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EXECUTIVE SUMMARY 

 

 

TURKISH PRIVATE PENSION FUND SIZE FORECASTING AS AN APPLICATION OF 

DATA ANALYTICS 

 

Serdar Ufuk Kara 

 

 

Advisor: Asst. Prof. Dr. Tuna Çakar 

 

 

DECEMBER, 2020, 36 Pages 

 

 

 

In this study univariate and multivariate models are used to forecast the net changes in 

total pension fund size of a private pension company in Turkey, using the daily data between 

November 2003 and November 2020. Univariate models include the naïve, autoregressive 

(AR), moving average (MA), and autoregressive moving average (ARMA) models. 

Multivariate models include vector autoregression (VAR) and multiple linear regression 

models. Our findings suggest that multivariate model predictions outperform univariate model 

predictions. Univariate model predictions can be improved with walk forward approach. 

Increased lag size can help improve AR, MA, ARMA and VAR model predictions. Naïve 

model produces the weakest predictions. 

 

 

 

 

 

 

 

 

 

Key Words: pension fund size change, univariate model, multivariate model, 
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ÖZET 

 

 

BİR VERİ ANALİTİĞİ UYGULAMASI OLARAK TÜRK BIREYSEL EMEKLİLİK FON 

BÜYÜKLÜKLERİ TAHMİNİ 

 

Serdar Ufuk Kara 

 

 

Proje Danışmanı: Dr. Öğr. Üyesi Tuna Çakar 

 

 

ARALIK, 2020, 36 Sayfa 

 

 

Bu çalışmada, Kasım 2003 ile Kasım 2020 arasındaki günlük veriler kullanılarak 

Türkiye'deki bir bireysel emeklilik şirketinin toplam emeklilik fon büyüklüğündeki net 

değişiklikleri tahmin etmek için tek değişkenli ve çok değişkenli modeller kullanılmıştır. Tek 

değişkenli modeller naif, özbağlanımlı (AR), kayan ortalamalı (MA) ve özbağlanımlı kayan 

ortalamalı (ARMA) modellerini içermektedir. Çok değişkenli modeller vektör özbağlanımlı 

(VAR) ve çoklu doğrusal regresyon modellerini içermektedir. Bulgularımız, çok değişkenli 

model tahminlerinin tek değişkenli model tahminlerinden daha iyi performans verdiğini 

göstermektedir. Tek değişkenli model tahminleri ileriye doğru yürüme yaklaşımı ile 

geliştirilebilmektedir. Arttırılmış gecikme boyutu, AR, MA, ARMA ve VAR modeli 

tahminlerini iyileştirmeye yardımcı olmaktadır. Naif model en zayıf tahminleri üretmektedir.  

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: emeklilik fonu büyüklüğü değişimi, tek değişkenli model, çok 

değişkenli model, özbağlanımlı kayan ortalamalı model, vektör özbağlanımlı model. 
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1. INTRODUCTION 

 

Private Pension System (PPS) is a financial system that is built to support the future 

wealth of participants, in other words customers, in which they save in the earlier stages of 

active working years in order to be relatively better off in the years of retirement. Participation 

to the PPS can be voluntary, complementary, or compulsory. In PPS participants make periodic 

payments to their private pension accounts to benefit from some additional advantages 

compared to other instruments of savings and financial investments. Main advantages of 

savings through pension system are the government subsidies and tax benefits. In addition, 

participants have a chance to benefit from higher returns on investment through pension system 

where investments are managed by professional portfolio managers compared to most 

participants’ individual efforts on financial investing, which requires some level of financial 

literacy. Pension accounts are likely to offer higher returns since the sources of the participants 

are gathered in funds, which offer the scale advantages in obtaining higher returns.  

Participants mainly prefer to make payments in fixed amounts or fixed proportions of 

their salaries or define payment instructions for fixed amounts by their credit cards. Participant 

can also make additional irregular payments to their pension accounts through banking and 

other payment channels. These payments are directed to investment by private pension firms in 

various pension funds. Pension firms offer funds with different investment strategies to match 

the risk preference and return expectations of the participants. If the participant is highly risk 

averse, contribution payments are channeled to less risky funds (or a less risky mix of funds) 

mainly consists of debt instruments, money market instruments and time deposits, which offers 

lower variability and low to medium returns. Conversely, if the participant is a risk seeker, 

contribution payments are invested in more risks funds (or a more risky composition of funds) 

that invests in domestic common stocks, precious metals, foreign exchange denominated debt 

instruments, foreign common stocks, mutual funds, and more, which have higher volatility and 

offer higher returns. Depending on the risk profile of the participants, pension companies offer 

a suitable mix of funds and pension plans to their participants.  

Size of total retirement assets increase as more new savings are added to the system than 

the exits due to retirement, early withdrawal, or death of participants. Moreover, total assets 

under management increase due to investment returns of the pension funds. Funds make long 

term investments on companies that signals growth prospects in industries such as technology, 
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transportations and telecommunications, along with traditional investments on banking, 

precious metals, and government and corporate financing.  

According to OECD’s Pensions Markets in Focus report, as of 2019 total retirement 

assets under management amounts more than 50 trillion USD globally. These savings are 

generally higher in developed countries as a percentage of GDP, such as in Denmark and 

Netherlands - about %200 of GDP, compared to developing countries, such as in Turkey and 

Greece – less than %10 of GDP [1]. In OECD’s report, growth in asset size has been attributed 

to increasing share of working-age population and introduction of compulsory pension plans in 

some countries, whereas asset growth is discussed to be limited by the benefit payments of the 

system. In addition, remarkable growth of pension assets in 2019 is attributed to the “strong 

investment performance”, mainly due to the good performance of stock exchange markets in 

2019. Pension funds are reported to perform very well in real investment returns in majority of 

the countries in longer periods of time. Figure 1, which is obtained from Pensions Markets in 

Focus 2020 report plots the increase in the total amount of assets in retirement savings plans in 

the OECD countries and other selected countries in the 2009-2019 period. 

