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Abstract. This paper aims to quantify the adverse effects of contact type sensors on modal 

parameters of lightweight structures and to present a practical way for identification of modal 

parameters of structures with minimal sensor effects. The adverse effects of a contact type 

sensor on natural frequencies, damping levels and mode shapes are explored using the 

theoretical model of a typical beam-like sample carrying a sensor and a controlled experimental 

study based on measurement of frequency response functions using non-contact excitation and 

response sensors.  The half-power and circle fit modal identification methods are used to extract 

modal parameter from measured data. The experimental and theoretical modal analysis results 

are evaluated, and a practical methodology based on classical acoustic and vibration frequency 

response functions is suggested to identify modal loss factors and natural frequencies of 

lightweight structures with minimal sensor effects. 
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1. Introduction 

Mechanical properties such as Young’s moduli and damping levels of materials are 

frequently identified using measured modal parameters of some typical lightweight test samples 

such as beams and plates [1]. In addition, modal parameters of lightweight engineering 

structures such as satellite components often need to be determined via experimental modal 

analysis [2]. On the other hand, the accuracy of measured modal data of a test structure is 

adversely affected by mass loading, stiffness and damping effects of sensors especially when 

the mass (or effective modal mass) of the structure is small. Although, there are some standard 

methods based on frequency response function measurements using non-contact sensors for 

identification of mechanical properties of materials [1], these standard methods may not be 

appropriate for identification of some materials such as non-ferromagnetic ones or for 

identification of the test samples that are beyond the specified dimensions in the method [3] and 

the engineering structures that are different from beam and plate test samples. The damping of 

sandwich samples may be quite high and it may not be possible to measure the response data 

due to damping, so there may be need to utilize some other test samples that can not be tested 

using these test samples. The test rigs of these standard methods may also be very complicated 

[4] and there may be also the adverse effects of non-contact sensors [5]. The accelerometers are 

the most traditional and widely used sensors employed in experimental modal analysis; they 

have many advantages (i.e., frequency span covered, dynamic amplitude range, cost) over other 

techniques such as laser vibrometer [6]. However, it should be noted that the adverse effects of 

contact type sensors can be quite huge and misleading [2, 7, 8]. Overall, there is a need to 

measure the modal properties of both lightweight test samples and engineering structures using 

conventional (low-cost) sensors such as accelerometers and microphones with minimal sensor 

effects in an effective way in practice. 

The outline of this paper is as follows. The adverse effects of a contact type sensor on 

natural frequencies, damping levels and mode shapes are first investigated using the theoretical 

model of a typical beam-like (test) sample carrying a sensor, and the errors in the modal 

parameters are quantified as a function of sensor position. The damping of the structure is 

modelled by using the complex Young’s modulus approach while the sensor is modelled by 



using a solid element; the sensor is assumed to be rigidly joined to the structure as it is desired 

in the practical measurements. Then, a controlled experiment based on frequency response 

function measurements using non-contact excitation and response sensors is designed to study 

adverse sensor effects experimentally. Various modal identification methods such as half-power 

and circle fit are used to extract modal parameter from measured data. The experimental and 

theoretical modal analysis results are evaluated, and a practical methodology based on classical 

acoustic and vibration frequency response functions is suggested to identify modal loss factors 

and natural frequencies of lightweight structures with minimal sensor effects. The results 

presented in this paper can be used in various fields to minimize the adverse effects of sensors 

and to identify the correct modal parameters of structures in an effective way in practice. 

 

2. Theoretical study 

Mechanical properties of typical materials are frequently identified via the modal data 

measured using beam test samples [1, 3] while the beam samples are quite lightweight in most 

cases. The Boundary Conditions (BCs) of the beam samples are preferred to be free-free in 

practice as the damping and stiffness effects of the BCs are eliminated by this way. Considering 

the practical use of beam samples, a lightweight beam-like structure carrying a sensor is studied 

in this section. 

The beam-like structure is modelled using 4-node shell finite elements. The shell element 

used here has physical “drilling” degrees of freedom in the element normal direction, which is 

validated to predict the modal behavior of thin and thick shell structures with high accuracy [9]. 

