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1  Introduction

The origins of the theory of linear elasticity are 
reported, among others, in [1, 2] and [3], ch. 1, where 
the studies of Navier [4], Cauchy [5], Poisson [6] 
and Green [7] are recalled. In the beginning, matter 
was thought composed of molecules, which are equal 
infinitesimal body-points interacting by central forces 
depending only on their distance, with no particular 
inner organisation. Due to this, and since the radius 
of molecular activity is not appreciable at labora-
tory scales, such theories are dubbed local (often 
also classical). Gabrio Piola in mid 1800’s suggested 
that material behaviour may be affected by different 
arrangements of molecules (see, e.g., [3], ch. 2, and 
[8]), and Bravais’ studies on crystals (see [3], ch. 1) 
highlighted that molecules must be corpuscles with 
small, yet nonzero, extension: this paved the way for 
the Cosserats [9], Voigt [10] and Poincaré [11]. These 
studies foresee either an inner structure or non-central 
inner actions and opened the field of non-local con-
tinuum models. One of the first instances of the latter 
is in [12], where the convolution of a suitable kernel 
function with all the reactions of a foundation deter-
mines its local deformation. The researchers’ desire of 
understanding the world, rather than making it more 
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comfortable [13] pushed the investigation on enriched 
models further: indeed, non-classical, non-local (in 
both sense of long-range and innerly structured) mod-
els can describe materials with heterogeneities and/or 
internal organization at a small scale with respect to 
external lengths, which affect their behaviour at larger 
scales. There is a very wide range of such materials 
and/or structural elements in interesting and up-to-
date engineering applications, from carbon nanotubes 
and nanoshells [14] to masonry [15].

Non-classical linear elasticity uses continua 
endowed with enhanced constitutive relations or 
additional kinematic descriptors. Alternatively, 
material inner organization can be described by dis-
crete models, as in molecular dynamic simulations 
for nano-sized elements [16] or in the limit analysis 
of brick walls at the macro-scale [17]. However, the 
numerical burden of these techniques, proportional to 
the dimensions of the considered assembly, may be 
unbearable for the computational power of our time. 
Continuum models,1 on the other hand, may be used 
when the characteristic lengths are sufficiently larger 
than the smallest material unit of the body. Thus, the 
selection of an appropriate approach depends on the 
scale of the inner structure of the considered body or 
material, and on the intended outcomes of the prob-
lem. We will focus on continuum models for nano-
sized beams, the dimensions of which are sufficiently 
greater than interatomic distances, which however 
still exhibit size-dependent behaviour.

Non-classical continua are labelled implicit/weak 
or explicit/strong [15, 18–20], depending on how size 
effects are accounted for. Implicit models add kin-
ematic descriptors to those of local elasticity, plus 
their work-conjugates. In strong models the classi-
cal theory is endowed with long-range interactions,2 
leading to constitutive laws in terms of integral or 
integral-differential operators. Examples of implicit 
models are [9, 21, 22], while the like of [23–25] 
present explicit models. Covering all models and 
their possible variants is well beyond our scope; one 
may refer to [1, 18, 26–30] for a background and to 

[31–33] for reviews and comparisons of various non-
local models.

Here we study nano-sized beams following Erin-
gen’s non-local elastic law, firstly presented in Kröner 
[23], Eringen and Edelen [24], and Eringen [34] and 
thoroughly in [25]. Its early applications focused on 
infinite or semi-infinite solids, for which a reduction 
of the original integral form to a differential one is 
possible [35]. The latter presents a Laplace operator 
and is relatively easy to handle from a mathematical 
point of view, which made it appreciated and used 
in many papers [36–43]. However, its application 
to finite domains fails, and evidence of paradoxical 
results is, e.g., in [44, 45]. Furthermore, Eringen’s 
original integral form leads to integral-differential 
equations and requires satisfying additional bound-
ary terms with respect to the standard natural and 
kinematic ones of local, classical elasticity. These 
additional terms are called constitutive boundary con-
ditions [46–49], since they are of elastic nature, but 
still of uncertain physical interpretation. Indeed, they 
must account for the values of the possible kinemati-
cal constraints there, but the material must be actu-
ally unaware of their presence. Nevertheless, it is also 
reported that an exact solution may be available for 
some specific boundary and loading conditions, mak-
ing the constitutive boundary conditions identically 
satisfied [50].

