
MEF UNIVERSITY

GAME RECOMMENDATION SYSTEM FOR
STEAM PLATFORM

Capstone Project

Serhan Bayram

İSTANBUL, 2021

MEF UNIVERSITY

GAME RECOMMENDATION SYSTEM FOR
STEAM PLATFORM

Capstone Project

Serhan Bayram

Advisor: Prof. Dr. Semra Ağralı

İSTANBUL, 2021

MEF UNIVERSITY

Name of the project: Game Recommendation System For Steam Platform
Name/Last Name of the Student: Serhan Bayram
Date of Thesis Defense: 01/09/2021

I hereby state that the graduation project prepared by Serhan Bayram has been

completed under my supervision. I accept this work as a “Graduation Project”.

01/09/2021
Prof. Dr. Semra Ağralı

I hereby state that I have examined this graduation project by Serhan Bayram which

is accepted by his supervisor. This work is acceptable as a graduation project and the student
is eligible to take the graduation project examination.

01/09/2021

Prof. Dr. Özgür Özlük

Director
of

Big Data Analytics Program

We hereby state that we have held the graduation examination of __________ and

agree that the student has satisfied all requirements.

THE EXAMINATION COMMITTEE
Committee Member Signature

1. Prof. Dr. Semra Ağralı ………………………..

2. Prof. Dr. Özgür Özlük ………………………..

 v

Academic Honesty Pledge

I promise not to collaborate with anyone, not to seek or accept any outside help, and

not to give any help to others.

I understand that all resources in print or on the web must be explicitly cited.

In keeping with MEF University’s ideals, I pledge that this work is my own and that

I have neither given nor received inappropriate assistance in preparing it.

Name Date Signature

Serhan Bayram 01/09/2021

 vi

EXECUTIVE SUMMARY

GAME RECOMMENDATION SYSTEM FOR STEAM PLATFORM

Serhan Bayram

Advisor: Prof. Dr. Semra Ağralı

SEPTEMBER, 2021, 35 pages

Increasing number of choices and competition in the markets, force companies to

differ in services they provide to their customers. Offering better services have a positive
impact on customer loyalty, and to do so, companies should understand their customers’
interests and act accordingly. One popular method for this purpose is building
recommendation engines to make personalized suggestions. In this project, collaborative
filtering methods with implicit feedback are used to make recommendations to users of the
Steam platform. The recommendation systems are built using two different matrix
factorization techniques, Alternating Least Squares and Bayesian Personalized Ranking.
Different models are created with implicit playtime data of the users and the results are
evaluated by using Precision at k metric. Additionally, similar items that are offered by the
models are analyzed. Results show that the models are considerably successful at finding
personal choices and similar items. The best model finds the item in the libraries of 33% of
the users.

Key Words: Recommendation Engine, Matrix Factorization, Collaborative

Filtering, Alternating Least Squares, Bayesian Personalized Ranking, Implicit Feedback

 vii

ÖZET

STEAM PLATFORMU İÇİN OYUN ÖNERİ SİSTEMİ

Serhan Bayram

Proje Danışmanı: Prof. Dr. Semra Ağralı

EYLÜL, 2021, 35 sayfa

Seçeneklerin ve pazardaki rekabetin artması, şirketleri müşterilerine sundukları

hizmetlerde farklılaşmaya zorlamaktadır. Daha iyi hizmetler önermenin müşteri sadakati
açısından olumlu bir etkisi vardır ve şirketlerin bunu sağlayabilmesi için müşterilerinin ilgi
alanlarını anlaması ve ona göre hareket etmesi gerekmektedir. Kişisel öneriler yapmak için
öneri motorları geliştirmek bu amaca uygun yaygın bir yöntemdir. Bu projede, Steam
platformu kullanıcılarına öneri yapmak için örtülü geri bildirimler ile işbirlikçi filtreleme
yöntemleri kullanılmıştır. Öneri sistemleri iki farklı matris faktorizasyon tekniği olan
Alternatif En Küçük Kareler ve Bayes Kişisel Sıralama ile kurulmuştur. Kullanıcıların örtülü
oyun oynama süreleri verisi kullanılarak farklı modeler oluşturulmuş ve sonuçlar k
değerinde Kesinlik metriği kullanılarak değerlendirilmiştir. Ek olarak, modeller tarafından
önerilen benzer oyunlar incelenmiştir. Sonuçlar, modellerin hem kişisel tercihleri hem de
benzer ürünleri bulmada dikkate değer ölçüde başarılı olduğunu göstermiştir. En iyi model,
kullanıcıların %33’ünün kütüphanesinde olan oyunu bulmayı başardı.

Anahtar Kelimeler: Öneri Motoru, Matris Faktorizasyonu, İşbirlikçi Filtreleme,

Alternatif En Küçük Kareler, Bayes Kişisel Sıralama, Örtülü Geribildirim

 viii

TABLE OF CONTENTS

Academic Honesty Pledge ... v

EXECUTIVE SUMMARY .. vi

ÖZET ... vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. ix

LIST OF TABLES .. x

1. INTRODUCTION ... 1

2. LITERATURE SURVEY ... 2

2.1 Challenges of Recommender Systems ... 2

2.2 Feedback Types .. 3

2.3 Building & Evaluating Recommender Systems ... 4

3. ABOUT THE DATA .. 5

3.1 Data Preparation ... 5

3.2 Features .. 6

3.3 Exploratory Data Analysis ... 6

4. PROJECT DEFINITION AND METHODOLOGY ... 9

5. RESULTS .. 11

5.1 Recommending Items ... 11

5.2 Finding Similar Items ... 12

6. CONCLUSION ... 15

APPENDIX A ... 16

REFERENCES .. 33

 ix

LIST OF FIGURES

Figure 1: Price Distribution of the Games ... 6

Figure 2: Playtime Distribution of All Games - Playtime Between 1 and 8,000 Hours 7

Figure 3: Natural Logarithm of Playtime Distribution of All Games 7

Figure 4: Distribution of Number of Owned Games ... 8

 x

LIST OF TABLES

Table 1: Parameters and Precision at k Scores of the Best Models 11

Table 2: Model 1 Similar Items ... 13

Table 3: Model 4 Similar Items ... 13

Table 4: Model 7 Similar Items ... 13

 1

1. INTRODUCTION

In the last years the number of choices expanded tremendously with the increased

accessibility to digital platforms. As Wu et al. (2021) mentions, this expansion in choices

created an information overload, which brought challenges to both platforms and their

customers. Users of these platforms spend notable time to reach the products they need or

are interested in due to this overload. Reducing this time would create a significant value for

the users, increase the customer satisfaction and make it possible for users to spend the

remaining time to buy other products. These benefits are only some of the main reasons for

the creation of recommender systems.

Recommender systems are the algorithms that produce suggestions to the users.

These suggestions can be offered in various ways by the platforms for several reasons and

can be based on user attributions or item attributions. In general, there are two main types of

recommender systems: Collaborative Filtering (CF) and Content-Based Filtering (CBF).

