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Abstract 
We consider an uncapacitated lot sizing problem in co-production systems, in which it is possible to 
produce multiple items simultaneously in a single production run. Each product has a deterministic 
demand to be satisfied on time. The decision is to choose which items to co-produce and the 
amount of production throughout a predetermined planning horizon. We show that the lot sizing 
problem with co-production is strongly NP-Hard. Then, we develop various mixed-integer linear 
programming (MILP) formulation of the problem and show that LP relaxations of all MILPs are equal. 
We develop a separation algorithm based on a set of valid inequalities, lower bounds based on a 
dynamic lot-sizing relaxation of our problem and a constructive heuristic that is used to obtain an 
initial solution for the solver, which form the basis of our proposed Branch & Cut algorithm for the 
problem. We test our models and algorithms on different data sets and provide the results.  

Keywords: Co-production; Lot-Sizing; MILP; Branch & Cut.  

1  Introduction 

Co-production is a process where several different products are produced 

simultaneously in the same production run. Co-production either occurs because 

of physical or chemical nature of the production system, or because the system 

is designed to produce multiple products simultaneously in order to effectively 

use scarce resources. Co-produced units may only differ in quality as in semi-

conductor production (Bitran and Gilbert, 1994; Bitran and Dasu, 1992) or may 

be completely different products as in float glass production (Öner and 

Bilgiç, 2008; Taşkın and Ünal, 2009). As a development strategy, concept of 

circular economy aims to maintain rapid economic growth while considering 

scarcity of raw materials (Yuan et al., 2006). There is a strong relation between 

circular economy and co-production as circular economy aims to minimize the 
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waste (or use) of raw materials while producing goods or services (Brahimi 

et al., 2017; Suzanne et al., 2020). In this sense co-production serves to achieve 

this goal and it is very important in today’s manufacturing industry.  

We can analyze co-production in different categories based on the nature of the 

production: (i) deliberated or non-deliberated; (ii) controlled or uncontrolled 

(Suzanne et al., 2020). If it is possible to control the parameters of the 

production, such as the products that can be produced as co-products and their 

quantities, then the system has controlled co-production. On the other hand, if it 

is not possible to control the types or quantities of products when the production 

run starts or it is prohibitively expensive to control the system, then the system 

has uncontrolled co-production. Moreover, if it is possible to manufacture each 

product either by itself or by means of co-production, and co-production is 

desirable in terms of cost and production, then the system has deliberated co-

production. For example, in metal press shops often multiple products are 

produced simultaneously from a single metal sheet, and hence the co-production 

is deliberated and controlled. In contrast, semi-conductor and float glass 

production are neither deliberated nor controlled (Bitran and 

Gilbert, 1994; Taşkın and Ünal, 2009). In this study, we focus on lot-sizing 

problems occurring in deliberated and controlled co-production systems.  

As an example, we may consider a case that occurs in the plastics industry. 

Figure 1 depicts a plastic mould that can simultaneously produce different 

plastics products. As seen from the figure, the fixtures are changeable, and with 

a new fixture, the set of co-produced products can be adjusted. Since it is 

possible to produce different shapes of plastics by changing the fixtures and with 

each fixture we know the quantities and types of products that are co-produced, 

the system is controlled. Furthermore, since it is possible to use the mould to 

either produce a single product type or to co-produce different products, the 

system is deliberated.  
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From an applications point of view, our problem can be found at production 

systems in which multiple products, often small parts, can be produced by fitting 

multiple parts into a single die or machine slot. Although we focus on co-

production, one may encounter a similar problem in supply chain systems 

(Stern, 2006): Consider a company that needs to buy a certain amount of 

supplies (material A, B and C), and there exist suppliers (supplier 1 and 2) that 

offer a set of deals for different combinations of materials. For example supplier 1 

provides (500 kg of material A) + (500 units of material B) for $X while supplier 2 

offers (1000 kg of material A) + (100 units of material B) + (100 kg of material C) 

for $Y. This results in deciding on the suppliers to work with and the amount of 

each bundle to buy from these selected suppliers, which is similar to a production 

planning problem in a co-production system.  

Lot sizing problems are well studied in the literature. Since Wagner and 

Whitin (1958) published their seminal paper, substantial research has been done 

in the area. Hence, various lot sizing problems have been studied. For an 

extensive review, we refer the reader to Brahimi et al. (2006) and its updated 

version (Brahimi et al., 2017). Since the focus of our study is lot-sizing in co-

production systems, we discuss the corresponding literature rather than general 

lot-sizing literature.  

A type of lot-sizing problem appears as coordinated lot sizing problem, where the 

products are produced as families. In coordinated lot sizing problems, a family of 

products shares a fixed setup cost (Robinson et al., 2009). In addition to the fixed 

cost, a minor setup cost also exists for individual products inside a product family 

if they are decided to be produced. Variable production cost is similar to that of 

dynamic lot sizing problems. Despite having a shared fixed cost for multiple 

products as families, it does not capture the notion of co-production since every 

product inside the same family is not necessarily produced simultaneously. In co-

production it is usually not possible to group products as families and co-

produced items are produced simultaneously without having minor set up costs.  
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Bitran and Dasu (1992) and Bitran and Gilbert (1994) focus on co-production with 

random yields in semiconductor production. In their context, it is possible to 

substitute a lower tier product with a higher tier one. This is called serially nested 

co-production. The problem is divided into two sub-problems as “morning 

problem,” in which production decisions are made, and “afternoon problem,” in 

which products are allocated to customers after yields are known. In Bitran and 

Dasu (1992), the objective is to maximize expected profit whereas in Bitran and 

Gilbert (1994) it is the minimization of expected cost comprised of production, 

inventory holding, and shortage costs.  

Öner and Bilgiç (2008) study uncontrolled co-production in float glass 

manufacturing with constant holding cost rate and fixed sequence independent 

setup costs where the substitution of products is not allowed. They develop a 

continuous time economic lot scheduling model to find a common cycle 

schedule. Taşkın and Ünal (2009) also study co-production in float glass 

manufacturing focusing on tactical level planning. They develop a mathematical 

model that is highly specialized for that purpose. Vidal-Carreras et al. (2012) 

study deliberated and controlled co-production with non-substitutable demand. 

Similar to Öner and Bilgiç (2008), their model is a continuous economic lot 

scheduling problem with the aim of finding a common cycle time. Costs are 

constant, fixed and sequence independent, and only two products are 

considered. Rafiei et al. (2015) consider co-production with sequence dependent 

setup times and demand uncertainty. There are production families, and recipes 

in the same production family require no changeover cost. They provide a case 

study on demand driven wood re-manufacturing mills, and propose a three step 

methodology to solve wood re-manufacturing industrial problem.  

