
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

IISE Transactions

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

A Lot-Sizing Problem in Deliberated and Controlled
Co-Production Systems

Bahadır Pamuk, Semra Ağralı, Z. Caner Taşkın & Banu Kabakulak

To cite this article: Bahadır Pamuk, Semra Ağralı, Z. Caner Taşkın & Banu Kabakulak (2021): A
Lot-Sizing Problem in Deliberated and Controlled Co-Production Systems, IISE Transactions, DOI:
10.1080/24725854.2021.2022250

To link to this article: https://doi.org/10.1080/24725854.2021.2022250

Accepted author version posted online: 28
Dec 2021.

Submit your article to this journal

Article views: 12

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2021.2022250
https://doi.org/10.1080/24725854.2021.2022250
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2021.2022250
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2021.2022250
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.2022250&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.2022250&domain=pdf&date_stamp=2021-12-28

A Lot-Sizing Problem in Deliberated and Controlled Co-Production Systems

Bahadır Pamuka, Semra Ağralı*b, Z. Caner Taşkına, Banu Kabakulakc

aDepartment of Industrial Engineering, Boğaziçi University, İstanbul, Turkey

bDepartment of Industrial Engineering, MEF University, İstanbul, Turkey

cDepartment of Industrial Engineering, İstanbul Bilgi University, İstanbul, Turkey

*Corresponding author semra.agrali@gmail.com

Abstract
We consider an uncapacitated lot sizing problem in co-production systems, in which it is possible to
produce multiple items simultaneously in a single production run. Each product has a deterministic
demand to be satisfied on time. The decision is to choose which items to co-produce and the
amount of production throughout a predetermined planning horizon. We show that the lot sizing
problem with co-production is strongly NP-Hard. Then, we develop various mixed-integer linear
programming (MILP) formulation of the problem and show that LP relaxations of all MILPs are equal.
We develop a separation algorithm based on a set of valid inequalities, lower bounds based on a
dynamic lot-sizing relaxation of our problem and a constructive heuristic that is used to obtain an
initial solution for the solver, which form the basis of our proposed Branch & Cut algorithm for the
problem. We test our models and algorithms on different data sets and provide the results.

Keywords: Co-production; Lot-Sizing; MILP; Branch & Cut.

1 Introduction

Co-production is a process where several different products are produced

simultaneously in the same production run. Co-production either occurs because

of physical or chemical nature of the production system, or because the system

is designed to produce multiple products simultaneously in order to effectively

use scarce resources. Co-produced units may only differ in quality as in semi-

conductor production (Bitran and Gilbert, 1994; Bitran and Dasu, 1992) or may

be completely different products as in float glass production (Öner and

Bilgiç, 2008; Taşkın and Ünal, 2009). As a development strategy, concept of

circular economy aims to maintain rapid economic growth while considering

scarcity of raw materials (Yuan et al., 2006). There is a strong relation between

circular economy and co-production as circular economy aims to minimize the

Acc
ep

te
d

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.2022250&domain=pdf

waste (or use) of raw materials while producing goods or services (Brahimi

et al., 2017; Suzanne et al., 2020). In this sense co-production serves to achieve

this goal and it is very important in today’s manufacturing industry.

We can analyze co-production in different categories based on the nature of the

production: (i) deliberated or non-deliberated; (ii) controlled or uncontrolled

(Suzanne et al., 2020). If it is possible to control the parameters of the

production, such as the products that can be produced as co-products and their

quantities, then the system has controlled co-production. On the other hand, if it

is not possible to control the types or quantities of products when the production

run starts or it is prohibitively expensive to control the system, then the system

has uncontrolled co-production. Moreover, if it is possible to manufacture each

product either by itself or by means of co-production, and co-production is

desirable in terms of cost and production, then the system has deliberated co-

production. For example, in metal press shops often multiple products are

produced simultaneously from a single metal sheet, and hence the co-production

is deliberated and controlled. In contrast, semi-conductor and float glass

production are neither deliberated nor controlled (Bitran and

Gilbert, 1994; Taşkın and Ünal, 2009). In this study, we focus on lot-sizing

problems occurring in deliberated and controlled co-production systems.

As an example, we may consider a case that occurs in the plastics industry.

Figure 1 depicts a plastic mould that can simultaneously produce different

plastics products. As seen from the figure, the fixtures are changeable, and with

a new fixture, the set of co-produced products can be adjusted. Since it is

possible to produce different shapes of plastics by changing the fixtures and with

each fixture we know the quantities and types of products that are co-produced,

the system is controlled. Furthermore, since it is possible to use the mould to

either produce a single product type or to co-produce different products, the

system is deliberated.

Acc
ep

te
d

M
an

us
cr

ipt

From an applications point of view, our problem can be found at production

systems in which multiple products, often small parts, can be produced by fitting

multiple parts into a single die or machine slot. Although we focus on co-

production, one may encounter a similar problem in supply chain systems

(Stern, 2006): Consider a company that needs to buy a certain amount of

supplies (material A, B and C), and there exist suppliers (supplier 1 and 2) that

offer a set of deals for different combinations of materials. For example supplier 1

provides (500 kg of material A) + (500 units of material B) for $X while supplier 2

offers (1000 kg of material A) + (100 units of material B) + (100 kg of material C)

for $Y. This results in deciding on the suppliers to work with and the amount of

each bundle to buy from these selected suppliers, which is similar to a production

planning problem in a co-production system.

Lot sizing problems are well studied in the literature. Since Wagner and

Whitin (1958) published their seminal paper, substantial research has been done

in the area. Hence, various lot sizing problems have been studied. For an

extensive review, we refer the reader to Brahimi et al. (2006) and its updated

version (Brahimi et al., 2017). Since the focus of our study is lot-sizing in co-

production systems, we discuss the corresponding literature rather than general

lot-sizing literature.

A type of lot-sizing problem appears as coordinated lot sizing problem, where the

products are produced as families. In coordinated lot sizing problems, a family of

products shares a fixed setup cost (Robinson et al., 2009). In addition to the fixed

cost, a minor setup cost also exists for individual products inside a product family

if they are decided to be produced. Variable production cost is similar to that of

dynamic lot sizing problems. Despite having a shared fixed cost for multiple

products as families, it does not capture the notion of co-production since every

product inside the same family is not necessarily produced simultaneously. In co-

production it is usually not possible to group products as families and co-

produced items are produced simultaneously without having minor set up costs.

Acc
ep

te
d

M
an

us
cr

ipt

Bitran and Dasu (1992) and Bitran and Gilbert (1994) focus on co-production with

random yields in semiconductor production. In their context, it is possible to

substitute a lower tier product with a higher tier one. This is called serially nested

co-production. The problem is divided into two sub-problems as “morning

problem,” in which production decisions are made, and “afternoon problem,” in

which products are allocated to customers after yields are known. In Bitran and

Dasu (1992), the objective is to maximize expected profit whereas in Bitran and

Gilbert (1994) it is the minimization of expected cost comprised of production,

inventory holding, and shortage costs.

Öner and Bilgiç (2008) study uncontrolled co-production in float glass

manufacturing with constant holding cost rate and fixed sequence independent

setup costs where the substitution of products is not allowed. They develop a

continuous time economic lot scheduling model to find a common cycle

schedule. Taşkın and Ünal (2009) also study co-production in float glass

manufacturing focusing on tactical level planning. They develop a mathematical

model that is highly specialized for that purpose. Vidal-Carreras et al. (2012)

study deliberated and controlled co-production with non-substitutable demand.

Similar to Öner and Bilgiç (2008), their model is a continuous economic lot

scheduling problem with the aim of finding a common cycle time. Costs are

constant, fixed and sequence independent, and only two products are

considered. Rafiei et al. (2015) consider co-production with sequence dependent

setup times and demand uncertainty. There are production families, and recipes

in the same production family require no changeover cost. They provide a case

study on demand driven wood re-manufacturing mills, and propose a three step

methodology to solve wood re-manufacturing industrial problem.

