the bubble radius R(t), and the bubble wall veloc-
ity Ṙ(t). The initial value problem for this system is solved using the
4/5 order Runge–Kutta–Fehlberg method with adaptive step size. An
estimate of f (Pe, ϑ) for a fixed Péclet number Pe can, in principle, be
obtained by first evaluating the function H(t; Pe), given by
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FIG. 4. (a) The temporal evolution of the normalized bubble radius driven by
the acoustic pressure given by Eq. (56) for an air bubble in water with initial
equilibrium radius R′0 = 40 μm, Weber number We(1) = 166, Reynolds number
Re(1) = 780, Péclet number Pe = 31.5 using the numerical simulation of the orig-
inal energy balance equations (1) and (3) for N = 13, 31, and 51 demonstrating
the convergence of the solutions. (b) The temporal evolution of the normalized
gas pressure of the air bubble in water under the conditions stated in (a) using
the numerical simulation of the original energy balance equations (1) and (3) for
N = 13, 31, and 51 demonstrating the convergence of the solutions.

FIG. 5. (a) Comparison of the results of the temporal evolution of the normalized
bubble radius driven by the acoustic pressure given by Eq. (56) for an air bubble
in water under the conditions stated in Fig. 4 using the numerical simulation of the
original energy balance equations (1) and (3) for N = 51 and the novel reduced
order gas pressure law given by Eq. (21) for f = 70. (b) Comparison of the tem-
poral evolution of the normalized gas pressure of the air bubble in water under the
conditions stated in Fig. 4 using the numerical simulation of the original energy bal-
ance equations (1) and (3) for N = 51 and the novel reduced order gas pressure
law given by Eq. (21) for f = 70.
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H(t; Pe) = 1
2

(∂2T
∂y2 )

y=1−

(∂T
∂y )y=1−

= 1
6
∑N

k=1 k2 (4 k2 − 1) ak(t)
∑N

k=1 k2 ak(t)
(55)

from the numerical solution of the coefficients ak(t); k = 0, 1,
2, 3, . . . , (N − 1), where the Péclet number dependence is implicit,
together with the relation aN(t) = 1 −∑N−1

k=0 ak(t). We then use
Eq. (17) to get an average of this function by integrating it over a
computational normalized characteristic time ϑ. For a typical exam-
ple, we consider the acoustic excitation of an air bubble with initial
equilibrium radius R′0 = 40 μm in water at T′0 = 25 ○C by the acoustic
pressure signal

Cp(t) = −0.662 exp[−( t − 130
43.5

)
2
], 0 < t < 300, (56)

shown in Fig. 2(a) corresponding to the Reynolds number Re
= 780, the Weber number We = 166, and the Péclet number Pe
= 31.5. The results of the time evolution of the normalized bubble
radius and that of the normalized gas pressure using the 4/5 order
Runge–Kutta–Fehlberg method with adaptive time step for differ-
ent values of N (N = 13, 31, and 51) are plotted in Figs. 4(a) and 4(b),
respectively. As can clearly be seen, the convergence of the solution is
reached for N = 51. Considerable differences are observed between
the temporal variations of the normalized bubble radius and, par-
ticularly, those of the normalized gas pressure for the cases N = 13
and N = 51, whereas the differences seem to be reduced for the cases
N = 31 and N = 51. Now, the value of f can, in principle, be esti-
mated from the numerical simulations during the first collapse of
the bubble. Unfortunately, the function H(t; Pe) varies by orders of
magnitude during this period, especially during violent collapses of
ultrashort duration. Therefore, we find it more convenient to find
the best value of f that fits the numerical simulations [in this case,
the value of f obtained by Eqs. (37)–(39) from the linear theory is
far off from that of the best fit]. The results of the numerical simu-
lations for the temporal variations of the normalized bubble radius
and of the normalized gas pressure together with those using the
reduced order gas pressure law for f = 70 are plotted in Figs. 5(a)
and 5(b). Good agreement is observed between the time variations
of the normalized bubble radius obtained by the numerical simula-
tions and those obtained using the novel gas pressure law for f = 70,
as well as between the time variations of the normalized gas pres-
sure for both cases, verifying the validity of the novel gas pressure
law.

VI. RESULTS FOR ACOUSTIC CAVITATION
In this section, we present results of the above acoustic cavita-

tion model using the reduced order gas pressure law of Secs. II and
IV. For this reason, we first employ the Keller–Miksis equation (33)
where the reduced order gas pressure law is incorporated by varying
f , corresponding to different Péclet numbers and characteristic
time scales, together with the Plesset–Zwick equation (31) for
the bubble wall temperature TR. We then compare the results
obtained with those where the gas pressure is given by the adi-
abatic ( f →∞) or by the isothermal law ( f = 1/2 and TR = 1).