The damping of the structure is modelled by using the complex Young’s modulus approach as 

�̃� = 𝐸(1 + i𝜂) where E is the storage Young’s modulus, 𝜂 = 2𝜁 is loss factor, 𝜁 is viscous 

damping ratio and i = √−1. The sensor is modelled by using a solid element (both the mass and 

mass moment of inertia of the sensor is included); the sensor is assumed to rigidly join to the 

structure as it is desired in practical measurements. The schematic of the model of the beam-like 

structure carrying a sensor is shown in Fig. 1 where z and y show the position (the center of the 

bottom surface) of the sensor along the long and short edges of the structure, respectively. 
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Fig. 1. Schematic of the model of a beam-like structure carrying a sensor 

 

 

The natural frequencies (𝜔𝑟) and modal loss factors (𝜂𝑟) for a damped system are obtained 

by solving the complex eigenvalue problem given by: 

(�̃� − 𝜆2𝐌)𝛙 = 𝟎 (1) 

where �̃� and 𝐌 are the stiffness and mass matrices of the assembly of the beam-like structure 

and the sensor, respectively. Here �̃� matrix is complex, representing non-proportional damping 

distribution. The complex eigensolution is obtained here by using Subspace Iteration Method 

[10] and the solution of the eigenvalue problem above yields: 

𝜆𝑟
2; 𝛙𝑟        𝑟 = 1,2,3, … , 𝑛 (2) 

where 𝜆𝑟
2 and 𝛙𝑟 are complex eigenvalues and mode shapes (eigenvectors), respectively. By 

defining 𝜆𝑟
2 = 𝜔𝑟

2(1 + i𝜂𝑟), 𝜔𝑟  and 𝜂𝑟 are given as:       

𝜔𝑟
2 = Re(𝜆𝑟

2) (3) 

𝜂𝑟 = Im(𝜆𝑟
2) Re(𝜆𝑟

2)⁄  (4) 

The length, width and thickness of the lightweight structure studied here are L = 300, w = 20 

and h = 3 mm, respectively. The side length of the cubic shape sensor is a = 10 mm. The 

Young’s modulus, loss factor and density of the material of the structure are E = 50 GPa, 𝜂 = 



0.05 and ρ = 4000 kg/m3, respectively. The corresponding values for the sensor material are E 

= 200 GPa, 𝜂 = 0 and ρ = 4000 kg/m3, respectively. The Poisson’s ratio is assumed to be v = 

0.3. Overall, the mass of the sensor is m = 4 g while the mass of the structure is M = 72 g where 

M/m = 18 here. 

The analyses are first conducted for the structure without carrying a sensor (actual case). 

After that, the analyses are conducted for the structure carrying a sensor (modified structure) for 

various positions of the sensor (z or z/L values). Here, the sensor is placed at midspan along the 

short edge of the structure (y = 0) for all z values. As the structure and the BCs are symmetrical 

and the deflections of the structure for z = 0 to 150 mm are the same with the results for z = 300 

mm to 150 mm, the analyses are conducted only for the sensor positions z = 10 to 150 mm with 

a spatial resolution Δz = 10 mm (i.e., z = 10, 20, 30, …, 150 mm). Comparison and correlation 

of data sets of the structure without and with a sensor are performed in terms of natural 

frequencies, loss factors (damping levels) and mode shapes. The mode shapes of a structure 

without and with a sensor are compared using Modal Assurance Criteria (MAC) given as [2]: 

MAC(R/X) =
|𝛙R

T𝛙X|
2

(𝛙R
T𝛙R)(𝛙X

T𝛙X)
 (5) 

where 𝛙R is the reference mode shape vector, 𝛙𝑋 is the mode shape vector compared with the 

reference one and T indicates the transpose of a vector. Here, the first eight modes (include at 

least 1 bending, 1 in-plane bending and 1 torsional modes) of the structure are examined. 

The modal parameters of the structure without a sensor are listed in Table 1, where r 

indicates the mode number and m and n are the number of half-waves in a mode shape along the 

long and short edges of a structure, respectively. It is seen that the loss factor is equal to 𝜂𝑟 = 

0.05 for all modes as expected. The first eight mode shapes of the structure without a sensor are 

given in Fig. 2. The natural frequencies (𝜔𝑟) of the structure with a sensor for various z/L values 

and corresponding MAC values are listed in Table 2. The loss factors (𝜂𝑟) do not change when 

an additional sensor is attached to the structure (for any z values) as long as the sensor is rigidly 

connected to the structure (as it is desired in practice). The natural frequencies and mode shapes 

change with sensor position as expected. The shapes of the bending modes (1st, 2nd, 3rd, 6th 

and 7th modes) do not seriously affected by an additional sensor; the MAC values of these 

modes are greater than 0.99 for any z values in the frequency range of interest. The in-plane 

bending mode (4th mode) deviates from the actual mode when the sensor is placed to the 

positions where the deflections are large (or when the sensor is far from anti-nodes) for the 

individual mode. The MAC values for all modes and z values are summarized in Fig. 3. It is 

seen that the mode sequences of the torsional 5th and 8th modes interchange with the sequences 

of 6th and 9th (or 10th), respectively. 