To the best of our knowledge there is a single lot-sizing paper, Ağralı (2012), that

considers a setting where co-production exists. In that study co-production is

controlled but not deliberated, i.e., there is only a single set of products to be co-

produced as a single co-production unit. The problem is to decide on when and

Acc
ep

te
d

M
an

us
cr

ipt

how much to produce that specific set of products. It is shown that well-known

zero-inventory policy holds for at least one of the products, and a dynamic

programming (DP) recursion is given that runs in polynomial time. Although

Ağralı (2012)’s paper is the closest work to our paper, there are some major

differences between the two studies. In particular, we consider deliberated co-

production where the decision maker has the option of co-produce or not to co-

produce. Moreover, there is no single set of products, and the products may

appear in different co-production units to be produced as co-products. In our

case, zero inventory property does not hold, and hence, none of the solution

methods proposed in the literature is directly applicable to our problem.

Our contribution to the lot sizing literature can be summarized as follows:

i) We formally define a deliberated co-production problem for the first time in

the dynamic deterministic lot sizing literature.

ii) We investigate the computational complexity of the problem, and prove

that it is NP-Hard in the strong sense.

iii) We develop alternative mixed-integer programming formulations for the

problem and investigate their strengths in terms of the tightness of their

linear programming relaxations.

iv) We propose a valid inequality, an efficient separation algorithm and a

series of lower bounds, which we combine in a Branch & Cut algorithm.

We also design a heuristic method to find high-quality feasible solutions to

the problem.

Our experiments show that our proposed methods are individually very effective,

and they significantly increase the number of best solutions obtained when

CPLEX cuts are on.

The remainder of the paper is as follows: Section 2 gives the formal problem

definition and the proposed mathematical model with NP-Hardness proof.

Section 3 provides alternative mixed-integer linear programs that we developed

Acc
ep

te
d

M
an

us
cr

ipt

for our problem and the equivalence of all formulations in terms of LP relaxations.

We provide a separation algorithm based on valid inequalities that we propose, a

heuristic method that is used as an initial solution for the solver and improvement

procedures that are based on a DLSP relaxation to be used in our Branch & Cut

algorithm in Section 4. We give our computational experiments in Section 5, and

finally conclude the paper with a brief summary and future work in Section 6.

2 Problem Description and Mathematical Model

We consider a dynamic uncapacitated lot-sizing problem (DLSP) in a production

system where co-production exists. There is a set of products, J, where products

can be co-produced in different combinations. We call a possible combination of

products that can be co-produced together a “co-production unit (CU),” and

denote these CUs as set I. We model time as a finite sequence of discrete time

points, indexed as t T , as in DLSP.

There are finitely many CUs indexed by i I , and each produces a finite set of

predefined products, J(i). When one CU of type i is to be produced, all products

included in set J(i) are co-produced with certain production ratios,
j

i


, i.e., when

one CU i is produced, then
j

i


 units of product j are produced. Producing a CU

requires a deterministic time-dependent fixed cost,
i

t
f

, and a variable cost,
i

t
c

.

Each product j J has dynamic deterministic demand,
j

t
d

, and incurs a holding

cost,
j

t
h

, for each item carried in inventory. Backlogging is not allowed. The aim

is to find a production plan with minimum possible cost that satisfies all demand

on time. We provide a list of symbols that we use in modeling in Table 1.

There may be several ways to produce each product, i.e., a product may appear

in multiple CUs. It is also possible for a CU to include only one product, which

allows us to model deliberated co-production. Figure 2 depicts a production

system that produces products A, B and C from a metal sheet, where there are

six possible CUs defined. CU1 produces A and C with 1 1
2

A C
  

. CU2, CU4

Acc
ep

te
d

M
an

us
cr

ipt

and CU6 produce single products where 2 4
4 , 2

C B
  

, and 6
4

A
 

. CU3

produces C and B with 3
1

B
 

 and 3
2

C
 

. Finally, CU5 produces B and A with

5
2

A
 

 and 5
1

B
 

.

Note that, by definition of
j

i


, CUs include physical production restrictions if there

are any. For example, CUs given in Figure 2 include a restriction of not producing

A, B and C together. We refer to this type of system as Deliberated and

Controlled Co-Production (DCCP).

Let decision variable
i

t
x

 denote production amount of CU i in period t, and let

binary variable
i

t
y

 take value 1 if and only if production of CU i takes place in

period t. Moreover, let
j

t
s

 variable denote the inventory of product j at the end of

period t. Then, a mixed-integer linear programming model (MILP) for DCCP can

be written as follows:

: M in im iz e (())i i i i j j

t t t t t t

t T i I j J

f y c x h s

  

   I P 1 (1)

1
S u b je c t to , , ;

j j i j j

t i t t t

i I

s x s d t T j J




      (2)

()
m ax , , ;{ }i itT

t j J i tj

i

d
x y t T i I




    (3)

0 , , ;
i

t
x t T i I    (4)

0 , , ;
j

t
s t T j J    (5)

{0 ,1} , , .
i

t
y t T i I    (6)

Objective function (1) minimizes the total fixed and variable costs of production

and holding cost of products over the planning horizon. Constraints (2) are the

inventory flow balance constraints. Constraints (3) enforce that if a production

Acc
ep

te
d

M
an

us
cr

ipt

occurs, i.e.,
0

i

t
x 

, then binary set up variables take the value of 1, i.e.,
1

i

t
y 

.

Constraints (4)–(6) are non-negativity and binary restrictions, respectively.

We first show that the optimization problem given as IP1 is strongly NP-Hard. In

order to prove this, we first define the decision version of our optimization

problem, D-DCCP.

D-DCCP. Given a set of CUs I, each with fixed cost,
i

t
f

, and variable cost,
i

t
c

; a

set of products, J, each with demand,
j

t
d

, and holding cost,
j

t
h

; production ratios,
j

i


; and a positive integer, K, does there exist a feasible production plan (such

that all demands are satisfied on time), having total cost no more than K?

Proposition 1. D-DCCP is strongly NP-Complete.

Proof. Given an instance of sets I, J, T and data
, , , ,

j i i j j

i t t t t
f c d h

, a positive

number K, and a “guess”
i

t
x

; computing
1

i

t
y 

 if
0

i

t
x 

 and
0

i

t
y 

 otherwise;

()
j i j j

t k i k

k t i I

s x d

 

  
 and computing if

()()i i i i j j

t t t t t t

t T i I j J

f y c x h s K

  

    
 can be

done in polynomial time. Hence, DCCP is in NP.

To show that D-DCCP is NP-complete, consider the following strongly NP-

complete problem (Garey and Johnson, 1979).

MINIMUM COVER PROBLEM (MCP). Given a collection C of subsets of a finite set S,

positive integer | |K C , does C contain a cover for S of size K or less, i.e., a

subset C C  with | |C K  such that every element of S belongs to at least one

member of C  ?

An arbitrary instance of MCP can be reduced to a particular instance of D-DCCP as

follows: Let S in MCP correspond to set J in D-DCCP instance, and every subset in

set C be indexed by i such that
{ }

i
C C

. Let

1 1 1
| | 1, 1, 0 , 1, a n d

i i j
T f c d j J i I       

. Now for each i I and j J define

Acc
ep

te
d

M
an

us
cr

ipt

subsets i
J J

 for each i I as
{ | : 1}

j

i i
J j j  

, and define
j

i


 to be equal to 1

if i
j C

, and 0, otherwise. Observe that this transformation can easily be

performed in polynomial time and the size of the transformed data is polynomially

bounded.

In order to complete the proof, we need to show that an arbitrary instance of MCP

is a yes-instance if and only if the transformed D-DCCP instance is a yes-instance.

