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EXECUTIVE SUMMARY 

 
GAME RECOMMENDATION SYSTEM FOR STEAM PLATFORM 

 
Serhan Bayram 

 
 

Advisor: Prof. Dr. Semra Ağralı 
 
 

SEPTEMBER, 2021, 35 pages 
 
 
 
Increasing number of choices and competition in the markets, force companies to 

differ in services they provide to their customers. Offering better services have a positive 
impact on customer loyalty, and to do so, companies should understand their customers’ 
interests and act accordingly. One popular method for this purpose is building 
recommendation engines to make personalized suggestions. In this project, collaborative 
filtering methods with implicit feedback are used to make recommendations to users of the 
Steam platform. The recommendation systems are built using two different matrix 
factorization techniques, Alternating Least Squares and Bayesian Personalized Ranking. 
Different models are created with implicit playtime data of the users and the results are 
evaluated by using Precision at k metric. Additionally, similar items that are offered by the 
models are analyzed. Results show that the models are considerably successful at finding 
personal choices and similar items. The best model finds the item in the libraries of 33% of 
the users. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key Words: Recommendation Engine, Matrix Factorization, Collaborative 

Filtering, Alternating Least Squares, Bayesian Personalized Ranking, Implicit Feedback 
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ÖZET 

 
STEAM PLATFORMU İÇİN OYUN ÖNERİ SİSTEMİ 

 
Serhan Bayram 

 
 

Proje Danışmanı: Prof. Dr. Semra Ağralı 
 
 

EYLÜL, 2021, 35 sayfa 
 
 
 
Seçeneklerin ve pazardaki rekabetin artması, şirketleri müşterilerine sundukları 

hizmetlerde farklılaşmaya zorlamaktadır. Daha iyi hizmetler önermenin müşteri sadakati 
açısından olumlu bir etkisi vardır ve şirketlerin bunu sağlayabilmesi için müşterilerinin ilgi 
alanlarını anlaması ve ona göre hareket etmesi gerekmektedir. Kişisel öneriler yapmak için 
öneri motorları geliştirmek bu amaca uygun yaygın bir yöntemdir. Bu projede, Steam 
platformu kullanıcılarına öneri yapmak için örtülü geri bildirimler ile işbirlikçi filtreleme 
yöntemleri kullanılmıştır. Öneri sistemleri iki farklı matris faktorizasyon tekniği olan 
Alternatif En Küçük Kareler ve Bayes Kişisel Sıralama ile kurulmuştur. Kullanıcıların örtülü 
oyun oynama süreleri verisi kullanılarak farklı modeler oluşturulmuş ve sonuçlar k 
değerinde Kesinlik metriği kullanılarak değerlendirilmiştir. Ek olarak, modeller tarafından 
önerilen benzer oyunlar incelenmiştir. Sonuçlar, modellerin hem kişisel tercihleri hem de 
benzer ürünleri bulmada dikkate değer ölçüde başarılı olduğunu göstermiştir. En iyi model, 
kullanıcıların %33’ünün kütüphanesinde olan oyunu bulmayı başardı. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Anahtar Kelimeler:  Öneri Motoru, Matris Faktorizasyonu, İşbirlikçi Filtreleme, 

Alternatif En Küçük Kareler, Bayes Kişisel Sıralama, Örtülü Geribildirim 
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1. INTRODUCTION 

In the last years the number of choices expanded tremendously with the increased 

accessibility to digital platforms. As Wu et al. (2021) mentions, this expansion in choices 

created an information overload, which brought challenges to both platforms and their 

customers. Users of these platforms spend notable time to reach the products they need or 

are interested in due to this overload. Reducing this time would create a significant value for 

the users, increase the customer satisfaction and make it possible for users to spend the 

remaining time to buy other products. These benefits are only some of the main reasons for 

the creation of recommender systems.  

Recommender systems are the algorithms that produce suggestions to the users. 

These suggestions can be offered in various ways by the platforms for several reasons and 

can be based on user attributions or item attributions. In general, there are two main types of 

recommender systems: Collaborative Filtering (CF) and Content-Based Filtering (CBF). 

Adomavicius and Tuzhilin (2005) define CF as suggesting items that are chosen by other 

similar users and CBF as suggesting items that are similar to the previously chosen items of 

the user. Goldberg et al. (1992) mentioned CF for the first time in early 1990s. After that 

definition, lots of recommender models have been created by researchers. 

Steam is one of the most popular online game distribution platforms (Steam Website, 

https://store.steampowered.com). Fenlon (2019) states that in 2019 there were 90 million 

monthly active users on the platform. Through the platform, users can reach free or paid 

games. Once a user buys a game, they get lifetime access to it. Providing lifetime access to 

the games positioned the platform as a virtual library. Since the users can access the games 

whenever they want, they buy games even if they do not plan to play them in near future. 

During a year, there are several discount events on the platform, in which the prices of the 

games decrease dramatically. Especially in these periods, users probably tend to purchase 

more games and enhance the diversity in their collections. 

The main purpose of this study is to create a recommender system to offer games to 

users that they will be eager to buy. Such a system would increase revenue and loyalty since 

it chooses the right games for the users and saves their time. With the help of this system, 

the platform can create value for both the users and publishers of the games.   
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2. LITERATURE SURVEY 

In this section, related works in the field of recommender systems are introduced. 

These works mainly focus on three different topics: Challenges of Recommender Systems, 

Feedback Types and Building & Evaluating Recommender Systems. In the first part, some 

difficulties that might appear during a recommendation engine building process and their 

possible solutions are given. In the second part, the details of implicit and explicit feedback, 

and their usage examples are provided. In the third part, several methods of building and 

evaluating recommender systems that are found in the literature are given. 

2.1 Challenges of Recommender Systems 

Building a recommendation engine has lots of challenges. Most of the 

recommendation engines offer the most popular items, however this causes non-popular 

items to become nearly invisible by users. For newly arrived items or users, where there is 

not enough data to measure popularity or profile users, a method should be defined to make 

these items visible for users. As Viljanen (2020) expresses, this problem is defined as cold 

start. Koren et al. (2009) mention that although collaborative filtering generally outperforms 

content-based filtering, it shows inadequate performance in such cases, and content-based 

filtering can be more useful. In real life it is better to handle multiple problems with the same 

recommender system. Burke (2002) implies that combining several recommendation 

approaches in a proper way would bring higher performance. 