The mathematically problematic side of Eringen’s 
constitutive law is somehow smoothened by its vari-
ant that considers the material as a two-phase mix-
ture of local and non-local linear elastic behaviour 
[44, 51]. The material response is thus assumed to be 
a sum of suitably weighted local and non-local con-
tributions, according to the usual law of mixtures in 
functionally graded, or composite, materials. Benv-
enuti and Simone [52] examined the  axial behavior 
of nonlocal bars by the two-phase model of Erin-
gen’s. Simple bending and the elastica is examined 
by Bernoulli-Euler’s theory by Wang et al. [53]. This 
research is extended to Timoshenko beam theory in 
[54]. Relations between discrete models and their 
continuum counterparts are investigated by Tuna et 
al. [55] using Eringen’s two-phase model. An attempt 
on releasing the constitutive boundary conditions for 
static problems of bars and beams is presented by 
Eroğlu [56].

For free vibration, it is possible to obtain particu-
lar solutions that satisfy both balance and constitutive 

1  More precisely, quasi-continua, since distances shorter than 
the so-called scale parameter have no physical meaning [18].
2  Here ‘long’ stands for ‘with much larger radius of molecular 
activity than that of local elasticity’.
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equations [57–60], but the need for constitutive 
boundary conditions remains, and such requirement 
of possibly spurious additional constraints, which are 
of uncertain physical interpretation, casts a shadow 
on these solutions [61–63]; this is also discussed in a 
recent review [64]. Therefore, it is important to look 
for physically motivated solutions to problems of sim-
ple, yet widely used, structural elements.

We deal with nano-sized beams and use a mix-
ture of local and non-local elastic materials following 
Eringen’s model, which is built upon well-accepted 
axioms of material response. In this sense, neither 
the beam model nor the constitutive model adopted in 
this contribution are original; the novelty of our work 
lies in the way we deal with the field equations of the 
problem of natural linear vibration for such nano-
beams. Indeed, we look for an approximate solution 
of the field equations under the assumption that the 
contribution of the non-local portion in the constitu-
tive equation is weighted by a small coefficient that 
assumes the role of a perturbation parameter, accord-
ing to the schemes suggested, for instance, in [56, 65]. 
This Ansatz enables us to perform a formal power 
series expansion of the field functions in terms of the 
small perturbation parameter and yields a hierarchy 
of sets of field equations, one at each step of the for-
mal expansion. As far as we know, this is a new way 
to approach nonlocal elastic problems and leads to a 
couple of meaningful pros. Indeed, the advantages of 
such a procedure are that: i) existence and uniqueness 
of the solutions are ensured for each set of the hierar-
chy, which behaves meekly from the point of view of 
mathematical complexity; and ii) by a suitable choice 
of the initial value of the perturbation parameter, it is 
possible to neglect the constitutive boundary condi-
tions, which leave so many unanswered questions. 
This new approach, thus, gets rid of many of the 
theoretical and numerical difficulties met in previous 
investigations and represents a strong means to inves-
tigate a whole series of problems related to nanobe-
ams. The main novelty of this work is extending the 
application of the perturbation approach, which was 
introduced in [56] for static problems, to linear vibra-
tion problems, the existence of the solutions of which 
must be further examined. By this method we will 
look for small-amplitude vibration natural angular 
frequencies of nano-beams versus the non-local frac-
tion; the possibility of obtaining closed-form solu-
tions, which is crucial in many applications, among 

which material identification procedures, will be 
investigated.

2 � A direct one‑dimensional beam model

In the 3D Euclidean ambient space we fix an origin and 
a Cartesian coordinate frame xyz, to which an ortho-
normal basis of vectors {i, j, k} is associated. We see a 
beam as a collection of equal prototype plane regions 
ℜ , named beam cross-sections, orthogonally attached 
through their centroid to a portion of the z-axis; this 
segment, of length l from the origin, is named the beam 
axis. The portion of ambient space occupied by this 
construction represents the reference unstressed config-
uration B0 of the beam. If, as usual, we assume that the 
beam cross-sections undergo only rigid body motions, 
a different configuration B of the beam is reached by 
the displacement of the centroids of ℜ , described by 
the vector field u(z) , and the cross-sections rotation, 
described by the proper orthogonal tensor field R(z) . 
Due to the assumed rigidity of the beam cross-sections, 
the kinematics (hence, the relevant dual work-conju-
gate quantities and, thus, all fields of mechanical inter-
est) depend on the sole abscissa along the undeformed 
beam axis: the beam model so introduced is direct and 
one-dimensional. Henceforth, for simplicity of nota-
tion, the dependence of fields on z will be understood, 
hence omitted, if no confusion arises.