Suppose that MCP instance is a yes-instance. Then, there exists a subset C C 

such that | |C K  and
C S 

. Since selecting C C  in MCP corresponds to

selecting I I  in D-DCCP,
| | | |

i

t

i I

y I C K



    
.

Selecting
{0 ,1}

j

i
 

 and corresponding subsets Ji as described previously will

ensure
i

i I

J J

 



 since
C S 

,

which means each product j J will be produced at least once by selecting

I I  for production. Since 1
1

j
d 

 for all j J , production plan feasibility is

ensured by
i

i I

J J

 



. Thus, the D-DCCP instance is a yes-instance.

Now, suppose that MCP instance is a no-instance. Then, it is not possible to select

I I  such that | |I K  and
i

i I

J J

 



. The only way to satisfy production

feasibility is to select a subset of I as I  such that all products j J is included

in these subsets at least once, i.e.,
i

i I

J J

 



, where | |I K  . However, this is not

possible by the assumption that MCP instance is a no-instance. Hence, the D-DCCP

instance is a no-instance.

3 Alternative MIP Formulations and Their Properties

Acc
ep

te
d

M
an

us
cr

ipt

In this section, we develop three alternative formulations to IP1 and show the

equivalence of these in terms of their LP relaxations.

3.1 Alternative Formulations

We can reduce the number of variables of IP1 by representing inventory

variables,
j

t
s

, in terms of production variables,
i

t
x

, and demand,
j

t
d

, i.e.,

1 ()

()
t

j i j j

t k i k

k i I j

s x d

 

  
. We call the resulting formulation as IP2.

: m in im iz e ()i i i i

t t t t

t T i I

f y a x H

 

  IP 2 (7)

1

1 ()

su b je c t to , ,

t

j i j

i k t

k i I j

x d t T j J

 

     (8)

()
m ax , ,{ }i itT

t j J i tj

i

d
x y t T i I




    (9)

0 , ,
i

t
x t T i I    (10)

{0 ,1} , , .
i

t
y t T i I    (11)

where ()

i i j j

t t i tT

j J i

a c h



  
 and

1

j j

t t

t T j J

H h d

 

  
.

We note that IP2 formulation may improve solution times since it has fewer

number of variables compared to IP1 formulation. However, the constraint matrix

is denser than IP1, which may create computational difficulties.

The simple plant location formulation of DLSP is given by Wagelmans,

Van Hoesel, and Kolen (Wagelmans et al.). They show that this formulation gives

the convex hull of DLSP based on the results in Krarup and Bilde (1977). We

develop another MIP formulation based on the simple plant location formulation

of DLSP, in which production variables are disaggregated in terms of periods

Acc
ep

te
d

M
an

us
cr

ipt

where produced items are consumed by demand. Let
j

t t 


 continuous variables

represent the production amount of product j J , that is produced in period

t T to be consumed in period ,t T t t    . However, unlike the simple plant

location formulation, eliminating
i

t
x

 variables does not appear to be possible

since production costs depend on the amount of CUs produced, not products.

Therefore, constraints (14) are needed to relate
j

t t 


 variables to
i

t
x

 variables,

and the demand satisfaction constraint is revised as in Equation (13). Other

constraints and the objective function remain the same as those of IP2:

: m in im iz e ()i i i i

t t t t

t T i I

f y a x H

 

  IP 3 (12)

s u b je c t to , ,
j j

t t t

t t

d t T j J
 

 

      (13)

()

, ,
j j i

tt i t

t t i I j

x t T j J


  

      (14)

()
m ax , ,{ }i itT

t j J i tj

i

d
x y t T i I




    (15)

0 , ,
i

t
x t T i I    (16)

0 , , ,
j

t t
t t T j J


      (17)

{0 ,1} , , .
i

t
y t T i I    (18)

We propose another formulation that is based on the simple plant location

formulation of DLSP, called IP4. In IP4 formulation, production variables are

disaggregated not only in terms of periods in which produced items are

consumed by demand, but also in terms of the CUs that they are produced by.
j

t t 


 variables of IP3 are replaced by
i j

t t 


, which gives the amount of product j

produced using CU i in period t to be consumed in period t  , and necessary

changes are applied to constraints (20)–(22):

Acc
ep

te
d

M
an

us
cr

ipt

: m in im iz e ()i i i i

t t t t

t T i I

f y a x H

 

  IP 4 (19)

()

su b jec t to , ,
ij j

tt t

i I j t t

d t T j J
 

  

       (20)

, , , ()
i j j i

t t i t

t t

x i I t T j J i


 

      (21)

()
m ax , ,{ }i itT

t j J i tj

i

d
x y t T i I




    (22)

0 , ,
i

t
x t T i I    (23)

0 , , , ,
i j

t t
t t T j J i I


       (24)

{0 ,1} , , .
i

t
y t T i I    (25)

Note that IP4 formulation has higher number of constraints and variables than

IP3 formulation due to Equation (21), and the disaggregation of
j

t t 


 into
i j

t t 


,

respectively.

3.2 Equivalence of Alternative Model Formulations

In order to show the equivalence of two linear mathematical models one can

show any feasible solution of one model corresponds to some, also feasible,

solution of the other model having the same objective value. This way one can

conclude that feasible region of the first model is included in the feasible region

of the second model. If the reverse also holds, then the models are said to be

equivalent (Taşkın and Ekim, 2012). In this section, the equivalence will be

shown explicitly between the linear relaxations of IP1 and IP2, IP2 and IP3, and

IP3 and IP4. For convenience we name the linear relaxation of formulations as

LP1, LP2, LP3 and LP4.

The only difference between IP1 and IP2’s constraints is the structure of demand

satisfaction constraints, i.e. Constraints (2) and (8) for IP1 and IP2, respectively.

Acc
ep

te
d

M
an

us
cr

ipt

Since initial inventories are zero, 0
0

j
s 

, and we represent the inventory variables

of IP1 in terms of production variables and demand in IP2, the equivalance of

LP1 and LP2 is straightforward.

Let us show the equivalence between LP2 and LP3. Consider constraints (9) and

(15). For a given feasible solution (x, y) of any of the models, the other model is

also feasible with respect to (9) and (15). Let
ˆˆ ˆ(, ,)

i i j

t t tt
x y




 be a feasible solution of

LP3 formulation. Then, constraints (13) should hold for
ˆ j

tt 


. Constraints (26) are

summed up versions of constraints (13) from 1 to t. We obtain Equation (27)

when indices of two summations are swapped:

1 1 1

ˆ , , ;

t z t

j j

k z z

z k z

d t T j J

  

       (26)

1

1

ˆ , , .

t t

j j

k z t

k z k

d t T j J

 

      (27)

Constraints (14) should also hold for any feasible solution. We obtain Equation

(28) when Constraints (14) are summed up from 1 to t. The combination of

Equations (27) and (28) gives Equation (29). Using Equation (29) we can

conclude that x̂ satisfies constraints (8); and hence,
ˆ ˆ(,)

i i

t t
x y

 is feasible with

respect to LP2.

1 1 ()

ˆ ˆ , , ;

t T t

j j i

k z i k

k z k k i I j

x t T j J

   

        (28)

1

1 1 1 ()

ˆ ˆ ˆ , , .

t t t T t

j j j j i

t k z k z i k

k z k k z k k i I j

d x t T j J

     

             (29)

The objective values of LP2 and LP3 are the same since both formulations share

the same objective function.