To the best of our knowledge there is a single lot-sizing paper, Ağralı (2012), that 

considers a setting where co-production exists. In that study co-production is 

controlled but not deliberated, i.e., there is only a single set of products to be co-

produced as a single co-production unit. The problem is to decide on when and 
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how much to produce that specific set of products. It is shown that well-known 

zero-inventory policy holds for at least one of the products, and a dynamic 

programming (DP) recursion is given that runs in polynomial time. Although 

Ağralı (2012)’s paper is the closest work to our paper, there are some major 

differences between the two studies. In particular, we consider deliberated co-

production where the decision maker has the option of co-produce or not to co-

produce. Moreover, there is no single set of products, and the products may 

appear in different co-production units to be produced as co-products. In our 

case, zero inventory property does not hold, and hence, none of the solution 

methods proposed in the literature is directly applicable to our problem.  

Our contribution to the lot sizing literature can be summarized as follows:  

i) We formally define a deliberated co-production problem for the first time in 

the dynamic deterministic lot sizing literature.  

ii) We investigate the computational complexity of the problem, and prove 

that it is NP-Hard in the strong sense.  

iii) We develop alternative mixed-integer programming formulations for the 

problem and investigate their strengths in terms of the tightness of their 

linear programming relaxations.  

iv) We propose a valid inequality, an efficient separation algorithm and a 

series of lower bounds, which we combine in a Branch & Cut algorithm. 

We also design a heuristic method to find high-quality feasible solutions to 

the problem. 

Our experiments show that our proposed methods are individually very effective, 

and they significantly increase the number of best solutions obtained when 

CPLEX cuts are on.  

The remainder of the paper is as follows: Section 2 gives the formal problem 

definition and the proposed mathematical model with NP-Hardness proof. 

Section 3 provides alternative mixed-integer linear programs that we developed 
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for our problem and the equivalence of all formulations in terms of LP relaxations. 

We provide a separation algorithm based on valid inequalities that we propose, a 

heuristic method that is used as an initial solution for the solver and improvement 

procedures that are based on a DLSP relaxation to be used in our Branch & Cut 

algorithm in Section 4. We give our computational experiments in Section 5, and 

finally conclude the paper with a brief summary and future work in Section 6.  

2  Problem Description and Mathematical Model 

We consider a dynamic uncapacitated lot-sizing problem (DLSP) in a production 

system where co-production exists. There is a set of products, J, where products 

can be co-produced in different combinations. We call a possible combination of 

products that can be co-produced together a “co-production unit (CU),” and 

denote these CUs as set I. We model time as a finite sequence of discrete time 

points, indexed as t T , as in DLSP.  

There are finitely many CUs indexed by i I , and each produces a finite set of 

predefined products, J(i). When one CU of type i is to be produced, all products 

included in set J(i) are co-produced with certain production ratios, 
j

i


, i.e., when 

one CU i is produced, then 
j

i


 units of product j are produced. Producing a CU 

requires a deterministic time-dependent fixed cost, 
i

t
f

, and a variable cost, 
i

t
c

. 

Each product j J  has dynamic deterministic demand, 
j

t
d

, and incurs a holding 

cost, 
j

t
h

, for each item carried in inventory. Backlogging is not allowed. The aim 

is to find a production plan with minimum possible cost that satisfies all demand 

on time. We provide a list of symbols that we use in modeling in Table 1.  

There may be several ways to produce each product, i.e., a product may appear 

in multiple CUs. It is also possible for a CU to include only one product, which 

allows us to model deliberated co-production. Figure 2 depicts a production 

system that produces products A, B and C from a metal sheet, where there are 

six possible CUs defined. CU1 produces A and C with 1 1
2

A C
  

. CU2, CU4 
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and CU6 produce single products where 2 4
4 , 2

C B
  

, and 6
4

A
 

. CU3 

produces C and B with 3
1

B
 

 and 3
2

C
 

. Finally, CU5 produces B and A with 

5
2

A
 

 and 5
1

B
 

.  

Note that, by definition of 
j

i


, CUs include physical production restrictions if there 

are any. For example, CUs given in Figure 2 include a restriction of not producing 

A, B and C together. We refer to this type of system as Deliberated and 

Controlled Co-Production (DCCP).  

Let decision variable 
i

t
x

 denote production amount of CU i in period t, and let 

binary variable 
i

t
y

 take value 1 if and only if production of CU i takes place in 

period t. Moreover, let 
j

t
s

 variable denote the inventory of product j at the end of 

period t. Then, a mixed-integer linear programming model (MILP) for DCCP can 

be written as follows:  

: M in im iz e ( ( ) )i i i i j j

t t t t t t

t T i I j J

f y c x h s

  

   I P 1  (1)  

1
S u b je c t  to , , ;

j j i j j

t i t t t

i I

s x s d t T j J




       (2)  

( )
m ax , , ;{ }i itT

t j J i tj

i

d
x y t T i I




     (3)  

0 , , ;
i

t
x t T i I     (4)  

0 , , ;
j

t
s t T j J     (5)  

{0 ,1} , , .
i

t
y t T i I     (6)  

Objective function (1) minimizes the total fixed and variable costs of production 

and holding cost of products over the planning horizon. Constraints (2) are the 

inventory flow balance constraints. Constraints (3) enforce that if a production 

Acc
ep

te
d 

M
an

us
cr

ipt



occurs, i.e., 
0

i

t
x 

, then binary set up variables take the value of 1, i.e., 
1

i

t
y 

. 

Constraints (4)–(6) are non-negativity and binary restrictions, respectively.  

We first show that the optimization problem given as IP1 is strongly NP-Hard. In 

order to prove this, we first define the decision version of our optimization 

problem, D-DCCP.  

D-DCCP. Given a set of CUs I, each with fixed cost, 
i

t
f

, and variable cost, 
i

t
c

; a 

set of products, J, each with demand, 
j

t
d

, and holding cost, 
j

t
h

; production ratios, 
j

i


; and a positive integer, K, does there exist a feasible production plan (such 

that all demands are satisfied on time), having total cost no more than K?  

Proposition 1. D-DCCP is strongly NP-Complete.  

Proof. Given an instance of sets I, J, T and data 
, , , ,

j i i j j

i t t t t
f c d h

, a positive 

number K, and a “guess” 
i

t
x

; computing 
1

i

t
y 

 if 
0

i

t
x 

 and 
0

i

t
y 

 otherwise; 

( )
j i j j

t k i k

k t i I

s x d

 

  
 and computing if 

( )( )i i i i j j

t t t t t t

t T i I j J

f y c x h s K

  

    
 can be 

done in polynomial time. Hence, DCCP is in NP.  

To show that D-DCCP is NP-complete, consider the following strongly NP-

complete problem (Garey and Johnson, 1979).  

MINIMUM COVER PROBLEM (MCP). Given a collection C of subsets of a finite set S, 

positive integer | |K C , does C contain a cover for S of size K or less, i.e., a 

subset C C   with | |C K   such that every element of S belongs to at least one 

member of C  ?  