Adomavicius and Tuzhilin (2005) define CF as suggesting items that are chosen by other

similar users and CBF as suggesting items that are similar to the previously chosen items of

the user. Goldberg et al. (1992) mentioned CF for the first time in early 1990s. After that

definition, lots of recommender models have been created by researchers.

Steam is one of the most popular online game distribution platforms (Steam Website,

https://store.steampowered.com). Fenlon (2019) states that in 2019 there were 90 million

monthly active users on the platform. Through the platform, users can reach free or paid

games. Once a user buys a game, they get lifetime access to it. Providing lifetime access to

the games positioned the platform as a virtual library. Since the users can access the games

whenever they want, they buy games even if they do not plan to play them in near future.

During a year, there are several discount events on the platform, in which the prices of the

games decrease dramatically. Especially in these periods, users probably tend to purchase

more games and enhance the diversity in their collections.

The main purpose of this study is to create a recommender system to offer games to

users that they will be eager to buy. Such a system would increase revenue and loyalty since

it chooses the right games for the users and saves their time. With the help of this system,

the platform can create value for both the users and publishers of the games.

 2

2. LITERATURE SURVEY

In this section, related works in the field of recommender systems are introduced.

These works mainly focus on three different topics: Challenges of Recommender Systems,

Feedback Types and Building & Evaluating Recommender Systems. In the first part, some

difficulties that might appear during a recommendation engine building process and their

possible solutions are given. In the second part, the details of implicit and explicit feedback,

and their usage examples are provided. In the third part, several methods of building and

evaluating recommender systems that are found in the literature are given.

2.1 Challenges of Recommender Systems

Building a recommendation engine has lots of challenges. Most of the

recommendation engines offer the most popular items, however this causes non-popular

items to become nearly invisible by users. For newly arrived items or users, where there is

not enough data to measure popularity or profile users, a method should be defined to make

these items visible for users. As Viljanen (2020) expresses, this problem is defined as cold

start. Koren et al. (2009) mention that although collaborative filtering generally outperforms

content-based filtering, it shows inadequate performance in such cases, and content-based

filtering can be more useful. In real life it is better to handle multiple problems with the same

recommender system. Burke (2002) implies that combining several recommendation

approaches in a proper way would bring higher performance.

Koren et al. (2009) state that, especially in collaborative filtering systems, matrix

factorization is very common. In this approach latent vectors of users and items are used to

predict the unknown ratings. These vectors are created by using a huge user and item matrix

which is expected to be highly sparse. Jung et al. (2004) and Fan et al. (2014) suggest that

one of the major problems while building a recommender system is the sparsity of ratings

since the rated items in the dataset have usually a very small proportion. In order to decrease

sparsity, some items can be eliminated from the dataset. Reddy et al. (2020) suggests that

removing items that have ratings below the mean should be excluded; hence, they do not

make a notable contribution to the model performance. This approach might be useful while

deciding on items to exclude.

Adomavicius and Tuzhilin (2005) indicate a possible problem with the content-based

model as overspecialization, which is offering items that are very similar to the ones the user

 3

interacted with before. This can be thought as recommending glasses to a user who just

bought a new one. Such a recommendation would make no contribution to the model.

According to Kang and McAuley (2018) basically there are two approaches to make a

recommendation to a user dynamically. The first approach is using data within a wider time

range by Recurrent Neural Networks. The second approach is considering only more recent

data to make offers, which performs well with less data, here Markov Chains can be

preferred. They combine both approaches to build a more successful one. The proposed

method considers long-term data to find relevant items and uses recent data to make the final

decision. In the model, Dropout Regularization is used to prevent overfitting.

Pathak et al. (2017) address the benefits of creating personalized bundles to sell the

items. This approach can also be an alternative solution to the cold start problem by bundling

newly arrived games with popular ones. In the paper, to find the interest of users to the

bundles, Bayesian Personalized Ranking is used. Also, to generate personalized bundles for

the users, Greedy Algorithm is used.

2.2 Feedback Types

In order to create relationships and understand patterns between users or items,

feedback data is needed. As Hu et al. (2008) state there are two types of feedback that are

used in recommender systems, implicit and explicit feedback. Explicit feedback can be

considered as the given ratings to the items. On the other hand, implicit feedback is more

hidden in patterns, such as purchased items, visited pages, etc.

In real life, the feedback might not be very explicit to use directly in a model. Wan

and McAuley (2018) mention the relationship between feedback signals. This approach can

be used to discover the dependency between making a review and purchasing an item. This

dependency might be helpful while deriving useful feedback from the original ones.

Transforming implicit features to create explicit feedback is another approach.

Saaidin and Kasiran (2021) use prices and playtimes of games to calculate a rating score.

For this purpose, the correlation between the playtime and the price has been calculated.

After that, a rule-based approach is applied to find the ratings. Kamal et al. (2020) also use

playtime of the games to calculate the ratings by applying a z-score approach for every user.

After calculating the z-scores of the games, the ratings are assigned by some rules. Plunkett

et al. (2016) use five equal percentiles of the playtime value to calculate the ratings.

 4

2.3 Building & Evaluating Recommender Systems

Building a recommender system totally depends on the available data. As it is

mentioned in the previous part, users might not explicitly share their opinions about

products. Therefore, implicit feedback should be considered to create such a system. Hu et

al. (2008) use Alternating Least Squares (ALS) with implicit feedback by defining the

concept of confidence. As Victor (2017) explains, ALS is an optimization approach that can

be used during matrix factorization to find the most similar representation of the initial user

and item pairs. A user’s preference can be easily understood through explicit feedback. On

the other hand, as Hu et al. (2008) point out, it is hard to know whether a user likes or dislikes

an item by inspecting implicit feedback. For instance, if a user does not have any implicit

feedback on a specific item, he/she might not be aware of that item and this does not

necessarily indicate that the user does not like that item. This is the idea behind the

confidence term. It assumes that having more implicit feedback shows stronger bond

between the user and the item, but not having any feedback also has a small impact. The

effect of the implicit feedback can be arranged by using parameter alpha.

ALS algorithm tries to find a relationship between the user and item pairs as it is

mentioned previously. Rendle et al. (2012) offer another solution for implicit feedback,

called Bayesian Personalized Ranking (BPR), which is also a matrix factorization technique.

Rather than using user-item pairs, it considers triplets which consist of a user and two items.

This triplet holds the information of whether one item is preferred to the other item. This

approach eventually helps to create rankings of items for users and makes it possible to make

more personalized recommendations.

After building a recommendation engine, the performance of it should be measured.

Krichene and Rendle (2020) explain several metrics such as Precision at k, Recall at k and

Average Precision at k. At k represents the number of recommended items in all of these

metrics. Cheuque et al. (2019) built game recommender models by using ALS and

Factorization Machines methods and use Average Precision and Mean Average Precision

metrics to evaluate the performance of these models. Also, they use Novelty and Diversity

metrics to measure the distinctness of the recommendations.

 5

3. ABOUT THE DATA

Data used in the project is gathered from the Julian McAuley’s Recommender

Systems Datasets Library as three different datasets with various information (Steam

Dataset, https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data). First dataset has the

information of 88,310 users’ owned games and playtimes of these games. Second dataset

contains more detailed information about the 32,135 items in the platform such as name,

release date, genre, and price. Third dataset contains 615 bundles’ information. A bundle is

a collection of several games and its price is cheaper than the individual sum of the games

in it. This dataset is combined with the second dataset to gather information about more

games.