 
Table 1. The modal parameters of the beam-like structure (under free-free BCs) without a sensor 

Mode ωr (Hz) 

r Type (m,n) (ηr = 0.05 for all modes) 

1 Bending (3,1) 121.2 

2 Bending (4,1) 334.1 

3 Bending (5,1) 655.3 

4 In-plane Bending 797.9 

5 Torsional (2,2) 1055.9 

6 Bending (6,1) 1084.0 

7 Bending (7,1) 1620.4 

8 Torsional (3,2) 2118.3 
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Fig. 2. The first 8 modes of a beam-like structure without a sensor (under free-free BCs) 

 

The errors in the natural frequencies (𝜔𝑟) as a function of the given sensor position (z/L) are 

plotted in Fig. 4. It is seen that the error values are always negative for all bending modes; the 

mass loading effect of the sensor is dominant and the stiffness effect is low. However, the error 

values can be quite greater than zero for the torsional modes for some z/L values. The increases 

in the natural frequencies of torsional modes (also the change of mode sequences) are due to 

stiffening effect of the connection of a sensor to the structure. 

Here, the analyses were also performed when y = 5 mm (the sensor is not at midspan along 

the short edge) although the results are presented here for brevity. The results showed that the 

MAC values for y = 5 mm can be quite different from the MAC values obtained when y = 0. 

The MAC values for bending modes are in general lower when y = 5 mm. The results also 

showed that the error bounds for y = 0 and 5 mm are close to each other for bending modes. On 

the other hand, the decreases in natural frequencies of torsional modes are higher when y = 5 

mm. The lower values of natural frequencies of torsional modes are due to the larger deflections 

when y = 5 mm (see Fig. 2 for corresponding mode shapes). It is noted that the connection of a 

sensor to the structure provides more rigidity when the sensor is at the nodal line; hence the 

natural frequencies of torsional modes are higher when y = 0. On the other hand, the increases 

in natural frequencies decrease or the mass loading effect of a sensor become dominant when 

the sensor is placed to one side of the nodal line. 

 
 



Table 2. The modal parameters of the beam-like structure (under free-free BCs) carrying a sensor for 

various sensor positions (z/L) and corresponding MAC values (𝜂𝑟 = 0.05 for all modes and z/L values) 

where y = 0 

 
z/L = 0.033 (z = 10 mm) z/L = 0.067 (z = 20) z/L = 0.133 (z = 40 mm) z/L = 0.167 (z = 50 mm) 

r r ωr (Hz) MAC r ωr (Hz) MAC r ωr (Hz) MAC r ωr (Hz) MAC 

1 1 113.6 99.7 1 115.9 99.8 1 119.3 99.9 1 120.4 100.0 
2 2 319.2 99.3 2 326.9 99.8 2 333.4 100.0 2 332.0 100.0 

3 3 633.3 99.1 3 648.0 99.9 3 647.0 99.9 3 637.4 99.8 

4 4 747.4 51.5 4 762.8 59.2 4 786.4 81.0 4 794.0 91.8 

5 5 1005.0 99.3 5 1006.6 99.3 5 1014.8 99.4 5 1021.4 99.4 

6 6 1054.7 99.0 6 1075.1 99.9 6 1053.3 99.5 6 1045.1 99.3 
7 7 1581.8 98.9 7 1603.4 99.9 7 1566.6 98.9 7 1578.1 99.0 

8 8 1985.6 92.6 8 2031.9 96.3 8 2111.2 98.6 8 2132.6 93.9 

 
z/L = 0.200 (z = 60 mm) z/L = 0.233 (z = 70) z/L = 0.300 (z = 90 mm) z/L = 0.333 (z = 100 mm) 

r r ωr (Hz) MAC r ωr (Hz) MAC r ωr (Hz) MAC r ωr (Hz) MAC 

1 1 120.9 100.0 1 121.1 100.0 1 120.2 100.0 1 119.4 100.0 
2 2 328.6 99.9 2 324.7 99.9 2 320.3 99.9 2 320.9 99.8 