For the numerical solution, we use the 4/5 order
Runge–Kutta–Fehlberg method to solve the initial value prob-
lem of the Keller–Miksis equation (33) and Simpson’s 3/8-rule of
numerical integration to integrate the Plesset–Zwick equation (31).

We consider the acoustic cavitation of water–vapor/air bubbles
in water using two different driving acoustic pressure signals, one
previously given by Eq. (56) 14 and the other given by Wang,39 whose
pressure coefficient is

Cp(t) = −0.25[1 − cos( 2πt
500
)], 0 < t < 500, (57)

as shown in Fig. 2(b). For the Preston et al. acoustic pressure sig-
nal given by Eq. (56), we choose the initial equilibrium bubble
radius to be R′0 = 40 μm, the bulk water temperature to be at T′0
= 25 ○C with saturated vapor pressure p′v0 = 0.0316 bar, surface ten-
sion coefficient S′ = 0.0720 N/m, and viscosity of water μ′ℓ0 = 8.9
× 10−4 kg/m s, and for the Wang acoustic pressure signal given by
Eq. (57), we choose the initial equilibrium bubble radius to be R′0
= 100 μm, the bulk water temperature to be at T′0 = 20 ○C with sat-
urated vapor pressure p′v0 = 0.0233 bar, surface tension coefficient
S′ = 0.0728 N/m, and viscosity of water μ′ℓ0 = 10−3 kg/m s. In both
cases, the normalized computational time is chosen to be Θ′ = 2.3 μs.
For these cases, the initial nondimensional parameters entering the
computations are σ(1) = 0.656, Re(1) = 780, We(1) = 166, and Pe
= 31.83 for the Preston et al. acoustic pressure signal and σ(1)
= 0.492, Re(1) = 1000, We(1) = 137, and Pe = 12.37 for the Wang
acoustic pressure signal. For both acoustic pressure signals, we
present results where the interface properties are taken constant
at the bulk liquid temperature (TR = 1) as well as results where
the interface properties vary with temperature TR given by the
Plesset–Zwick solution.

Figure 6 shows the variation of the normalized radius R and
the normalized wall temperature TR against the normalized time t
for different values of f ( f = 0.5, 1, and 10 corresponding to dif-
ferent Péclet numbers) of the Preston et al. acoustic pressure signal
using the present acoustic cavitation model with constant interface
properties at the bulk liquid temperature under the conditions stated
above. The plots show that the variation of the bubble radius lies
between the adiabatic and isothermal change of state of the gas for
different values of f . However, the variations of the bubble wall
temperatures during bubble collapse vary by orders of magnitude
exceeding the critical value (TR = 2.17), which implies that inter-
face properties cannot be taken as constants. Actually, the calculated
bubble wall temperatures are far off in magnitude from the max-
imum wall temperatures (TR ∼ 1.2) obtained by the full computa-
tions of the model equations of Preston et al.14 This suggests that
interface properties varying with bubble wall temperature should
be used. These properties for air–water vapor bubbles in water are
summarized in Appendix B. Figure 6 shows the variation of the nor-
malized radius R and the normalized wall temperature TR against the
normalized time t for different values of f ( f = 0.5, 1, and 10) by the
present acoustic model but using variable properties at the interface
under the same conditions. Considerable differences are observed
between the results of both the normalized radius and the bubble
wall temperature temporal variations presented in Fig. 6 for constant
interface properties and in Fig. 7 for variable interface properties.
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FIG. 6. (a) The temporal evolution of the normalized bubble radius driven by the
acoustic pressure given by Eq. (56) for an air–water vapor bubble in water with
the initial equilibrium radius R′0 = 40 μm, initial cavitation number σ(1) = 0.656,
Weber number We(1) = 166, and Reynolds number Re(1) = 780 using constant
interface properties by the present acoustic cavitation model for different values of
f ( f = 0.5, 1, and 10). (b): The temporal evolution of the normalized bubble wall
temperature of the air–water vapor bubble in water under the conditions stated in
(a) by the present acoustic cavitation model for different values of f ( f = 0.5, 1,
and 10).