Koren et al. (2009) state that, especially in collaborative filtering systems, matrix 

factorization is very common. In this approach latent vectors of users and items are used to 

predict the unknown ratings. These vectors are created by using a huge user and item matrix 

which is expected to be highly sparse. Jung et al. (2004) and Fan et al. (2014) suggest that 

one of the major problems while building a recommender system is the sparsity of ratings 

since the rated items in the dataset have usually a very small proportion. In order to decrease 

sparsity, some items can be eliminated from the dataset. Reddy et al. (2020) suggests that 

removing items that have ratings below the mean should be excluded; hence, they do not 

make a notable contribution to the model performance. This approach might be useful while 

deciding on items to exclude. 

Adomavicius and Tuzhilin (2005) indicate a possible problem with the content-based 

model as overspecialization, which is offering items that are very similar to the ones the user 
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interacted with before. This can be thought as recommending glasses to a user who just 

bought a new one. Such a recommendation would make no contribution to the model. 

According to Kang and McAuley (2018) basically there are two approaches to make a 

recommendation to a user dynamically. The first approach is using data within a wider time 

range by Recurrent Neural Networks. The second approach is considering only more recent 

data to make offers, which performs well with less data, here Markov Chains can be 

preferred. They combine both approaches to build a more successful one. The proposed 

method considers long-term data to find relevant items and uses recent data to make the final 

decision. In the model, Dropout Regularization is used to prevent overfitting.  

Pathak et al. (2017) address the benefits of creating personalized bundles to sell the 

items. This approach can also be an alternative solution to the cold start problem by bundling 

newly arrived games with popular ones. In the paper, to find the interest of users to the 

bundles, Bayesian Personalized Ranking is used. Also, to generate personalized bundles for 

the users, Greedy Algorithm is used. 

2.2 Feedback Types 

In order to create relationships and understand patterns between users or items, 

feedback data is needed. As Hu et al. (2008) state there are two types of feedback that are 

used in recommender systems, implicit and explicit feedback. Explicit feedback can be 

considered as the given ratings to the items. On the other hand, implicit feedback is more 

hidden in patterns, such as purchased items, visited pages, etc.  

In real life, the feedback might not be very explicit to use directly in a model. Wan 

and McAuley (2018) mention the relationship between feedback signals. This approach can 

be used to discover the dependency between making a review and purchasing an item. This 

dependency might be helpful while deriving useful feedback from the original ones. 

Transforming implicit features to create explicit feedback is another approach. 

Saaidin and Kasiran (2021) use prices and playtimes of games to calculate a rating score. 

For this purpose, the correlation between the playtime and the price has been calculated. 

After that, a rule-based approach is applied to find the ratings. Kamal et al. (2020) also use 

playtime of the games to calculate the ratings by applying a z-score approach for every user. 

After calculating the z-scores of the games, the ratings are assigned by some rules. Plunkett 

et al. (2016) use five equal percentiles of the playtime value to calculate the ratings. 
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2.3 Building & Evaluating Recommender Systems 

Building a recommender system totally depends on the available data. As it is 

mentioned in the previous part, users might not explicitly share their opinions about 

products. Therefore, implicit feedback should be considered to create such a system. Hu et 

al. (2008) use Alternating Least Squares (ALS) with implicit feedback by defining the 

concept of confidence. As Victor (2017) explains, ALS is an optimization approach that can 

be used during matrix factorization to find the most similar representation of the initial user 

and item pairs. A user’s preference can be easily understood through explicit feedback. On 

the other hand, as Hu et al. (2008) point out, it is hard to know whether a user likes or dislikes 

an item by inspecting implicit feedback. For instance, if a user does not have any implicit 

feedback on a specific item, he/she might not be aware of that item and this does not 

necessarily indicate that the user does not like that item. This is the idea behind the 

confidence term. It assumes that having more implicit feedback shows stronger bond 

between the user and the item, but not having any feedback also has a small impact. The 

effect of the implicit feedback can be arranged by using parameter alpha. 

ALS algorithm tries to find a relationship between the user and item pairs as it is 

mentioned previously. Rendle et al. (2012) offer another solution for implicit feedback, 

called Bayesian Personalized Ranking (BPR), which is also a matrix factorization technique. 

Rather than using user-item pairs, it considers triplets which consist of a user and two items. 

This triplet holds the information of whether one item is preferred to the other item. This 

approach eventually helps to create rankings of items for users and makes it possible to make 

more personalized recommendations. 

After building a recommendation engine, the performance of it should be measured. 

Krichene and Rendle (2020) explain several metrics such as Precision at k, Recall at k and 

Average Precision at k. At k represents the number of recommended items in all of these 

metrics. Cheuque et al. (2019) built game recommender models by using ALS and 

Factorization Machines methods and use Average Precision and Mean Average Precision 

metrics to evaluate the performance of these models. Also, they use Novelty and Diversity 

metrics to measure the distinctness of the recommendations. 
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3. ABOUT THE DATA 

Data used in the project is gathered from the Julian McAuley’s Recommender 

Systems Datasets Library as three different datasets with various information (Steam 

Dataset, https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data). First dataset has the 

information of 88,310 users’ owned games and playtimes of these games. Second dataset 

contains more detailed information about the 32,135 items in the platform such as name, 

release date, genre, and price. Third dataset contains 615 bundles’ information. A bundle is 

a collection of several games and its price is cheaper than the individual sum of the games 

in it. This dataset is combined with the second dataset to gather information about more 

games. 

3.1 Data Preparation 

All of these datasets are in loose json format. Before making experiments, the data 

needs to be prepared. The preparation steps are as follows: 

• Each data file is parsed, and each dataset is normalized. 

• Duplicate records are eliminated. 

• A game can belong to more than one genre and there is a genre array for each 

item. The first element in this array is considered as the game’s genre. 

• Records with null values are eliminated.  

• In the datasets, there are some items that are not games but different types of 

software. The records with these items are excluded. 

• For free games, some of the prices are entered in string format. They are changed 

as 0. 

• In the first dataset, there are some games that do not exist in the second and third 

datasets. The records related to those games are excluded. 

• All three datasets are merged to create two main datasets. One of them contains 

only paid games, and the other one contains both paid and free games. 

• Users with only one item are excluded. 

• Items with only one user are excluded. 

• The playtime distribution is highly skewed, and some values are very high. 

Therefore, natural logarithms of the playtimes are added. 
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 The paid dataset contains 3,382,945 rows and the other dataset contains 4,140,773 

rows. Each row in the datasets corresponds to a user and user’s owned item. For instance, if 

a user has 10 different games, there are 10 rows of that user. 