Acc
ep

te
d

M
an

us
cr

ipt

Now, let
ˆ ˆ(,)

i i

t t
x y

 be a solution of LP2 formulation. Unfortunately, reverse mapping

of
i

t
x

 variables of LP2 formulation into
j

t t 


 variables of LP3 formulation is not

unique. This is due to the fact that some production is done not to satisfy demand

but occurs mandatorily due to co-production nature of the production

environment. Since
j

t t 


 variables only represent consumed production and there

may be excess production, it is possible to shift production-consumption

assignment in terms of
j

t t 


 variables around. Therefore, using a simple first-in-

first-out (FIFO) rule, it is possible to map any
ˆ ˆ(,)

i i

t t
x y

 solution of LP2 formulation

to a
ˆˆ ˆ(, ,)

i i j

t t tt
x y




 solution of LP3 formulation. The proposed algorithm is shown in

Figure 3.

Equivalence between LP3 and LP4 follows from the relationship between
j

t t 


and
i j

t t 


 variables.
i j

t t 


 variables are CU disaggregated version of
j

t t 


 variables.

Let
ˆˆ ˆ(, ,)

i i ij

t t tt
x y




 be a solution to LP4 formulation. Then by setting

ˆ ˆˆ ˆ ˆ, (, ,)
j i j i i j

t t t t t t t t

i I

x y
  



   
 will be a solution to LP3 formulation. Let

(, ,)
i i j

t t t t
x y




 be a

solution to LP3 formulation. We need to map
i j

t t 


 arbitrarily from
j

t t 


 variables,

and this mapping is not unique. This mapping can be done with an algorithm

similar to the one given in Figure 3.

We have shown that the feasible regions of LP1 and LP2 formulations, LP2 and

LP3 formulations, and LP3 and LP4 formulations are equal. Therefore, the

feasible regions of all proposed models’ linear relaxations are equal. We note

that this result is in contrast to the DLSP, where the linear programming

relaxation of simple plant location formulation is tighter than the basic

formulation.

4 Algorithmic Improvements

Our preliminary computational tests reveal that none of the IP formulations can

solve medium-size instances to optimality within a reasonable amount of time.

Acc
ep

te
d

M
an

us
cr

ipt

Therefore, we propose some improvements over the formulations in order to

decrease the solution times. In this section, we discuss a separation algorithm

that we propose for IP1, and then introduce similar algorithms for alternative

formulations. We then provide a constructive heuristic that we propose to find an

initial feasible solution to our problem. Finally, we propose an increasingly tighter

set of lower bounds for the problem.

4.1 Valid Inequalities and Separation Algorithms

Valid inequalities, in general, improve the solution time required to solve integer

programming formulations by narrowing the solution space. Although valid

inequalities are not necessary to define the problem, they are satisfied by any

feasible solution. Therefore, they could be violated by some fractional solutions

of a branch and bound (B&B) tree but they never eliminate any integer feasible

solution. However, in some cases there exists exponential number of valid

inequalities with respect to the problem size. This makes it inefficient to include

all valid inequalities in the formulation. Hence, it is computationally more efficient

to add valid inequalities that are violated by the fractional solution of the node

relaxation during the B&B search in order to improve the lower bound.

We propose valid inequalities, which are inspired by (l, S) inequalities given by

Pochet and Wolsey (2006), in Proposition 2.

Proposition 2. Let
1L P

X represent the feasible region of LP1. Also, let

, {1, .. . , } ,l T L l S L   ,and j J then the (l, S, j) inequality

() ()

i j j i j

q i q l q l

i I j q S q S i I j

x d y s

   

 
 

 
 

    (30)

is valid for
1IP

X .

Acc
ep

te
d

M
an

us
cr

ipt

Proof. Consider a point
1

(,)
L P

s y X . If ()

0
i

q

q S i I j

y

 

 
, then as ()

0 , 0
i j

q l

i I j q S

x s

 

  
,

the equality is satisfied. Otherwise let ()

{ : 0}
i

q

i I j

t m in q S y



  
. Then consider

the following:

() () ()

l

i j i j j j j i j

q i q i t l l q l q l

i I j q S i I j q t q S i I j

x x d s d y s 

     

 
    

 
 

      (31)

First part of inequality (31) follows from non-negativity of
i j

q i
x 

 terms, the

definition of subset S and the time index t. The second part follows from flow

conservation equations. Finally, the last part holds using ()

1
i

t

i I j

y




 and the non-

negativity of
i

t
y

.

Remark. Inequalities of the form (30), do not give complete description of convex

hull of IP1.

Moreover, the inventory variables in Equation (30) can be replaced by Equation

(32), where , {1, .. . , } ,l T L l S L   .

1

()

i j j j

q i l l

i I j q L

x d s

 

   (32)

By using Equation (32) and Inequality (30), we obtain Inequality (33).

1

() ()

i j j i j

q i q l q l

i I j q L S q S i I j

x d y d

   

 
 

 
 

    (33)

Note that valid inequalities of the form (33) are exponentially many. However,

they can be separated by inspection using the algorithm given in Figure 4. A

straightforward application of the algorithm leads to O(n2) complexity whereas

O(nlog(n)) is doable by adapting the improvement proposed in Pochet and

Wolsey (2006). Assume a fractional solution
* *

(,)
i i

q q
x y

 to apply separation

Acc
ep

te
d

M
an

us
cr

ipt

algorithm given in Figure 4. Note that this separation is exact, i.e., the algorithm

finds all violated valid inequalities for a given solution.

Valid inequalities described in this section can be applied to IP3 and IP4

formulations using a similar logic as follows:

1

()

,
j j i j

q t q l q l

q L S t q q S i I j

d y d


    

 
  

 
 

    (34)

1

() ()

.
i j j i j

q t q l q l

q L S t q i I j q S i I j

d y d


     

 
  

 
 

     (35)

4.2 Pattern Fitting Heuristics

In this section we propose a heuristic to find a feasible solution of the problem,

which we pass as an initial solution to the solver. Since the products can be

produced by using different CUs, for a given CU, some of the demand of

products that are produced within this CU may already be covered by the

production of other CUs in previous time periods. For a given period t, we define

the product coverage of a CU as the number of products whose demand for the

same period is not covered yet by some previous production. Our heuristic works

as follows: starting from the first period, the algorithm tries to cover all demand.

The CU having the lowest cost to product coverage ratio is selected, and that CU

is produced at an amount that covers all demand of products that CU is

producing. Those products are marked as covered, and the algorithm selects the

next CU with minimum cost to product coverage ratio until all products are

covered for first period. Then, the excess production is reduced from demand for

the next period and the algorithm continues for period 2, and so on to the last

period. This pseudocode of our algorithm is given in Figure 5.

4.3 Lower Bound Calculation

Acc
ep

te
d

M
an

us
cr

ipt

In this section we derive a series of increasingly tighter lower bounds based on

relaxations of our problem, and discuss how these can be incorporated within our

Branch & Cut algorithm.

4.3.1 Dynamic Lot Sizing Relaxation

We first observe that the demand of each product must be satisfied, and we

focus on calculating the cost of satisfying each product’s demand independent of

other products. Let us consider a DLSP relaxation of the problem for product j.

Since demand (
j

t
d

) and holding cost (
j

t
h

) are given per product in our problem,

these parameters can be used directly in the DLSP relaxation of product j.

However, in our problem the fixed and variable costs of production (
i

t
f

 and
i

t
c

,

respectively) are specified per CU. Therefore, we need to calculate valid lower

bounds for fixed and variable costs of product j.

Let us denote the fixed cost of product j in our DLSP relaxation by
()j

t
f

. We

define:

()

()
m in .

j i

t i I j t
f f


 (36)

Similarly, let
()j

t
c

 denote the variable cost of production of product j in our DLSP

relaxation:

()

()
m in

i

j t

t i I j j

i

c
c




 (37)

After this transformation, a lower bound on the cost of satisfying demand of

product j can be calculated by solving DLSP for product j by using any DP

algorithm for DLSP. Let LB
(1)

j denote the lower bound obtained for product j.