 

 

 

Figure 1: Assets in Pension Funds in the OECD Countries and Other Selected Countries 

 

It can be said that there are two main factors that affect the total pension fund size. First 

factor is the net cash flows to the system. If contribution payments made by the participants to 
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the pension system is higher than the benefit payments made by the system to the participants, 

then there are net positive flows to the system, and vice versa. Positive net flows increase the 

asset size in the private pension system, whereas negative net flows decrease the pension asset 

size under management. Second factor that affects the pension fund size is the changes in the 

financial markets, such as increases or decreases in stock exchange markets, money markets, 

precious metals, and currency rates. Portfolio managers aim to fine tune portfolio compositions 

in order to benefit from these changes in market prices.  

This study aims to focus on this second factor that affects the total pension fund size. 

Main objective of this study is to utilize Python libraries in doing the required analysis and 

comparing results to suggest the best fitting model. This project must be regarded as an 

application of data analytics on Python more than as a study of applied econometrics. We will 

use total fund size data of one of the leading companies in the Turkish Private Pension Sector. 

This study exercises both univariate and multivariate analysis to predict the changes in total 

fund size in the upcoming 1-5 months, on average. Univariate analysis consists of naïve 

(persistence), autoregressive (AR), moving average (MA), and autoregressive moving average 

(ARMA) models. Multivariate analysis includes vector autoregression (VAR) and multiple 

linear regression (MLR) models. 

The organization of this study is as follows: Chapter 2 presents a literature review about 

studies on pension systems with an emphasis on Turkish financial markets, model selection, 

and findings. Chapter 3 gives a brief explanation of the data with a discussion of stationarity of 

the series under study. Chapter 4 gives a brief discussion of models and the application of the 

models on data. Chapter 5 concludes with a summary of results. Python codes that are used in 

this project are presented in a separate Appendix document. 
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2. LITERATURE REVIEW 

 

This study focuses on forecasting changes in the total fund size net of cash flows. Under 

the assumption of no cash inflow or outflows, changes in net asset value of the fund can be 

regarded as a proxy of changes in fund prices. Price change is a measure of return, thus a 

measure of performance. Therefore, regarding the pension funds we have narrowed our 

literature review to fund sizes, fund performances, and some applications in Turkey. Moreover, 

since we are focusing on univariate and multivariate models in time series forecasting, we have 

also focused on literature on uses of AR, MA, ARMA, autoregressive integrated moving 

averages (ARIMA), VAR, linear regression models, and use of artificial neural networks 

(ANN) in financial markets, with some applications in Turkey. 

There are several studies about pension funds and fund performances in the literature.  

Del Guercio and Tkac (2002) compares pension funds and mutual in terms of fund manager 

and customer behaviors. Pension fund customers have long-term expectations and relatively 

tight benchmark performance comparison compared to mutual funds customers. Customers 

choose pension funds in accordance with their risk preference expect portfolio returns to reply 

benchmark returns. They punish the poor performers rapidly by shifting to different funds or 

pension companies. In response, pension fund managers are aware of customer expectations 

and benchmark sensitivity, thus they seek lower tracking errors and are more oriented in 

attaining benchmark returns for the portfolio compared to mutual funds managers [2]. 

Bikker (2015) discusses optimal fund sizes in terms of scale economies and lower 

operational costs versus fund performance. He argues that as long as there is unused economies 

of scale in the pension fund, operational efficiency will help increase fund performance as long 

as low cost investments are preferred, such as money market instruments and commodities over 

stocks and real estate investments. Changes in fund size is argued to occur largely due to some 

shocks like mergers and discontinuations of pension funds [3].  

Ferson and Khang (2001) mentions the difficulties in measuring pension fund 

performances due to exogenous cash flows to the funds. They suggest an approach that uses 

portfolio weights with conditioning information that helps measure portfolio performance 

better despite the cash inflows to or outflows from the fund [4]. 

Andonov et.al (2012) discusses that although larger pension funds have the advantages 

of lower costs, they exhibit diseconomies of scale due to increased illiquidity. Larger funds may 
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perform better if they are not managed to replicate market movements but have a more passive 

stance instead [5].  

In their 2007 article Bikker et.al. find out that regarding the performance of stock 

exchange markets, pension fund investment decisions made by the Dutch fund managers do not 

have a far sighted perspective. Investment behavior is driven by cyclical performance of the 

stock market rather than long term trends. Fund managers have a tendency to seek gains by 

market timing but are unable to correctly predict stock markets on average [6].  

In their 2013 study Dağlı et.al examine Turkish Private Pension System in several 

parameters such as fund sizes, fund performances, fund standard deviations, brokerage 

commissions, proportions of securities in fund size, and fund ages.  They make a panel data 

study for 29 funds and obtain some robust theory consisting findings in terms of correlations 

between fund performances and stock proportions and fund performances and brokerage 

commissions [7].  

Korkmaz and Uygurtürk (2007) use single and multiple linear repression analysis to 

measure performances of 46 Turkish pension funds. They use Istanbul Stock Exchange 100 

Index, KYD All GDS Bond Index and KYD O/N Net Repo Index as the independent variables 

and weekly percentage fund price changes as the dependent variable. Their findings suggest 

that all the variables are stationary. They come out with different findings for fund categories 

in terms of robustness and theory consistency [8]. Korkmaz and Uygurtürk (2008) study fund 

performances and portfolio managers’ market timing capabilities using linear regression [9].  

Wood and Dasgupta’s 1996 study focuses on utilizing regression, ARIMA and ANN in 

predicting movements in the MSCI USA capıtal market index. They found out that root mean 

squared errors are lower with predicting through neural networks with one hidden layer 

compared to root mean squared errors of ARIMA and regression [10].  