An arbitrary instance of MCP can be reduced to a particular instance of D-DCCP as 

follows: Let S in MCP correspond to set J in D-DCCP instance, and every subset in 

set C be indexed by i such that 
{ }

i
C C

. Let 

1 1 1
| | 1, 1, 0 , 1,   a n d  

i i j
T f c d j J i I       

. Now for each i I  and j J  define 
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subsets i
J J

 for each i I  as 
{ | : 1}

j

i i
J j j  

, and define 
j

i


 to be equal to 1 

if i
j C

, and 0, otherwise. Observe that this transformation can easily be 

performed in polynomial time and the size of the transformed data is polynomially 

bounded.  

In order to complete the proof, we need to show that an arbitrary instance of MCP 

is a yes-instance if and only if the transformed D-DCCP instance is a yes-instance.  

Suppose that MCP instance is a yes-instance. Then, there exists a subset C C   

such that | |C K   and 
C S 

. Since selecting C C   in MCP corresponds to 

selecting I I   in D-DCCP, 
| | | |

i

t

i I

y I C K



    
.  

Selecting 
{0 ,1}

j

i
 

 and corresponding subsets Ji as described previously will 

ensure 
i

i I

J J

 



 since 
C S 

,  

which means each product j J  will be produced at least once by selecting 

I I   for production. Since 1
1

j
d 

 for all j J , production plan feasibility is 

ensured by 
i

i I

J J

 



. Thus, the D-DCCP instance is a yes-instance.  

Now, suppose that MCP instance is a no-instance. Then, it is not possible to select 

I I   such that | |I K   and 
i

i I

J J

 



. The only way to satisfy production 

feasibility is to select a subset of I as I   such that all products j J  is included 

in these subsets at least once, i.e., 
i

i I

J J

 



, where | |I K  . However, this is not 

possible by the assumption that MCP instance is a no-instance. Hence, the D-DCCP 

instance is a no-instance.   

3  Alternative MIP Formulations and Their Properties 
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In this section, we develop three alternative formulations to IP1 and show the 

equivalence of these in terms of their LP relaxations.  

3.1  Alternative Formulations 

We can reduce the number of variables of IP1 by representing inventory 

variables, 
j

t
s

, in terms of production variables, 
i

t
x

, and demand, 
j

t
d

, i.e., 

1 ( )

( )
t

j i j j

t k i k

k i I j

s x d

 

  
. We call the resulting formulation as IP2.  

: m in im iz e ( )i i i i

t t t t

t T i I

f y a x H

 

  IP 2  (7)  

1

1 ( )

su b je c t to , ,

t

j i j

i k t

k i I j

x d t T j J

 

      (8)  

( )
m ax , ,{ }i itT

t j J i tj

i

d
x y t T i I




     (9)  

0 , ,
i

t
x t T i I     (10)  

{0 ,1} , , .
i

t
y t T i I     (11)  

where ( )

i i j j

t t i tT

j J i

a c h



  
 and 

1

j j

t t

t T j J

H h d

 

  
.  

We note that IP2 formulation may improve solution times since it has fewer 

number of variables compared to IP1 formulation. However, the constraint matrix 

is denser than IP1, which may create computational difficulties.  

The simple plant location formulation of DLSP is given by Wagelmans, 

Van Hoesel, and Kolen (Wagelmans et al.). They show that this formulation gives 

the convex hull of DLSP based on the results in Krarup and Bilde (1977). We 

develop another MIP formulation based on the simple plant location formulation 

of DLSP, in which production variables are disaggregated in terms of periods 
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where produced items are consumed by demand. Let 
j

t t 


 continuous variables 

represent the production amount of product j J , that is produced in period 

t T  to be consumed in period ,t T t t    . However, unlike the simple plant 

location formulation, eliminating 
i

t
x

 variables does not appear to be possible 

since production costs depend on the amount of CUs produced, not products. 

Therefore, constraints (14) are needed to relate 
j

t t 


 variables to 
i

t
x

 variables, 

and the demand satisfaction constraint is revised as in Equation (13). Other 

constraints and the objective function remain the same as those of IP2:  

: m in im iz e ( )i i i i

t t t t

t T i I

f y a x H

 

  IP 3  (12)  

s u b je c t  to , ,
j j

t t t

t t

d t T j J
 

 

       (13)  

( )

, ,
j j i

tt i t

t t i I j

x t T j J


  

       (14)  

( )
m ax , ,{ }i itT

t j J i tj

i

d
x y t T i I




     (15)  

0 , ,
i

t
x t T i I     (16)  

0 , , ,
j

t t
t t T j J


       (17)  

{0 ,1} , , .
i

t
y t T i I      (18)  

We propose another formulation that is based on the simple plant location 

formulation of DLSP, called IP4. In IP4 formulation, production variables are 

disaggregated not only in terms of periods in which produced items are 

consumed by demand, but also in terms of the CUs that they are produced by. 
j

t t 


 variables of IP3 are replaced by 
i j

t t 


, which gives the amount of product j 

produced using CU i in period t to be consumed in period t  , and necessary 

changes are applied to constraints (20)–(22):  
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: m in im iz e ( )i i i i

t t t t

t T i I

f y a x H

 

  IP 4  (19)  

( )

su b jec t to , ,
ij j

tt t

i I j t t

d t T j J
 

  

        (20)  

, , , ( )
i j j i

t t i t

t t

x i I t T j J i


 

       (21)  

( )
m ax , ,{ }i itT

t j J i tj

i

d
x y t T i I




     (22)  

0 , ,
i

t
x t T i I     (23)  

0 , , , ,
i j

t t
t t T j J i I


        (24)  

{0 ,1} , , .
i

t
y t T i I     (25)  

Note that IP4 formulation has higher number of constraints and variables than 

IP3 formulation due to Equation (21), and the disaggregation of 
j

t t 


 into 
i j

t t 


, 

respectively.  

3.2  Equivalence of Alternative Model Formulations 

In order to show the equivalence of two linear mathematical models one can 

show any feasible solution of one model corresponds to some, also feasible, 

solution of the other model having the same objective value. This way one can 

conclude that feasible region of the first model is included in the feasible region 

of the second model. If the reverse also holds, then the models are said to be 

equivalent (Taşkın and Ekim, 2012). In this section, the equivalence will be 

shown explicitly between the linear relaxations of IP1 and IP2, IP2 and IP3, and 

IP3 and IP4. For convenience we name the linear relaxation of formulations as 

LP1, LP2, LP3 and LP4.  

The only difference between IP1 and IP2’s constraints is the structure of demand 

satisfaction constraints, i.e. Constraints (2) and (8) for IP1 and IP2, respectively. 
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Since initial inventories are zero, 0
0

j
s 

, and we represent the inventory variables 

of IP1 in terms of production variables and demand in IP2, the equivalance of 

LP1 and LP2 is straightforward.  