3 3 630.9 99.7 3 631.0 99.6 3 645.2 99.7 3 651.9 99.9 

4 4 798.6 98.6 4 800.4 99.9 4 797.2 93.9 4 793.6 90.8 

5 5 1029.6 99.4 5 1039.1 99.4 5 1060.5 99.4 6 1071.2 99.4 

6 6 1052.3 99.3 6 1067.3 99.6 6 1074.2 99.8 5 1056.8 99.5 
7 7 1600.9 99.7 7 1607.9 99.9 7 1559.5 99.2 7 1561.6 99.2 

8 9 2184.6 98.3 10 2204.7 98.7 9 2197.7 99.0 9 2173.2 98.3 

 
z/L = 0.367 (z = 110 

mm) 

z/L = 0.400 (z =120) z/L = 0.467 (z = 140 mm) z/L = 0.500 (z = 150 mm) 

r r ωr (Hz) MAC r ωr (Hz) MAC r ωr (Hz) MAC r ωr (Hz) MAC 

1 1 118.6 100.0 1 117.9 100.0 1 116.9 100.0 1 116.7 100.0 
2 2 323.2 99.8 2 326.5 99.8 2 332.6 100.0 2 333.6 100.0 

3 3 653.0 100.0 3 647.2 99.8 3 629.0 99.7 3 625.7 99.8 

4 4 789.6 88.6 4 785.9 87.2 4 780.9 86.1 4 780.2 86.0 

5 6 1081.1 99.5 6 1089.6 99.6 6 1100.3 99.8 6 1101.7 99.8 

6 5 1041.1 99.5 5 1039.7 99.6 5 1070.4 99.7 5 1078.7 100.0 
7 7 1586.5 99.4 7 1607.5 99.9 7 1571.8 99.3 7 1557.0 99.5 

8 9 2150.0 96.5 8 2033.8 95.4 8 1999.0 98.7 8 1993.8 99.0 
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Fig. 3. The MAC values for a) z = 10 and 20 mm, b) z = 30 mm, c) z = 40 mm and 50 mm where  r = 8, z 

= 60 and 90 mm where r = 9 and z = 70 and 80 mm where r = 10 and d) z = 100 and 110 mm where r = 9 

and z = 120, 130, 140 and 150 mm where r = 8 for the beam-like structure under free-free BCs and y = 0 

 

 

 

 

 

 

 



 

  

Fig. 4. The errors in natural frequencies (𝜔𝑟) of the beam-like structure (under free-free BCs) carrying a 

sensor for various types of modes as a function of sensor position (z/L) where y = 0. 

 

3. Experimental study 

Here, a controlled experimental study is designed for measuring structural frequency 

response function 𝐻𝑖𝑗(𝜔) given by [11]:  

𝐻𝑖𝑗(𝜔) =
�̃�𝑗

∗(𝜔)�̃�𝑖(𝜔)

�̃�𝑗
∗(𝜔)�̃�𝑗(𝜔)

 (6) 

where �̃�𝑗(𝜔) and �̃�𝑖(𝜔) are the Fourier Transforms of the time domain excitation force 𝑓𝑗(𝑡) 

applied at the point j and the vibration velocity (response) 𝑣𝑖(𝑡) measured at point i, 

respectively, t is time and superscript * indicates the complex conjugate. Both half-power and 

circle-fit methods are employed to identify modal loss factors by using measured structural 

frequency response functions. In the half-power method [2], the loss factor (𝜂𝑟 ) for mode r is 

determined by: 

𝜂𝑟 =
𝜔𝑟,2

2 − 𝜔𝑟,1
2

2𝜔𝑟
2

 (7) 

where (𝜔𝑟,1, 𝜔𝑟,2) are the frequencies corresponding to half power points around 𝜔𝑟 . In the 

circle-fit method [12], the modal loss factor is determined by: 

𝜂𝑟 =
𝜔𝑟,𝑏

2 − 𝜔𝑟,𝑎
2

𝜔𝑟
2 (tan(𝜑𝑟,𝑎 2⁄ ) + tan(𝜑𝑟,𝑏 2⁄ ))