In their 1999 study Indro et.al. use an ANN approach to forecast the performance of 

equity mutual funds. They use a multi-layer perceptron model and a nonlinear optimizer 

assessing several independent variables such as fund turnovers, P/E and P/B ratios, market 

capitalization, and stock and cash ratios in order to predict fund performances. Their findings 

for growth funds (stock heavy funds) indicate superiority of ANN over linear regression models 

[11].  

Zhang 2001 study uses a hybrid model of ARIMA and neural networks in time series 

forecasting. Author states the main disadvantage of the ARIMA model as its linearity 

assumption. ANNs, on the other hand, do not make such assumptions, and are more flexible 

models that can handle non-linearity. Real life time series examples are not purely linear or 
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non-linear, thus a combination of the two models is expected to perform better than sticking to 

one model. Zhang figures out that ANN performs slightly better than ARIMA in 1 month time 

span, yet the hybrid model performs better than the two. Model performances converge to each 

other in the longer timespans of 6 and 12 months [12]. 

In their 2012 study Kumar and Thenmozhi advanced Zhang’s study with an addition of 

E-GARCH model to predict the daily closing prices of Nifty and S&P 500 Index. They have 

used a three-layer feed-forward ANN model to forecast daily returns of the indices. Results 

show that ANN model performs better than the linear ARIMA and E-GARCH models. Hybrid 

model that uses the residuals of the ARIMA and E-GARCH model in the ANN model performs 

better than the two, giving the lowest mean squared errors in predicting Nifty and S&P 500 

returns [13].  

Taskaya-Temizel and Casey (2005) findings contradicts Zhang 2001 findings to some 

extent. Authors showed that depending on the stochastic nature of the dataset under 

investigation, such trend, seasonality and non-linearity, usage of hybrid ANN models does not 

necessarily outperform linear models like ARIMA. In most of the cases hybrid models, as well 

as ANN models outperform linear ARIMA models, yet it is argued that there is no strict 

superiority of one model over the other regardless of the nature of the dataset [14]. 

There are several studies regarding applications of machine learning and deep learning 

on Istanbul Stock Exchange indices and stock prices. Gündüz et.al. (2017) forecasts the hourly 

BIST100 price changes by convolutional neural network (CNN) and logistic regression models, 

obtaining robust findings for their revised CNN model [15].  

Aydın and Çavdar (2015) makes a comparative analysis of VAR and ANN in predicting 

BIST100 Index, gold prices, and USD/TRY exchange rate. Authors used a multilayered 

feedforward neural networks model and a VAR model on monthly data. They find out that an 

ANN model with 2 hidden layers performs better than the VAR model in forecasting of these 

variables [16].  

Tekin and Çanakoğlu (2018) study uses linear regression, ANN, random forest and 

random tree algorithms to forecast selected stocks of İstanbul Stock Exchange. They find out 

that random forest algorithm provides better fit compared to other models [17]. Similarly Tekin 

and Çanakoğlu (2019) compares forecasting performance of ARIMA model, long short-term 

memory, linear regression, random forest, random forest algorithms, and KNN algorithms. 

They argue that ARIMA and linear regression have better fit compared to other models [18]. 
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3. DATA 

 

The aim of this study is to predict the changes in total pension fund size in the next 

month by utilizing different models and selecting the best fitting model for the dataset under 

investigation. In this study our main variable is the FUND variable. We have used the total 

pension fund size data of one of the leading pension companies in the sector, whose fund size 

amounts about %20 percent of the Turkish PPS on average for the October 2003 - November 

2020 period, in other words from the beginning of the system to today.  

Turkish private pension fund data are publicly available at the Capital Market Board 

[19] and Turkey Electronic Fund Trading Platform (TEFAS) [20] websites. Fund size, fund 

price, number of units in circulation, and net asset value data are publicly accessible on these 

platforms. We have used the data of all 34 funds of one selected pension company for simplicity 

since there are a total of 402 active funds in the sector as of November 2020. To note, not all of 

these 34 funds were existent since 2003, thus their asset values are simply zero before 

establishment.  

Our FUND data is the daily net changes in total asset value of 34 funds excluding the 

net cash flows. Simply: 

FUNDt = TNAVt - TNAVt-l – NCFt-1 

 

where; TNAVt is the total asset value of the 34 funds at time t, TNAVt-1 is the total asset value 

of the 34 funds at time t-1, and NCFt-1 is the total net cash flows to 34 funds at time t-1. A 

change in total net asset values captures the daily growth (or decay) in total fund size. However, 

we want to get rid of the change in fund size due to additional cash to the funds or the cash 

payments made by the funds. Therefore we deduct the net cash flows (can be positive or 

negative) at time t-1 from the change in total fund size between time t and t-1. FUND now 

contains the information on changes in fund size due to changes in the market prices of the 

financial instruments contained in the funds. Any market factor that increases the prices of 

financial instruments in the funds leads to an increase in the FUND variable, and vice versa. Of 

course, all 34 funds in the study have different portfolio allocations. Some market dynamics 

may lead to an increase in the size of one fund and a decrease in the other. For example, one 

fund can be in a long position for a specific instrument, suppose USD, where another one is on 

a short position, then an increase in USD/TRY exchange rate will have opposite effects on these 

two funds. However, we are interested in the final change for 34 funds, not in the fund specific 
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effects. Note that, FUND is in TL terms in the source file. After loading the data from the 

dataset in excel format (by use of Pandas), we have normalized FUND by subtracting the mean 

of sample from each observation and dividing each deduction by the standard error of the 

sample, known as z-score normalization.  

In our univariate models only we use FUND series. In multivariate analysis FUND is 

the dependent variable and there are four independent variables; XU100, USD, XAU, and 

TRINT. XU100 is the İstanbul Stock Exchange 100 Index closing value, available on İstanbul 

Stock Exchange website [21]. Stock exchange variable is expected to affect FUND via the 

securities held by the funds. USD is the US Dollar to Turkish Lira spot exchange rate. 