3.2 Features 

The explanations of the features that are used in the project are as follows: 

• user: Unique id of a user 

• item: Unique id of a game 

• item_name: Name of a game 

• playtime_forever: Playtime of a game by a user in hours 

• single_genre: Genre of a game 

• price: Price of a game 

• playtime: Natural logarithm of playtime_forever 

3.3 Exploratory Data Analysis 

The main dataset has 65,945 unique users and 8,090 unique games. The paid dataset 

has 61,909 unique users and 7,587 unique games. These numbers indicate that 93,78% of 

the games are not free. The price distribution of the games can be seen in Figure 1. Since 

there are only 4 games that have higher prices than $100, they are excluded from Figure 1. 

Among the paid games 94.64% of the games have a price of less than $20. 

Figure 1: Price Distribution of the Games 
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The playtime distribution of the games is shown in Figure 2 considering both paid 

and free games. Only 2.59% of the rows contain playtime higher than 8,000 hours. So, Figure 

2 shows at most 8,000 hours. 32.9% of the games in the libraries are not played even for an 

hour. This rate is 33.61% for paid games. This data supports the explanation given in the 

Introduction section as users pay for the games even if they do not plan to play them in near 

future. 

Figure 2 shows that the playtime values need to be transformed in order to achieve a 

normal distribution. Figure 3 shows the transformed playtime values by natural logarithm, 

again by considering both paid and free games. Since 0 has no logarithm calculation, 1 is 

added to all values and then the natural logarithm value is calculated. 

 

 

 

 

 

 

 

 

 

Figure 2: Playtime Distribution of All Games - Playtime Between 1 and 8,000 Hours 

Figure 3: Natural Logarithm of Playtime Distribution of All Games 
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After the transformation, the distribution becomes really close to the normal if zero 

playtime records are overlooked.  

Figure 4 shows the distribution of the number of owned games, considering free and 

paid games. Among 65,945 unique users, only 300 of them have more than 600 games. 

Hence, Figure 4 shows users who have at most 600 games. 

 

As expected, most of the users have less than 100 games. This fact actually is one of 

the main motivations of this project. There are lots of users who can buy new games if they 

are provided with accurate recommendations. 65.73% of the users have more than 20 games. 

This rate is 56.95% for the paid games. Thus, there is a huge potential with users who have 

less games. Moreover, this potential is also relevant for the ones with higher number of items 

because there are also users who have a lot more games. 

 

 

 

 

Figure 4: Distribution of Number of Owned Games 
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4. PROJECT DEFINITION AND METHODOLOGY 

In this project, game recommendations are made to the users by learning from their 

current library to estimate their possible preferences. As it is shown in the previous part, lots 

of users have small numbers of games, and most of the users do not play the games in their 

library. This circumstance can be considered as a tremendous opportunity for the Steam 

platform and the publishers. By suggesting correct games, it seems possible to make users 

buy new ones even if they do not plan to play them and increase the sales and revenue. More 

games will probably create more loyal customers, and eventually, the platform may benefit 

from this loyalty of the users.  

It is not possible to give ratings to the games on the Steam platform. Users can only 

“Recommend” or “Not Recommend” items, and this is not an indicator of how much the 

item is liked or disliked. On the other hand, the platform knows how many hours a user 

played a specific game. Hence, implicit feedback seems more useful while determining a 

user’s preferences.  

In Section 2, two popular methods for building recommendation systems with 

collaborative filtering by using implicit feedback, ALS and BPR, are explained. In this 

project, both of these methods are used to create different models. There is a Python library, 

called “implicit”, created by Ben Frederickson, which makes it really easy to build ALS and 

BPR models, to find similar games and to recommend items in really short time (Implicit 

Github Page, https://github.com/benfred/implicit).  

ALS and BPR models have similar parameters which are as follows: 

•  Factors: Number of hidden factors to be discovered by the model 

• Regularization: Regularization rate 

• Iterations: Number of iterations 

• Alpha: Parameter to adjust the level of confidence (only ALS) 

• Learning Rate: Learning rate used during optimizing the model (only BPR) 

In order to train models, the algorithms require a sparse item user matrix. Before 

creating this matrix, each username and game id is converted to numerical codes starting 

from 0 to the number of unique items and users. Also, it is assumed that, even if a user does 

not play a game, having that game in their library might indicate positive feedback. 
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Therefore, a constant value is added to transformed playtime values to signify this feedback. 

The models built require a sparse user item matrix to make recommendations to users. 

The performances of the models are measured by using Precision at k metric. In order 

to measure the performance, train and test sets are derived from the cleaned and merged 

datasets. One train and test set is created by using the dataset with only paid games. The 

other one is created by using the dataset that contains both paid and free games.  

Test sets contain one random item of all users. These items are excluded from the 

train sets. After the models built with the train sets, the models recommend games for all of 

the users. For instance, the recommendation engine suggests 10 items to a user. If one of 

these items is actually the excluded one, i.e., the item in the test set, then that 

recommendation batch is acknowledged as successful. These users can be labeled as correct 

users so to speak. Precision at k here is the number of correct users divided by total number 

of users. If there are 50 users in the dataset and Precision at k equals 20%, this means that 

the model found correct items for 10 of the users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

5. RESULTS 

Using the methodology explained in the previous part, 747 different experiments 

have been performed to compare different parameters and algorithms with two datasets. As 

mentioned, one dataset contains only paid games and the other one contains both free and 

paid games.  

Each of the models are used to recommend games to users and their performance are 

defined with Precision at k metric. In this project, scenarios in which 5 or 10 items are 

recommended to the users are designed. This means k can be 5 or 10.  

These experiments are completed with implicit version 0.4.4 and Python version 

3.8.3. 

5.1 Recommending Items 

Among 747 experiments, models that show the best performance in terms of 

Precision at k, have the parameters and scores that can be seen in Table 1. 

 

The best three models among all use the BPR algorithm. Only difference between 

these models is the number of factors. Model 1 and Model 2 have very close Precision values. 

However, using less factors would decrease the training and testing times. Therefore, if one 

of them should be selected, it would be Model 1 since it uses less factors to make predictions. 

After those three models, ALS models show the best performance. These models 

have really close scores with different iteration and alpha values. Reducing iteration count 

also might be useful since it has a positive impact on training and testing times. 

Table 1: Parameters and Precision at k Scores of the Best Models 
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At 10th place, there is another BPR model with 30 factors and 10 iterations. Rest of 

the parameters are the same with other BPR models.  