Let us show the equivalence between LP2 and LP3. Consider constraints (9) and 

(15). For a given feasible solution (x, y) of any of the models, the other model is 

also feasible with respect to (9) and (15). Let 
ˆˆ ˆ( , , )

i i j

t t tt
x y




 be a feasible solution of 

LP3 formulation. Then, constraints (13) should hold for 
ˆ j

tt 


. Constraints (26) are 

summed up versions of constraints (13) from 1 to t. We obtain Equation (27) 

when indices of two summations are swapped:  

1 1 1

ˆ , , ;

t z t

j j

k z z

z k z

d t T j J

  

        (26)  

1

1

ˆ , , .

t t

j j

k z t

k z k

d t T j J

 

       (27)  

Constraints (14) should also hold for any feasible solution. We obtain Equation 

(28) when Constraints (14) are summed up from 1 to t. The combination of 

Equations (27) and (28) gives Equation (29). Using Equation (29) we can 

conclude that x̂  satisfies constraints (8); and hence, 
ˆ ˆ( , )

i i

t t
x y

 is feasible with 

respect to LP2.  

1 1 ( )

ˆ ˆ , , ;

t T t

j j i

k z i k

k z k k i I j

x t T j J

   

         (28)  

1

1 1 1 ( )

ˆ ˆ ˆ , , .

t t t T t

j j j j i

t k z k z i k

k z k k z k k i I j

d x t T j J

     

              (29)  

The objective values of LP2 and LP3 are the same since both formulations share 

the same objective function.  
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Now, let 
ˆ ˆ( , )

i i

t t
x y

 be a solution of LP2 formulation. Unfortunately, reverse mapping 

of 
i

t
x

 variables of LP2 formulation into 
j

t t 


 variables of LP3 formulation is not 

unique. This is due to the fact that some production is done not to satisfy demand 

but occurs mandatorily due to co-production nature of the production 

environment. Since 
j

t t 


 variables only represent consumed production and there 

may be excess production, it is possible to shift production-consumption 

assignment in terms of 
j

t t 


 variables around. Therefore, using a simple first-in-

first-out (FIFO) rule, it is possible to map any 
ˆ ˆ( , )

i i

t t
x y

 solution of LP2 formulation 

to a 
ˆˆ ˆ( , , )

i i j

t t tt
x y




 solution of LP3 formulation. The proposed algorithm is shown in 

Figure 3.  

Equivalence between LP3 and LP4 follows from the relationship between 
j

t t 


 

and 
i j

t t 


 variables. 
i j

t t 


 variables are CU disaggregated version of 
j

t t 


 variables. 

Let 
ˆˆ ˆ( , , )

i i ij

t t tt
x y




 be a solution to LP4 formulation. Then by setting 

ˆ ˆˆ ˆ ˆ, ( , , )
j i j i i j

t t t t t t t t

i I

x y
  



   
 will be a solution to LP3 formulation. Let 

( , , )
i i j

t t t t
x y




 be a 

solution to LP3 formulation. We need to map 
i j

t t 


 arbitrarily from 
j

t t 


 variables, 

and this mapping is not unique. This mapping can be done with an algorithm 

similar to the one given in Figure 3.  

We have shown that the feasible regions of LP1 and LP2 formulations, LP2 and 

LP3 formulations, and LP3 and LP4 formulations are equal. Therefore, the 

feasible regions of all proposed models’ linear relaxations are equal. We note 

that this result is in contrast to the DLSP, where the linear programming 

relaxation of simple plant location formulation is tighter than the basic 

formulation.  

4  Algorithmic Improvements 

Our preliminary computational tests reveal that none of the IP formulations can 

solve medium-size instances to optimality within a reasonable amount of time. 
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Therefore, we propose some improvements over the formulations in order to 

decrease the solution times. In this section, we discuss a separation algorithm 

that we propose for IP1, and then introduce similar algorithms for alternative 

formulations. We then provide a constructive heuristic that we propose to find an 

initial feasible solution to our problem. Finally, we propose an increasingly tighter 

set of lower bounds for the problem.  

4.1  Valid Inequalities and Separation Algorithms 

Valid inequalities, in general, improve the solution time required to solve integer 

programming formulations by narrowing the solution space. Although valid 

inequalities are not necessary to define the problem, they are satisfied by any 

feasible solution. Therefore, they could be violated by some fractional solutions 

of a branch and bound (B&B) tree but they never eliminate any integer feasible 

solution. However, in some cases there exists exponential number of valid 

inequalities with respect to the problem size. This makes it inefficient to include 

all valid inequalities in the formulation. Hence, it is computationally more efficient 

to add valid inequalities that are violated by the fractional solution of the node 

relaxation during the B&B search in order to improve the lower bound.  

We propose valid inequalities, which are inspired by (l, S) inequalities given by 

Pochet and Wolsey (2006), in Proposition 2.  

Proposition 2. Let 
1L P

X  represent the feasible region of LP1. Also, let 

, {1, .. . , } ,l T L l S L   ,and j J  then the (l, S, j) inequality  

( ) ( )

i j j i j

q i q l q l

i I j q S q S i I j

x d y s

   

 
 

 
 

     (30)  

is valid for 
1IP

X .  
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Proof. Consider a point 
1

( , )
L P

s y X . If ( )

0
i

q

q S i I j

y

 

 
, then as ( )

0 , 0
i j

q l

i I j q S

x s

 

  
, 

the equality is satisfied. Otherwise let ( )

{ : 0}
i

q

i I j

t m in q S y



  
. Then consider 

the following:  

( ) ( ) ( )

l

i j i j j j j i j

q i q i t l l q l q l

i I j q S i I j q t q S i I j

x x d s d y s 

     

 
    

 
 

       (31)  

First part of inequality (31) follows from non-negativity of 
i j

q i
x 

 terms, the 

definition of subset S and the time index t. The second part follows from flow 

conservation equations. Finally, the last part holds using ( )

1
i

t

i I j

y




 and the non-

negativity of 
i

t
y

.  

Remark. Inequalities of the form (30), do not give complete description of convex 

hull of IP1.  

Moreover, the inventory variables in Equation (30) can be replaced by Equation 

(32), where , {1, .. . , } ,l T L l S L   .  

1

( )

i j j j

q i l l

i I j q L

x d s

 

    (32)  

By using Equation (32) and Inequality (30), we obtain Inequality (33).  

1

( ) ( )

i j j i j

q i q l q l

i I j q L S q S i I j

x d y d

   

 
 

 
 

     (33)  

Note that valid inequalities of the form (33) are exponentially many. However, 

they can be separated by inspection using the algorithm given in Figure 4. A 

straightforward application of the algorithm leads to O(n2) complexity whereas 

O(nlog(n)) is doable by adapting the improvement proposed in Pochet and 

Wolsey (2006). Assume a fractional solution 
* *

( , )
i i

q q
x y

 to apply separation 
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algorithm given in Figure 4. Note that this separation is exact, i.e., the algorithm 

finds all violated valid inequalities for a given solution. 