USD/TRY exchange rate variable is expected to affect FUND via the foreign currency 

denominated assets held by the funds. We did not use an additional variable for EUR/TRY rate 

because of the multicollinearity of the two exchange rates. XAU is the dollar price of 1 ounce 

of gold. Gold price variable is in US Dollar terms so do not have a collinearity with our USD 

variable (USD/TRY exchange rate). It is expected to affect FUND via the physical gold and 

gold denominated assets held by the funds. TRINT is the closing value of interest rate on 1 year 

maturity Turkish governments bonds (for a few missing observations interest rates of 9 months 

or 6 months maturity government bonds are used). Interest rate on 1 year Turkish government 

bonds variable is expected to affect FUND via the borrowing instruments held by the funds. 

We have preferred Thomson Reuters Eikon platform to obtain data for our independent 

variables due to our accessibility of the platform and its ease of use, yet these are public data 

that can be deducted from various public sources such as websites of banks, investment firms, 

investment websites, and the Central Bank. To sum up, complete dataset consists of daily 

observations of five variables; FUND, XU100, USD, XAU and TRINT, for the period of 

28.10.2003 - 20.11.2020.  

3.1 Testing for Stationarity  

Non-stationarity of a time series implies presence of a unit root. Unit root indicates that 

current values of the series are persistently affected by its own past values, regardless of how 

many periods have passed. We need time series data to be stationary in order to use them in 

models like AR, MA or ARMA for forecasting. Time series are expected to be stationary as 

long as they have three features, constant mean over time (no strong trend), constant standard 

deviation over time (no major increase or decrease in volatility through time), and lack of 

seasonal patterns (no seasonality). Series with these three properties provide usability in 

univariate forecasting models mentioned above and we will also be safe to use them with other 
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stationary variables in multivariate models like VAR. One can plot the data for a quick check 

of these three features for stationarity, however we need to use a formal test for stationarity in 

order to proceed on model selection. Of course, there are models that enable the use of non-

stationarity series, like ARIMA in univariate analysis and ARDL in multivariate analysis for a 

mix of stationary and non-stationary series.  

We will use Augmented Dickey-Fuller (ADF) test, which has the null hypothesis of the 

existence of a unit root. Existence of a unit root in the sample under investigation implies that 

the series is non-stationary, hence for stationarity we need to reject the null hypothesis. Note 

that, lower ADF test statistics compared to critical values implies rejection of the null. 

Plot of FUND time series in Figure 2 shows constant mean and no seasonality, but we 

see higher standard deviation in the later years of the sample, yet ADF statistic value is lower 

than the critical value (ADF Test Statistic: -10.157678; critical values, %1: -3.43; %5: -2,86), 

p-value is lower than 0.05 (p-value: 0.00). We can conclude that FUND series is stationary (H0: 

There is unit root. We reject H0, series is stationary). 

 

 

Figure 2: Plot of FUND series 

 

FUND variable is our main interest in this study. In univariate analysis we will use 

models that undertake stationary variables for forecasting, such as AR, MA and ARMA. In case 

of non-stationarity we would have to use ARIMA, SARIMA, ARCH or GARCH to handle the 

unit root in the series.  

Plot of XU100 time series in Figure 3 shows strong trend (increasing mean). ADF test 

statistic is higher than critical value (ADF Test Statistic: -0.756570; critical values, %1: -3.43; 
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%5: -2.86), p-value is higher than 0.05 (p-value: 0.831548). We can conclude that XU100 series 

is non-stationary (H0: There is unit root. We do not reject H0, series is non-stationary). 

 

 

 

Figure 3: Plot of XU100 series 

 

Plot of USD time series in Figure 4 shows strong trend (increasing mean). ADF test 

statistic is higher than critical value (ADF Test Statistic: 1.853157; critical values, %1: -3.43; 

%5: -2.86), p-value is higher than 0.05 (p-value: 0.998449). We can conclude that USD series 

is non-stationary.  

 

 
 

Figure 4: Plot of USD series 
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Plot of XAU time series in Figure 5 shows non-constant mean over time. ADF test 

statistic is higher than the critical value (ADF Test Statistic: -1.029364; critical values, %1: -

3.43; %5: -2.86), p-value is higher than 0.05 (p-value: 0.742404). We can conclude that XAU 

series is non-stationary.  

 

Figure 5: Plot of XAU series 

 

Plot of TRINT time series in Figure 6 does not show persistent trend, but mean does not 

look constant through time. We must rely on our ADF test statistic, which is lower than %5 

critical value (ADF Test Statistic: -3.060373, critical values; %1: -3.43; %5: -2.86), p-value is 

lower than 0.05 (p-value: 0.029628). We can conclude that TRINT series is stationary with %95 

confidence.  

 

 

 
Figure 6: Plot of TRINT series 
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3.2 Dealing with Non-Stationarity  

In our multivariate analysis dependent variable will be FUND which is found to be 

stationary, yet three of the independent variables are found to be non-stationary. A use of 

stationary variables with non-stationary variables can be problematic in models like multiple 

regression or VAR. A mix of different ordered variables can be estimated in models like ARDL 

(short for autoregressive distributed lags). However ARDL is not a model that is suitable for 

forecasting, because it includes present values of the independent variables. Therefore we will 

stick to VAR and multiple linear regression as our multivariate models for forecasting.  

A non-stationary series can be converted into stationary series with differencing, which 

is simply done by subtracting the first lag of the series from itself. Number of differences 

required to obtain stationarity is called the order of integration. We will take the first differences 

of XU100, USD, and XAU and run ADF tests for non-stationarity. If test results imply 

stationarity, will use the first differences instead of levels in multivariate analysis and conclude 

that levels are of order 1. If first differences are non-stationary, we will take the first differences 

of the first differences (same as second differences of the original series) and test for non-

stationarity again (levels are of order 2 or higher). 

Plot of XU100_D (first difference of XU100) series in Figure 7 shows constant mean. 