3.1 Data Preparation

All of these datasets are in loose json format. Before making experiments, the data

needs to be prepared. The preparation steps are as follows:

• Each data file is parsed, and each dataset is normalized.

• Duplicate records are eliminated.

• A game can belong to more than one genre and there is a genre array for each

item. The first element in this array is considered as the game’s genre.

• Records with null values are eliminated.

• In the datasets, there are some items that are not games but different types of

software. The records with these items are excluded.

• For free games, some of the prices are entered in string format. They are changed

as 0.

• In the first dataset, there are some games that do not exist in the second and third

datasets. The records related to those games are excluded.

• All three datasets are merged to create two main datasets. One of them contains

only paid games, and the other one contains both paid and free games.

• Users with only one item are excluded.

• Items with only one user are excluded.

• The playtime distribution is highly skewed, and some values are very high.

Therefore, natural logarithms of the playtimes are added.

 6

 The paid dataset contains 3,382,945 rows and the other dataset contains 4,140,773

rows. Each row in the datasets corresponds to a user and user’s owned item. For instance, if

a user has 10 different games, there are 10 rows of that user.

3.2 Features

The explanations of the features that are used in the project are as follows:

• user: Unique id of a user

• item: Unique id of a game

• item_name: Name of a game

• playtime_forever: Playtime of a game by a user in hours

• single_genre: Genre of a game

• price: Price of a game

• playtime: Natural logarithm of playtime_forever

3.3 Exploratory Data Analysis

The main dataset has 65,945 unique users and 8,090 unique games. The paid dataset

has 61,909 unique users and 7,587 unique games. These numbers indicate that 93,78% of

the games are not free. The price distribution of the games can be seen in Figure 1. Since

there are only 4 games that have higher prices than $100, they are excluded from Figure 1.

Among the paid games 94.64% of the games have a price of less than $20.

Figure 1: Price Distribution of the Games

 7

The playtime distribution of the games is shown in Figure 2 considering both paid

and free games. Only 2.59% of the rows contain playtime higher than 8,000 hours. So, Figure

2 shows at most 8,000 hours. 32.9% of the games in the libraries are not played even for an

hour. This rate is 33.61% for paid games. This data supports the explanation given in the

Introduction section as users pay for the games even if they do not plan to play them in near

future.

Figure 2 shows that the playtime values need to be transformed in order to achieve a

normal distribution. Figure 3 shows the transformed playtime values by natural logarithm,

again by considering both paid and free games. Since 0 has no logarithm calculation, 1 is

added to all values and then the natural logarithm value is calculated.

Figure 2: Playtime Distribution of All Games - Playtime Between 1 and 8,000 Hours

Figure 3: Natural Logarithm of Playtime Distribution of All Games

 8

After the transformation, the distribution becomes really close to the normal if zero

playtime records are overlooked.

Figure 4 shows the distribution of the number of owned games, considering free and

paid games. Among 65,945 unique users, only 300 of them have more than 600 games.

Hence, Figure 4 shows users who have at most 600 games.

As expected, most of the users have less than 100 games. This fact actually is one of

the main motivations of this project. There are lots of users who can buy new games if they

are provided with accurate recommendations. 65.73% of the users have more than 20 games.

This rate is 56.95% for the paid games. Thus, there is a huge potential with users who have

less games. Moreover, this potential is also relevant for the ones with higher number of items

because there are also users who have a lot more games.

Figure 4: Distribution of Number of Owned Games

 9

4. PROJECT DEFINITION AND METHODOLOGY

In this project, game recommendations are made to the users by learning from their

current library to estimate their possible preferences. As it is shown in the previous part, lots

of users have small numbers of games, and most of the users do not play the games in their

library. This circumstance can be considered as a tremendous opportunity for the Steam

platform and the publishers. By suggesting correct games, it seems possible to make users

buy new ones even if they do not plan to play them and increase the sales and revenue. More

games will probably create more loyal customers, and eventually, the platform may benefit

from this loyalty of the users.

It is not possible to give ratings to the games on the Steam platform. Users can only

“Recommend” or “Not Recommend” items, and this is not an indicator of how much the

item is liked or disliked. On the other hand, the platform knows how many hours a user

played a specific game. Hence, implicit feedback seems more useful while determining a

user’s preferences.

In Section 2, two popular methods for building recommendation systems with

collaborative filtering by using implicit feedback, ALS and BPR, are explained. In this

project, both of these methods are used to create different models. There is a Python library,

called “implicit”, created by Ben Frederickson, which makes it really easy to build ALS and

BPR models, to find similar games and to recommend items in really short time (Implicit

Github Page, https://github.com/benfred/implicit).

ALS and BPR models have similar parameters which are as follows:

• Factors: Number of hidden factors to be discovered by the model

• Regularization: Regularization rate

• Iterations: Number of iterations

• Alpha: Parameter to adjust the level of confidence (only ALS)

• Learning Rate: Learning rate used during optimizing the model (only BPR)

In order to train models, the algorithms require a sparse item user matrix. Before

creating this matrix, each username and game id is converted to numerical codes starting

from 0 to the number of unique items and users. Also, it is assumed that, even if a user does

not play a game, having that game in their library might indicate positive feedback.

 10

Therefore, a constant value is added to transformed playtime values to signify this feedback.

The models built require a sparse user item matrix to make recommendations to users.

The performances of the models are measured by using Precision at k metric. In order

to measure the performance, train and test sets are derived from the cleaned and merged

datasets. One train and test set is created by using the dataset with only paid games. The

other one is created by using the dataset that contains both paid and free games.

Test sets contain one random item of all users. These items are excluded from the

train sets. After the models built with the train sets, the models recommend games for all of

the users. For instance, the recommendation engine suggests 10 items to a user. If one of

these items is actually the excluded one, i.e., the item in the test set, then that

recommendation batch is acknowledged as successful. These users can be labeled as correct

users so to speak. Precision at k here is the number of correct users divided by total number

of users. If there are 50 users in the dataset and Precision at k equals 20%, this means that

the model found correct items for 10 of the users.

 11

5. RESULTS

Using the methodology explained in the previous part, 747 different experiments

have been performed to compare different parameters and algorithms with two datasets. As

mentioned, one dataset contains only paid games and the other one contains both free and

paid games.

Each of the models are used to recommend games to users and their performance are

defined with Precision at k metric. In this project, scenarios in which 5 or 10 items are

recommended to the users are designed. This means k can be 5 or 10.

These experiments are completed with implicit version 0.4.4 and Python version

3.8.3.

5.1 Recommending Items

Among 747 experiments, models that show the best performance in terms of

Precision at k, have the parameters and scores that can be seen in Table 1.

The best three models among all use the BPR algorithm. Only difference between

these models is the number of factors. Model 1 and Model 2 have very close Precision values.

However, using less factors would decrease the training and testing times. Therefore, if one

of them should be selected, it would be Model 1 since it uses less factors to make predictions.