 (8) 

where two frequencies (𝜔𝑟,𝑎 , 𝜔𝑟,𝑏) correspond to the angles (𝜑𝑟,𝑎 , 𝜑𝑟,𝑏) around 𝜔𝑟  when the  

𝐻𝑖𝑗(𝜔) function is plotted using the Nyquist diagram [2]. Both the excitation and response 

sensors are (magnetic) non-contact; there is no (or minimal) sensor effects in the controlled 

experiment. First, the actual modal parameters of the structure are identified using the   

functions measured via employing non-contact sensors described above. Then, an additional 

mass is attached to the structure to simulate the contact type sensor in the previous section, and 

the 𝐻𝑖𝑗(𝜔) functions are measured on the modified structure again using the non-contact 

sensors. The additional sensor is joined to the structure using a commercial (widely used) glue 

(wax) to simulate the practical measurements. The schematic of the experimental set-up is 
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shown in Fig. 6. The 𝐻𝑖𝑗(𝜔) functions are measured for various sensor positions (z values). It is 

noted that one end of the structure is clamped in this experiment. The bending modes of a 

structure can be excited by using the non-contact excitation system in this test set-up; hence 

only the bending modes are measured here. Also, the modal parameters of the test sample with 

and without an additional sensors (or additional mass) are determined using the theoretical 

model presented before and theoretical results are compared with experimental ones. 

 

v(z; t) f (z=L; t)

fixed end
L

magnetic velocity sensor magnetic excitation unit

lightweight 

structure
free end

z = 0z = s

additional sensor 

(or structure)

wax

 

Fig. 5. Schematic of the experiment; measurements include structural velocity (v) and the excitation force 

(f ). 

 

A very lightweight steel structure is intentionally studied here; the length, width and 

thickness of the structure are L = 200, w = 10 and h = 1 mm, respectively. The side length of the 

cubic shape sensor is a = 10 mm. The Young’s modulus, loss factor and density of the material 

of the structure are E = 202 MPa, 𝜂 = 0.0025 and ρ = 7850 kg/m3, respectively. The 

corresponding values for the additional sensor are E = 200 MPa, 𝜂 = 0.0025 and ρ = 4800 

kg/m3, respectively. The Poisson’s ratio is assumed to be v = 0.3. Overall, the mass of the 

additional contacting sensor is m = 4.8 g while the mass of the beam-like structure is M = 15.7 g 

where M/m = 3.27 (very lightweight structure).  

The theoretical and experimental modal parameters of the structure without an additional 

sensor are listed in Table 3. It is worth stating that the first mode can not be measured with 

reliable accuracy using the designed experiment; hence the results for the first mode are 

excluded here. It is seen that theoretical and experimental natural frequencies are almost the 

same; the differences between theoretical and experimental results are less than %0.1. Both the 

half-power and circle-fit methods estimate almost the same damping levels; the average loss 

factors for the identified modes are �̅� = 0.0026 when the half-power method is used and �̅� =
0.0027 when the circle-fit method is used. 

 
Table 3. The modal parameters of the beam-like structure (under free-fixed BCs) without an additional 

sensor 

Bending 

Mode No, k 
(m,n) Theoretical Experimental Δωk 

(%) ωk (Hz) ωk (Hz) ηk – Half Power ηk – Circle Fit ηk - Average 

2 (2,1) 128.8 128.8 0.0040 0.0042 0.0041 0.02 

3 (3,1) 360.6 360.3 0.0033 0.0030 0.0031 0.11 

4 (4,1) 707.0 706.8 0.0018 0.0018 0.0018 0.04 

5 (5,1) 1169.4 1170.5 0.0015 0.0017 0.0016 -0.09 

Absolute Average Value   0.0026 0.0027 0.0027 0.07 

 

The measured and predicted modal parameters of the structure with an additional sensor for 

various sensor positions (z values) are listed in Table 4. It is seen that the theoretical natural 

frequencies are close the experimental results for the lightweight structure carrying a sensor. 