FIG. 7. (a) The temporal evolution of the normalized bubble radius driven by the
acoustic pressure given by Eq. (56) for an air–water vapor bubble in water under
the conditions stated in Fig. 6 by the present acoustic cavitation model for differ-
ent values of f ( f = 0.5, 1, and 10) using variable properties at the interface. (b)
The temporal evolution of the normalized bubble wall temperature of the air–water
vapor bubble in water under the conditions stated in Fig. 6 by the present acous-
tic cavitation model for different values of f ( f = 0.5, 1 and 10) using variable
properties at the interface.
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The bubble radius amplitude variations are considerably reduced
when variable interface properties are used for the same value of
f , and the bubble radius is observed to tend rapidly to a new equi-
librium at a value greater than that of the initial radius (different
equilibrium values are reached for different values of f ). More dras-
tically, when variable interface properties are used, the bubble wall
temperature variations in this case are reduced by an order of mag-
nitude tending almost to the same equilibrium value (TR ∼ 1.2) for
different values of f . We also compare the results of the present
model with those of the constant mass transfer model of Preston
et al.,14 which agree well with the full computations of the governing
equations under the same conditions. Before proceeding, however,
we should note that the constant mass transfer model of Preston
et al.14 uses the classical Rayleigh–Plesset equation for incompress-
ible fluid, whereas the present model lacks the mass diffusion effects
both inside the bubble and through the liquid (infinitely fast mass
diffusion case). Therefore, the comparison should be made keep-
ing these details in mind. Figure 8(a) shows a comparison between
the results of the temporal variations of the bubble radius obtained
by the constant transfer model of Preston et al. for infinitely fast
mass diffusion and those obtained by the present acoustic cavi-
tation model for f = 0.5 using the Rayleigh–Plesset equation and
constant interface properties. The bubble radius amplitudes of the
present acoustic model seem to be smaller during initial growth and
subsequent rebounds, except for times to the end of the cycle as
compared to the constant transfer model with infinitely fast mass
diffusion. In both cases, the initial growth and subsequent rebounds
are overestimated as compared to full computations of the gov-
erning equations,14 showing the importance of the finite mass dif-
fusion effect. The results of the temporal variations of the bubble
radius using the present acoustic cavitation model employing the
Keller–Miksis equation for spherical bubble dynamics instead of
the classical Rayleigh–Plesset equation are also plotted in Fig. 8(a),
showing considerable reduction of the initial growth and subsequent
rebounds of the bubble radius, which emphasizes the importance
of the compressibility effects of the liquid. Figure 8(b) shows the
same comparison between the results of the bubble radius tempo-
ral variations using the present acoustic cavitation model obtained
using the Rayleigh–Plesset and the Keller–Miksis equation with vari-
able interface properties and those obtained by Preston et al.14 using
the constant transfer model with infinitely fast mass diffusion. In
this case, also considerable reduction in the initial growth and sub-
sequent rebounds of the bubble radius is observed, exhibiting the
importance of using variable properties in the proposed acoustic
cavitation model.

Finally, we compare the results of the proposed acoustic cav-
itation model with those using the classical and isothermal laws
in the Keller–Miksis equation for spherical bubble dynamics under
the same conditions stated in Fig. 6. In this case, the comparison
is made using constant interface properties at the bulk liquid tem-
perature. We first compare the results for the classical adiabatic gas
law and the proposed reduced order gas law for large values of the
parameter f ( f = 105) using the Keller–Miksis equation. Figure 9(a)
shows that the temporal evolution of the normalized radius agrees
quite well in the first rebounds, whereas deviations are observed
after the first a few rebounds. The comparison of the results for the
temporal evolution of the bubble wall temperature using the classi-
cal adiabatic law and the Plesset–Zwick equation together with the

FIG. 8. (a) Comparison of the temporal evolution of the normalized bubble radius
driven by the acoustic pressure given by Eq. (56) for an air–water vapor bubble
in water under the conditions stated in Fig. 6 by the present acoustic cavitation
model for f = 0.5 (RP: Rayleigh–Plesset equation, KM: Keller–Miksis equation)
using interface properties at the bulk liquid temperature with that of Preston.38 (b)
Comparison of the temporal evolution of the normalized bubble radius driven by
the acoustic pressure given by Eq. (56) for an air–water vapor bubble in water
under the conditions stated in Fig. 6 by the present acoustic cavitation model for f
= 0.5 (RP: Rayleigh–Plesset equation, KM: Keller–Miksis equation) using variable
properties at the interface with that of Preston.38
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FIG. 9. (a) Comparison of the temporal evolution of the normalized bubble radius of
the air–water vapor bubble in water under the conditions stated in Fig. 6 between
results obtained by the Keller–Miksis equation (33) using the adiabatic gas law,
the proposed acoustic model for f = 105, and the isothermal law. (b) Comparison
of the temporal evolution of the bubble wall temperature of the air–water vapor
bubble in water under the conditions stated in Fig. 6 between results obtained by
the Keller–Miksis equation (33) using the adiabatic gas law, the proposed acoustic
model for f = 105, and the isothermal law.

proposed model using large values of f shows totally different
behavior, as can be seen in Fig. 9(b). This shows that although
the adiabatic pressure–radius relation is satisfied for large values
of the parameter f of the proposed model, the isentropic rela-
tions are not satisfied, showing that the perfect gas law is violated
at the interface. The corresponding isothermal results, achieved
when f = 0.5 and TR = 1 in the absence of phase transition (L→ 0
as TR → 1) of the proposed acoustic model, are also shown in
Fig. 9 for reference.