From the models in the list, to compare BPR and ALS, it can be said that BPR tends 

to require less factors, but ALS performs better with less iterations.  

Table 1 reveals other significant points. All of the models above are built using only 

paid games. This means that including free games to the training dataset might decrease the 

success of the model. Actually, this case can be expected since free game definition is too 

wide. For instance, sometimes developers publish Beta, Demo or Early Access versions of 

the games. These versions usually are not completed games or just a small part of the original 

game. Therefore, games that suit the description above are probably not played too much, 

and in the model, playtime is taken into consideration. 

Another important point is that recommendations with 5 items are not in the list. 

Again, an expected outcome, increasing the number of options will increase the probability 

of finding the correct game. This decision totally depends on the platform and this number 

can be adjusted very easily. 

The precision scores of the models might vary since the test set is created randomly 

each time. However, this volatility would be really small which can be ignored. Therefore, 

these results can be assumed to represent the methods’ success accurately. 

Herewith, to evaluate the models as a whole, finding nearly 33% of the users’ 

preferences could bring amazing benefits to the platform. It could boost the sales, enhance 

the loyalty and increase the platform’s competition power with others in the market. 

5.2 Finding Similar Items 

Even though there are metrics to measure the success of recommendations, the topic 

sometimes becomes subjective. In order to understand how the model recommends games, 

Model 1, Model 4 and Model 7 are used to find the similar games of a given game. Model 1 

is the most successful model with BPR, Model 4 is the most successful model with ALS and 

Model 7 is the most successful model with 10 iterations. These are the reasons behind this 

selection. In order to find similar games, a very popular strategy and simulation game Age 

of Empires II will be used. The results can be seen in Table 2, Table 3 and Table 4. 
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First item in all of the tables is the game itself. Top 3 recommendations are the same 

for all models and are very successful. Two of them are the newer version and the other one 

is another known strategy game. Although the rest of the list differs a little bit, the game 

suggestions can be accepted as successful. Models usually find games from similar genres. 

The BPR model offers other popular games in that genre such as Stronghold Crusader and 

Total War: Rome II. A person who plays Age of Empires II would probably show interest 

in these games, too. Therefore, there is no problem to offer these games. 

Also, the model suggests less popular games as well. Games with small numbers of 

owners are also shown as similar. In the literature review section, the problem “Cold Start” 

Table 2: Model 1 Similar Items 

Table 3: Model 4 Similar Items 

Table 4: Model 7 Similar Items 
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was mentioned where unpopular items are not suggested to the users. No special action is 

taken; however, these models offer such games as well. Nevertheless, the platform should 

define a strategy for games in this description to increase their recognition. 

Unknown relationships between games or users might appear in detailed analyses by 

using the same approach applied in this section, manually analyzing counterparts of a 

specific game. These patterns can be used to create bundles, or this information can be 

provided to developers or publishers to adjust their games or marketing strategies 

accordingly. There is a lot to do with such an insight. Therefore, it would be really beneficial 

to think more comprehensively with a recommendation system. 
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6. CONCLUSION 

Day by day more alternatives become available for consumers. In this ocean, the 

consumers spend considerable time to find the most suitable choices for themselves. 

Therefore, locating these options for the customers created a highly competitive field, 

recommender systems, for the companies. A successful recommendation system would 

ensure better position to a company in the market, as well as more sales and higher customer 

loyalty. 

In this project, recommendation systems for the Steam platform are developed by 

using more than 60,000 users’ game library and playtimes. The data is used to build 

collaborative filtering models with ALS and BPR methods. Both algorithms are used to 

predict games that are actually added to the libraries by the users and find similar games; 

and they showed considerably good performance on both operations. 

The outcome of these models can be beneficial for the Steam platform to increase 

their sales and customer loyalty. By suggesting correct games, the platform would become 

an irreplaceable environment for its users. People who benefit from these recommendations 

would spend less time finding the games and more on playing. 

As it is mentioned in the previous parts, the topic of recommendation can lead the 

companies to broader business areas. A strong recommendation system can be used to mine 

hidden information between items and users. This information might be really valuable and 

provide useful insights to both the platforms and publishers and may play a key role in 

shaping the gaming industry’s future. Thus, the platform should leverage the power of such 

an engine. 
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APPENDIX A 

#Reading .gzip Files 

import pandas as pd 

import numpy as np 

import gzip 

 

def parse(path): 

    g = gzip.open(path, 'r') 

    for l in g: 

        yield eval(l) 

     

def read_data(path): 

    data = [] 

    gen = parse(path) 

    while True: 

        try: 

            temp_dict = next(gen) 

        except StopIteration: 

            break 

        data.append(temp_dict) 

    return data 

 

#First Dataset 

user_items = read_data("Datasets/australian_users_items.json.gz") 

item_df = pd.json_normalize(user_items, record_path = ['items'], meta = ['user_id']) 

item_df = item_df[['user_id', 'item_id', 'item_name', 'playtime_forever', 

'playtime_2weeks']] 

item_df = item_df.drop_duplicates() 

item_check = 

item_df.groupby(['user_id','item_id']).size().reset_index(name='counts') 

item_check_list = item_check.loc[item_check.counts > 1].reset_index(drop = True) 
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temp_index = [] 

for index in range(0,len(item_check_list)): 

    temp_index = item_df.loc[((item_df.user_id == item_check_list.loc[index, 

'user_id']) &  

                              (item_df.item_id == item_check_list.loc[index, 

'item_id']))].index.to_list() 

    temp_index.pop(-1) 

    item_df = item_df.drop(temp_index) 

item_check = 

item_df.groupby(['user_id','item_id']).size().reset_index(name='counts') 

item_count_check = item_df.groupby(['item_id']).size().reset_index(name = 

"counts") 

exc_items = item_count_check.loc[item_count_check.counts == 1].item_id 

item_df = item_df.loc[~item_df.item_id.isin(exc_items)] 

user_count_check = item_df.groupby(['user_id']).size().reset_index(name = 

"counts") 

exc_users = user_count_check.loc[user_count_check.counts == 1].user_id 

item_df = item_df.loc[~item_df.user_id.isin(exc_users)].reset_index(drop = True) 

item_df.isnull().sum() 

item_df.to_csv('Datasets/item_data.csv', index=False) 

 

#Second Dataset 

games = read_data("Datasets/steam_games.json.gz") 

games_df = pd.DataFrame(games) 

games_df = games_df[['id', 'app_name', 'genres','price']].rename(columns={'id': 