ADF test statistic is lower than the critical value (ADF Test Statistic: -17.968357; critical 

values, %1: -3.43; %5: -2.86), p-value is lower than 0.05 (p-value: 0.000000). We can conclude 

that XU100_D series is stationary.  

 

 

Figure 7: Plot of XU100_D series 
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Plot of USD_D (first difference of USD) series in Figure 8 shows constant mean. ADF 

test statistic is lower than the critical value (ADF Test Statistic: -11.129131; critical values, %1: 

-3.43; %5: -2.86), p-value is lower than 0.05 (p-value: 0.000000). We can conclude that USD_D 

series is stationary.  

 

 

Figure 8: Plot of USD_D series 

 

Plot of XAU_D (first difference of XAU) series in Figure 9 shows constant mean. ADF 

test statistic is lower than the critical value (ADF Test Statistic: - 65.516171; critical values, 

%1: -3.43; %5: -2.86), p-value is lower than 0.05 (p-value: 0.000000). We can conclude that 

XAU_D series is stationary.  

 

 

Figure 9: Plot of XAU_D series 

First differences of all the non-stationary variables are stationary. We can use 

XU100_D, USD_D, and XAU_D along with TRINT in our multivariate analysis.  
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4. MODEL 

 

We will use univariate and multivariate models to forecast FUND data for one month 

ahead, which is for 20 observations since our data is given in working days. We will calculate 

mean squared errors of each prediction and compare our models accordingly. Univariate 

analysis includes naïve (persistence), AR, MA and ARMA models, multivariate analysis 

includes VAR and multiple linear regression.  

4.1 Univariate Models 

A series can only have explanatory power on itself as long as there is some level of 

correlation between the series and its lagged values, known as autocorrelation. If there is no 

autocorrelation between current and the past values of a series then the series is in “random 

walk” nature. In this case it is not possible to forecast future values of the series by using 

observed current and past values.  

We will start with plotting lags and current values of FUND series. Lag plot of FUND 

in Figure 10 gives us an indication on the existence of autocorrelation. We can see that majority 

of observations are grouped together, implying existence of autocorrelation. Notice that y-axis 

is in FUNDt+1 values and x-axis is in FUNDt values. We would see randomly distributed points 

on the plot if the series was a random walk.  

 

 

 

Figure 10: Lag Plot of FUND 
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Lag plot implies that lags of series have explanatory power over current values. We can 

use autocorrelation graph of the FUND series as in Figure 11 to see how many lags of the 

variable have an effect on its current observation.  

 

 

 
 

Figure 11: Autocorrelation Graph of FUND 

 

For a visualization of 35 lags, we can see that plot of first 4 lags imply autocorrelation, 

since they are out of critical boundaries, lags from 5 to 8 are in the boundaries. We are safe to 

use 4 lags to start our models in order to reduce complexity. However, some higher lags are out 

of boundaries as well, we may have to take them into consideration. 

4.1.1 Naive Model 

Naive model (or the persistence model) forecasts the next values same as the last 

observation. Simply;  

Yt = Yt-1 + Ɛt 

where, Yt is the current value, Yt-1 is the immediate previous value, and Ɛt is the error term. Note 

that model tries to fit the coefficient of Yt-1 to 1, model persistently predicts the next value same 

as the last one. This kind of forecasting (if we still can call it forecasting) can be useful only if 

the environment is prone to minimal change and any error in the forecast can be ignored. We 

can use such a model for the noon time temperature at a specific location in the tropics, or height 

of an orchid flower measured daily in the office. Naïve model is not useful for forecasting 

economic series. 
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Plot of test values (last 20 observations) of the sample and the predictions are given 

below in Figure 12. Notice that, predictions are the one period shifted version of the actual 

observations. Predictions copy the movement of the actual values one period behind. Mean 

squared error of the naïve model is found to be 22.51. 

 

 
 

Figure 12: Plot of Naïve Model Predictions vs. Actual Data 

 

4.1.2 Autoregressive Model (AR) 

Autoregressive model predicts future values based on past values with a lower 

correlation suggested by the persistence model, which assumed past and present values are 

perfectly correlated. In AR model correlation between the past and the current values 

(autocorrelation) are less then unity, past values have an explanatory power over current values. 

Mathematical notation for an AR(p)  process is as follows; 

Yt = c + a1*Yt-1 + a2*Yt-2 + ...+ ap*Yt-p + Ɛt 

where, Yt is the current value of Y, c is the constant term, Yt-1 to Yt-p are the past values of Y 

back to p periods, a1 to ap are coefficients of the respective past values of Y, and Ɛt is the error 

term,.  

Lag selection is very important in an AR model’s predictive power. Additional lags 

increase model complexity but may improve the predictive power of the model. We can use 

partial autocorrelation graph of to pick for the AR lags or use statsmodels library’s AR method 



17 

 

to pick for optimal lags. We will start with picking 31 lags suggested by the algorithm, which 

are greater than what partial autocorrelation graph suggests (4 lags).  

Below in Figure 13 is the plot of AR(31) model predictions with actual observations. 

We can see that in AR model predictions fit better than the naïve model. Mean square error is 

14.53, lower than the MSE of naive model (22.51). AR gives us a better fit. 

 

 

Figure 13: Plot of AR(31) Predictions vs. Actual Data 

 

In this model we are using 4264 past values to predict the 20 values. Deviations of the 

predictions from the actual 20 observations is captured in the MSE value. Note that we can use 

a time lapse method to make a prediction of the 20 values recursively, by predicting the first 

value same as before, with 4264 past values, and predicting the second value with the 

information in the 4264 past values and the first actual value of the test set. Increasing the 

number of observations in the past values (train set) by one additional value from the test set 

for which a prediction have been made in the last recursion, we end up predicting the 20th (last 

value) with the information of the 4283 actual observations of the sample. This kind of recursive 

prediction is called the walk forward prediction, which is expected to use maximum amount of 

information held by the sample and produce better fits as a result. 
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Following is the plot of AR(31) model with walk forward approach in Figure 14. 