The average absolute differences between theoretical and experimental natural frequencies (𝜔𝑟) 

are 0.29, 1.29, 1.36 and 0.84% when z = 10, 60, 110 and 160 mm, respectively. The half-power 



and circle-fit methods estimate almost the same damping levels for each mode and z values. The 

natural frequencies strongly depend on sensor position (z) as expected. The measured modal 

loss factors exhibit a small variation with respect to sensor position (z). The damping effect of 

the sensor seems to be apparent when the sensor is placed to a position where the modal strain 

energy of the structure is high for the individual mode. For example, the effect of the sensor on 

the damping of the 2nd and 3rd modes is highest when the sensor is at z = 110 mm for the 2nd 

mode and z = 60 mm for the 3rd mode. It is noted that z = 110 mm and z = 60 mm are the 

positions where the modal strain energies of the 2nd and 3rd modes, respectively, are relatively 

high. On the other hand, the modal loss factors of the 2nd to 4th modes are very close to the 

actual results (the modal loss factors of the structure without a sensor) when z = 10 mm; note 

that the modal strain energies of these modes are relatively low for z = 10 mm. It is seen that the 

frequency response data  measured when the sensor is at the free end of a beam give the most 

reliable modal loss factors when a few modes of a structure are to be identified (the most 

common case in practice). The average loss factor is about �̅� = 0.004  for z = 10 mm, �̅� =
0.006 for z = 60 mm, �̅� = 0.004 for z = 110 mm and �̅� = 0.005 for z = 160 mm; note that �̅� =
0.003 for the structure without a sensor. 

 
Table 4. The modal parameters of the beam-like structure (under free-fixed BCs) with an additional sensor 

for various sensor positions (z/L values) 

  z/L = 0.05 (z = 10 mm) 

 

Theoretical Experimental 

k ωk (Hz) ωk (Hz) ηk – Half Power ηk – Circle Fit ηk -Average Δωk (%) 

2 109.9 110.05 0.0054 0.0049 0.0051 -0.11 

3 326.1 325.75 0.0020 0.0021 0.0020 0.11 

4 646.1 643.75 0.0023 0.0025 0.0024 0.37 

5 1051.3 1045.5 0.0049 0.0050 0.0049 0.55 

Average Value 0.0036 0.0036 0.0036 0.29 

  z/L = 0.300 (z = 60 mm) 

 
Theoretical Experimental 

k ωk (Hz) ωk (Hz) ηk – Half Power ηk – Circle Fit ηk - Average Δωk (%) 

2 122.5 123.5 0.0065 0.0064 0.0064 -0.86 

3 311.6 319.8 0.0080 0.0074 0.0077 -2.56 

4 663.9 665.6 0.0046 0.0049 0.0047 -0.25 

5 1084.5 1069 0.0040 0.0036 0.0038 1.48 

Average Value 0.0058 0.0056 0.0057 1.29 

  z/L = 0.550 (z = 110 mm)  

 
Theoretical Experimental 

k ωk (Hz) ωk (Hz) ηk – Half Power ηk – Circle Fit ηk - Average Δωk (%) 

2 102.6 105.75 0.0075 0.0074 0.0074 -3.01 

3 344.1 345.15 0.0026 0.0023 0.0025 -0.30 

4 629.0 641 0.0043 0.0041 0.0042 -1.88 

5 1071.7 1074.6 0.0033 0.0032 0.0033 -0.27 

Average Value 0.0044 0.0042 0.0043 1.36 

  z/L = 0.800 (z = 160 mm) 

 
Theoretical Experimental 

 
k ωk (Hz) ωk (Hz) ηk – Half Power ηk – Circle Fit ηk - Average Δωk (%) 

2 121.4 120.3 0.0051 0.0049 0.0050 0.93 

3 298.2 300 0.0056 0.0056 0.0056 -0.57 

4 593.5 603.5 0.0050 0.0053 0.0051 -1.65 

5 1046.7 1044 0.0046 0.0045 0.0046 0.21 

Average Value  

  

0.0051 0.0051 0.0051 0.84 

 

 

 



4. Discussion of experimental and theoretical results 

In most cases in practice, the modal parameters of structures need to be determined without 

needing the correction of raw data (measured frequency response functions) as it requires 

additional capabilities. Also, the correction methods in the literature are based on some 

assumptions, i.e., only mass loading effect of a sensor is taken into account [2, 8]. Therefore, 

there is a need for a low-cost as well as practical way to directly identify the modal parameters 

of structures with minimal sensor effects. The results in the previous sections showed that the 

damping effect of a sensor rigidly connected to a structure is negligible; the additional average 

damping effect of the sensor (or the connection of the sensor to the structure) is less than %0.3 

for an extreme test case, i.e., the structure is quite lightweight and M/m ≈ 3.3 although the 

negligible damping effect changes with respect to sensor position (z). 