"item_id", "app_name": "item_name"}) 

games_df.isnull().sum() 

games_df = games_df.dropna().reset_index(drop = True) 

games_df.genres = games_df.genres.astype(str) 

games_df.genres = games_df.genres.str.replace('[', '') 

games_df.genres = games_df.genres.str.replace(']', '') 

games_df.genres = games_df.genres.str.replace('\'', '') 



 18 

games_df = pd.concat([games_df, games_df.genres.str.split(',',expand=True)], 

axis=1) 

for i in range(0, len(games_df)): 

    if (games_df.loc[i, 0] != 'Free to Play') and (games_df.loc[i, 0] != 'Early Access'): 

        games_df.loc[i, 'single_genre'] = games_df.loc[i, 0] 

    else: 

        games_df.loc[i, 'single_genre'] = games_df.loc[i, 1] 

games_df.single_genre = games_df.single_genre.str.replace(' Indie', 'Indie') 

games_df.single_genre = games_df.single_genre.str.replace(' Action', 'Action') 

games_df.single_genre = games_df.single_genre.str.replace(' Massively 

Multiplayer', 'Massively Multiplayer') 

games_df.single_genre = games_df.single_genre.str.replace(' RPG', 'RPG') 

games_df.single_genre = games_df.single_genre.str.replace(' Sports', 'Sports') 

games_df.single_genre = games_df.single_genre.str.replace(' Racing', 'Racing') 

games_df.single_genre = games_df.single_genre.str.replace(' Strategy', 'Strategy') 

games_df.single_genre = games_df.single_genre.str.replace(' Simulation', 

'Simulation') 

games_df = games_df.loc[~games_df.single_genre.isin(['Animation &amp; 

Modeling', 'Utilities', 'Education', 'Design &amp; Illustration', 'Audio Production',  

                                          None, 'Video Production', 'Software Training', 

'Accounting', 'Web Publishing', 'Photo Editing'])] 

games_df = games_df.drop(['genres'], axis=1) 

games_df = games_df.drop([0,1,2,3,4,5,6,7,8,9], axis=1) 

games_df = games_df.drop_duplicates() 

games_df = games_df.reset_index(drop=True) 

for i in range(0, len(games_df)): 

    if type(games_df.price[i]) == str: 

        games_df.price[i] = 0.00 

games_df.to_csv('Datasets/games_data.csv', index=False) 

 

#Third Dataset 

bundles = read_data("Datasets/bundle_data.json.gz") 
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bundle_df = pd.json_normalize(bundles, record_path = ['items']) 

bundle_df = bundle_df[['item_id', 'item_name', 'genre', 'discounted_price']] 

bundle_df = bundle_df.loc[bundle_df.item_id != ''] 

bundle_df = bundle_df.drop_duplicates() 

bundle_df = bundle_df.drop(bundle_df.loc[bundle_df.item_id.duplicated()].index) 

bundle_df = 

bundle_df.drop(bundle_df.loc[bundle_df.item_id.str.contains(",")].index) 

bundle_df = bundle_df.reset_index(drop=True) 

bundle_df = pd.concat([bundle_df, bundle_df.genre.str.split(',',expand=True)], 

axis=1) 

for i in range(0, len(bundle_df)): 

    if (bundle_df.loc[i, 0] != 'Free to Play') and (bundle_df.loc[i, 0] != 'Early Access'): 

        bundle_df.loc[i, 'single_genre'] = bundle_df.loc[i, 0] 

    else: 

        bundle_df.loc[i, 'single_genre'] = bundle_df.loc[i, 1] 

bundle_df.single_genre = bundle_df.single_genre.str.replace(' Massively 

Multiplayer', 'Massively Multiplayer') 

bundle_df = bundle_df.loc[~bundle_df.single_genre.isin(['', 'Audio Production', 

'Utilities', 'Education', 'Design & Illustration',  

                                                        'Software Training', 'Animation & Modeling', 

'Web Publishing'])] 

bundle_df.discounted_price = bundle_df.discounted_price.str.replace('$','') 

bundle_df.discounted_price = pd.to_numeric(bundle_df.discounted_price) 

bundle_df.item_id = pd.to_numeric(bundle_df.item_id) 

bundle_df = bundle_df.drop(['genre',0,1,2,3,4,5,6,7], axis=1) 

bundle_df.isnull().sum() 

bundle_df.columns = ['item_id', 'item_name', 'price', 'single_genre'] 

bundle_df.to_csv('Datasets/bundle_data.csv', index=False) 

 

#Creating main dataframes 

raw_items = pd.read_csv('Datasets/item_data.csv') 

raw_games = pd.read_csv('Datasets/games_data.csv') 
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raw_bundles = pd.read_csv('Datasets/bundle_data.csv') 

raw_games_all = pd.concat([raw_games, 

raw_bundles.loc[~raw_bundles.item_id.isin(raw_games.item_id)]]) 

raw_items_all = raw_items.loc[raw_items.item_id.isin(raw_games_all.item_id)] 

raw_items_all.columns = ['user', 'item', 'item_name', 'playtime_forever', 

'playtime_2weeks'] 

raw_items_all = raw_items_all.merge(raw_games_all[['item_id', 'single_genre', 

'price']], left_on='item', right_on='item_id', how = 'left').drop(['item_id'], axis = 1) 

items_df = raw_items_all 

items_df['playtime'] = items_df['playtime_forever'] + 1 

items_df['playtime'] = np.log(items_df['playtime']) 

items_df = items_df.drop(['playtime_2weeks'], axis=1) 

item_count_check = items_df.groupby(['item']).size().reset_index(name = "counts") 

exc_items = item_count_check.loc[item_count_check.counts == 1]['item'] 

items_df = items_df.loc[~items_df.item.isin(exc_items)] 

user_count_check = items_df.groupby(['user']).size().reset_index(name = "counts") 

exc_users = user_count_check.loc[user_count_check.counts == 1].user 

items_df = items_df.loc[~items_df.user.isin(exc_users)].reset_index(drop = True) 

items_df.isnull().sum() 

items_df.to_csv('Datasets/model_data_all.csv', index=False) 

items_df_paid = items_df.loc[items_df.price > 0] 

item_count_check = items_df_paid.groupby(['item']).size().reset_index(name = 

"counts") 

exc_items = item_count_check.loc[item_count_check.counts == 1]['item'] 

items_df_paid = items_df_paid.loc[~items_df_paid.item.isin(exc_items)] 

user_count_check = items_df_paid.groupby(['user']).size().reset_index(name = 

"counts") 