For the acoustic pressure signal given by Eq. (57),39 the results
for the temporal variations of the normalized bubble radius and
of the normalized bubble wall temperature are plotted in Fig. 10
using the present acoustic cavitation model with constant inter-
face properties (evaluated at the bulk liquid temperature) for dif-
ferent values of f (0.5, 1, and 10). In this case, the maximum bub-
ble radius of initial growth and the maximum bubble radii of the
rebounds are seen to be reduced considerably as f increases with
increasing rebound frequencies. On the other hand, the bubble wall
temperatures increased by an order of magnitude during collapse,
invalidating the use of constant interfacial properties. As already
demonstrated for the case of the driving acoustic pressure given by
Eq. (56), the use of variable interfacial properties is essential in the
present acoustic cavitation model. Figure 11 shows the results of
the temporal behavior of the normalized bubble radius and of the
normalized bubble wall temperature for the acoustic pressure signal
given by Eq. (57) for the same values of f (0.5, 1, and 10) but using
variable interface properties. In this case, structural differences in
the temporal variations of both the normalized bubble radius and
the normalized bubble wall temperature are observed. The bubble
grows initially in phase with the acoustic pressure attaining its max-
imum radius at the minimum value of the driving acoustic pressure
and collapses to its initial equilibrium value with small amplitude
local oscillations. Once again reduction in the maximum radius is
observed as f increases. The bubble wall temperature decreases in
the bubble growth period, attains its minimum value at the mini-
mum value of the driving acoustic pressure, and relaxes to its equi-
librium value with small amplitude oscillations. Reduction in the
minimum value is also observed as f increases. The above results
demonstrate the necessity of using variable properties at the inter-
face in the present acoustic model. Finally, we compare the results
of the temporal variations of the bubble radius and the bubble wall
temperature obtained by the proposed acoustic cavitation model
for large values of the parameter f ( f = 105) with those obtained
using the classical adiabatic and isothermal gas laws. Figure 12(a)
shows such a comparison of the bubble radius variations under
the conditions stated in Fig. 10. In this case, excellent agreement is
achieved between the results obtained by the classical adiabatic law
and those obtained by the proposed acoustic cavitation model for
f = 105 in the initial growth period and in the first a few rebounds
of the bubble radius despite that slight differences appear after a
few rebounds. Again considerable differences appear in the results
of the temporal variations of the bubble wall temperature obtained
by the classical isentropic relations and by the proposed acous-
tic cavitation model for large values of the parameter f ( f = 105),
showing once again the violation of the ideal gas law at the inter-
face. The corresponding isothermal results, achieved when f = 0.5
and TR = 1 in the proposed acoustic model, are also shown for
reference.
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FIG. 10. (a) The temporal evolution of the normalized bubble radius driven by the
acoustic pressure given by Eq. (57) for an air–water vapor bubble in water with
the initial equilibrium radius R′0 = 100 μm, initial cavitation number σ(1) = 0.492,
Weber number We(1) = 137, and Reynolds number Re(1) = 1000 using con-
stant interface properties by the present acoustic cavitation model for different
values of f ( f = 0.5, 1, and 10). (b) The temporal evolution of the normalized bub-
ble wall temperature of the air–water vapor bubble in water under the conditions
stated in (a) by the present acoustic cavitation model for different values of f ( f
= 0.5, 1, and 10).

FIG. 11. (a) The temporal evolution of the normalized bubble radius driven by the
acoustic pressure given by Eq. (57) for an air–water vapor bubble in water under
the conditions stated in Fig. 10 by the present acoustic cavitation model for differ-
ent values of f ( f = 0.5, 1, and 10) using variable properties at the interface. (b)
The temporal evolution of the normalized bubble wall temperature of the air–water
vapor bubble in water under the conditions stated in Fig. 10 by the present acous-
tic cavitation model for different values of f ( f = 0.5, 1, and 10) using variable
properties at the interface.
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FIG. 12. (a) Comparison of the temporal evolution of the normalized bubble radius
of the air–water vapor bubble in water under the conditions stated in Fig. 10
between results obtained by the Keller–Miksis equation (33) using the adiabatic
gas law, the proposed acoustic model for f = 105, and the isothermal law. (b)
Comparison of the temporal evolution of the bubble wall temperature of the
air–water vapor bubble in water under the conditions stated in Fig. 10 between
results obtained by the Keller–Miksis equation (33) using the adiabatic gas law,
the proposed acoustic model for f = 105, and the isothermal law.