Then, a valid lower bound for our problem,
(1)

L B , can be calculated as:

(1) (1)
L B m ax L B

j J j
 (38)

4.3.2 Co-Production Lot Sizing (CPLS) Relaxation

Acc
ep

te
d

M
an

us
cr

ipt

We note that the calculation of LB
(1)

j can be interpreted as defining a dummy CU

for each product j whose fixed and variable costs are the minimum fixed and

variable costs of the underlying CUs that can produce j. Since we calculate
()j

t
f

and
()j

t
c

 independently, the cost structure of the dummy CU may not correspond

to an existing CU, hence underestimating the total cost. In this section, we

consider an extension of DLSP in which a single product can be produced via a

number of CUs having different fixed and variable costs (CPLS). Formally, we

define CPLS as follows:

CPLS. Given a set of CUs I, each with fixed cost,
i

t
f

, and variable cost,
i

t
c

; a

single product j, with demand,
j

t
d

, and holding cost,
j

t
h

; production ratios,
j

i


;

find a feasible production plan (such that all demands are satisfied on time) that

has minimum total cost.

We observe that CPLS can be solved by a dynamic programming approach. In

particular, let ,

j

l t
C

 be the total cost of satisfying the demand for product j from

period l to t from the production occured in period l.

1

, () 1 ,
m in { }

t

j i i j j j

l t i I j l l lt k k t

k l

C f c d h d



 



    (39)

Furthermore, let
j

t
F

 be the minimum total cost when considering periods from 1

to t. Then, the following recursive function gives the current total minimum cost

for product j.

1, , 1 ,
m in { }j j j

t k t k k t
F F C

  
  (40)

We can find a lower bound for the problem by calculating LB
(2)

j for each product

by solving the recursive equation (40) in a DP-based algorithm and calculating

the maximum among all products.

Acc
ep

te
d

M
an

us
cr

ipt

(2) (2)
L B m ax L B

j J j
 (41)

4.3.3 Incorporating CPLS Lower Bounds in Branch & Cut

We observe that LB
(1)

 and LB
(2)

 can be used to calculate initial lower bounds on

the problem. In this section, we discuss how we can incorporate an extension of

LB
(2)

 within our Branch & Cut (B&C) algorithm. Let us add a binary variable wi for

each i I into our model, which take on value 1 if and only if CU i is ever used

for production in any period. We add constraints (42)–(43) to IP1.

,
t

i i
y w t T i I    (42)

.
t

i i

t T

w y i I



   (43)

At any node of B&C tree, we check the current upper bounds of wi variables. If

the upper bound of wi has been set to zero due to branching, then CU i cannot

be used in the current B&C node or any of its children. Therefore, we can omit

this CU while calculating LB
(2)

, thus increasing the lower bound. Furthermore,

removal of a CU from the problem may lead to a disconnected set of products

that are produced by disjoint CUs. We use this observation to further tighten the

lower bound.

In particular, we construct a bipartite graph at each B&C node. The set of CUs

whose w-variables have nonzero upper bound constitutes one part of the graph

and products constitute the other part. We add an edge (i, j) if
0

j

i
 

. We then

find connected components of this bipartite graph. We then calculate LB
(2)

 for

each connected component, and add the lower bound obtained by each

connected component to calculate a lower bound for the current B&C node. We

add a local user cut that enforces the objective function value to be greater than

or equal to the calculated lower bound. This local cut may increase the linear

programming relaxation value at the current B&C node, and may be used by the

solver to generate further cuts.

Acc
ep

te
d

M
an

us
cr

ipt

We note that the lower bound calculated by this approach gets tighter as more wi

variables’ upper bounds are set to zero during branching. Therefore, we use

branching priorities to force the solver to branch on wi variables to obtain better

lower bounds earlier in the B&C algorithm.

5 Computational Analysis

In this section we first give the data generation process for the test instances that

we use. Then, we compare the efficacy of different MILP models using a

commercial solver. Finally, we test effectiveness of the algorithmic improvements

that we propose in Section 4.

We use ten different data sets that have different parameter settings as shown in

Table 4. For each data set given in Table 4, we generate 10 random instances,

resulting in 100 test instances in total. We set the time limit to 60 minutes per

instance for all tests. We implement the models and algorithms in C++

programming language and use IBM CPLEX 12.9 in 64 bit mode for MILP

solutions. Benchmark tests are performed on an Intel Core i7-3820 3.6 GHz

machine with 32 GB RAM and 10 MB cache, running on Windows 10 operating

system.

5.1 Data Generation Process

There is no available data library that we can directly use for the lot sizing

problems in deliberated co-production literature. Therefore, we generate random

data sets for experimentation. We use the data generation process used by

Graves (1982) to generate a production planning problem where applicable. The

procedure described in Graves (1982) has 20 products across three product

families as shown in Table 2. Each product has a lower (
j

t
d

) and an upper (
j

t
d

)

bound on demand for each period to be determined using uniform distribution.

When more than 20 products are present in an instance, mod operation is used

to determine the family of a product. For example, product 21 belongs to the first

family whereas product 26 belongs to the second product family.

Acc
ep

te
d

M
an

us
cr

ipt

We use holding costs (
j

t
h

) and bounds on fixed costs of products (
j

fc
 and

j

fc)

as given by Graves (1982). The variable costs do not directly match with the

ones given in Graves (1982), so we take variable costs of products, vcj as 10, 15,

and 20 for product families 1, 2, and 3, respectively. All these settings are

provided in Table 3.

We create co-production units randomly while ensuring that each product is a

part of at least one CU to ensure feasibility. A parameter named density

(represented by δ) is used to determine the number of products inside each CU.

Each CU can produce at least one and at most δ many products.

The fixed cost of a CU,
i

t
f

, is determined by taking %75 of the sum of the fixed

costs of products that CU includes, i.e., ()

0 .7 5
i j

t

j J i

f f c



 
, where fcj is randomly

generated in the interval
[,]

jj

fc fc
. Similarly, the variable cost of a CU,

i

t
c

, is

taken as %90 of the sum of the variable costs of its products, i.e., ()

0 .9
i j

t

j J i

c vc



 
.

We create data sets with different sizes in terms of the time period, the number of

products, the number of CUs and the density (δ) of CUs. The properties of these

problem sets are summarized in Table 4.

5.2 Comparison of Alternative Model Formulations

We first implement MILP formulations directly without our proposed

improvements. We solve all instances using CPLEX that uses 4 threads and has

an MIPGap of 0. We give our computational results in Table 5. For each problem

set and formulation we provide the number of test instances, out of 10, that give

the best solution across different formulations and the average optimality gap at

the end of time limit under the columns named ‘# of Best Sol.’ and ‘% Gap’

columns, respectively. For example, for PS 6, IP1 gives best solution for 9 and

IP3 gives best solution for 1 of the 10 test instances. For some problem sets, the

summation of best solutions across different formulations exceeds the total

Acc
ep

te
d

M
an

us
cr

ipt

number of test instances as multiple formulations give equal solutions, which are

also best solution, as in PS 1 and PS 2. We provide the total number of best

solutions (T) and the average optimality gap (A) over all problem sets in the last

row of Table 5.

As the number of time periods, the number of products and CUs increase, it

becomes harder to solve the instances. As a result, the average gap increases

as the problem sizes increase. Moreover, as the density of CUs increase, the

average gap also increases except from PS 1 to PS 2 for which the average gap

decreases for all formulations. Since the problem size is small in these two sets,

we conclude that density does not significantly affect solution performance for

small instances.

In terms of number of best solutions, IP1 gives the highest number of instances

for five of the problem sets, IP2 gives the highest number of best solutions for

three sets, IP4 gives the highest number for one set and for the remaining one all

formulations are equal in terms of number of best solutions. When we analyze

the average gap across different formulations, IP1 gives the best average gap for

8 out of 10 problem sets. Only for PS2, IP3 gives the best gap, and for PS1 both

IP1 and IP3 give the best gap.