exc_users = user_count_check.loc[user_count_check.counts == 1].user 

items_df_paid = 

items_df_paid.loc[~items_df_paid.user.isin(exc_users)].reset_index(drop = True) 

items_df_paid.to_csv('Datasets/model_data_paid.csv', index=False) 
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#Modeling Part 

model_data_all = pd.read_csv('Datasets/model_data_all.csv') 

model_data_paid = pd.read_csv('Datasets/model_data_paid.csv') 

import implicit 

import scipy.sparse as sparse 

import random 

from sklearn import metrics 

 

random.seed(0) 

def prep_data(df, pt_add): 

    df['playtime'] = df['playtime'] + pt_add 

    df['user_id'] = df['user'].astype("category").cat.codes 

    df['item_id'] = df['item'].astype("category").cat.codes 

    user_item_count = df.groupby(['user_id']).size().reset_index(name = "counts") 

    df = df.merge(user_item_count, on='user_id', how = 'left') 

    test_df = 

df.groupby(['user_id'])['item_id'].apply(pd.Series.sample).reset_index(level=[0]) 

    test_df['check'] = 1 

    train_df = df.loc[~df.index.isin(test_df.index)].reset_index(drop = True) 

    print("Train dataset contains {} unique items and {} unique 

users.".format(len(train_df.item_id.unique()), len(train_df.user_id.unique()))) 

    print("Train dataset total record count:", len(train_df)) 

    sparse_items = sparse.csr_matrix((train_df['playtime'], (train_df['item_id'], 

train_df['user_id']))) 

    sparse_users = sparse.csr_matrix((train_df['playtime'], (train_df['user_id'], 

train_df['item_id']))) 

    matrix_size = sparse_users.shape[0] * sparse_users.shape[1] 

    owned_games = len(sparse_users.nonzero()[0]) 

    sparsity = 100 * (1 - (owned_games / matrix_size)) 

    print("The sparsity is {}%".format(round(sparsity,2))) 

    return sparse_items, sparse_users, train_df, test_df 

def build_als_model(sparse_item_df, factors, regularization, iterations, alpha): 
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    model_als = implicit.als.AlternatingLeastSquares(factors=factors, 

regularization=regularization, iterations=iterations, calculate_training_loss = True, 

random_state = 0) 

    data = (sparse_item_df * alpha).astype('double') 

    model_als.fit(data) 

    return model_als 

 

def build_bpr_model(sparse_item_df, factors, learning_rate, regularization, 

iterations, alpha): 

    model_bpr = implicit.bpr.BayesianPersonalizedRanking(factors=factors, 

learning_rate=learning_rate, regularization=regularization, iterations=iterations, 

random_state = 0) 

    data = (sparse_item_df * alpha).astype('double') 

    model_bpr.fit(data) 

    return model_bpr 

 

def show_similar_items(model, df, item_num, num_of_items): 

    item_id = df.loc[df['item'] == item_num].iloc[0].item_id.item() 

    similar = model.similar_items(item_id, N = num_of_items) 

    items = [] 

    items_new = [] 

    itemnames = [] 

    genres = [] 

    scores = [] 

    for i in similar: 

        idx, score = i 

        game_id = df['item'].loc[df.item_id == idx].iloc[0] 

        items.append(df['item'].loc[df.item_id == idx].iloc[0]) 

        items_new.append(df['item_id'].loc[df.item_id == idx].iloc[0]) 

        itemnames.append(df['item_name'].loc[df.item_id == idx].iloc[0]) 

        genres.append(df['single_genre'].loc[df.item_id == idx].iloc[0]) 

        scores.append(score) 
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    similars = pd.DataFrame({'item_id': items, 'new_item_id': items_new, 

'item_name': itemnames, 'genre': genres, 'score': scores}) 

    owner_counts = df.groupby(['item']).size().reset_index(name = "owner_count") 

    similars = similars.merge(owner_counts, how='left', right_on='item', 

left_on='item_id').drop(['item'], axis=1) 

    return similars 

 

def make_recommendations(model, sparse_user_df, train_df, test_df, n_items): 

    user_ids = [] 

    items_ids = [] 

    scores = [] 

    for u in train_df.user_id.unique(): 

        recommended = model.recommend(u, sparse_user_df, 

filter_already_liked_items = True, N = n_items, recalculate_user = False) 

        for rec_pair in recommended: 

            item_id, score = rec_pair 

            user_ids.append(u) 

            items_ids.append(item_id) 

            scores.append(score) 

    recommendations = pd.DataFrame({'user_id': user_ids, 'item_id': items_ids, 

'score': scores}) 

    results = recommendations.merge(test_df, how='left', on=['user_id', 'item_id']) 

    results.loc[results.check.isna(), 'check'] = 0 

    precision = len(results.loc[results.check == 1]) / 

len(recommendations.user_id.unique()) 

    print("Precision @{}: {}%\n".format(n_items, round(precision * 100, 2))) 

    results_2 = results.groupby(['user_id']).agg({"check": 

"max"}).merge(train_df[['user_id', 'counts']].drop_duplicates(), how='left', on=['user_id']) 

    return results, results_2, precision 

 

sparse_item_df, sparse_user_df, train_set, test_set = prep_data(model_data_all, 

0.01) 
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sparse_item_df_paid, sparse_user_df_paid, train_set_paid, test_set_paid = 

prep_data(model_data_paid, 0.01) 

 

#ALS Models 

iter_count = 0 

models = [] 

model_names = [] 

precisions = [] 

for facs in [10,30,50,100]: 

    for regs in [0.01, 0.1, 0.5, 1]: 

        for iters in [5, 10, 20]: 

            for alphas in [15, 30, 40]: 

                model = build_als_model(sparse_item_df, factors = facs, regularization = 

regs, iterations = iters, alpha = alphas) 

                print("Factors: {} - Regularization: {} - Iterations: {} - Alpha: 

{}".format(facs, regs, iters, alphas)) 

                result_df, prec = make_recommendations(model, sparse_user_df, 

train_set, test_set, 10) 

                models.append(model) 

                model_names.append('model_als_' + str(iter_count)) 

                precisions.append(prec) 

                iter_count += 1 

 

iter_count = 0 

models_als_5 = [] 

model_names_als_5 = [] 

precisions_als_5 = [] 

for facs in [10,30,50,100]: 

    for regs in [0.01, 0.1, 0.5, 1]: 

        for iters in [5, 10, 20]: 

            for alphas in [15, 30, 40]: 