VII. CONCLUSIONS
The energy balance equations between a spherical gas bub-

ble and its surrounding liquid are considered in the uniform pres-
sure approximation by an iterative scheme, which leads to hierarchy
equations for the radial partial derivatives of the temperature at the
bubble wall. A closure relation, based on the ansatz that approxi-
mates the complex change of state during collapse by time averaging
over a characteristic time, is introduced for these hierarchy equa-
tions. Consequently, a reduced order gas pressure law, which shows
a power law dependence on the bubble radius and on the bubble
wall temperature, is derived where the power indices depend on the
isentropic exponent of the gas and on a parameter characterizing
the effects of the Péclet number and the characteristic time scale.
It is shown that the isothermal and adiabatic pressure–radius rela-
tions are recovered in the appropriate limits of the parameter. A
simplified version of the reduced gas pressure law where the bub-
ble wall temperature is approximated by the bulk liquid temperature
is also discussed. In particular, for small amplitude of oscillations
of a gas bubble, the parameter that enters the novel gas pressure
law is identified as a function of the Péclet number from the well-
known linear theory. For large amplitude oscillations of the gas, the
novel gas pressure law is first validated against the near-isothermal
solution of Prosperetti and against the consistent near isothermal
solution presented in Appendix B. Numerical simulations of the
original energy equations for constant wall temperature are car-
ried out by spectral methods, and the results obtained are verified
against those that employ the novel reduced order gas pressure law
for an appropriate value of the parameter. An acoustic cavitation
model, based on this novel reduced order gas pressure law together
with the Plesset–Zwick solution for the bubble wall temperature
and the Keller–Miksis equation for spherical bubble dynamics, is
then constructed. The results obtained for the temporal variations
of the bubble radius and the bubble wall temperature using different
acoustic pressure signals and variable interface properties show ther-
mal behavior that lies between the classical adiabatic and isothermal
change of state.

Although the acoustic model parameter, which depends on the
Péclet number based on a characteristic time scale, can be approx-
imated by its value obtained from the linear theory for low Péclet
numbers (the near isothermal approximation), it seems to deviate
considerably from the value obtained by the linear theory for inter-
mediate Péclet numbers. Therefore, accurate values of the acoustic
model parameter should be estimated by constructing empirical cor-
relations of the model parameter as a function of Péclet number
based on different characteristic time scales. For a complete descrip-
tion, the mass diffusion of the gas and vapor inside the bubble and of
the gas and vapor into the liquid should also be taken into account
in a similar manner. These are beyond the scope of this work and
are left for future studies. A simplified version of the novel gas pres-
sure law can then be used in the algorithms of bubbly cavitating
flows.
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APPENDIX A: MODIFIED ENERGY BALANCE
EQUATIONS FOR AN ACOUSTIC CAVITATION BUBBLE

With the modeling of the vapor mass transfer across the inter-
face given in Sec. IV, we can modify the energy balance equations (1)
and (3) for a single acoustic cavitation bubble. If we assume that
the vapor and gas within the bubble are perfect gases with fixed
vapor concentration C0 so that the vapor mass transfer into or out
of the bubble is small enough to cause any noticeable change in the
gas–vapor composition, the energy balance equations (1) and (3)
take the form31

pb

T

⎧⎪⎪⎨⎪⎪⎩

∂T
∂t
+ 1
(Pe) pb R2

⎡⎢⎢⎢⎢⎣
λb(T)

∂T
∂y
− y

∂T
∂y
∣
y=1−

− (Pe) C0 y pb R
dR
dt

⎤⎥⎥⎥⎥⎦

∂T
∂y

⎫⎪⎪⎬⎪⎪⎭

= (γb − 1)
γb

dpb

dt
+ 1
(Pe)R2 y2

∂

∂y
[ y2 λb(T)

∂T
∂y
] (A1)

and

dpb

dt
= 3 γb

R

⎡⎢⎢⎢⎢⎣

1
(Pe)R

∂T
∂y
∣
y=1−
− (1 − C0) pb

dR
dt

⎤⎥⎥⎥⎥⎦
, (A2)

where pb is the normalized total pressure of the vapor–gas mixture,
C0 is the fixed mass concentration of the vapor given by

C0 =
ρ′v
ρ′b
= constant, (A3)

with ρ′v and ρ′b, respectively, denoting the density of the vapor
and the density of the vapor–gas mixture, and γb is the isentropic
exponent of the vapor–gas mixture defined by

γb =
C0 [ γv R′v/(γv − 1) ] + (1 − C0) [ γg R

′
g/(γg − 1) ]

C0 [R′v/(γv − 1) ] + (1 − C0) [R′g/(γg − 1) ]
, (A4)

with γv , R′v , and γg , R′g denoting the isentropic exponents and gas
constants of the vapor and the gas, respectively. It should also be
noted that the modified energy balance equations (A1) and (A2)
would yield approximate solutions even for those cases where the

vapor mass flux into or out of the bubble changes the noncondens-
able/vapor gas mixture composition considerably, provided that C0
is taken as the average value of vapor concentration over the charac-
teristic time of interest. Using the iterative technique introduced in
Sec. II, substituting Eq. (5) for the temperature field near the bubble
wall into the modified energy balance equation (A1) and neglect-
ing the temperature dependence of the thermal conductivity of the
gas-vapor mixture, we arrive at

c(t; Pe) = (∂T
∂y
)

y=1−
= { (Pe)R2

2
[ pb

TR

dTR

dt
− (γb − 1)

γb

dpb

dt
]

− 1
2
(∂

2T
∂y2 )

y=1−

⎫⎪⎪⎬⎪⎪⎭
[ 1 + C0

2
(Pe) pb R

dR
dt
]
−1

.