After those three models, ALS models show the best performance. These models

have really close scores with different iteration and alpha values. Reducing iteration count

also might be useful since it has a positive impact on training and testing times.

Table 1: Parameters and Precision at k Scores of the Best Models

 12

At 10th place, there is another BPR model with 30 factors and 10 iterations. Rest of

the parameters are the same with other BPR models.

From the models in the list, to compare BPR and ALS, it can be said that BPR tends

to require less factors, but ALS performs better with less iterations.

Table 1 reveals other significant points. All of the models above are built using only

paid games. This means that including free games to the training dataset might decrease the

success of the model. Actually, this case can be expected since free game definition is too

wide. For instance, sometimes developers publish Beta, Demo or Early Access versions of

the games. These versions usually are not completed games or just a small part of the original

game. Therefore, games that suit the description above are probably not played too much,

and in the model, playtime is taken into consideration.

Another important point is that recommendations with 5 items are not in the list.

Again, an expected outcome, increasing the number of options will increase the probability

of finding the correct game. This decision totally depends on the platform and this number

can be adjusted very easily.

The precision scores of the models might vary since the test set is created randomly

each time. However, this volatility would be really small which can be ignored. Therefore,

these results can be assumed to represent the methods’ success accurately.

Herewith, to evaluate the models as a whole, finding nearly 33% of the users’

preferences could bring amazing benefits to the platform. It could boost the sales, enhance

the loyalty and increase the platform’s competition power with others in the market.

5.2 Finding Similar Items

Even though there are metrics to measure the success of recommendations, the topic

sometimes becomes subjective. In order to understand how the model recommends games,

Model 1, Model 4 and Model 7 are used to find the similar games of a given game. Model 1

is the most successful model with BPR, Model 4 is the most successful model with ALS and

Model 7 is the most successful model with 10 iterations. These are the reasons behind this

selection. In order to find similar games, a very popular strategy and simulation game Age

of Empires II will be used. The results can be seen in Table 2, Table 3 and Table 4.

 13

First item in all of the tables is the game itself. Top 3 recommendations are the same

for all models and are very successful. Two of them are the newer version and the other one

is another known strategy game. Although the rest of the list differs a little bit, the game

suggestions can be accepted as successful. Models usually find games from similar genres.

The BPR model offers other popular games in that genre such as Stronghold Crusader and

Total War: Rome II. A person who plays Age of Empires II would probably show interest

in these games, too. Therefore, there is no problem to offer these games.

Also, the model suggests less popular games as well. Games with small numbers of

owners are also shown as similar. In the literature review section, the problem “Cold Start”

Table 2: Model 1 Similar Items

Table 3: Model 4 Similar Items

Table 4: Model 7 Similar Items

 14

was mentioned where unpopular items are not suggested to the users. No special action is

taken; however, these models offer such games as well. Nevertheless, the platform should

define a strategy for games in this description to increase their recognition.

Unknown relationships between games or users might appear in detailed analyses by

using the same approach applied in this section, manually analyzing counterparts of a

specific game. These patterns can be used to create bundles, or this information can be

provided to developers or publishers to adjust their games or marketing strategies

accordingly. There is a lot to do with such an insight. Therefore, it would be really beneficial

to think more comprehensively with a recommendation system.

 15

6. CONCLUSION

Day by day more alternatives become available for consumers. In this ocean, the

consumers spend considerable time to find the most suitable choices for themselves.

Therefore, locating these options for the customers created a highly competitive field,

recommender systems, for the companies. A successful recommendation system would

ensure better position to a company in the market, as well as more sales and higher customer

loyalty.

In this project, recommendation systems for the Steam platform are developed by

using more than 60,000 users’ game library and playtimes. The data is used to build

collaborative filtering models with ALS and BPR methods. Both algorithms are used to

predict games that are actually added to the libraries by the users and find similar games;

and they showed considerably good performance on both operations.

The outcome of these models can be beneficial for the Steam platform to increase

their sales and customer loyalty. By suggesting correct games, the platform would become

an irreplaceable environment for its users. People who benefit from these recommendations

would spend less time finding the games and more on playing.

As it is mentioned in the previous parts, the topic of recommendation can lead the

companies to broader business areas. A strong recommendation system can be used to mine

hidden information between items and users. This information might be really valuable and

provide useful insights to both the platforms and publishers and may play a key role in

shaping the gaming industry’s future. Thus, the platform should leverage the power of such

an engine.

 16

APPENDIX A

#Reading .gzip Files

import pandas as pd

import numpy as np

import gzip

def parse(path):

 g = gzip.open(path, 'r')

 for l in g:

 yield eval(l)

def read_data(path):

 data = []

 gen = parse(path)

 while True:

 try:

 temp_dict = next(gen)

 except StopIteration:

 break

 data.append(temp_dict)

 return data

#First Dataset

user_items = read_data("Datasets/australian_users_items.json.gz")

item_df = pd.json_normalize(user_items, record_path = ['items'], meta = ['user_id'])

item_df = item_df[['user_id', 'item_id', 'item_name', 'playtime_forever',

'playtime_2weeks']]

item_df = item_df.drop_duplicates()

item_check =

item_df.groupby(['user_id','item_id']).size().reset_index(name='counts')

item_check_list = item_check.loc[item_check.counts > 1].reset_index(drop = True)

 17

temp_index = []

for index in range(0,len(item_check_list)):

 temp_index = item_df.loc[((item_df.user_id == item_check_list.loc[index,

'user_id']) &

 (item_df.item_id == item_check_list.loc[index,

'item_id']))].index.to_list()

 temp_index.pop(-1)

 item_df = item_df.drop(temp_index)

item_check =

item_df.groupby(['user_id','item_id']).size().reset_index(name='counts')

item_count_check = item_df.groupby(['item_id']).size().reset_index(name =

"counts")

exc_items = item_count_check.loc[item_count_check.counts == 1].item_id

item_df = item_df.loc[~item_df.item_id.isin(exc_items)]

user_count_check = item_df.groupby(['user_id']).size().reset_index(name =

"counts")

exc_users = user_count_check.loc[user_count_check.counts == 1].user_id

item_df = item_df.loc[~item_df.user_id.isin(exc_users)].reset_index(drop = True)

item_df.isnull().sum()

item_df.to_csv('Datasets/item_data.csv', index=False)

#Second Dataset

games = read_data("Datasets/steam_games.json.gz")

games_df = pd.DataFrame(games)

games_df = games_df[['id', 'app_name', 'genres','price']].rename(columns={'id':

"item_id", "app_name": "item_name"})

games_df.isnull().sum()

games_df = games_df.dropna().reset_index(drop = True)

games_df.genres = games_df.genres.astype(str)

games_df.genres = games_df.genres.str.replace('[', '')

games_df.genres = games_df.genres.str.replace(']', '')

games_df.genres = games_df.genres.str.replace('\'', '')