Opposite to the negligible adverse effects of a sensor on modal loss factors, the results 

presented in the previous sections showed that the natural frequencies of a lightweight structure 

vary with sensor position (z or z/L values). For bending modes stiffness affects are very small 

and both mass and stiffness effects may be dominant for torsional modes as expected. On the 

other hand, the results showed that the error values in the identified natural frequencies can be 

quite small as well as the sensor is placed the appropriate position (z value). For example, the 

natural frequencies of the first mode of the structure is determined to be 𝜔1 = 121.1 Hz when 

the sensor is at z = 70 mm (or z/L =0.233). It is noted that the correct value of the natural 

frequency of the first mode is 𝜔1 = 121.2 Hz and the error value is only 0.1% in this case.  

Similarly, the natural frequency of the second mode is 𝜔2 = 333.6 Hz when the sensor at z = 

100 mm (or z/L = 0.333) while the actual value for this mode is 𝜔2 = 334.1 Hz; the error value 

is still 0.1% in this case. Overall, it is seen that the first four modes of the structure can be 

determined with an error less than 0.5%. This suggests that sensors are best placed were mass 

effects are small, in order to minimize the error in natural frequency of a given mode. Such 

positions, however, correspond to the nodes of the mode considered, so the sensors will pick up 

little of the contribution of the corresponding mode to the beam vibration and it is doubtful 

whether this will lead to good identification results. Therefore, in practice, as the vibration 

amplitude the sensor experienced is extreme weak and the SNR (Signal to Noise Ratio) is very 

low when the sensor is placed at or near the node point of one bending mode, it is difficult to 

obtain high quality FRFs and high precision modal parameters, especially modal loss factors.  

 

5. Identification of modal parameters with minimal sensor effects 

Overall, the results in the previous sections suggest that the loss factors of the lightweight 

structures can be identified using the vibration frequency response functions measured on the 

structure carrying a sensor (an accelerometer). The natural frequencies, on the other hand, can 

be identified in a different way. Here, it is suggested that acoustic frequency response functions 

should be measured using a microphone and natural frequencies can be identified using these 

functions. As there is no mass, stiffness and damping effects of a microphone, the measured 

natural frequencies will contain zero (or minimal) errors due to sensor adverse effects. It is 

noted that the identification of damping levels using acoustic frequency response functions may 

not always be convenient as it is not possible to measure the amplitudes of acoustic responses 

with reliable accuracy in the laboratory although the accuracy of the amplitude information is 

not important for identification of natural frequencies. Overall, damping levels are identified on 

structural frequency response functions. This methodology can be used to identify modal 

parameters of any kind structure. The performance of this method is demonstrated using an 

experimental test case below. 

The schematic of the test set-up studied here is shown in Fig 6. The B&K 3560D analyzer, 

the B&K 4507B accelerometer, the Endevco 2302-10 modal hammer and the B&K 4189-A-21 

microphone are used in the measurements. A sample (made of glass composite material) with 

length, width and thickness L = 250, w = 25.4 and h = 5 mm is used. The mass of the 

accelerometer is m = 4.8 g while the mass of the structure is M = 60.5 g; M/m = 12.6. First, a 

microphone is placed about 10 cm away from the test sample and an acoustic frequency 



response function where the first three modes of the sample are well-excited is measured by 

exciting the structure using a modal hammer. The natural frequencies and loss factors of the 

first 3 modes of the test sample are determined using the acoustic frequency response function 

and the half-power method first. The natural frequencies are 𝜔1 = 305.0, 𝜔2 = 815.9 and 𝜔3 = 

1584.8 Hz and the loss factors are 𝜂1 = 0.0080, 𝜂2 = 0.0080 and 𝜂3 = 0.0102. These are the 

correct modal parameters of the structure as there is no adverse effect of a non-contact sensor. 