Improvement in the model fit can be seen in the plot compared to the previous plot. MSE of the 

AR(31) model declined to 12.86 with recursion compared to with no recursion (14.53). 

 

 

Figure 14: Plot of AR(31) Walk Forward Predictions vs. Actual Data 

 

Use of 31 lags were suggested by the statsmodels’ AR method. We have found out that 

AR(72) gives the minimum MSE (12.01) for a trial of up to 100 lags, plotted in Figure 15. We 

can improve our fit by employing walk forward approach to AR(72) model plotted in Figure 

16,  in which MSE declines to 10.04.  
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Figure 15: Plot of AR(72) Predictions vs. Actual Data 

 

 

 

Figure 16: Plot of AR(72) Walk Forward Predictions vs. Actual Data 

 

Since our data is daily, we cannot find an economic intuition in using such high number 

of lags.  If our data were a high frequency data of seconds or milliseconds this many lags would 

imply a meaningful behavior of the series. We would suggest using up to 4 lags in AR model 

as suggested by partial autocorrelation graph in Figure 17. Note that lags up to 4 are significant. 
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Lags between 5 and 8 are insignificant. 9th lag is significant. We can keep AR order at 4 to 

decrease model complexity in the ARMA section.  

 

 

Figure 17: Partial Autocorrelation Plot of FUND 

 

4.1.3 Moving Average Model (MA) 

Moving-average is the model in which a series depends linearly on the current and the 

past errors which are the deviations the actual values of series from the expected value. MA(q) 

process is; 

Yt = c + Ɛt + b1*Ɛt-1 + b2*Ɛt-2 + ...+ bq*Ɛt-q  

where, Yt is the current value of Y, c is the constant term,  Ɛi are the deviations (errors) of Yi 

from the expected value for the periods from the current period back to q, and b1 to bq are 

coefficients of the respective past values’ error terms. 

Lag selection is critical in forecasting with MA model. MA model fails to effectively 

predict number of periods higher than the lags. An MA(q) model can make a good prediction 

of q periods ahead. After q periods MA predictions will converge to a mean and will remain 

unchanged. This problem can be handled with higher lag selection, or a recursive method (walk 

forward) as explained above in the AR section. We will use up to 20 lags to predict the 20 

upcoming values of FUND variable by MA. We will also use a walk forward approach with 

lower order MA(q) models. 

As partial autocorrelation plot gives an intuition of number of lags appropriate for using 

in AR, autocorrelation plot in Figure 18 provides an intuition for the number of lags to choose 

in MA. It looks reasonable to use 4 lags in MA, yet there are strong correlations for higher lags 

like 14. We can start with higher lags and narrow down our model later. 
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Figure 18: Autocorrelation Plot of FUND 

 

We have first estimated MA(14) with the help of statsmodels library’s ARIMA method 

setting p=0, d=0, and q = 14 (ARIMA(0,0,14) model is the same as MA(14)). Outputs show 

that, except for one lag, all the lags of the error terms are significant in explaining FUND 

variable. MSE of the MA(14) model is found to be 15.87, which is higher than the MSEs in the 

AR model, but lower than the naïve model. We can say that MA model definitely have some 

usability in FUND prediction. However, as discussed earlier, 14 lags are not enough to predict 

20 periods ahead. As can be seen from the plots of MA(14) predictions and the actual data in 

Figure 19, last 6 predictions converged to a value and did not change at all. 
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Figure 19: Plot of MA(14) Predictions vs. Actual Data 

 

To increase the predictive power of the MA model we can first increase the number of 

lags to the number of periods we want to forecast. MA(20)  model estimation shows that, except 

for two lags, all the lags of the error terms are significant in explaining FUND. MSE declined 

to 15.53 compared to 15.87 of the MA(14) model. Prediction plot shows that all 20 predictions 

are unique as in Figure 20. 

We can also improve the model power by adding recursion to the estimation as we have 

done in the AR section. An MA(4) model with walk forward approach gives MSE of 13.94 and 

a better fit of prediction in the plot. Walk forward approach definitely improved the prediction 

power of the MA model, can be seen in Figure 21. 

We have found out that MA(10) with recursion, plotted in Figure 22, is the MSE 

minimizing MA model (13.71), and MA(4) with recursion is also very good compared to higher 

order MA models. 

   

 



23 

 

 

Figure 20: Plot of MA(20) Predictions vs. Actual Data 

 

 

Figure 21: Plot of MA(4) Walk Forward Predictions vs. Actual Data 
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Figure 22: Plot of MA(10) Walk Forward Predictions vs. Actual Data 

 

4.1.4 Autoregressive Moving Average Model (ARMA) 

Autoregressive Moving-average model combines the autoregressive component of the 

series with its linear dependence on the current and the past errors. ARMA may improve fit of 

data compared to AR and MA. Model complexity increases, however we can decrease the 

number of total lags in ARMA compared to using AR and MA alone. ARMA(p,q) process is; 

Yt = c + Ɛt + a1*Yt-1 + a2*Yt-2 + ...+ ap*Yt-p + b1*Ɛt-1 + b2*Ɛt-2 + ...+ bq*Ɛt-q  

where, Yt is the current value of Y, c is the constant term, Ɛt is the error term in current period, 

Yt-1 to Yt-p are the past values of Y back to p periods, a1 to ap are coefficients of the respective 

past values of Y, Ɛi are the deviations of Yi from the expected value for the periods back to q, 

and b1 to bq are coefficients of the respective past values’ error terms. 

Lag selection is also important in ARMA(p,q) model. Since it combines the linear 

explanatory power of AR(p) and MA(q), to keep the model complexity limited, we can choose 

number of lags as proposed by the PACF and the ACF plots. Especially with daily data, a high 

number of lags do not have economic intuition as they do for higher frequency data of minutes 

and seconds. Our PACF plot suggested starting with p (order of AR) equal to 4, and ACF plot 

suggested starting with q (the order of MA) equal to 4 as well.  
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ARMA(4,4) outputs show that all 4 lags of AR and all 4 lags of MA terms are 

significant. We can say that ARMA(4,4) results are robust, yet MSE of the model is found to 

be 15.48 which is higher that our previous findings on AR and MA models, and the prediction 

plot in Figure 23 shows a poor fit of the model to data.  