 18

games_df = pd.concat([games_df, games_df.genres.str.split(',',expand=True)],

axis=1)

for i in range(0, len(games_df)):

 if (games_df.loc[i, 0] != 'Free to Play') and (games_df.loc[i, 0] != 'Early Access'):

 games_df.loc[i, 'single_genre'] = games_df.loc[i, 0]

 else:

 games_df.loc[i, 'single_genre'] = games_df.loc[i, 1]

games_df.single_genre = games_df.single_genre.str.replace(' Indie', 'Indie')

games_df.single_genre = games_df.single_genre.str.replace(' Action', 'Action')

games_df.single_genre = games_df.single_genre.str.replace(' Massively

Multiplayer', 'Massively Multiplayer')

games_df.single_genre = games_df.single_genre.str.replace(' RPG', 'RPG')

games_df.single_genre = games_df.single_genre.str.replace(' Sports', 'Sports')

games_df.single_genre = games_df.single_genre.str.replace(' Racing', 'Racing')

games_df.single_genre = games_df.single_genre.str.replace(' Strategy', 'Strategy')

games_df.single_genre = games_df.single_genre.str.replace(' Simulation',

'Simulation')

games_df = games_df.loc[~games_df.single_genre.isin(['Animation &

Modeling', 'Utilities', 'Education', 'Design & Illustration', 'Audio Production',

 None, 'Video Production', 'Software Training',

'Accounting', 'Web Publishing', 'Photo Editing'])]

games_df = games_df.drop(['genres'], axis=1)

games_df = games_df.drop([0,1,2,3,4,5,6,7,8,9], axis=1)

games_df = games_df.drop_duplicates()

games_df = games_df.reset_index(drop=True)

for i in range(0, len(games_df)):

 if type(games_df.price[i]) == str:

 games_df.price[i] = 0.00

games_df.to_csv('Datasets/games_data.csv', index=False)

#Third Dataset

bundles = read_data("Datasets/bundle_data.json.gz")

 19

bundle_df = pd.json_normalize(bundles, record_path = ['items'])

bundle_df = bundle_df[['item_id', 'item_name', 'genre', 'discounted_price']]

bundle_df = bundle_df.loc[bundle_df.item_id != '']

bundle_df = bundle_df.drop_duplicates()

bundle_df = bundle_df.drop(bundle_df.loc[bundle_df.item_id.duplicated()].index)

bundle_df =

bundle_df.drop(bundle_df.loc[bundle_df.item_id.str.contains(",")].index)

bundle_df = bundle_df.reset_index(drop=True)

bundle_df = pd.concat([bundle_df, bundle_df.genre.str.split(',',expand=True)],

axis=1)

for i in range(0, len(bundle_df)):

 if (bundle_df.loc[i, 0] != 'Free to Play') and (bundle_df.loc[i, 0] != 'Early Access'):

 bundle_df.loc[i, 'single_genre'] = bundle_df.loc[i, 0]

 else:

 bundle_df.loc[i, 'single_genre'] = bundle_df.loc[i, 1]

bundle_df.single_genre = bundle_df.single_genre.str.replace(' Massively

Multiplayer', 'Massively Multiplayer')

bundle_df = bundle_df.loc[~bundle_df.single_genre.isin(['', 'Audio Production',

'Utilities', 'Education', 'Design & Illustration',

 'Software Training', 'Animation & Modeling',

'Web Publishing'])]

bundle_df.discounted_price = bundle_df.discounted_price.str.replace('$','')

bundle_df.discounted_price = pd.to_numeric(bundle_df.discounted_price)

bundle_df.item_id = pd.to_numeric(bundle_df.item_id)

bundle_df = bundle_df.drop(['genre',0,1,2,3,4,5,6,7], axis=1)

bundle_df.isnull().sum()

bundle_df.columns = ['item_id', 'item_name', 'price', 'single_genre']

bundle_df.to_csv('Datasets/bundle_data.csv', index=False)

#Creating main dataframes

raw_items = pd.read_csv('Datasets/item_data.csv')

raw_games = pd.read_csv('Datasets/games_data.csv')

 20

raw_bundles = pd.read_csv('Datasets/bundle_data.csv')

raw_games_all = pd.concat([raw_games,

raw_bundles.loc[~raw_bundles.item_id.isin(raw_games.item_id)]])

raw_items_all = raw_items.loc[raw_items.item_id.isin(raw_games_all.item_id)]

raw_items_all.columns = ['user', 'item', 'item_name', 'playtime_forever',

'playtime_2weeks']

raw_items_all = raw_items_all.merge(raw_games_all[['item_id', 'single_genre',

'price']], left_on='item', right_on='item_id', how = 'left').drop(['item_id'], axis = 1)

items_df = raw_items_all

items_df['playtime'] = items_df['playtime_forever'] + 1

items_df['playtime'] = np.log(items_df['playtime'])

items_df = items_df.drop(['playtime_2weeks'], axis=1)

item_count_check = items_df.groupby(['item']).size().reset_index(name = "counts")

exc_items = item_count_check.loc[item_count_check.counts == 1]['item']

items_df = items_df.loc[~items_df.item.isin(exc_items)]

user_count_check = items_df.groupby(['user']).size().reset_index(name = "counts")

exc_users = user_count_check.loc[user_count_check.counts == 1].user

items_df = items_df.loc[~items_df.user.isin(exc_users)].reset_index(drop = True)

items_df.isnull().sum()

items_df.to_csv('Datasets/model_data_all.csv', index=False)

items_df_paid = items_df.loc[items_df.price > 0]

item_count_check = items_df_paid.groupby(['item']).size().reset_index(name =

"counts")

exc_items = item_count_check.loc[item_count_check.counts == 1]['item']

items_df_paid = items_df_paid.loc[~items_df_paid.item.isin(exc_items)]

user_count_check = items_df_paid.groupby(['user']).size().reset_index(name =

"counts")

exc_users = user_count_check.loc[user_count_check.counts == 1].user

items_df_paid =

items_df_paid.loc[~items_df_paid.user.isin(exc_users)].reset_index(drop = True)

items_df_paid.to_csv('Datasets/model_data_paid.csv', index=False)

 21

#Modeling Part

model_data_all = pd.read_csv('Datasets/model_data_all.csv')

model_data_paid = pd.read_csv('Datasets/model_data_paid.csv')

import implicit

import scipy.sparse as sparse

import random

from sklearn import metrics

random.seed(0)

def prep_data(df, pt_add):

 df['playtime'] = df['playtime'] + pt_add

 df['user_id'] = df['user'].astype("category").cat.codes

 df['item_id'] = df['item'].astype("category").cat.codes

 user_item_count = df.groupby(['user_id']).size().reset_index(name = "counts")

 df = df.merge(user_item_count, on='user_id', how = 'left')

 test_df =

df.groupby(['user_id'])['item_id'].apply(pd.Series.sample).reset_index(level=[0])

 test_df['check'] = 1

 train_df = df.loc[~df.index.isin(test_df.index)].reset_index(drop = True)

 print("Train dataset contains {} unique items and {} unique

users.".format(len(train_df.item_id.unique()), len(train_df.user_id.unique())))

 print("Train dataset total record count:", len(train_df))

 sparse_items = sparse.csr_matrix((train_df['playtime'], (train_df['item_id'],

train_df['user_id'])))

 sparse_users = sparse.csr_matrix((train_df['playtime'], (train_df['user_id'],

train_df['item_id'])))

 matrix_size = sparse_users.shape[0] * sparse_users.shape[1]

 owned_games = len(sparse_users.nonzero()[0])

 sparsity = 100 * (1 - (owned_games / matrix_size))

 print("The sparsity is {}%".format(round(sparsity,2)))

 return sparse_items, sparse_users, train_df, test_df

def build_als_model(sparse_item_df, factors, regularization, iterations, alpha):