Next, an accelerometer is attached to the test sample and a few structural frequency response 

functions for three sensor positions (z or z/L values) are measured by exciting the structure 

using a modal hammer. The natural frequencies (𝜔𝑟) and loss factors (𝜂𝑟) of the test sample and 

the errors in the modal parameters using the vibration frequency response functions Hij for 

various i and j points (or z values) and the half-power method are given in Table 5. It is again 

seen that the accelerometer has negligible effect on the damping of the structure while the effect 

varies with sensor position (z) for each mode. The average loss factor is �̅�𝑟 = 0.0078 for z (or i) 

= 25 mm,   �̅�𝑟 = 0.0083 for z = 65 mm and �̅�𝑟 = 0.0078 for z = 105 mm. Overall, the effect of 

a sensor on the damping of the test sample is less than 0.15% while the natural frequencies are 

identified with zero error using an acoustic frequency response function. The demonstrations 

were conducted for some other practical structures and similar results were obtained although 

the results are not presented here for brevity. 

 

p (t) 

a (z; t)

f (z; t) 

L
test structure

z = 0z = s

 

Fig. 6. Schematic of the experiment; measurements include sound pressure (p), structural acceleration (a) 

and the excitation force (f ) 

 

Table 5. The natural frequencies and loss factors of a test (glass composite) sample and errors in the 

modal parameters identified using a few structural frequency response functions Hij for various i and j 

points 

Using Hij i = 25 mm, j = 65 mm i = 65 mm, j = 65 mm i = 105 mm, j = 225 mm 

Mode 

No, r 

ωr (Hz) Δωr 

(%) 

ηr Δηr 

(%) 

ωr (Hz) Δωr 

(%) 

ηr Δηr 

(%) 

ωr 

(Hz) 

Δωr 

(%) 

ηr Δηr 

(%) 
1 287.5 -5.7 0.0076 -0.04 303.3 -0.6 0.0072 -0.08 291.0 -4.6 * * 

2 791.5 -3.0 0.0080 0.00 777.0 -4.8 0.0071 -0.10 789.0 -3.3 0.0066 -0.14 

3 1535.1 -3.1 * * 1493.5 -5.8 0.0106 0.04 1534.5 -3.2 0.0090 -0.12 

Average Value 

 

0.0078 0.02 

  

0.0083 0.07 

  

0.0078 0.13 

 *could not be identified using the individual frequency response function 

The approach (needing only an accelerometer and a microphone) verified above can 

effectively be used in practice. For example, the approach can be used to identify natural 

frequencies and modal loss factors of the test samples in Oberst beam method instead of using 

the more complicated Oberst test rig defined in ASTM E 756 standard [3] where both excitation 

and response sensors are non-contact. It is noted that the errors in the identified modal 

parameters can be quite high although the non-contact response and excitation sensors are used 

in the Oberst beam method [5]. Here there is a need to ensure mode sequences. Note that the 



mode shapes are known in most cases. For example, only the bending modes are excited in the 

Oberst beam method [3] and they are defined. 

6. Conclusions 

This paper investigates the adverse effects of sensors on modal parameters of lightweight 

structures and present a practical way for identification of modal parameters of structures with 

minimal sensor effects. Specific contributions of this paper include the following. The adverse 

effects of a contact type sensor on natural frequencies, damping levels and mode shapes are 

investigated using the theoretical model of a typical (beam-like) test sample carrying a sensor; 

the errors in the modal parameters are quantified as a function of sensor position. The damping 

of the beam material is included in the theoretical model while the sensor is modelled using a 

solid element. A controlled experiment based on measurements of structural frequency response 

functions using non-contact excitation and response sensors is designed to study adverse effects 

of sensors experimentally. A practical as well as simple way based on measurements of 

structural and acoustic type frequency response functions is suggested to identify the correct 

modal parameters of typical lightweight structures in an effective way. The results show that a 

contact type sensor (and the connection of a sensor to the structure) provides mass loading and 

additional stiffness effects while the additional damping effect is negligible.  

Results show that the modal loss factors of a structure do not change as long as the sensor is 

rigidly connected to the structure. However, the modal loss factors exhibit a small variation 

with respect to sensor position in practical measurements. The damping effect of the sensor 

seems to be apparent when the sensor is placed to a position where the strain energy of the 

structure is high for the individual mode. The modal loss factor for each mode can be 

determined by averaging the loss factors determined using various spectrums; the spectrums 

measured at the points where the modal strain energies are low can give more reliable results. 

The natural frequencies of a structure can also be identified with high accuracy by using 

acoustic frequency response functions while the modal loss factors can be determined by using 

structural frequency response functions. The results given in this paper can be used in many 

engineering fields to minimize the adverse effects of sensors and to identify modal parameters 

of structures with minimal sensor effect in an effective way. 
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