Strain is of local nature, defined as the difference 
between a generic change of shape and a rigid one; suit-
able strain measures in the actual configuration are [66]

In Eq. (1) E is the skew-symmetric tensor field pro-
viding the curvatures of the beam axis in the actual 
configuration; e is the vector field describing how 
k , coinciding with the unit tangent to the beam axis 
in B0 , changes length and setting with respect to the 
cross-sections in B . We are interested in small vibra-
tion about B0 : the actual shapes, adjacent to it, are 
reached by ‘small’ displacements and rotations from 
B0 . We may thus assume that all the fields of inter-
est regularly depend on an evolution parameter and 
expand them in a formal power series up to the first 
order in the same parameter, neglecting the terms of 

(1)� =
d�

dz
�T, � =

d

dz
(z� + �) − ��
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order higher than one. The zeroth order terms of u 
and R are the null vector and the identity tensor, as 
they are evaluated in B0.

If, for simplicity, we study vibration in the yz 
plane,3 the axis displacement is decomposed as 
u = vi + wk , and the cross-sections rotation is 
expressed in terms of a sole angle Ω about axes paral-
lel to x. Then, e has two scalar components, denoted � 
and � , called shearing strain between axis and cross-
sections and axial elongation, respectively; E has a 
sole component, denoted � and called bending incre-
ment of curvature (or simply curvature in this case). 
Since we investigate adjacent configurations, the 
incremental, linearised strain measures are [66]

where, with an abuse of notation, v,w,Ω are actually 
first-order increments with respect to the evolution 
parameter.

The mechanical balance in actual configuration 
may be obtained via the principle of virtual work [66] 
or by the so-called principle of solidification, requir-
ing as a necessary condition the vanishing of the total 
force and torque for any neighbourhood of the con-
sidered geometrical model of the body [3]. Supposing 
the absence of non-local residuals [25], the local bal-
ance of force and torque in the actual shape reads

where n,m are the inner force and couple and q, t 
the outer force and couple densities, respectively. In 
our planar setting, we decompose the inner force as 
n = Tj + Nk , labelling T, N as shearing and normal, 
respectively; the inner couple has the sole bending 
component M. To investigate balance in configura-
tions adjacent to the referential one, similarly to what 
was done for strain measures, a formal series expan-
sion up to the first order of an evolution parameter 
can be performed, yielding [66]

(2)� =
dw

dz
, � =

dv

dz
+ Ω, � =

dΩ

dz

(3)
d�

dz
+ � = �,

d�

dz
+

d(zk + u)

dz
× � + � = �

(4)
dN

dz
+ qz = 0,

dT

dz
+ qy = 0,

dM

dz
− T + tx = 0

With another abuse of notation, M, T ,N, tx, qy, qz are 
now first-order increments with respect to the evolu-
tion parameter of the components of inner action and 
of outer action densities with respect to the axes indi-
cated by the subscripts.

In order to close the linear elastic problem we need 
one last set of relations between strain measures and 
internal actions. We suppose, without loss of general-
ity and in accord with many works of the literature, 
that the considered beam is purely flexible. That is, 
we admit that the curvature � is the only detectable 
strain measure, which thus constitutively prescribes 
the bending couple, its dual work-conjugate. As a 
consequence, the contact force components are pure 
constraint reactions. According to the law of mix-
tures, and assuming that � is the portion of non-local 
response following Eringen’s simplified law for one-
dimensional continua in the so-called strain-driven 
form, we have [57]

where B is the bending stiffness of the cross-sec-
tion; the non-local response is the convolution of 
the detectable strain with a so-called kernel K that 
accounts for the strain contribution of a finite neigh-
bourhood of the considered point, or even of the 
whole domain. Among many alternatives, we use the 
following symmetric exponential [52, 54, 57]

where � is the non-local characteristic length param-
eter, roughly providing a measure of long-range 
inner elastic actions, or, analogously, a kind of radius 
of sensible molecular activity, outside which the 
mechanical response quickly vanishes and is almost 
negligible.