(A5)

It is now clear that whenever

C0 ≪
2

max{(Pe) pb R ∣ dR
dt ∣ }

(A6)

during the final stages of collapse, Eq. (A5) for c(t) becomes iden-
tical with Eq. (9) of a gas bubble. If we further make the ansatz of
Eq. (17) for the second order partial radial derivative of the tem-
perature at the bubble wall, we arrive at Eq. (18) for c(t; Pe) with
the function f now depending on both C0, Pe, and the characteristic
time ϑ, with the gas pressure p replaced by the mixture pressure pb
and with the isentropic exponent of the gas γ replaced by the isen-
tropic exponent of the gas–vapor mixture γb. Equation (A2) can then
be integrated to yield

pb = pbi [
(TR)1/2(1+ f )

R1−C0
]

3 Γ

, (A7)

where the polytropic exponent Γ is given by Eq. (20) with γ replaced
by γb. In particular, Eq. (A7) reduces to the reduced-order gas
pressure law given by Eq. (19) whenever

C0 ≪ 1. (A8)

APPENDIX B: CONSISTENT NEAR ISOTHERMAL
SOLUTION FOR LOW PÉCLET NUMBER

Here, we consider the consistent near isothermal solution for
small Péclet numbers. Consequently, we expand the normalized
pressure p, normalized temperature T, and the normalized radius
R in powers of Péclet number in the form

p = 1
R3

is
[ 1 + (Pe)p1 + (Pe)2p2 + ⋅ ⋅ ⋅ ], (B1)

T = 1 + (Pe)T1 + (Pe)2T2 + ⋅ ⋅ ⋅ , (B2)

and

R = Ris + (Pe)R1 + (Pe)2R2 + ⋅ ⋅ ⋅ , (B3)

AIP Advances 11, 115309 (2021); doi: 10.1063/5.0068152 11, 115309-20

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

where the first terms correspond to the isothermal values of the vari-
ables (Pe→ 0). Substituting the above perturbation expressions into
the conservation of mass for a spherical gas bubble,

1
pR3 = 3∫

1

0
y2 T−1dy, (B4)

where the ideal gas law holds and where mass diffusion into and out
of the bubble is neglected, leads to the relations

p1 = 3∫
1

0
y2 T1dy − 3

R1

Ris
(B5)

and

p2 = p2
1 + 3

R1

Ris
p1 + 6

R2
1

R2
is
− 3

R2

Ris
+ 3∫

1

0
y2 (T2 − T2

1) dy. (B6)

Substituting the perturbation expansions (B1)–(B3) into the nor-
malized energy equation (1) and collecting terms of equal order of
magnitude together lead to the O(1) relation

1
R2

is
[3(γ − 1)((∂T1

∂y
)

R
− Ṙis

R2
is
) +∇2T1] = 0 (B7)

and to the O(Pe) relation

1
R3

is
{∂T1

∂t
+ R2

is[
∂T1

∂y
− y(∂T1

∂y
)

R
]∂T1

∂y
}

= 3(γ − 1)
R2

is
{(∂T2

∂y
)

R
− 2

R1

Ris
(∂T1

∂y
)

R
+ R1Ṙis

R3
is
− Ṙ1 + p1Ṙis

R2
is

}

+ 1
R2

is
[∇2T2 − 2

R1

Ris
∇2T1], (B8)

where ∇2 = 1
y2

∂
∂y(y

2 ∂
∂y) and the subscript R denotes quantities

evaluated at the bubble wall y = 1−.
By integrating Eq. (B7) once and taking the limit y → 1− lead to

the relation

(∂T1

∂y
)

R
= (∂T1

∂y
)

y=1−
= (γ − 1)

γ
Ṙis

R2
is

. (B9)

Furthermore, integration of Eq. (B7) using Eq. (B9) together with
the condition T1(t, 1) = 0 yields the solution

T1(t, y) = (γ − 1)
2γ

Ṙis

Ris
(y2 − 1) (B10)

for the first order near isothermal temperature correction T1(t, y).
The first order uniform gas pressure correction p1(t) is obtained by
substituting Eq. (B9) into Eq. (B5) and by carrying out the integral
as

p1(t) = −
(γ − 1)