 25 

                model = build_als_model(sparse_item_df, factors = facs, regularization = 

regs, iterations = iters, alpha = alphas) 

                print("Factors: {} - Regularization: {} - Iterations: {} - Alpha: 

{}".format(facs, regs, iters, alphas)) 

                result_df, prec = make_recommendations(model, sparse_user_df, 

train_set, test_set, 5) 

                models_als_5.append(model) 

                model_names_als_5.append('model_als_' + str(iter_count)) 

                precisions_als_5.append(prec) 

                iter_count += 1 

                 

iter_count = 0 

models_als_10_paid = [] 

model_names_als_10_paid = [] 

precisions_als_10_paid = [] 

for facs in [10,30,50,100]: 

    for regs in [0.01, 0.1, 0.5, 1]: 

        for iters in [5, 10, 20]: 

            for alphas in [15, 30, 40]: 

                model = build_als_model(sparse_item_df_paid, factors = facs, 

regularization = regs, iterations = iters, alpha = alphas) 

                print("Factors: {} - Regularization: {} - Iterations: {} - Alpha: 

{}".format(facs, regs, iters, alphas)) 

                result_df, prec = make_recommendations(model, sparse_user_df_paid, 

train_set_paid, test_set_paid, 10) 

                models_als_10_paid.append(model) 

                model_names_als_10_paid.append('model_als_' + str(iter_count)) 

                precisions_als_10_paid.append(prec) 

                iter_count += 1 

                 

iter_count = 0 

models_als_10_alpha = [] 
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model_names_als_10_alpha = [] 

precisions_als_10_alpha = [] 

alphas_als_10_alpha = [] 

for facs in [50,100]: 

    for regs in [0.01, 0.1, 1]: 

        for iters in [10, 20]: 

            for alphas in [5, 6, 7]: 

                model = build_als_model(sparse_item_df, factors = facs, regularization = 

regs, iterations = iters, alpha = alphas) 

                result_df, result_df_2, prec = make_recommendations(model, 

sparse_user_df, train_set, test_set, 10) 

                models_als_10_alpha.append(model) 

                model_names_als_10_alpha.append('model_als_alpha' + str(iter_count)) 

                precisions_als_10_alpha.append(prec) 

                alphas_als_10_alpha.append(alphas) 

                iter_count += 1 

                 

iter_count = 0 

models_als_10_paid_alpha = [] 

model_names_als_10_paid_alpha = [] 

precisions_als_10_paid_alpha = [] 

alphas_als_10_paid_alpha = [] 

for facs in [50,100]: 

    for regs in [0.01, 0.1, 1]: 

        for iters in [10, 20]: 

            for alphas in [5, 6, 7]: 

                model = build_als_model(sparse_item_df_paid, factors = facs, 

regularization = regs, iterations = iters, alpha = alphas) 

                result_df, result_df_2, prec = make_recommendations(model, 

sparse_user_df_paid, train_set_paid, test_set_paid, 10) 

                models_als_10_paid_alpha.append(model) 
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                model_names_als_10_paid_alpha.append('model_als_paid_alpha' + 

str(iter_count)) 

                precisions_als_10_paid_alpha.append(prec) 

                alphas_als_10_paid_alpha.append(alphas) 

                iter_count += 1 

                 

als_10_outputs = pd.DataFrame({'model_names': model_names, 'models': models, 

'precisions': precisions})  

als_5_outputs = pd.DataFrame({'model_names': model_names_als_5, 'models': 

models_als_5, 'precisions': precisions_als_5})  

als_10_paid_outputs = pd.DataFrame({'model_names': model_names_als_10_paid, 

'models': models_als_10_paid, 'precisions': precisions_als_10_paid})  

als_10_alpha_outputs = pd.DataFrame({'model_names': 

model_names_als_10_alpha, 'models': models_als_10_alpha,  

                                     'precisions': precisions_als_10_alpha, 'alphas': 

alphas_als_10_alpha})  

als_10_paid_alpha_outputs = pd.DataFrame({'model_names': 

model_names_als_10_paid_alpha, 'models': models_als_10_paid_alpha,  

                                          'precisions': precisions_als_10_paid_alpha, 'alphas': 

alphas_als_10_paid_alpha})  

 

als_10_outputs['factors'] = 0 

als_10_outputs['regularization'] = 0.0 

als_10_outputs['iterations'] = 0 

 

als_5_outputs['factors'] = 0 

als_5_outputs['regularization'] = 0.0 

als_5_outputs['iterations'] = 0 

 

als_10_paid_outputs['factors'] = 0 

als_10_paid_outputs['regularization'] = 0.0 

als_10_paid_outputs['iterations'] = 0 
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als_10_alpha_outputs['factors'] = 0 

als_10_alpha_outputs['regularization'] = 0.0 

als_10_alpha_outputs['iterations'] = 0 

 

als_10_paid_alpha_outputs['factors'] = 0 

als_10_paid_alpha_outputs['regularization'] = 0.0 

als_10_paid_alpha_outputs['iterations'] = 0 

 

for i in range(0, len(als_10_outputs)): 

    als_10_outputs['factors'][i] = als_10_outputs.models[i].factors 

    als_10_outputs['regularization'][i] = als_10_outputs.models[i].regularization 

    als_10_outputs['iterations'][i] = als_10_outputs.models[i].iterations 

     

for i in range(0, len(als_5_outputs)): 

    als_5_outputs['factors'][i] = als_5_outputs.models[i].factors 

    als_5_outputs['regularization'][i] = als_5_outputs.models[i].regularization 

    als_5_outputs['iterations'][i] = als_5_outputs.models[i].iterations 

     

for i in range(0, len(als_10_paid_outputs)): 

    als_10_paid_outputs['factors'][i] = als_10_paid_outputs.models[i].factors 

    als_10_paid_outputs['regularization'][i] = 

als_10_paid_outputs.models[i].regularization 

    als_10_paid_outputs['iterations'][i] = als_10_paid_outputs.models[i].iterations 

     

for i in range(0, len(als_10_alpha_outputs)): 

    als_10_alpha_outputs['factors'][i] = als_10_alpha_outputs.models[i].factors 

    als_10_alpha_outputs['regularization'][i] = 

als_10_alpha_outputs.models[i].regularization 

    als_10_alpha_outputs['iterations'][i] = als_10_alpha_outputs.models[i].iterations 