 22

 model_als = implicit.als.AlternatingLeastSquares(factors=factors,

regularization=regularization, iterations=iterations, calculate_training_loss = True,

random_state = 0)

 data = (sparse_item_df * alpha).astype('double')

 model_als.fit(data)

 return model_als

def build_bpr_model(sparse_item_df, factors, learning_rate, regularization,

iterations, alpha):

 model_bpr = implicit.bpr.BayesianPersonalizedRanking(factors=factors,

learning_rate=learning_rate, regularization=regularization, iterations=iterations,

random_state = 0)

 data = (sparse_item_df * alpha).astype('double')

 model_bpr.fit(data)

 return model_bpr

def show_similar_items(model, df, item_num, num_of_items):

 item_id = df.loc[df['item'] == item_num].iloc[0].item_id.item()

 similar = model.similar_items(item_id, N = num_of_items)

 items = []

 items_new = []

 itemnames = []

 genres = []

 scores = []

 for i in similar:

 idx, score = i

 game_id = df['item'].loc[df.item_id == idx].iloc[0]

 items.append(df['item'].loc[df.item_id == idx].iloc[0])

 items_new.append(df['item_id'].loc[df.item_id == idx].iloc[0])

 itemnames.append(df['item_name'].loc[df.item_id == idx].iloc[0])

 genres.append(df['single_genre'].loc[df.item_id == idx].iloc[0])

 scores.append(score)

 23

 similars = pd.DataFrame({'item_id': items, 'new_item_id': items_new,

'item_name': itemnames, 'genre': genres, 'score': scores})

 owner_counts = df.groupby(['item']).size().reset_index(name = "owner_count")

 similars = similars.merge(owner_counts, how='left', right_on='item',

left_on='item_id').drop(['item'], axis=1)

 return similars

def make_recommendations(model, sparse_user_df, train_df, test_df, n_items):

 user_ids = []

 items_ids = []

 scores = []

 for u in train_df.user_id.unique():

 recommended = model.recommend(u, sparse_user_df,

filter_already_liked_items = True, N = n_items, recalculate_user = False)

 for rec_pair in recommended:

 item_id, score = rec_pair

 user_ids.append(u)

 items_ids.append(item_id)

 scores.append(score)

 recommendations = pd.DataFrame({'user_id': user_ids, 'item_id': items_ids,

'score': scores})

 results = recommendations.merge(test_df, how='left', on=['user_id', 'item_id'])

 results.loc[results.check.isna(), 'check'] = 0

 precision = len(results.loc[results.check == 1]) /

len(recommendations.user_id.unique())

 print("Precision @{}: {}%\n".format(n_items, round(precision * 100, 2)))

 results_2 = results.groupby(['user_id']).agg({"check":

"max"}).merge(train_df[['user_id', 'counts']].drop_duplicates(), how='left', on=['user_id'])

 return results, results_2, precision

sparse_item_df, sparse_user_df, train_set, test_set = prep_data(model_data_all,

0.01)

 24

sparse_item_df_paid, sparse_user_df_paid, train_set_paid, test_set_paid =

prep_data(model_data_paid, 0.01)

#ALS Models

iter_count = 0

models = []

model_names = []

precisions = []

for facs in [10,30,50,100]:

 for regs in [0.01, 0.1, 0.5, 1]:

 for iters in [5, 10, 20]:

 for alphas in [15, 30, 40]:

 model = build_als_model(sparse_item_df, factors = facs, regularization =

regs, iterations = iters, alpha = alphas)

 print("Factors: {} - Regularization: {} - Iterations: {} - Alpha:

{}".format(facs, regs, iters, alphas))

 result_df, prec = make_recommendations(model, sparse_user_df,

train_set, test_set, 10)

 models.append(model)

 model_names.append('model_als_' + str(iter_count))

 precisions.append(prec)

 iter_count += 1

iter_count = 0

models_als_5 = []

model_names_als_5 = []

precisions_als_5 = []

for facs in [10,30,50,100]:

 for regs in [0.01, 0.1, 0.5, 1]:

 for iters in [5, 10, 20]:

 for alphas in [15, 30, 40]:

 25

 model = build_als_model(sparse_item_df, factors = facs, regularization =

regs, iterations = iters, alpha = alphas)

 print("Factors: {} - Regularization: {} - Iterations: {} - Alpha:

{}".format(facs, regs, iters, alphas))

 result_df, prec = make_recommendations(model, sparse_user_df,

train_set, test_set, 5)

 models_als_5.append(model)

 model_names_als_5.append('model_als_' + str(iter_count))

 precisions_als_5.append(prec)

 iter_count += 1

iter_count = 0

models_als_10_paid = []

model_names_als_10_paid = []

precisions_als_10_paid = []

for facs in [10,30,50,100]:

 for regs in [0.01, 0.1, 0.5, 1]:

 for iters in [5, 10, 20]:

 for alphas in [15, 30, 40]:

 model = build_als_model(sparse_item_df_paid, factors = facs,

regularization = regs, iterations = iters, alpha = alphas)

 print("Factors: {} - Regularization: {} - Iterations: {} - Alpha:

{}".format(facs, regs, iters, alphas))

 result_df, prec = make_recommendations(model, sparse_user_df_paid,

train_set_paid, test_set_paid, 10)

 models_als_10_paid.append(model)

 model_names_als_10_paid.append('model_als_' + str(iter_count))

 precisions_als_10_paid.append(prec)

 iter_count += 1

iter_count = 0

models_als_10_alpha = []

 26

model_names_als_10_alpha = []

precisions_als_10_alpha = []

alphas_als_10_alpha = []

for facs in [50,100]:

 for regs in [0.01, 0.1, 1]:

 for iters in [10, 20]:

 for alphas in [5, 6, 7]:

 model = build_als_model(sparse_item_df, factors = facs, regularization =

regs, iterations = iters, alpha = alphas)

 result_df, result_df_2, prec = make_recommendations(model,

sparse_user_df, train_set, test_set, 10)

 models_als_10_alpha.append(model)

 model_names_als_10_alpha.append('model_als_alpha' + str(iter_count))

 precisions_als_10_alpha.append(prec)

 alphas_als_10_alpha.append(alphas)

 iter_count += 1

iter_count = 0

models_als_10_paid_alpha = []

model_names_als_10_paid_alpha = []

precisions_als_10_paid_alpha = []

alphas_als_10_paid_alpha = []

for facs in [50,100]:

 for regs in [0.01, 0.1, 1]:

 for iters in [10, 20]:

 for alphas in [5, 6, 7]:

 model = build_als_model(sparse_item_df_paid, factors = facs,

regularization = regs, iterations = iters, alpha = alphas)

 result_df, result_df_2, prec = make_recommendations(model,

sparse_user_df_paid, train_set_paid, test_set_paid, 10)

 models_als_10_paid_alpha.append(model)