5γ
Ṙis

Ris
− 3

R1

Ris
. (B11)

We now carry out the near isothermal perturbation expansion of the
normalized pressure equation (3). By substituting the perturbation
expansions (B1)–(B3) into Eq. (3), the O(1) terms cancel on both
sides of the equation using Eq. (B9). The O(Pe) magnitude terms
lead to the relation

1
R3

is
(dp1

dt
− 3Ṙis

Ris
p1) =

3γ
R2

is

⎡⎢⎢⎢⎣
(∂T2

∂y
)

R
− 2

R1

Ris
(∂T1

∂y
)

R

+ R1Ṙis

R3
is
−
(Ṙ1 + p1Ṙis)

R2
is

]. (B12)

If we now substitute Eq. (B11) for p1 and Eq. (B9) for (∂T1/∂y)y=1,
we obtain the relation

(∂T2

∂y
)

R
= (∂T2

∂y
)

y=1

= − (γ − 1)
15γ2R4

is
[RisR̈is − (5 − 3γ)Ṙ2

is]

+ (γ − 1)
γ

Ṙ1

R2
is
− 2(γ − 1)

γ
R1Ṙis

R3
is

. (B13)

The second order perturbation term T2(t, y) can now be obtained
from Eq. (B8) using Eq. (B13) together with the condition T2(t, 1)
= 0, which, in turn, would lead to the solution of second order per-
turbation pressure p2(t) by substitution. However, due to its lim-
ited use and cumbersome calculations, we herein restrict our near
isothermal solution only to first order perturbations.

Finally, we consider the Keller–Miksis equation (33) in the near
isothermal approximation as

[1 −MṘ + 4M
(Re)R]RR̈ + 3

2
[1 − M

3
Ṙ − 8M

3 (Re)R
] Ṙ2

+ [4(1 +MṘ)
(Re) − 2M

(We)]
Ṙ
R
+ 2 (1 +MṘ)

(We)

× [ 1
R
− 1

R3
is
(1 + (Pe)p1)] +

σ(1 +MṘ)
2

× [1 − 1
R3

is
(1 + (Pe)p1)] +

(1 +MṘ)
2

Cp +
MR

2
dCp

dt

− ( 2
We
+ σ

2
) MR

d
dt
[ 1

R3
is
(1 + (Pe)p1)] = 0, (B14)

where the cavitation number σ = σ(1), the Reynolds number Re
= Re(1), and the Weber number We =We(1) are all evaluated at
the isothermal temperature. By substituting the near isothermal per-
turbation expansions (B1)–(B3) into the above equation, the O(1)
terms yield the nonlinear bubble dynamics equation

(1 −MṘis +
4M
(Re)Ris

)RisR̈is +
3
2
(1 − M

3
Ṙis −

8M
3(Re)Ris

)Ṙ2
is

+ [4(1 +MṘis)
(Re) − 2M

(We)]
Ṙis

Ris
+ 2 (1 +MṘis)

(We) ( 1
Ris
− 1

R3
is
)

+ σ(1 +MṘis)
2

(1 − 1
R3

is
) + (1 +MṘis)

2
Cp +

MRis

2
dCp

dt

+ 3M( 2
We
+ σ

2
) Ṙis

R3
is
= 0 (B15)

for Ris and the linear bubble dynamics equation
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[1 −MṘis +
4M
(Re)Ris

]RisR̈1 + [3(1 − M
2

Ṙis)Ṙis −MRisR̈is

+ 4
(Re)Ris

+ 2M
R3

is
( 2

We
+ σ

2
) + σM

2
+ MCp

2
]Ṙ1

+ [(1 −MṘis)R̈is −
4Ṙis

(Re)R2
is
− 2
(We)R2

is
+ 3(1 − 2MṘis)

R4
is

× ( 2
We
+ σ

2
) + MĊp

2
]R1 + (

2
We
+ σ

2
)(γ − 1)

5γR5
is

× [Ṙis +M(RisR̈is − 4Ṙ2
is)] = 0 (B16)

for the perturbation radius R1. The initial value problems for the
isothermal bubble dynamics equation (B15) and the initial value
problem for the dynamics of the perturbation bubble radius R1
can be solved using the initial conditions Ris(0) = 1; Ṙis(0) = 0 and
R1(0) = 0; Ṙ1(0) = 0, respectively.