Valid inequalities described in this section can be applied to IP3 and IP4 

formulations using a similar logic as follows:  

1

( )

,
j j i j

q t q l q l

q L S t q q S i I j

d y d


    

 
  

 
 

     (34)  

1

( ) ( )

.
i j j i j

q t q l q l

q L S t q i I j q S i I j

d y d


     

 
  

 
 

      (35)  

4.2  Pattern Fitting Heuristics 

In this section we propose a heuristic to find a feasible solution of the problem, 

which we pass as an initial solution to the solver. Since the products can be 

produced by using different CUs, for a given CU, some of the demand of 

products that are produced within this CU may already be covered by the 

production of other CUs in previous time periods. For a given period t, we define 

the product coverage of a CU as the number of products whose demand for the 

same period is not covered yet by some previous production. Our heuristic works 

as follows: starting from the first period, the algorithm tries to cover all demand. 

The CU having the lowest cost to product coverage ratio is selected, and that CU 

is produced at an amount that covers all demand of products that CU is 

producing. Those products are marked as covered, and the algorithm selects the 

next CU with minimum cost to product coverage ratio until all products are 

covered for first period. Then, the excess production is reduced from demand for 

the next period and the algorithm continues for period 2, and so on to the last 

period. This pseudocode of our algorithm is given in Figure 5.  

4.3  Lower Bound Calculation 
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In this section we derive a series of increasingly tighter lower bounds based on 

relaxations of our problem, and discuss how these can be incorporated within our 

Branch & Cut algorithm.  

4.3.1  Dynamic Lot Sizing Relaxation 

We first observe that the demand of each product must be satisfied, and we 

focus on calculating the cost of satisfying each product’s demand independent of 

other products. Let us consider a DLSP relaxation of the problem for product j. 

Since demand (
j

t
d

) and holding cost (
j

t
h

) are given per product in our problem, 

these parameters can be used directly in the DLSP relaxation of product j. 

However, in our problem the fixed and variable costs of production (
i

t
f

 and 
i

t
c

, 

respectively) are specified per CU. Therefore, we need to calculate valid lower 

bounds for fixed and variable costs of product j.  

Let us denote the fixed cost of product j in our DLSP relaxation by 
( )j

t
f

. We 

define:  

( )

( )
m in .

j i

t i I j t
f f


  (36)  

Similarly, let 
( )j

t
c

 denote the variable cost of production of product j in our DLSP 

relaxation:  

( )

( )
m in

i

j t

t i I j j

i

c
c




  (37)  

After this transformation, a lower bound on the cost of satisfying demand of 

product j can be calculated by solving DLSP for product j by using any DP 

algorithm for DLSP. Let LB
(1 )

j  denote the lower bound obtained for product j. 

Then, a valid lower bound for our problem, 
(1)

L B , can be calculated as:  

(1 ) (1 )
L B m ax L B

j J j
  (38)  

4.3.2  Co-Production Lot Sizing (CPLS) Relaxation 
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We note that the calculation of LB
(1 )

j  can be interpreted as defining a dummy CU 

for each product j whose fixed and variable costs are the minimum fixed and 

variable costs of the underlying CUs that can produce j. Since we calculate 
( )j

t
f

 

and 
( )j

t
c

 independently, the cost structure of the dummy CU may not correspond 

to an existing CU, hence underestimating the total cost. In this section, we 

consider an extension of DLSP in which a single product can be produced via a 

number of CUs having different fixed and variable costs (CPLS). Formally, we 

define CPLS as follows:  

CPLS. Given a set of CUs I, each with fixed cost, 
i

t
f

, and variable cost, 
i

t
c

; a 

single product j, with demand, 
j

t
d

, and holding cost, 
j

t
h

; production ratios, 
j

i


; 

find a feasible production plan (such that all demands are satisfied on time) that 

has minimum total cost.  

We observe that CPLS can be solved by a dynamic programming approach. In 

particular, let ,

j

l t
C

 be the total cost of satisfying the demand for product j from 

period l to t from the production occured in period l.  

1

, ( ) 1 ,
m in { }

t

j i i j j j

l t i I j l l lt k k t

k l

C f c d h d



 



     (39)  

Furthermore, let 
j

t
F

 be the minimum total cost when considering periods from 1 

to t. Then, the following recursive function gives the current total minimum cost 

for product j.  

1, , 1 ,
m in { }j j j

t k t k k t
F F C

  
   (40)  

We can find a lower bound for the problem by calculating LB
( 2 )

j  for each product 

by solving the recursive equation (40) in a DP-based algorithm and calculating 

the maximum among all products.  
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( 2 ) ( 2 )
L B m ax L B

j J j
  (41)  

4.3.3  Incorporating CPLS Lower Bounds in Branch & Cut 

We observe that LB
(1)

 and LB
( 2 )

 can be used to calculate initial lower bounds on 

the problem. In this section, we discuss how we can incorporate an extension of 

LB
( 2 )

 within our Branch & Cut (B&C) algorithm. Let us add a binary variable wi for 

each i I  into our model, which take on value 1 if and only if CU i is ever used 

for production in any period. We add constraints (42)–(43) to IP1.  

,
t

i i
y w t T i I     (42)  

.
t

i i

t T

w y i I



    (43)  

At any node of B&C tree, we check the current upper bounds of wi variables. If 

the upper bound of wi has been set to zero due to branching, then CU i cannot 

be used in the current B&C node or any of its children. Therefore, we can omit 

this CU while calculating LB
( 2 )

, thus increasing the lower bound. Furthermore, 

removal of a CU from the problem may lead to a disconnected set of products 

that are produced by disjoint CUs. We use this observation to further tighten the 

lower bound.  

In particular, we construct a bipartite graph at each B&C node. The set of CUs 

whose w-variables have nonzero upper bound constitutes one part of the graph 

and products constitute the other part. We add an edge (i, j) if 
0

j

i
 

. We then 

find connected components of this bipartite graph. We then calculate LB
( 2 )

 for 

each connected component, and add the lower bound obtained by each 

connected component to calculate a lower bound for the current B&C node. We 

add a local user cut that enforces the objective function value to be greater than 

or equal to the calculated lower bound. This local cut may increase the linear 

programming relaxation value at the current B&C node, and may be used by the 

solver to generate further cuts.  
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We note that the lower bound calculated by this approach gets tighter as more wi 

variables’ upper bounds are set to zero during branching. Therefore, we use 

branching priorities to force the solver to branch on wi variables to obtain better 

lower bounds earlier in the B&C algorithm.  

5  Computational Analysis 

In this section we first give the data generation process for the test instances that 

we use. Then, we compare the efficacy of different MILP models using a 

commercial solver. Finally, we test effectiveness of the algorithmic improvements 

that we propose in Section 4.  

We use ten different data sets that have different parameter settings as shown in 

Table 4. For each data set given in Table 4, we generate 10 random instances, 

resulting in 100 test instances in total. We set the time limit to 60 minutes per 

instance for all tests. We implement the models and algorithms in C++ 

programming language and use IBM CPLEX 12.9 in 64 bit mode for MILP 

solutions. Benchmark tests are performed on an Intel Core i7-3820 3.6 GHz 

machine with 32 GB RAM and 10 MB cache, running on Windows 10 operating 

system.  