2.1 � Linear transverse vibration

If all fields of interest depend on time t in addition to 
the axial abscissa z, we may investigate ‘small’ trans-
verse vibration with respect to the beam axis, where 
the sole outer action density is the relevant iner-
tia; hence, the only non-zero distributed load qy , by 
D’Alembert’s principle, is [57]

(5)M = B
[
(1 − �)� + �K ∗ �

]

(6)
K(� , z) = K(|� − z|) = 1

2�
exp

(|�−z|
�

)
,

K ∗ f = ∫ L

0
K(� , z)f (�)dz

3  It is enough to suppose geometric and material symmetry of 
the cross-sections about the y-axis, and all loads to lie on the 
yz plane.
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Here � is the cross-section mass (mass of the beam 
per unit length of the undeformed axis), and over-dots 
denote time derivatives. If only natural vibration con-
sequent to a ‘small’ perturbation of the initial shape 
is considered, it is usual to assume that the field func-
tions harmonically depend on time with natural angu-
lar frequency � , i.e., g(z, t) = g(z) sin(�t + �) for any 
field g. The supposed pure flexibility implies the van-
ishing of shearing strain in Eq. (1)2 , so that the cross-
section rotation depends on the slope of the deformed 
beam axis and the axis curvature depends on the sec-
ond derivative of the transverse displacement of the 
beam by (1)3 ; furthermore, the constitutive equation 
(5) and the local transverse balance (4) read

where, for simplicity, only the spatial part of the 
fields is indicated, the time-harmonic part being 
understood.

In order to abstract from particular numerical values 
involved in the investigation, let us define the following 
non-dimensional quantities

For typographic ease, even though this is another 
abuse of notation, henceforth we will consider only 
non-dimensional quantities and the overbars in Eq. 
(9) will be understood and hence omitted, except 
when confusion may arise.

3 � Formal expansions

Since the material behaviour follows the law of  a 
mixture, it is physically admissible that all the fields 
characterising the nano-beam response depend on the 
non-local fraction � . All fields may thus be formally 
expanded in power series around � = �0 , yielding [56]

(7)qy = −�v̈

(8)

dv

dz
=−Ω, (1 − �)

dΩ

dz
+�K ∗

dΩ

dz
=
M

B
,

dT

dz
= −��2v,

dM

dz
= T ,

(9)
z̄ =

z

L
, v̄ =

v

L
, 𝜅̄ =

𝜅

L
, T̄ =

TL2

B
,

M̄ =
ML

B
, 𝜆̄ =

�𝜔2L2

B
, N̄ =

NL2

B

(10)� =

∞∑
i=0

(� − �0)
i

i!
� i, � =

∞∑
i=0

(� − �0)
i

i!
�i,

where the state vector � is defined as

and gi = (�g)∕(��)|�=�0 for any field g. Truncating the 
series provides an approximation to the function of 
interest:

A suitable selection for the reference value of the per-
turbation parameter around which we seek approxi-
mations is �0 = 0 , corresponding to local elastic-
ity. Thus, such procedure is suitable to investigate 
the effect of ‘small’ non-locality fractions seen as a 
perturbation of a fully local linear elastic material 
behaviour.

Expanding the field functions and the eigenvalues 
into formal power series as described above provides 
a hierarchy of equations in terms of the fraction coef-
ficient � . Limiting the formal power series to the sec-
ond order in � provides the following three sets of 
equations at different levels of non-locality for free 
vibration problems; details about the passages are 
reported in the Appendix for sake of space. At the 
zeroth order in the expansion in powers of � we have

where the subscript recalls the order of the formal 
expansion. These equations are identical to that of 
local beams, since we choose �0 = 0 , i.e., absence 
of the non-local portion in the material mixture. The 
set of field equations corresponding to the first order 
term of the expansion in � , i.e., ‘small’ fractions of 
non-local linear elastic behaviour, is

The set of field equations corresponding to the second 
order term of the expansion in � , i.e., ‘moderate’ frac-
tions of non-local linear elastic behaviour, is