 

 

Figure 23: Plot of ARMA(4,4) Predictions vs. Actual Data 

 

We have tried some other combinations of p and q in ARMA(p,q), with robust results 

in terms of lags’ significance. Comparing ARMA (4,4) with ARMA(4,10), ARMA(9,4), 

ARMA(2,2), ARMA(1,3) we still see that ARMA (4,4) is the best fitting ARMA model to the 

data and gives the lowest MSE on the predictions versus actual test data. 

We can improve the model fit with recursion. We see that walk forward approach 

improves the model fit in ARMA(4,4) model, as it did in AR and MA models. ARMA (4,4) 

MSE declined to 14.19 with recursion, yet with recursion the lowest MSE producing model is 

the ARMA(1,3) with an MSE of 14,15, so close to ARMA(4,4) with recursion. Figure 24 and 

Figure 25 show the plots of ARMA(4,4) and ARMA(1,3) with recursion. 

 

 

 

 

 

 

 

 



26 

 

 

Figure 24: Plot of ARMA(4,4) Walk Forward Predictions vs. Actual Data 

 
 

 

Figure 25: Plot of ARMA(1,3) Walk Forward Predictions vs. Actual Data 
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4.2 Multivariate Models 

A series can be explained by other series’ current and lagged values, as well as its own 

lagged values. We will use vector autoregression (VAR) and multiple linear regression (MLR) 

models to forecast FUND data in this section. For sake of stationarity of the series, our 

explanatory variables will be the first differences of XU100, USD, and XAU variables, which 

are XU100_D, USD_D, and XAU_D and the levels of our TRINT variable, since TRINT is 

found to be stationary in the DATA chapter.  

4.2.1 Vector Autoregression Model (VAR) 

Vector autoregression model can be thought of as the multivariate extension of the AR 

model in which variables are explained by the lags of themselves and the other variables. All 

the variables under VAR are endogenous variables. If there are k many variables in the model 

all the variables will be collected in a vector Yt of k*1 dimension in the left hand side of the 

model. A VAR(p) model would look like:  

Yt = c + A1*Yt-1 + A2*Yt-2 + ...+ Ap*Yt-p + et  

where, Yt is a k*1 vector of endogenous variables values at time t, c is a k*1 vector of constants, 

Ai are k*k matrices of the coefficients, Yt-i up to Yt-p  are the i-th lag of Yt (so are k*1 vectors), 

and et is the k*1 vector of error terms. 

Direction of predictability is very important in a VAR model. Mathematically, VAR 

method regresses all the variables onto others, yet we need a formal test of predictability, known 

as Granger Causality Test. This test can be applied to two variables, and shows us which 

variable “Granger causes” the other variable, in other words which can be used for the 

prediction of the other and which cannot. Some variables “Granger causes” each other, 

implying we can regress them on each other to make a prediction of the dependent one. 

Whereas, for some other couple of variables Granger causality works one way, we can explain 

one of them with the other, but not vice versa. We have conducted four Granger causality tests 

with FUND as the first variable and the other 4 variables as the second variable. All tests 

indicate that at least one lag of the XU100_D, USD_D, XAU_D, and TRINT variables are 

significant in predicting future values of FUND. So these 4 variables “Granger cause” FUND 

variable. We can use them for forecasting FUND variable in our VAR model. 

In a VAR model, lag selection is important as it is in AR and MA models. For lag 

selection of each variable, first we look at the PACF plots of the series to determine maximum 

lag selection. Then we look at the Pearson correlations of lagged independent variables and our 

dependent variable FUND. PACF plots suggests using a low number of lags up to 3, and a 



28 

 

maximum of 48 lags for XU100_D, 4 lags to a maximum of 45 for USD_D,  5 lags and some 

other up to a maximum lags of 46 for XAU_D, and 2 lags to a maximum of 43 for TRINT. We 

used a maximum of 50 lags in our Pearson correlation tests between FUND and the independent 

variables XU100_D, USD_D, XAU_D, and TRINT for simplicity. We have found out that first 

4 lags are significant for XU100_D (and some more up to 48), 2nd 4th and 5th for USD_D (and 

some more up to 48), first 4 lags for XAU_D (and some more up to 48, as well), but none for 

TRINT. 

For the lag selection of the VAR model itself, we use two criteria, AIC (Akaike’s 

Information Criterion) and BIC (Bayesian Information criterion). For a maximum of 100 lags, 

AIC suggests using 29 lags in VAR and BIC suggests using 2 lags. We have estimated both 

VAR(29) and VAR(2), and compared results.  

We have used statsmodels library's VAR method in model estimation. VAR(29) has 

many insignificant lags for FUND as the dependent variable and an MSE of 12.49 for the 

predictions. VAR(2) model’s all lags are significant for FUND as the dependent variable but 

the MSE increased to 16.02. We can use VAR(29) as our first multivariate model, plotted in 

Figure 26. 

 

 

Figure 26: Plot of VAR(29) Predictions vs. Actual Data 

Although AIC and BIC suggested using 29 and 2 lags respectively, we have increased 

the lag size up to 250 (a year in working days) and found out that MSE values kept decreasing 

as we increase our lag size. VAR model fit seemed to increase, such that MSE declined to 5.43 
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for VAR(72) (note that AR(72) is the MSE minimizing model in the univariate section),  4.66 

for VAR(100) and to 0.72 for VAR(250). Figures 27, 28, and 29 indicate a better fit but we 

may suspect overfitting of the model to data as lag size is increased in VAR.  