5.1  Data Generation Process 

There is no available data library that we can directly use for the lot sizing 

problems in deliberated co-production literature. Therefore, we generate random 

data sets for experimentation. We use the data generation process used by 

Graves (1982) to generate a production planning problem where applicable. The 

procedure described in Graves (1982) has 20 products across three product 

families as shown in Table 2. Each product has a lower (
j

t
d

) and an upper (
j

t
d

) 

bound on demand for each period to be determined using uniform distribution. 

When more than 20 products are present in an instance, mod operation is used 

to determine the family of a product. For example, product 21 belongs to the first 

family whereas product 26 belongs to the second product family.  
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We use holding costs (
j

t
h

) and bounds on fixed costs of products (
j

fc
 and 

j

fc ) 

as given by Graves (1982). The variable costs do not directly match with the 

ones given in Graves (1982), so we take variable costs of products, vcj as 10, 15, 

and 20 for product families 1, 2, and 3, respectively. All these settings are 

provided in Table 3.  

We create co-production units randomly while ensuring that each product is a 

part of at least one CU to ensure feasibility. A parameter named density 

(represented by δ) is used to determine the number of products inside each CU. 

Each CU can produce at least one and at most δ many products.  

The fixed cost of a CU, 
i

t
f

, is determined by taking %75 of the sum of the fixed 

costs of products that CU includes, i.e., ( )

0 .7 5
i j

t

j J i

f f c



 
, where fcj is randomly 

generated in the interval 
[ , ]

jj

fc fc
. Similarly, the variable cost of a CU, 

i

t
c

, is 

taken as %90 of the sum of the variable costs of its products, i.e., ( )

0 .9
i j

t

j J i

c vc



 
. 

We create data sets with different sizes in terms of the time period, the number of 

products, the number of CUs and the density (δ) of CUs. The properties of these 

problem sets are summarized in Table 4.  

5.2  Comparison of Alternative Model Formulations 

We first implement MILP formulations directly without our proposed 

improvements. We solve all instances using CPLEX that uses 4 threads and has 

an MIPGap of 0. We give our computational results in Table 5. For each problem 

set and formulation we provide the number of test instances, out of 10, that give 

the best solution across different formulations and the average optimality gap at 

the end of time limit under the columns named ‘# of Best Sol.’ and ‘% Gap’ 

columns, respectively. For example, for PS 6, IP1 gives best solution for 9 and 

IP3 gives best solution for 1 of the 10 test instances. For some problem sets, the 

summation of best solutions across different formulations exceeds the total 
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number of test instances as multiple formulations give equal solutions, which are 

also best solution, as in PS 1 and PS 2. We provide the total number of best 

solutions (T) and the average optimality gap (A) over all problem sets in the last 

row of Table 5.  

As the number of time periods, the number of products and CUs increase, it 

becomes harder to solve the instances. As a result, the average gap increases 

as the problem sizes increase. Moreover, as the density of CUs increase, the 

average gap also increases except from PS 1 to PS 2 for which the average gap 

decreases for all formulations. Since the problem size is small in these two sets, 

we conclude that density does not significantly affect solution performance for 

small instances.  

In terms of number of best solutions, IP1 gives the highest number of instances 

for five of the problem sets, IP2 gives the highest number of best solutions for 

three sets, IP4 gives the highest number for one set and for the remaining one all 

formulations are equal in terms of number of best solutions. When we analyze 

the average gap across different formulations, IP1 gives the best average gap for 

8 out of 10 problem sets. Only for PS2, IP3 gives the best gap, and for PS1 both 

IP1 and IP3 give the best gap.  

IP4 formulation performs the worst in terms of average gap values for medium 

and large problem sets (PS4 to PS10). Notice that IP4 formulation has the 

highest number of constraints for any given problem instance due to the 

constraints of the form (21). As density parameter increases from 3 to 4, only the 

number of constraints for IP4 increases due to constraint (21), which in turn 

significantly increases the problem size for IP4 formulation resulting in the worst 

performance.  

We can conclude that IP1 dominates the other formulations in terms of both the 

average gap and the number of best solutions. Therefore, we continue our 

computational experiments by using IP1 as the MILP formulation.  
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5.3  Effectiveness of Proposed Algorithmic Improvements 

In this section, we test the effect of adding valid inequalities by using the 

separation algorithm given in Section 4.1 to IP1 formulation. These experiments 

are based on the LP relaxation of IP1 formulation. We repeatedly solve LP 

relaxation of a model and add violated valid inequalities as needed. The 

algorithm for separating valid inequalities from a given fractional solution is given 

in Figure 4. Implementing this algorithm directly caused some numerical 

problems. For example, if a valid inequality that is violated by only a small 

amount is added to the formulation, CPLEX may not register it as a violated 

constraint due to numerical tolerances of CPLEX. This results in an infinite loop 

in some problem instances. Therefore, we restrict ourself to add valid inequalities 

that are violated by a specified value, called epsilon, to register as violated valid 

inequalities. Upon preliminary experimentation it is observed that the value of 

epsilon does not matter as long as it is not close to zero. Hence the value of 

epsilon is set to 20.  

Another difficulty that we experienced while adding valid inequalities is that there 

is no standard mechanism to stop generating valid inequalities when these 

inequalities no longer improve current lower bound. In order to remedy this 

problem, we stop searching for valid inequalities when the percentage increase 

in the lower bound as a result of adding valid inequalities is less than 0.2%. We 

set the root algorithm parameter of CPLEX to dual simplex for this experiment.  

We provide a summary of results in Table 6. Columns of Table 6 from left to right 

gives the average increase in the lower bound compared to LP relaxation (% Inc. 

in LB), the average gap between the LP relaxation solution and the best found 

feasible solution (% Gap–BS), and the average number of added valid 

inequalities (# of VI). As we see in Table 6, the valid inequalities and the 

separation algorithm proposed in Section 4.1 significantly improve the linear 

programming relaxation. In this experiment we do not see the effect of the size of 

the problem in terms of average increase in LB. On the other hand, as δ 
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parameter increases, which makes the CUs denser, the average increase in LB 

becomes higher. The average percentage gap of the LP relaxation solution with 

valid inequalities and the best known solution is promising as it might be as low 

as 4.95% with an average of 6.70%.  

We also test IP1 formulation using three different settings and compare the 

results with the original MILP implementation. In the first setting we implement 

IP1 formulation without any improvements. In the second setting, separation 

algorithm is implemented for IP1 using callback structure of CPLEX. In the third 

setting, we apply the pattern fitting heuristic to generate an initial solution and 

implement separation algorithm. Finally, in the last setting we also implement 

CPLS procedure to find lower bounds at the fractional nodes. In these set of 

problems, we first turn off CPLEX cuts in order to see the net effect of our 

separation algorithm similar to the approaches given in Küçükyavuz and 

Pochet (2009) and Atamtürk and Küçükyavuz (2005). We provide the results in 

Table 7. Then, we turn on CPLEX cuts and run all experiments using CPLEX’s 

default settings and provide the results in Table 8. For this experiment we set the 

epsilon value to 300 and 400 for δ values equal to 3 and 4, respectively.  