APPENDIX C: TEMPERATURE DEPENDENCE
OF THE THERMOPHYSICAL PROPERTIES OF WATER
AND WATER VAPOR

In the proposed acoustic cavitation model, the properties of the
condensable liquid and vapor phases as well as those of the noncon-
densable gas at the interface may change considerably especially dur-
ing the collapse of the bubbles due to large temperature and pressure
variations at the bubble wall and in the bubble interior. Some of these
properties are due to phase change (evaporation and condensation)
that enter the Plesset–Zwick equation (31) in our acoustic cavitation
model. These are mainly the normalized latent heat of condensation
L(T), the normalized saturation vapor pressure pv,sat(T), the nor-
malized saturation vapor density ρv,sat(T), and the normalized liq-
uid thermal conductivity λℓ(T). The normalized latent heat L(TR)
is given by the Watson relation40

L(TR) =
L′(T′R)

L′0
= (Tc − TR

Tc − 1
)

0.375
(C1)

for TR < Tc, where Tc = T′c/T′0 is the normalized critical tempera-
ture with T′c denoting its actual value. For TR ≥ Tc, L(TR) = 0 since
there is no first order phase transition above the critical point. The
normalized saturated vapor pressure pv,sat(TR) is given by40

ln(pv,sat(TR)
pc

) = ln(p′v,sat(T′R)
p′c

)

= Av x + Bv x1.5 + Cv x3 +Dv x6

1 − x
, (C2)

with Av , Bv , Cv , Dv denoting fluid dependent constants and x given

by

x = 1 − TR

Tc
(C3)

for TR < Tc, where pc = p′c/p′0 is the normalized critical pres-
sure, with p′c denoting the actual value of the critical pres-
sure and p′0 denoting the initial pressure of the liquid. For
water/water–vapor phase change, we have Av = −7.764 51, Bv

= 1.458 38, Cv = −2.775 80, and Dv = −1.233 03. The critical tem-
perature of water is taken to be 647.27 K. Above the critical
point TR ≥ Tc, the two phases (gas and vapor) cannot coexist and the
Plesset–Zwick equation is no longer valid. In this case, the change of
state of the gas can be taken to be adiabatic. The normalized satu-
rated vapor density ρv,sat(TR) can then be approximately obtained
using the ideal gas law for the vapor phase,

ρv,sat(TR) =
ρ′v,sat(T′R)

ρ′v0,sat
= pv,sat(TR)

TR pv,sat(1)
, (C4)

where pv,sat(TR) is obtained from Eq. (C2) above and TR is given by
the Plesset–Zwick solution whenever TR < Tc. A more accurate pre-
diction for the normalized saturated vapor density can be obtained
using the virial equation of state for the vapor. In this case, the
normalized saturated vapor pressure is given by

ρv,sat(TR) =
pv,sat(TR)

TR pv,sat(1)
[1 − (B′0 p′v0,sat/M′R′v T′0) (B(TR)pv,sat(TR)/TR pv,sat(1)) ]

[1 − (B′0 p′v0,sat/M′R′v T′0) ]
, (C5)

where M′ is the molecular weight of the vapor (for water vapor M′

= 18.015 × 10−3 kg mol). In Eq. (C5), B(TR) is the normalized sec-
ond virial coefficient at the bubble wall temperature given by41

B(TR) = a1 T∗−0.5
R + a2 T∗−0.8

R + a3 T∗−3.35
R + a4 T∗−8.3

R , (C6)

with a1, a2, a3, a4 denoting fluid dependent constants, T∗R = T′R/T′c
and with B′0 denoting the value of the second virial coefficient
at the cold liquid temperature (for water vapor, a1 = 0.344 04, a2
= −0.758 26, a3 = −24.219, a4 = −3978.2, and B′0 = 0.001 mol−1).
Other thermophysical properties at the interface include the surface
tension S′(T′R) that enters the Weber number, the liquid viscosity

μ′ℓ(T′R) that enters the Reynolds number, and the thermal conduc-
tivity of the liquid λ′ℓ(T′R) that enters the Plesset–Zwick law. The
variation of the surface tension S′(T′R) is given universally by40

S′(T′R) = S′0 (
Tc − TR

Tc − 1
)

4n
(C7)

for TR < Tc, where n is between 0.25 and 0.31 (the corresponding
state value is n = 0.305) and S′0 is the value of the surface tension
at the cold liquid temperature. The temperature dependence of the
viscosity of the liquid is given by the relation40
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ln(μ′(T′R)
μ′r
) = a + b( T′r

T′R
) + c( T′r

T′R
)

2

, (C8)

where a, b, and c are liquid dependent constants, T′r is some reference
temperature, and μ′r is the liquid viscosity at that temperature (for
liquid water, a = −1.94, b = −480.0, c = 6.74, T′r = 273.16 K, and μ′r
= 0.001 792 kg/m s). Finally, the thermal conductivity of the liquid
may be taken to be quadratic,40

λ′ℓ(T′R) = A + B T′R + C T′2R . (C9)

For liquid water A = −0.3838 W/m K, B = 5.254 × 10−3 W/m K2,
and C = −6.369 × 10−6 W/m K3.
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