 27

 model_names_als_10_paid_alpha.append('model_als_paid_alpha' +

str(iter_count))

 precisions_als_10_paid_alpha.append(prec)

 alphas_als_10_paid_alpha.append(alphas)

 iter_count += 1

als_10_outputs = pd.DataFrame({'model_names': model_names, 'models': models,

'precisions': precisions})

als_5_outputs = pd.DataFrame({'model_names': model_names_als_5, 'models':

models_als_5, 'precisions': precisions_als_5})

als_10_paid_outputs = pd.DataFrame({'model_names': model_names_als_10_paid,

'models': models_als_10_paid, 'precisions': precisions_als_10_paid})

als_10_alpha_outputs = pd.DataFrame({'model_names':

model_names_als_10_alpha, 'models': models_als_10_alpha,

 'precisions': precisions_als_10_alpha, 'alphas':

alphas_als_10_alpha})

als_10_paid_alpha_outputs = pd.DataFrame({'model_names':

model_names_als_10_paid_alpha, 'models': models_als_10_paid_alpha,

 'precisions': precisions_als_10_paid_alpha, 'alphas':

alphas_als_10_paid_alpha})

als_10_outputs['factors'] = 0

als_10_outputs['regularization'] = 0.0

als_10_outputs['iterations'] = 0

als_5_outputs['factors'] = 0

als_5_outputs['regularization'] = 0.0

als_5_outputs['iterations'] = 0

als_10_paid_outputs['factors'] = 0

als_10_paid_outputs['regularization'] = 0.0

als_10_paid_outputs['iterations'] = 0

 28

als_10_alpha_outputs['factors'] = 0

als_10_alpha_outputs['regularization'] = 0.0

als_10_alpha_outputs['iterations'] = 0

als_10_paid_alpha_outputs['factors'] = 0

als_10_paid_alpha_outputs['regularization'] = 0.0

als_10_paid_alpha_outputs['iterations'] = 0

for i in range(0, len(als_10_outputs)):

 als_10_outputs['factors'][i] = als_10_outputs.models[i].factors

 als_10_outputs['regularization'][i] = als_10_outputs.models[i].regularization

 als_10_outputs['iterations'][i] = als_10_outputs.models[i].iterations

for i in range(0, len(als_5_outputs)):

 als_5_outputs['factors'][i] = als_5_outputs.models[i].factors

 als_5_outputs['regularization'][i] = als_5_outputs.models[i].regularization

 als_5_outputs['iterations'][i] = als_5_outputs.models[i].iterations

for i in range(0, len(als_10_paid_outputs)):

 als_10_paid_outputs['factors'][i] = als_10_paid_outputs.models[i].factors

 als_10_paid_outputs['regularization'][i] =

als_10_paid_outputs.models[i].regularization

 als_10_paid_outputs['iterations'][i] = als_10_paid_outputs.models[i].iterations

for i in range(0, len(als_10_alpha_outputs)):

 als_10_alpha_outputs['factors'][i] = als_10_alpha_outputs.models[i].factors

 als_10_alpha_outputs['regularization'][i] =

als_10_alpha_outputs.models[i].regularization

 als_10_alpha_outputs['iterations'][i] = als_10_alpha_outputs.models[i].iterations

for i in range(0, len(als_10_paid_alpha_outputs)):

 29

 als_10_paid_alpha_outputs['factors'][i] =

als_10_paid_alpha_outputs.models[i].factors

 als_10_paid_alpha_outputs['regularization'][i] =

als_10_paid_alpha_outputs.models[i].regularization

 als_10_paid_alpha_outputs['iterations'][i] =

als_10_paid_alpha_outputs.models[i].iterations

#BPR Models

iter_count = 0

models_bpr_10 = []

model_names_bpr_10 = []

precisions_bpr_10 = []

for facs in [30,50,100]:

 for lr in [0.001, 0.01, 0.1]:

 for regs in [0.001, 0.01, 0.05]:

 for iters in [5, 10, 20]:

 model = build_bpr_model(sparse_item_df, factors = facs, learning_rate=

lr, regularization = regs, iterations = iters, alpha = 15)

 print("Factors: {} - Learning Rate: {} - Regularization: {} - Iterations: {}

- Alpha: 15".format(facs, lr, regs, iters))

 result_df, prec = make_recommendations(model, sparse_user_df,

train_set, test_set, 10)

 models_bpr_10.append(model)

 model_names_bpr_10.append('model_bpr_' + str(iter_count))

 precisions_bpr_10.append(prec)

 iter_count += 1

iter_count = 0

models_bpr_5 = []

model_names_bpr_5 = []

precisions_bpr_5 = []

for facs in [30,50,100]:

 30

 for lr in [0.001, 0.01, 0.1]:

 for regs in [0.001, 0.01, 0.05]:

 for iters in [5, 10, 20]:

 model = build_bpr_model(sparse_item_df, factors = facs, learning_rate=

lr, regularization = regs, iterations = iters, alpha = 15)

 print("Factors: {} - Learning Rate: {} - Regularization: {} - Iterations: {}

- Alpha: 15".format(facs, lr, regs, iters))

 result_df, prec = make_recommendations(model, sparse_user_df,

train_set, test_set, 5)

 models_bpr_5.append(model)

 model_names_bpr_5.append('model_bpr_' + str(iter_count))

 precisions_bpr_5.append(prec)

 iter_count += 1

iter_count = 0

models_bpr_10_paid = []

model_names_bpr_10_paid = []

precisions_bpr_10_paid = []

for facs in [30,50,100]:

 for lr in [0.001, 0.01, 0.1]:

 for regs in [0.001, 0.01, 0.05]:

 for iters in [5, 10, 20]:

 model = build_bpr_model(sparse_item_df_paid, factors = facs,

learning_rate= lr, regularization = regs, iterations = iters, alpha = 15)

 print("Factors: {} - Learning Rate: {} - Regularization: {} - Iterations: {}

- Alpha: 15".format(facs, lr, regs, iters))

 result_df, prec = make_recommendations(model, sparse_user_df_paid,

train_set_paid, test_set_paid, 10)

 models_bpr_10_paid.append(model)

 model_names_bpr_10_paid.append('model_bpr_' + str(iter_count))

 precisions_bpr_10_paid.append(prec)

 iter_count += 1

 31

bpr_10_outputs = pd.DataFrame({'model_names': model_names_bpr_10, 'models':

models_bpr_10, 'precisions': precisions_bpr_10})

bpr_10_outputs['factors'] = 0

bpr_10_outputs['regularization'] = 0.0

bpr_10_outputs['learning_rate'] = 0.0

bpr_10_outputs['iterations'] = 0

for i in range(0, len(bpr_10_outputs)):

 bpr_10_outputs['factors'][i] = bpr_10_outputs.models[i].factors

 bpr_10_outputs['learning_rate'][i] = bpr_10_outputs.models[i].learning_rate

 bpr_10_outputs['regularization'][i] = bpr_10_outputs.models[i].regularization

 bpr_10_outputs['iterations'][i] = bpr_10_outputs.models[i].iterations

bpr_5_outputs = pd.DataFrame({'model_names': model_names_bpr_5, 'models':