(11)� = {v,Ω, T ,M}T

(12)� ≈

N∑
i=0

(� − �0)
i

i!
� i, �≈

N∑
i=0

(� − �0)
i

i!
�i

(13)

dv0

dz
= −Ω0

dΩ0

dz
= M0

dT0

dz
= −�0v0

dM0

dz
= T0

(14)

dv
1

dz
= −Ω

1

dΩ
1

dz
= M

1
+

dΩ
0

dz
− K ∗

dΩ
0

dz

dT
1

dz
= −�

0
v
1
− �

1
v
0

dM
1

dz
= T

1
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The mechanical motivation of choosing only the first 
three steps of the perturbation hierarchy, represented 
by Eqs. (13)–(15), lies in the will to consider first a 
fully local material (zeroth order, Eq. (13), in order 
to make comparisons with well established results of 
the literature), then to investigate how slowly increas-
ing fractions of nonlocal material affect the actual 
behaviour. In this sense, we consider a ’’small’ (in the 
sense of perturbation methods) nonlocal fraction (first 
order, Eq. (14)), then a slightly more relevant nonlo-
cal fraction (second order, Eq. (15)). These two steps 
represent another point of novelty of this contribu-
tion, in that the perturbation approach lets us investi-
gate these problems without the need to resort to the 
dubious constitutive boundary conditions.

Eq. (13)–(15) show usual patterns of perturbation 
expansions: the differential operator is the same for all 
sets of the hierarchy, but while the first set is homoge-
neous, higher-order ones include non-homogeneities 
which depend on the solutions of the sets of equations 
at previous orders. These systems may be written in the 
following matrix form

where: the forcing term fk at the k-th order of the 
expansion in � is written in terms of the solutions of 
the preceding sets of equations of the hierarchy, as 
usual in perturbation techniques; I is the 4 × 4 iden-
tity matrix; and the 4 × 4 matrix A is as follows

Please remark that Eq. (16) describe only the bulk 
behaviour, i.e., they do not take into account bound-
ary conditions, which must be added.

The solution of each set of differential equations 
(16) can be found in integral form [67]

(15)

dv2

dz
= −Ω2,

dΩ2

dz
= M2 + 2

dΩ1

dz
− 2K ∗

dΩ1

dz

dT2

dz
= −

(
2�1v1 + �0v2 + �2v0

)
,

dM2

dz
= T2

(16)
��0 = �

�� k = �k k = 1, 2,… , �(⋅) = �
d(⋅)

dz
− �(⋅)

(17)� =

⎛⎜⎜⎜⎝

0 −1 0 0

0 0 0 1

−�0 0 0 0

0 0 1 0

⎞⎟⎟⎟⎠

where Y(z, z0) , labelled fundamental or transfer 
matrix, is also dubbed matricant; it provides the state 
vector �k at a generic point z once the same vector, 
denoted � k,0 = � k(z0) , is known at a point z0 . That is, 
the complete solution expressed by Eq. (18) requires 
the specification of some boundary conditions, which 
is to be expected since, as already remarked, we con-
sidered no such conditions so far.

When the matrix A has uniform coefficients with 
respect to z, as in our case (see Eq. (17)), the transfer 
matrix has the very simple expression [67]

For completeness, the components of the matricant 
for the case of our investigation are reported in the 
Appendix.

When A has variable coefficients, approximate 
methods to determine the matricant are available; see, 
for example, [68]. Thus, a general solution to the sys-
tem of bulk equations (16) can be always found, at least 
approximately, in terms of � k,0 ∀k . However, when the 
bulk equations are supplemented by kinematic or natu-
ral boundary conditions at the first step of the pertur-
bation equations, a fully homogeneous system turns 
out, and non-trivial solutions exist only if the operator 
expressing the boundary conditions is singular. Then, 
since the bulk and the boundary operators (be they dif-
ferential or algebraic) are the same at each step of the 
hierarchy derived from the perturbation procedure in 
terms of the non-local fraction coefficient, a solvability 
condition on the forcing term �k shall be provided [65].

For the solvability of the sets of equations at every 
step of the perturbation hierarchy, it is fundamental to 
remark that A is not symmetric, i.e., A ≠ AT . Then, 
the algebraic-differential operator D at the left-hand 
side of every set of equations in Eq. (16) is not self-
adjoint with respect to the usual inner product for 
vector fields with real-valued components

where the non-dimensional spatial domain is the 
real interval [0,  1], see Eq. (9). Owing to this, the 

(18)
�0=Y

(
z, z0

)
�0,0, � k=Y

(
z, z0

)
� k,0+gk(z)

�k(z)=�
(
z, z0

)∫ z

z0
�
(
z0, �

)
�k(�)d�

(19)�(z, z0) = exp
(
A(z − z0)

)