IP4 formulation performs the worst in terms of average gap values for medium

and large problem sets (PS4 to PS10). Notice that IP4 formulation has the

highest number of constraints for any given problem instance due to the

constraints of the form (21). As density parameter increases from 3 to 4, only the

number of constraints for IP4 increases due to constraint (21), which in turn

significantly increases the problem size for IP4 formulation resulting in the worst

performance.

We can conclude that IP1 dominates the other formulations in terms of both the

average gap and the number of best solutions. Therefore, we continue our

computational experiments by using IP1 as the MILP formulation.

Acc
ep

te
d

M
an

us
cr

ipt

5.3 Effectiveness of Proposed Algorithmic Improvements

In this section, we test the effect of adding valid inequalities by using the

separation algorithm given in Section 4.1 to IP1 formulation. These experiments

are based on the LP relaxation of IP1 formulation. We repeatedly solve LP

relaxation of a model and add violated valid inequalities as needed. The

algorithm for separating valid inequalities from a given fractional solution is given

in Figure 4. Implementing this algorithm directly caused some numerical

problems. For example, if a valid inequality that is violated by only a small

amount is added to the formulation, CPLEX may not register it as a violated

constraint due to numerical tolerances of CPLEX. This results in an infinite loop

in some problem instances. Therefore, we restrict ourself to add valid inequalities

that are violated by a specified value, called epsilon, to register as violated valid

inequalities. Upon preliminary experimentation it is observed that the value of

epsilon does not matter as long as it is not close to zero. Hence the value of

epsilon is set to 20.

Another difficulty that we experienced while adding valid inequalities is that there

is no standard mechanism to stop generating valid inequalities when these

inequalities no longer improve current lower bound. In order to remedy this

problem, we stop searching for valid inequalities when the percentage increase

in the lower bound as a result of adding valid inequalities is less than 0.2%. We

set the root algorithm parameter of CPLEX to dual simplex for this experiment.

We provide a summary of results in Table 6. Columns of Table 6 from left to right

gives the average increase in the lower bound compared to LP relaxation (% Inc.

in LB), the average gap between the LP relaxation solution and the best found

feasible solution (% Gap–BS), and the average number of added valid

inequalities (# of VI). As we see in Table 6, the valid inequalities and the

separation algorithm proposed in Section 4.1 significantly improve the linear

programming relaxation. In this experiment we do not see the effect of the size of

the problem in terms of average increase in LB. On the other hand, as δ

Acc
ep

te
d

M
an

us
cr

ipt

parameter increases, which makes the CUs denser, the average increase in LB

becomes higher. The average percentage gap of the LP relaxation solution with

valid inequalities and the best known solution is promising as it might be as low

as 4.95% with an average of 6.70%.

We also test IP1 formulation using three different settings and compare the

results with the original MILP implementation. In the first setting we implement

IP1 formulation without any improvements. In the second setting, separation

algorithm is implemented for IP1 using callback structure of CPLEX. In the third

setting, we apply the pattern fitting heuristic to generate an initial solution and

implement separation algorithm. Finally, in the last setting we also implement

CPLS procedure to find lower bounds at the fractional nodes. In these set of

problems, we first turn off CPLEX cuts in order to see the net effect of our

separation algorithm similar to the approaches given in Küçükyavuz and

Pochet (2009) and Atamtürk and Küçükyavuz (2005). We provide the results in

Table 7. Then, we turn on CPLEX cuts and run all experiments using CPLEX’s

default settings and provide the results in Table 8. For this experiment we set the

epsilon value to 300 and 400 for δ values equal to 3 and 4, respectively.

In Tables 7 and 8, column blocks ‘IP’, ‘Branch & Cut’, ‘Branch & Cut + PF’, and ‘

Branch & Cut + PF + CPLS’ give the results of MILP implementation, separation

algorithm implementation, heuristics solution to be used as an initial solution, and

finally all algorithms and heuristic implementations discussed in Section 4,

respectively. For each problem set, ‘% Gap’, ‘Nnodes’, ‘# Best Sol.’ and ‘Ncuts’

columns provide the average optimality gap, the average number of B&B nodes

considered, the number of best solutions found per problem set and the average

number of valid inequalities generated, respectively. At the end of each column,

we provide some aggregate results. For % Gap, Nnodes and Ncuts, we provide

the average results over ten instances in each problem sets, and we give the

total number for the # Best Sol. column.

Acc
ep

te
d

M
an

us
cr

ipt

We observe that when the CPLEX cuts are off, none of the problem instances

can be solved to optimality within the time limit by all different settings. The third

setting, where we use pattern fitting heuristic to provide an initial solution and

then implement Branch & Cut algorithm (Branch & Cut + PF), gives the best

average percentage gap calculated over all instances. However, when we check

the optimality gaps for individual problem sets, we observe that in five of the ten

problem sets, namely in PS4, PS6, PS7, PS8 and PS9, last setting, where we

also use CPLS relaxation in fractional nodes to find a lower bound (Branch & Cut

+ PF + CPLS), gives the best gap.

In terms of number of best solutions found, direct implementation of the integer

program (IP) is the best one with a total number of best solutions of 47 out of 100

instances. When we analyze the details for large instances, we observe that for

PS9 and PS10 last setting dominates the other settings, while for PS8 and PS7

IP is better than the others. Although IP seems to give higher number of best

solutions, the optimality gaps that it provides are very high compared to other

settings. The reason for this high percentage is while IP’s upper bounds are

better than the others, the lower bounds found by IP are very loose.

When we analyze the results where CPLEX cuts are on, as it is expected, all

solutions are improved accross all settings with IP being the most positively

affected one. However, on the contrary of the previous table, IP provides the

least number of best solutions for this setting. Moreover, PS2’s all instances are

solved to optimality within the time limit by all settings while 8 instances out of 10

are solved to optimality for PS1. We add a column for Table 8 called “# opt/Time”

to provide the number of instances solved to optimality and the average CPU

time the algorithms take to find an optimal solution for those instances. For PS1,

Branch & Cut algorithm provides the minimum CPU time for the instances solved

to optimality and it is followed by IP. For PS2, where all instances are solved to

optimality, the average CPU time is the smallest for the third setting in which we

use pattern fitting heuristic to provide an initial solution that we provide as an

Acc
ep

te
d

M
an

us
cr

ipt

initial solution for the Branch & Cut algorithm. This setting is followed by the

Branch & Cut algorithm without the heuristic, and IP yields the largest CPU time.

For all other problem sets, none of the instances are solved to optimality within

the time limit.

For the case where CPLEX cuts are on, last setting appears to be the best in

terms of both the average optimality gap, 3.37% over all instances, and the total

number of best solutions, 64 out of 100. When we analyze the problem sets

indivdually in terms of gaps and number of best solutions, we observe that the

last setting is better than the other settings for the sets with high density

parameter.

6 Conclusion

In this paper we introduce a class of lot-sizing problem that appears in co-

production systems. We define the problem in a controlled and deliberated co-

production system, and show that the lot sizing problem in this type of system is

NP-Hard in the strong sense. We develop four mixed-integer programming

formulations. Then, we show that the LP relaxation of all four formulations are

equal. We propose a separation algorithm based on a set of valid inequalities as

a solution method, a heuristic that aims to provide an initial solution to be given to

a solver and another heuristic that is used to obtain fast upper bounds for

fractioanl solutions.

There is no benchmark data set available for lot sizing problems in a co-

production environment; therefore, we generate ten different data sets to be used

for computational analysis. We test the efficacy of the proposed MILP

formulations, the separation algorithm and the heuristics on this data set. Based

on our computational experiments, we conclude that, among all four

formulations, the MILP formulation that includes the inventory variables explicitly

is the best one in terms of average gap provided at the end of a time limit.