 

 
Figure 27: Plot of VAR(72) Predictions vs. Actual Data 

 

 
 

Figure 28: Plot of VAR(100) Predictions vs. Actual Data 
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Figure 29: Plot of VAR(250) Predictions vs. Actual Data 
 

4.2.2 Multiple Linear Regression Model (MLR) 

Multiple linear regression model takes a dependent variable and regresses it to the given 

independent variables in order to fit the data on a line that minimizes the total deviations from 

that line. In simple linear regression there is only one independent variable. In multiple 

regression there are more than one independent variable, and also the lags of the independent 

variables can be used in the estimation. MLR can be used in forecasting as well as seeking long 

term relationships between variables, known as cointegration. However, there are more 

sophisticated models for cointegration like Johansen procedure and Vector Error Corrections 

models in the literature.  In this study we are interested in forecasting rather than cointegration 

of FUND data, therefore MLR is our last model of interest in multivariate analysis. 

An MLR model with levels of k independent variables would look like:  

Yt = c + b1*X1t + b2*X2t + ...+ bk*Xkt + et  

where, Yt is the dependent variable time t, c is constant, X1t to Xkt are the k independent 

variables at time t, and et is the error term. MLR is a very flexible model. We can add lags of 

the independent variables (for p as the number of lags; X1t-1 to Xkt-1 and X1t-p to Xkt-p), or we 

can omit the levels and only keep the lags (so no X1t-1 to Xkt terms) depending on the nature of 

our series and the model fit.  

We have used XU100_D, USD_D, XAU_D, and TRINT as our independent variables 

to explain the FUND data in our MLR model. MLR results for regression between FUND and 



31 

 

the independent variables at time t, in other words when we use only the levels but not the lags 

of the independent variables, are not robust. R2 value is found to be below 0, which is obviously 

an indication of poor fit of model. MSE is calculated to be 16.41, which is very high, and only 

better than the MSE of the naive model (which is 22.51) in the univariate analysis. Predictions 

of the MLR model with levels and no lags is plotted in Figure 30 below. We can see that 

predictions does not follow the actual data.  

 

 

 
Figure 30: Plot of MLR Predictions without Lags vs. Actual Data 

 
 

We have improved the MLR estimation by adding the lags of the independent variables 

to the regression. R2 values increased to positive values, and MSE declined considerably. We 

have estimated the FUND variable on the levels of the independent variables and to their lags 

up to 20. We have found out that addition of first two lags to the levels as the explanatory 

variables provided the lowest MSE (9.71) and the highest R2 (0.39). Results even improved 

when we have eliminated the levels from the model and estimated FUND on the first two lags 

of the independent variables, with MSE (9.49) and R2 (0.40). Note that use of 2 lags is in line 

with the findings of BIC test results in our VAR section. Figures 31 and 32 plots the 

improvement in MLR predictions with the inclusion of lags to the model.  
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Figure 31: Plot of MLR Predictions with Levels and 2 Lags vs. Actual Data 

 

 

 

Figure 32: Plot of MLR Predictions with 2 Lags and No Levels vs. Actual Data 
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CONCLUSION 

 

In this study, we have utilized univariate and multivariate models to forecast the net 

changes in total pension fund size of a private pension company in Turkey, excluding the net 

cash flows to the funds. We have used daily data for the past 17 years. In the univariate section 

we have uses naïve, AR, MA, and ARMA models for forecasting, after showing the stationarity 

of the net changes in fund size series. In the multivariate section, we have used the VAR and 

MLR models to forecast net changes in fund size with four explanatory variables of stock 

market index, exchange rate, gold price, and interest rate. 

Comparing the mean squared errors, we have found out that VAR models with high lags 

and MLR models with 2 lags of the independent variables outperformed the univariate models, 

as shown in Table 1. Best performing univariate model is the AR model with 72 lags for our 

data.  

 

Table 1: Mean Squared Errors of Model Predictions 

Model MSE 

VAR(250) 0.72 

VAR(100) 4.66 

VAR(72) 5.43 

MLR, No Levels, 2 Lags 9.46 

MLR, Levels, 2 Lags 9.71 

AR(72) Walk Forward 10.04 

AR(72) 12.01 

VAR(29) 12.49 

AR(31) Walk Forward 12.86 

MA(10) Walk Forward 13.71 

MA(4) Walk Forward 13.94 

ARMA(1,3) Walk Forward 14.15 

ARMA(4,4) Walk Forward 14.19 

AR(31) 14.53 

ARMA(4,4) 15.48 

MA(20) 15.53 

ARMA(4,10) 15.53 

ARMA(9,4) 15.58 

ARMA(1,3) 15.83 

MA(14) 15.87 

ARMA(2,2) 15.95 

MLR, Levels, No Lags 16.41 

Naive Model 22.51 
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We can summarize our findings as follows: 

i. Naïve (or persistence) model gives out the least accurate predictions, as compared over 

the mean squared errors between the predictions and the actual test data.  

ii. MA and ARMA fails to give good predictions as MA order is smaller than the number 

of periods we want to predict. 

iii. In AR, MA, and ARMA models increasing the order of p and q does not necessarily but 

usually improves the model fit. 

iv. Walk forward approach improves model fit on AR, MA, and ARMA models. 

v. VAR predictions improve as number of lags are increased. However we must be 

cautious about overfitting due to use of high number of lags. 

vi. Optimum MLR predictions are achieved with inclusion of 2 lags, and omission of levels 

of independent variables. 

vii. AR models with high orders gives good predictions. High lags would be more preferable 

with high frequency data, but they lack economic reasoning for daily data as in our 

study.  

viii. Multivariate models improved our predictions. Additional explanatory variables may 

help increase model fit.  

 

Future studies can based on the last finding. Utilizing different or additional explanatory 

variable are likely to increase forecast success. We can suggest using a different interest rate 

variable such as KYD 365 GDS Bond Index (instead of our TRINT variable) and adding KYD 

Government Eurobond USD Index variable to the model to include the effect of changes in the 

Turkish Government Eurobond prices along with our independent variables. 
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