In Tables 7 and 8, column blocks ‘IP’, ‘Branch & Cut’, ‘Branch & Cut + PF’, and ‘

Branch & Cut + PF + CPLS’ give the results of MILP implementation, separation 

algorithm implementation, heuristics solution to be used as an initial solution, and 

finally all algorithms and heuristic implementations discussed in Section 4, 

respectively. For each problem set, ‘% Gap’, ‘Nnodes’, ‘# Best Sol.’ and ‘Ncuts’ 

columns provide the average optimality gap, the average number of B&B nodes 

considered, the number of best solutions found per problem set and the average 

number of valid inequalities generated, respectively. At the end of each column, 

we provide some aggregate results. For % Gap, Nnodes and Ncuts, we provide 

the average results over ten instances in each problem sets, and we give the 

total number for the # Best Sol. column.  
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We observe that when the CPLEX cuts are off, none of the problem instances 

can be solved to optimality within the time limit by all different settings. The third 

setting, where we use pattern fitting heuristic to provide an initial solution and 

then implement Branch & Cut algorithm (Branch & Cut + PF), gives the best 

average percentage gap calculated over all instances. However, when we check 

the optimality gaps for individual problem sets, we observe that in five of the ten 

problem sets, namely in PS4, PS6, PS7, PS8 and PS9, last setting, where we 

also use CPLS relaxation in fractional nodes to find a lower bound (Branch & Cut 

+ PF + CPLS), gives the best gap.  

In terms of number of best solutions found, direct implementation of the integer 

program (IP) is the best one with a total number of best solutions of 47 out of 100 

instances. When we analyze the details for large instances, we observe that for 

PS9 and PS10 last setting dominates the other settings, while for PS8 and PS7 

IP is better than the others. Although IP seems to give higher number of best 

solutions, the optimality gaps that it provides are very high compared to other 

settings. The reason for this high percentage is while IP’s upper bounds are 

better than the others, the lower bounds found by IP are very loose.  

When we analyze the results where CPLEX cuts are on, as it is expected, all 

solutions are improved accross all settings with IP being the most positively 

affected one. However, on the contrary of the previous table, IP provides the 

least number of best solutions for this setting. Moreover, PS2’s all instances are 

solved to optimality within the time limit by all settings while 8 instances out of 10 

are solved to optimality for PS1. We add a column for Table 8 called “# opt/Time” 

to provide the number of instances solved to optimality and the average CPU 

time the algorithms take to find an optimal solution for those instances. For PS1, 

Branch & Cut algorithm provides the minimum CPU time for the instances solved 

to optimality and it is followed by IP. For PS2, where all instances are solved to 

optimality, the average CPU time is the smallest for the third setting in which we 

use pattern fitting heuristic to provide an initial solution that we provide as an 
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initial solution for the Branch & Cut algorithm. This setting is followed by the 

Branch & Cut algorithm without the heuristic, and IP yields the largest CPU time. 

For all other problem sets, none of the instances are solved to optimality within 

the time limit.  

For the case where CPLEX cuts are on, last setting appears to be the best in 

terms of both the average optimality gap, 3.37% over all instances, and the total 

number of best solutions, 64 out of 100. When we analyze the problem sets 

indivdually in terms of gaps and number of best solutions, we observe that the 

last setting is better than the other settings for the sets with high density 

parameter.  

6  Conclusion 

In this paper we introduce a class of lot-sizing problem that appears in co-

production systems. We define the problem in a controlled and deliberated co-

production system, and show that the lot sizing problem in this type of system is 

NP-Hard in the strong sense. We develop four mixed-integer programming 

formulations. Then, we show that the LP relaxation of all four formulations are 

equal. We propose a separation algorithm based on a set of valid inequalities as 

a solution method, a heuristic that aims to provide an initial solution to be given to 

a solver and another heuristic that is used to obtain fast upper bounds for 

fractioanl solutions.  

There is no benchmark data set available for lot sizing problems in a co-

production environment; therefore, we generate ten different data sets to be used 

for computational analysis. We test the efficacy of the proposed MILP 

formulations, the separation algorithm and the heuristics on this data set. Based 

on our computational experiments, we conclude that, among all four 

formulations, the MILP formulation that includes the inventory variables explicitly 

is the best one in terms of average gap provided at the end of a time limit. 

Moreover, the setting where the separation algorithm, the initial solution heuristic 
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and the CPLS relaxation to calculate lower bounds are used improves the 

solution quality in terms of the average optimality gap and the number of best 

solutions found over all test instances.  

Future avenues for research include using polyhedral analysis to find the convex 

hull of the problem, strengthening the mixed-integer program by developing 

some valid inequalities that will tighten the solution space and developing 

heuristics based on dynamic programming approaches applicable to regular lot-

sizing algorithms.  
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Fig. 1 Co-production in plastic mould industry with different fixtures 

(Euromak, 2020) 
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Fig. 2 An Example for Deliberated and Controlled Co-production 
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Fig. 3 Algorithm for mapping 
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 using FIFO. 
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Fig. 4 Algorithm for (l, S, j) Separation. 
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Fig. 5 Pattern Fitting Heuristic. 
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Table 1 Notation and Definitions. 

T  : Set of time periods, indexed by t  

J  : Set of products, indexed by j  

I  : Set of co-production units (CUs), indexed by i  

J(i)  : Set of products produced by CU i  

I(j)  : Set of CUs that produce product j  

j

i


 
: Co-produced amount of product j, when one unit of CU i is produced 

i

t
f

 
: Fixed cost of CU i at period t  

i

t
c

 
: Variable cost of CU i at period t  

j

t
h

 
: Holding cost of product j at period t  

j

tk
h

 
: Cumulative holding cost of product j between periods t and k  

j

t
d

 
: Demand of product j at period t  

j

tk
d

 
: Cumulative demand of product j between periods t and k  
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Table 2 Product Families and Demand Data Used in Experimentation. 

Family  1  1  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3  3  3  3  

Product (j)  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18  19 20 

j

t
d

 
20 40 15 25 80  80  15 40 40 55 20 20 30 30 20 30 30 50  60 40 

j

t
d

 
40 60 25 65 120 120 25 60 60 85 40 40 50 50 40 70 50 100 90 80 
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Table 3 Holding Cost, Fixed Cost, and Variable Cost Used in Experimentation. 

Family hj  
j

fc
 

j

fc  
vcj 

1  1  50  150  10 

2  1.75 100  200  15 

3  1.5  100  200  20 
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Table 4 Problem Set Descriptions. 