Moreover, the setting where the separation algorithm, the initial solution heuristic

Acc
ep

te
d

M
an

us
cr

ipt

and the CPLS relaxation to calculate lower bounds are used improves the

solution quality in terms of the average optimality gap and the number of best

solutions found over all test instances.

Future avenues for research include using polyhedral analysis to find the convex

hull of the problem, strengthening the mixed-integer program by developing

some valid inequalities that will tighten the solution space and developing

heuristics based on dynamic programming approaches applicable to regular lot-

sizing algorithms.

Acknowledgements

This research is supported by TUBITAK Project No: 116M555.

Short Bio

Bahadır Pamuk is a Ph.D. candidate at the Department of Industrial Engineering,

Boğaziçi University, İstanbul, Turkey. He received his B.Sc. and M.Sc. degrees in

Industrial Engineering from Boğaziçi University in 2016 and 2018 respectively. He is a

member of Flexible Automation and Intelligent Manufacturing Systems (BUFAIM)

Laboratory since 2014. His research interests include combinatorial optimization, large-

scale optimization, and flexible automation.

Semra Ağralı is a professor of industrial engineering at Faculty of Engineering, MEF

University, İstanbul, Turkey. Her current research interests include energy systems

optimization, large-scale optimization problems in supply chain management and

scheduling. Her publications have appeared in European Journal of Operational

Research, OMEGA, IEEE Transactions on Power Systems, Journal of Operational

Research Society, and other journals. She is the recipient of Goodeve Medal 2020 given

by the Journal of the OR Society. Her research has been supported by The Scientific and

Technological Research Council of Turkey.

Z. Caner Taşkın is a professor of operations research at Boğaziçi University, İstanbul,

Turkey. His research focuses on decomposition algorithms for large-scale mixed integer

programming arising in application areas such as supply chain planning,

telecommunications, graph theory and medicine. His research has appeared in journals

including Operations Research, INFORMS Journal on Computing, IISE Transactions,

European Journal of Operational Research. He is also a recipient of Institute of

Industrial and Systems Engineers (IISE) Pritsker Doctoral Dissertation Award, Turkish

Science Academy’s Young Scientist Award (BAGEP) and Best Application Paper in the

2020 IISE Transactions Focus Issue on Operations Engineering and Analytics.

Acc
ep

te
d

M
an

us
cr

ipt

Banu Kabakulak is an Assistant Professor of Industrial Engineering at İstanbul Bilgi

University, İstanbul, Turkey since 2019. She received her double major B.Sc. degrees in

Industrial Engineering and Mathematics from Boğaziçi University, İstanbul, Turkey, in

2007, and M.Sc. and Ph.D. degrees in Industrial Engineering from Boğaziçi University,

in 2010 and 2018, respectively. Her research interests are telecommunications,

mathematical programming, large-scale optimization, and decomposition methods. She is

the recipient of Operations Engineering & Analytics Best Application Paper Award 2020

given by the IISE Transactions Journal.

References

 Ağralı, S. (2012). A dynamic uncapacitated lot-sizing problem with co-

production. Optimization Letters 6 (6), 1051–1061.

 Atamtürk, A. and S. Küçükyavuz (2005). Lot sizing with inventory bounds and

fixed costs: Polyhedral study and computation. Operations Research 53 (4),

711–730.

 Bitran, G. R. and S. Dasu (1992). Ordering policies in an environment of

stochastic yields and substitutable demands. Operations Research 40 (5), 999–

1017.

 Bitran, G. R. and S. M. Gilbert (1994). Co-production processes with random

yields in the semiconductor industry. Operations Research 42 (3), 476–491.

 Brahimi, N., N. Absi, S. Dauzère-Pérès, and A. Nordli (2017). Single-item

dynamic lot-sizing problems: An updated survey. European Journal of

Operational Research 263 (3), 838–863.

 Brahimi, N., S. Dauzere-Peres, N. M. Najid, and A. Nordli (2006). Single item lot

sizing problems. European Journal of Operational Research 168 (1), 1–16.

 Euromak (2020). All molds.

Acc
ep

te
d

M
an

us
cr

ipt

 Garey, M. R. and D. S. Johnson (1979). Computers and intractability: a guide to

the theory of NP-completeness. 1979. San Francisco, LA: Freeman 58.

 Graves, S. C. (1982). Using lagrangean techniques to solve hierarchical

production planning problems. Management Science 28 (3), 260–275.

 Krarup, J. and O. Bilde (1977). Plant location, set covering and economic lot

size: An O(mn)-algorithm for structured problems. In Numerische Methoden bei

Optimierungsaufgaben Band 3, pp. 155–180. Springer.

 Küçükyavuz, S. and Y. Pochet (2009). Uncapacitated lot sizing with backlogging:

the convex hull. Mathematical Programming 118 (1), 151–175.

 Öner, S. and T. Bilgiç (2008). Economic lot scheduling with uncontrolled co-

production. European Journal of Operational Research 188 (3), 793–810.

 Pochet, Y. and L. A. Wolsey (2006). Production planning by mixed integer

programming. Springer Science & Business Media.

 Rafiei, R., M. Nourelfath, J. Gaudreault, L. A. De Santa-Eulalia, and

M. Bouchard (2015). Dynamic safety stock in co-production demand-driven wood

remanufacturing mills: A case study. International Journal of Production

Economics 165, 90–99.

 Robinson, P., A. Narayanan, and F. Sahin (2009). Coordinated deterministic

dynamic demand lot-sizing problem: A review of models and algorithms.

Omega 37 (1), 3–15.

 Stern, T. (2006). Seminar in theoretical computer science. Set Cover Problem.

 Suzanne, E., N. Absi, and V. Borodin (2020). Towards circular economy in

production planning: Challenges and opportunities. European Journal of

Operational Research.

Acc
ep

te
d

M
an

us
cr

ipt

 Taşkın, Z. C. and T. Ekim (2012). Integer programming formulations for the

minimum weighted maximal matching problem. Optimization Letters 6 (6),

1161–1171.

 Taşkın, Z. C. and A. T. Ünal (2009). Tactical level planning in float glass

manufacturing with co-production, random yields and substitutable products.

European Journal of Operational Research 199 (1), 252–261.

 Vidal-Carreras, P. I., J. P. Garcia-Sabater, and J. R. Coronado-Hernandez

(2012). Economic lot scheduling with deliberated and controlled coproduction.

European Journal of Operational Research 219 (2), 396–404.

 Wagelmans, A., S. Van Hoesel, and A. Kolen. Economic lot sizing: an O (n log

n) algorithm that runs in linear time in the Wagner-Whitin case. Operations

Research 40.

 Wagner, H. M. and T. M. Whitin (1958). Dynamic version of the economic lot

size model. Management science 5 (1), 89–96.

 Yuan, Z., J. Bi, and Y. Moriguichi (2006). The circular economy: A new

development strategy in China. Journal of Industrial Ecology 10 (1-2), 4–8.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 1 Co-production in plastic mould industry with different fixtures

(Euromak, 2020)

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 2 An Example for Deliberated and Controlled Co-production

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 3 Algorithm for mapping
ˆ

j t t 


 from
ˆ

i

t
x

 using FIFO.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 4 Algorithm for (l, S, j) Separation.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 5 Pattern Fitting Heuristic.

Acc
ep

te
d

M
an

us
cr

ipt

Table 1 Notation and Definitions.

T : Set of time periods, indexed by t

J : Set of products, indexed by j

I : Set of co-production units (CUs), indexed by i

J(i) : Set of products produced by CU i

I(j) : Set of CUs that produce product j

j

i


: Co-produced amount of product j, when one unit of CU i is produced

i

t
f

: Fixed cost of CU i at period t

i

t
c

: Variable cost of CU i at period t

j

t
h

: Holding cost of product j at period t

j

tk
h

: Cumulative holding cost of product j between periods t and k

j

t
d

: Demand of product j at period t

j

tk
d

: Cumulative demand of product j between periods t and k

Acc
ep

te
d

M
an

us
cr

ipt

Table 2 Product Families and Demand Data Used in Experimentation.