models_bpr_5, 'precisions': precisions_bpr_5})

bpr_5_outputs['factors'] = 0

bpr_5_outputs['regularization'] = 0.0

bpr_5_outputs['learning_rate'] = 0.0

bpr_5_outputs['iterations'] = 0

for i in range(0, len(bpr_5_outputs)):

 bpr_5_outputs['factors'][i] = bpr_5_outputs.models[i].factors

 bpr_5_outputs['learning_rate'][i] = bpr_5_outputs.models[i].learning_rate

 bpr_5_outputs['regularization'][i] = bpr_5_outputs.models[i].regularization

 bpr_5_outputs['iterations'][i] = bpr_5_outputs.models[i].iterations

bpr_10_paid_outputs = pd.DataFrame({'model_names':

model_names_bpr_10_paid, 'models': models_bpr_10_paid, 'precisions':

precisions_bpr_10_paid})

bpr_10_paid_outputs['factors'] = 0

bpr_10_paid_outputs['regularization'] = 0.0

 32

bpr_10_paid_outputs['learning_rate'] = 0.0

bpr_10_paid_outputs['iterations'] = 0

for i in range(0, len(bpr_10_paid_outputs)):

 bpr_10_paid_outputs['factors'][i] = bpr_10_paid_outputs.models[i].factors

 bpr_10_paid_outputs['learning_rate'][i] =

bpr_10_paid_outputs.models[i].learning_rate

 bpr_10_paid_outputs['regularization'][i] =

bpr_10_paid_outputs.models[i].regularization

 bpr_10_paid_outputs['iterations'][i] = bpr_10_paid_outputs.models[i].iterations

model_outputs = pd.concat([als_10_outputs, als_5_outputs, als_10_paid_outputs,

bpr_10_outputs,

 bpr_5_outputs, bpr_10_paid_outputs, als_10_paid_alpha_outputs,

als_10_alpha_outputs]).reset_index(drop = True)

#Best 10 model

model_outputs.sort_values(by = 'precisions', ascending=False).head(10)

#Model 1 - Similars

show_similar_items(model_outputs.models.iloc[632], model_data_paid, 221380,

10)

#Model 4 - Similars

show_similar_items(model_outputs.models.iloc[709], model_data_paid, 221380,

10)

#Model 7 - Similars

show_similar_items(model_outputs.models.iloc[706], model_data_paid, 221380,

10)

 33

REFERENCES

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering, 17(6), 734–749.

https://doi.org/10.1109/tkde.2005.99

Ahmad Kamal, A. S., Saaidin, S., & Kassim, M. (2020). Recommender System: Rating

predictions of Steam Games Based on Genre and Topic Modelling. 2020 IEEE

International Conference on Automatic Control and Intelligent Systems

(I2CACIS). https://doi.org/10.1109/i2cacis49202.2020.9140194

Burke, R. (2002). User Modeling and User-Adapted Interaction, 12(4), 331–370.

https://doi.org/10.1023/a:1021240730564

Cheuque, G., Guzmán, J., & Parra, D. (2019). Recommender Systems for Online Video

Game Platforms: the Case of STEAM. Companion Proceedings of The 2019 World

Wide Web Conference. https://doi.org/10.1145/3308560.3316457

Fan, J., Pan, W., & Jiang, L. (2014). An improved collaborative filtering algorithm

combining content-based algorithm and user activity. 2014 International

Conference on Big Data and Smart Computing (BIGCOMP).

https://doi.org/10.1109/bigcomp.2014.6741413

Fenlon, W. (2019, January 14). Steam now has 90 million monthly users. pcgamer.

https://www.pcgamer.com/steam-now-has-90-million-monthly-users/.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering

to weave an information tapestry. Communications of the ACM, 35(12), 61–70.

https://doi.org/10.1145/138859.138867

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative Filtering for Implicit Feedback

Datasets. 2008 Eighth IEEE International Conference on Data Mining.

https://doi.org/10.1109/icdm.2008.22

Implicit Github Page. Fast Python Collaborative Filtering for Implicit Feedback

Datasets. Last Reached 03/August/2021. https://github.com/benfred/implicit

Jung, K.-Y., Park, D.-H., & Lee, J.-H. (2004). Hybrid Collaborative Filtering and

Content-Based Filtering for Improved Recommender System. Computational

Science - ICCS 2004, 295–302. https://doi.org/10.1007/978-3-540-24685-5_37

 34

Kang, W.-C., & McAuley, J. (2018). Self-Attentive Sequential Recommendation. 2018

IEEE International Conference on Data Mining (ICDM).

https://doi.org/10.1109/icdm.2018.00035

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for

Recommender Systems. Computer, 42(8), 30–37.

https://doi.org/10.1109/mc.2009.263

Krichene, W., & Rendle, S. (2020). On Sampled Metrics for Item Recommendation.

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. https://doi.org/10.1145/3394486.3403226

Pathak, A., Gupta, K., & McAuley, J. (2017). Generating and Personalizing Bundle

Recommendations on Steam. Proceedings of the 40th International ACM

SIGIR Conference on Research and Development in Information Retrieval.

https://doi.org/10.1145/3077136.3080724

Plunkett, B., Lin, B., Shi, S., & Painter, C. The Steam Engine: A Recommendation

System for Steam Users. Retrieved July 12, 2021, from

http://brandonlin.com/steam.pdf

Reddy, M. M., Kanmani, R. S., & Surendiran, D. B. (2020). Analysis of Movie

Recommendation Systems; with and without considering the low rated movies.

2020 International Conference on Emerging Trends in Information Technology

and Engineering (Ic-ETITE). https://doi.org/10.1109/ic-etite47903.2020.453

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian

personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618.

Saaidin, S., & Kasiran, Z. (2021). Playtime - based vs Price-based Rating in Video

Games Recommender System. 2021 IEEE 11th IEEE Symposium on Computer

Applications & Industrial Electronics (ISCAIE).

https://doi.org/10.1109/iscaie51753.2021.9431802

Steam Dataset. Recommender Systems and Personalization Datasets. Steam Video

Game and Bundle Data. Last Reached 20/June/2021.

https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

Steam Website. Steam. Last Reached 01/August/2021. https://store.steampowered.com

Victor. (2017, August 23). ALS Implicit Collaborative Filtering. Medium.

https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe.

 35

Viljanen, M., Vahlo, J., Koponen, A., & Pahikkala, T. (2020). Content Based Player and

Game Interaction Model for Game Recommendation in the Cold Start setting.

arXiv preprint arXiv:2009.08947.

Wan, M., & McAuley, J. (2018). Item recommendation on monotonic behavior chains.

Proceedings of the 12th ACM Conference on Recommender Systems.

https://doi.org/10.1145/3240323.3240369

Wu, L., He, X., Wang, X., Zhang, K., & Wang, M. (2021). A Survey on Neural

Recommendation: From Collaborative Filtering to Content and Context Enriched

Recommendation. arXiv preprint arXiv:2104.13030.