Problem Set | |T  | |J  | |I  
δ 

PS 1  12  10  20  3  

PS 2  12  10  20  4 

PS 3  24  40  120  3  

PS 4  24  40  120  4 

PS 5  24  40  200  3  

PS 6  24  40  200  4  

PS 7  36  40  120  3  

PS 8  36  40  120  4  

PS 9  36  40  200  3  

PS 10  36  40  200  4  
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Table 5 Summary of Results for Alternative Model Formulations 

 # of Best Sol. Gap 

PS IP1 IP2 IP3 IP4 IP1 IP2 IP3 IP4 

PS1 8 8 8 9 0.17 0.51 0.17 0.29 

PS2 10 10 10 10 0.03 0.19 0.00 0.12 

PS3 0 6 2 2 4.72 5.71 5.00 5.08 

PS4 1 6 1 2 4.73 6.61 5.31 5.74 

PS5 7 2 1 0 4.88 7.48 5.36 12.47 

PS6 9 0 1 0 4.52 8.52 5.28 16.64 

PS7 4 6 0 0 4.67 7.72 6.04 12.38 

PS8 5 4 1 0 4.78 8.55 5.74 14.17 

PS9 10 0 0 0 5.55 12.41 6.92 26.08 

PS10 10 0 0 0 5.64 15.01 9.40 41.27 

 64 42 24 23 3.97 7.27 4.92 13.42 
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Table 6 Summary of Results for Separation Algorithm for IP1 Formulation 

 % Inc. in LB % Gap-BS # of VI 

PS 1  15.83 4.95 690 

PS 2  17.79 5.43 634 

PS 3  15.14 6.68 11573 

PS 4  19.71 7.64 11820 

PS 5  14.46 6.49 11704 

PS 6  20.58 6.68 11992 

PS 7  15.06 6.87 24688 

PS 8  19.32 7.41 25607 

PS 9  15.39 7.18 25737 

PS 10 20.84 7.63 26615 

Avg.  17.41 6.70 15106 
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Table 7 Summary of Results for IP1 in Different Settings where CPLEX cuts are 

off. 

 IP Branch & Cut 

PS Gap (%) Nnodes 

# Best 

Sol. Ncuts Gap (%) Nnodes 

# Best 

Sol. Ncuts 

PS1 10.31 11862973 3  - 1.49 1776741 7  5806 

PS2 5.87 24238609 7  - 0.22 336158 10  4223 

PS3 18.13 2138837 9  - 7.59 2936 0  35544 

PS4 20.95 2178332 8  - 8.15 2614 0  39565 

PS5 17.54 1992753 6  - 6.66 1419 0  27285 

PS6 21.73 2044701 1  - 6.76 921 0  30297 

PS7 18.18 1725201 6  - 6.74 530 1  49844 

PS8 20.85 2067092 7  - 7.14 391 0  61926 

PS9 20.14 1908900 0  - 7.04 7 2  41405 

PS10 23.70 1631485 0  - 7.17 41 0  52042 

 A: 17.74 A: 5178888 T: 47  A: - A: 5.89 A: 212176 T: 20  A: 34794 

 Branch & Cut + PF Branch & Cut + PF + CPLS 

PS Gap (%) Nnodes 

# Best 

Sol. Ncuts Gap (%) Nnodes 

# Best 

Sol. Ncuts 

PS1 1.45 1885518 8  5927 4.80 1932068 6  4955 

PS2 0.24 325875 9  4276 3.53 600523 9  4014 

PS3 7.29 3095 1  36645 7.77 4462 0  29256 

PS4 8.26 2450 0  39606 7.63 3858 2  33161 

PS5 6.22 1364 3  27312 6.25 1140 1  23379 

PS6 6.14 989 3  31577 5.69 1252 6  29849 

PS7 6.72 475 2  48268 6.70 128 1  44320 
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 IP Branch & Cut 

PS8 7.20 394 1  61109 6.64 199 2  58262 

PS9 6.72 83 2  42130 6.62 0 6  40801 

PS10 6.49 26 5  52112 6.72 21 5  51703 

 A: 5.67 A: 222027 T: 34  A: 34896 A: 6.23 A: 254365 T: 38  A: 31970 
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Table 8 Summary of Results for IP1 in Different Settings. 

 IP  Branch & Cut  

PS  

Gap 

(%)  Nnodes  

# 

Best 

Sol. 

# opt/ 

Time Ncuts  

Gap 

(%)  Nnodes  

# 

Best 

Sol. 

# opt/ 

Time Ncuts  

PS1  0.10  633444  9  8/473.3  -  0.11  625484  10  8/442.7  36.4  

PS2  0.00  115255  10  10/260.9  -  0.00  90614  10  10/199.8  9.8  

PS3  4.52  10816  0  -  -  4.22  10704  1  -  2034.9  

PS4  4.41  21653  0  -  -  4.13  20959  2  -  1293.2 

PS5  4.68  1765  0  -  -  4.55  1850  0  -  1488.4  

PS6  4.35  3871  0  -  -  4.30  3612  0  -  1132.1 

PS7  4.52  2636  3  -  -  4.57  2524  1  -  4636.4  

PS8  4.59  4742  0  -  -  4.47  4587  1  -  4010.1 

PS9  5.19  11  2  -  -  5.33  0  2  -  3084.3  

PS10  5.37  94  0  -  -  5.13  135  0  -  2765.8 

 

A: 

3.77  

A: 

79429  

T: 

24  A: -  A: -  

A: 

3.68  

A: 

76047  

T: 

27  A: -  A: 2049 

 Branch & Cut + PF Branch & Cut + PF + CPLS 

PS  

Gap 

(%)  Nnodes  

# 

Best 

Sol. 

# opt/ 

Time Ncuts  

Gap 

(%)  Nnodes  

# 

Best 

Sol. 

# opt/ 

Time Ncuts  

PS 1  0.12  650897  9  8/518.9  34.2  0.67  899873  8  8/1065.6  34.0  

PS 2  0.00  93763  10  10/185.6  9.8  0.00  137233  10  10/220.1  10.1  

PS 3  4.18  10848  1  -  1866.2  3.61  82762  8  -  2110.5  

PS 4  4.32  18472  1  -  1333.0  3.72  138274  7  -  1195.8  

PS 5  4.07  1605  8  -  1482.8  4.32  8182  2  -  1201.2  
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 IP  Branch & Cut  

PS 6  3.63  3420  1  -  1138.7  3.32  15538  9  -  1078.9  

PS 7  4.37  2883  3  -  4278.8  4.53  8765  3  -  6432.7  

PS 8  4.54  5751  0  -  4379.4  3.83  18390  9  -  11652.3 

PS 9  5.04  0  5  -  3169.5  5.30  0  1  -  2178.7  

PS 

10 4.46  136  3  -  2779.5  4.45  8  7  -  2067.1  

 

A: 

3.47  

A: 

947032  

T: 

41  A: -  

A: 

2047  

A: 

3.37  

A: 

944579 

T: 

64  A: -  A: 2796 
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