     

for i in range(0, len(als_10_paid_alpha_outputs)): 
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    als_10_paid_alpha_outputs['factors'][i] = 

als_10_paid_alpha_outputs.models[i].factors 

    als_10_paid_alpha_outputs['regularization'][i] = 

als_10_paid_alpha_outputs.models[i].regularization 

    als_10_paid_alpha_outputs['iterations'][i] = 

als_10_paid_alpha_outputs.models[i].iterations 

 

#BPR Models 

iter_count = 0 

models_bpr_10 = [] 

model_names_bpr_10 = [] 

precisions_bpr_10 = [] 

for facs in [30,50,100]: 

    for lr in [0.001, 0.01, 0.1]: 

        for regs in [0.001, 0.01, 0.05]: 

            for iters in [5, 10, 20]: 

                model = build_bpr_model(sparse_item_df, factors = facs, learning_rate= 

lr, regularization = regs, iterations = iters, alpha = 15) 

                print("Factors: {} - Learning Rate: {} - Regularization: {} - Iterations: {} 

- Alpha: 15".format(facs, lr, regs, iters)) 

                result_df, prec = make_recommendations(model, sparse_user_df, 

train_set, test_set, 10) 

                models_bpr_10.append(model) 

                model_names_bpr_10.append('model_bpr_' + str(iter_count)) 

                precisions_bpr_10.append(prec) 

                iter_count += 1 

                 

iter_count = 0 

models_bpr_5 = [] 

model_names_bpr_5 = [] 

precisions_bpr_5 = [] 

for facs in [30,50,100]: 
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    for lr in [0.001, 0.01, 0.1]: 

        for regs in [0.001, 0.01, 0.05]: 

            for iters in [5, 10, 20]: 

                model = build_bpr_model(sparse_item_df, factors = facs, learning_rate= 

lr, regularization = regs, iterations = iters, alpha = 15) 

                print("Factors: {} - Learning Rate: {} - Regularization: {} - Iterations: {} 

- Alpha: 15".format(facs, lr, regs, iters)) 

                result_df, prec = make_recommendations(model, sparse_user_df, 

train_set, test_set, 5) 

                models_bpr_5.append(model) 

                model_names_bpr_5.append('model_bpr_' + str(iter_count)) 

                precisions_bpr_5.append(prec) 

                iter_count += 1 

                 

iter_count = 0 

models_bpr_10_paid = [] 

model_names_bpr_10_paid = [] 

precisions_bpr_10_paid = [] 

for facs in [30,50,100]: 

    for lr in [0.001, 0.01, 0.1]: 

        for regs in [0.001, 0.01, 0.05]: 

            for iters in [5, 10, 20]: 

                model = build_bpr_model(sparse_item_df_paid, factors = facs, 

learning_rate= lr, regularization = regs, iterations = iters, alpha = 15) 

                print("Factors: {} - Learning Rate: {} - Regularization: {} - Iterations: {} 

- Alpha: 15".format(facs, lr, regs, iters)) 

                result_df, prec = make_recommendations(model, sparse_user_df_paid, 

train_set_paid, test_set_paid, 10) 

                models_bpr_10_paid.append(model) 

                model_names_bpr_10_paid.append('model_bpr_' + str(iter_count)) 

                precisions_bpr_10_paid.append(prec) 

                iter_count += 1 
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bpr_10_outputs = pd.DataFrame({'model_names': model_names_bpr_10, 'models': 

models_bpr_10, 'precisions': precisions_bpr_10})  

bpr_10_outputs['factors'] = 0 

bpr_10_outputs['regularization'] = 0.0 

bpr_10_outputs['learning_rate'] = 0.0 

bpr_10_outputs['iterations'] = 0 

 

for i in range(0, len(bpr_10_outputs)): 

    bpr_10_outputs['factors'][i] = bpr_10_outputs.models[i].factors 

    bpr_10_outputs['learning_rate'][i] = bpr_10_outputs.models[i].learning_rate 

    bpr_10_outputs['regularization'][i] = bpr_10_outputs.models[i].regularization 

    bpr_10_outputs['iterations'][i] = bpr_10_outputs.models[i].iterations 

 

bpr_5_outputs = pd.DataFrame({'model_names': model_names_bpr_5, 'models': 

models_bpr_5, 'precisions': precisions_bpr_5})  

bpr_5_outputs['factors'] = 0 

bpr_5_outputs['regularization'] = 0.0 

bpr_5_outputs['learning_rate'] = 0.0 

bpr_5_outputs['iterations'] = 0 

 

for i in range(0, len(bpr_5_outputs)): 

    bpr_5_outputs['factors'][i] = bpr_5_outputs.models[i].factors 

    bpr_5_outputs['learning_rate'][i] = bpr_5_outputs.models[i].learning_rate 

    bpr_5_outputs['regularization'][i] = bpr_5_outputs.models[i].regularization 

    bpr_5_outputs['iterations'][i] = bpr_5_outputs.models[i].iterations 

 

bpr_10_paid_outputs = pd.DataFrame({'model_names': 

model_names_bpr_10_paid, 'models': models_bpr_10_paid, 'precisions': 

precisions_bpr_10_paid})  

bpr_10_paid_outputs['factors'] = 0 

bpr_10_paid_outputs['regularization'] = 0.0 
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bpr_10_paid_outputs['learning_rate'] = 0.0 

bpr_10_paid_outputs['iterations'] = 0 

 

for i in range(0, len(bpr_10_paid_outputs)): 

    bpr_10_paid_outputs['factors'][i] = bpr_10_paid_outputs.models[i].factors 

    bpr_10_paid_outputs['learning_rate'][i] = 

bpr_10_paid_outputs.models[i].learning_rate 

    bpr_10_paid_outputs['regularization'][i] = 

bpr_10_paid_outputs.models[i].regularization 

    bpr_10_paid_outputs['iterations'][i] = bpr_10_paid_outputs.models[i].iterations 

     

model_outputs = pd.concat([als_10_outputs, als_5_outputs, als_10_paid_outputs, 

bpr_10_outputs,  

                           bpr_5_outputs, bpr_10_paid_outputs, als_10_paid_alpha_outputs, 

als_10_alpha_outputs]).reset_index(drop = True) 

 

#Best 10 model 

model_outputs.sort_values(by = 'precisions', ascending=False).head(10) 

 

#Model 1 - Similars 

show_similar_items(model_outputs.models.iloc[632], model_data_paid, 221380, 

10) 

 

#Model 4 - Similars 

show_similar_items(model_outputs.models.iloc[709], model_data_paid, 221380, 

10) 

 

#Model 7 - Similars 

show_similar_items(model_outputs.models.iloc[706], model_data_paid, 221380, 

10) 
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