Family 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Product (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

j

t
d

20 40 15 25 80 80 15 40 40 55 20 20 30 30 20 30 30 50 60 40

j

t
d

40 60 25 65 120 120 25 60 60 85 40 40 50 50 40 70 50 100 90 80

Acc
ep

te
d

M
an

us
cr

ipt

Table 3 Holding Cost, Fixed Cost, and Variable Cost Used in Experimentation.

Family hj
j

fc

j

fc
vcj

1 1 50 150 10

2 1.75 100 200 15

3 1.5 100 200 20

Acc
ep

te
d

M
an

us
cr

ipt

Table 4 Problem Set Descriptions.

Problem Set | |T | |J | |I
δ

PS 1 12 10 20 3

PS 2 12 10 20 4

PS 3 24 40 120 3

PS 4 24 40 120 4

PS 5 24 40 200 3

PS 6 24 40 200 4

PS 7 36 40 120 3

PS 8 36 40 120 4

PS 9 36 40 200 3

PS 10 36 40 200 4

Acc
ep

te
d

M
an

us
cr

ipt

Table 5 Summary of Results for Alternative Model Formulations

 # of Best Sol. Gap

PS IP1 IP2 IP3 IP4 IP1 IP2 IP3 IP4

PS1 8 8 8 9 0.17 0.51 0.17 0.29

PS2 10 10 10 10 0.03 0.19 0.00 0.12

PS3 0 6 2 2 4.72 5.71 5.00 5.08

PS4 1 6 1 2 4.73 6.61 5.31 5.74

PS5 7 2 1 0 4.88 7.48 5.36 12.47

PS6 9 0 1 0 4.52 8.52 5.28 16.64

PS7 4 6 0 0 4.67 7.72 6.04 12.38

PS8 5 4 1 0 4.78 8.55 5.74 14.17

PS9 10 0 0 0 5.55 12.41 6.92 26.08

PS10 10 0 0 0 5.64 15.01 9.40 41.27

 64 42 24 23 3.97 7.27 4.92 13.42

Acc
ep

te
d

M
an

us
cr

ipt

Table 6 Summary of Results for Separation Algorithm for IP1 Formulation

 % Inc. in LB % Gap-BS # of VI

PS 1 15.83 4.95 690

PS 2 17.79 5.43 634

PS 3 15.14 6.68 11573

PS 4 19.71 7.64 11820

PS 5 14.46 6.49 11704

PS 6 20.58 6.68 11992

PS 7 15.06 6.87 24688

PS 8 19.32 7.41 25607

PS 9 15.39 7.18 25737

PS 10 20.84 7.63 26615

Avg. 17.41 6.70 15106

Acc
ep

te
d

M
an

us
cr

ipt

Table 7 Summary of Results for IP1 in Different Settings where CPLEX cuts are

off.

 IP Branch & Cut

PS Gap (%) Nnodes

Best

Sol. Ncuts Gap (%) Nnodes

Best

Sol. Ncuts

PS1 10.31 11862973 3 - 1.49 1776741 7 5806

PS2 5.87 24238609 7 - 0.22 336158 10 4223

PS3 18.13 2138837 9 - 7.59 2936 0 35544

PS4 20.95 2178332 8 - 8.15 2614 0 39565

PS5 17.54 1992753 6 - 6.66 1419 0 27285

PS6 21.73 2044701 1 - 6.76 921 0 30297

PS7 18.18 1725201 6 - 6.74 530 1 49844

PS8 20.85 2067092 7 - 7.14 391 0 61926

PS9 20.14 1908900 0 - 7.04 7 2 41405

PS10 23.70 1631485 0 - 7.17 41 0 52042

 A: 17.74 A: 5178888 T: 47 A: - A: 5.89 A: 212176 T: 20 A: 34794

 Branch & Cut + PF Branch & Cut + PF + CPLS

PS Gap (%) Nnodes

Best

Sol. Ncuts Gap (%) Nnodes

Best

Sol. Ncuts

PS1 1.45 1885518 8 5927 4.80 1932068 6 4955

PS2 0.24 325875 9 4276 3.53 600523 9 4014

PS3 7.29 3095 1 36645 7.77 4462 0 29256

PS4 8.26 2450 0 39606 7.63 3858 2 33161

PS5 6.22 1364 3 27312 6.25 1140 1 23379

PS6 6.14 989 3 31577 5.69 1252 6 29849

PS7 6.72 475 2 48268 6.70 128 1 44320

Acc
ep

te
d

M
an

us
cr

ipt

 IP Branch & Cut

PS8 7.20 394 1 61109 6.64 199 2 58262

PS9 6.72 83 2 42130 6.62 0 6 40801

PS10 6.49 26 5 52112 6.72 21 5 51703

 A: 5.67 A: 222027 T: 34 A: 34896 A: 6.23 A: 254365 T: 38 A: 31970

Acc
ep

te
d

M
an

us
cr

ipt

Table 8 Summary of Results for IP1 in Different Settings.

 IP Branch & Cut

PS

Gap

(%) Nnodes

Best

Sol.

opt/

Time Ncuts

Gap

(%) Nnodes

Best

Sol.

opt/

Time Ncuts

PS1 0.10 633444 9 8/473.3 - 0.11 625484 10 8/442.7 36.4

PS2 0.00 115255 10 10/260.9 - 0.00 90614 10 10/199.8 9.8

PS3 4.52 10816 0 - - 4.22 10704 1 - 2034.9

PS4 4.41 21653 0 - - 4.13 20959 2 - 1293.2

PS5 4.68 1765 0 - - 4.55 1850 0 - 1488.4

PS6 4.35 3871 0 - - 4.30 3612 0 - 1132.1

PS7 4.52 2636 3 - - 4.57 2524 1 - 4636.4

PS8 4.59 4742 0 - - 4.47 4587 1 - 4010.1

PS9 5.19 11 2 - - 5.33 0 2 - 3084.3

PS10 5.37 94 0 - - 5.13 135 0 - 2765.8

A:

3.77

A:

79429

T:

24 A: - A: -

A:

3.68

A:

76047

T:

27 A: - A: 2049

 Branch & Cut + PF Branch & Cut + PF + CPLS

PS

Gap

(%) Nnodes

Best

Sol.

opt/

Time Ncuts

Gap

(%) Nnodes

Best

Sol.

opt/

Time Ncuts

PS 1 0.12 650897 9 8/518.9 34.2 0.67 899873 8 8/1065.6 34.0

PS 2 0.00 93763 10 10/185.6 9.8 0.00 137233 10 10/220.1 10.1

PS 3 4.18 10848 1 - 1866.2 3.61 82762 8 - 2110.5

PS 4 4.32 18472 1 - 1333.0 3.72 138274 7 - 1195.8

PS 5 4.07 1605 8 - 1482.8 4.32 8182 2 - 1201.2

Acc
ep

te
d

M
an

us
cr

ipt

 IP Branch & Cut

PS 6 3.63 3420 1 - 1138.7 3.32 15538 9 - 1078.9

PS 7 4.37 2883 3 - 4278.8 4.53 8765 3 - 6432.7

PS 8 4.54 5751 0 - 4379.4 3.83 18390 9 - 11652.3

PS 9 5.04 0 5 - 3169.5 5.30 0 1 - 2178.7

PS

10 4.46 136 3 - 2779.5 4.45 8 7 - 2067.1

A:

3.47

A:

947032

T:

41 A: -

A:

2047

A:

3.37

A:

944579

T:

64 A: - A: 2796

Acc
ep

te
d

M
an

us
cr

ipt