(20)⟨�, �⟩ = ∫
1

0

�T� dz
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orthogonality of the natural solutions Eq. (18) is awk-
ward to verify, which makes the compatibility of the 
k-th set of the hierarchy Eq. (16) complicated to eval-
uate. Thus, in order to avoid unnecessary mathemati-
cal artifices, it is suitable to look for a slightly differ-
ent strategy, which we believe to be another original 
point of this contribution. To start with, it is known 
that it is possible to reduce the set Eq. (8) to a single 
ordinary differential equation in terms of any of the 
meaningful field functions, leading to

where primes stand for derivatives with respect to 
the non-dimensional axial abscissa, and the counter 
i between parentheses in the superscripts indicates 
another order of spatial derivative, depending on the 
chosen representative field function. The reason to 
prefer this formulation instead of the four first-order 
equations (16) is that while the orthogonality of real-
valued scalar functions as the integral of their prod-
uct over a finite domain is always possible, provided 
some very mild integrability conditions, the same 
is not warranted for vector fields like in Eq. (16): 
indeed, here A being non-self-adjoint plays a crucial 
role.

The choice of one of the fields of interest, hence 
of Eq. (21) as representative of the set Eq. (8) seems 
immaterial at a first sight; however, this is not true, 
due to the aspect of the corresponding boundary 
conditions.

As a starting point, let us consider the last of Eq. 
(21), which is in terms of the bending couple. The 
first three terms of the perturbation expansion of 
these bulk equations in terms of � are

Again, we note the usual pattern of perturbation 
expansions.

(21)
(1 − �)f ���� + �

(
K ∗ f (i)

)(4−i)
− �f = 0,

f = v ⇒ i = 1, f = Ω ⇒ i = 2,

f = T ⇒ i = 3, f = M ⇒ i = 4

(22)

M����
0

− �0M0 = 0

M����
1

− �0M1 = M����
0

− K ∗ M����
0

+ �1M0

M����
2

− �0M2 = 2M����
1

− 2K ∗ M����
1

− 2�1M1 − �2M0

3.1 � Boundary conditions

The key point with the boundary conditions for 
this mixture of local and non-local elastic fractions 
is that, having operated a perturbation approach in 
terms of the non-local fraction � about � = 0 , all 
quantities are evaluated at � = 0 , i.e., for a local 
elastic medium. Indeed, the view proposed in this 
paper is to look at the non-local fraction as a per-
turbation of a wholly local elastic behaviour. This 
is crucial because in a wholly local elastic medium 
there is no need to fulfill the much debated consti-
tutive boundary conditions, which do not enter nei-
ther the weak nor the strong mathematical formula-
tion of the problem, and one shall account only for 
the standard kinematic or natural ones. Thus, recall-
ing that all fields are actually first-order increments 
with respect to � , the usual boundary conditions are

Indeed, even in movable constraints the first-order 
increment of the displacement component vanishes, 
and natural boundary conditions for perfect con-
straints foresee vanishing reactions for all compatible 
first-order permitted motions. When the boundary 
values of the field functions are replaced with their 
series expansions, the boundary conditions being 
homogeneous imply that their expansions at each k 
are homogeneous. This is of practical importance, as 
it means that the boundary terms in the weak formu-
lation of the problem are identical at all orders of the 
hierarchy.

On the other hand, if one of Eq. (21) is to be 
used, the same boundary conditions are not neces-
sarily written by means of an identical operator at 
each order. Indeed, when the first of Eq. (21) is cho-
sen, for example, a free end provides the following 
well-known boundary conditions at the zeroth order 
in � in terms of the non-dimensional transverse 
displacement

(23)
fixed v = 0 Ω = 0,

pinned v = 0 M = 0,

free T = 0 M = 0.

(24)v��
0
= 0, v���

0
= 0.
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However, at the first order in � the same conditions 
read

Thus, even if the bulk operator at the left-hand side 
of the hierarchy of equations (22) is the same at all 
steps, the boundary operators are not. This means that 
a family of orthogonal solutions at the zeroth order 
in � , satisfying bulk and boundary conditions at this 
step, cannot be an eigenvector basis for higher orders 
in � , since they do not necessarily satisfy the bound-
ary conditions at these higher orders. However, this 
does not occur when the last of Eq. (21), which is in 
terms of the bending couple, is chosen. Indeed, Eq. 
(8) imply that, when considering harmonic vibration, 
not only the shearing force, but also the kinematic 
descriptors can be expressed in terms of the bending 
couple:

Eq. (26), which is expressed by dimensional quanti-
ties, has a straightforward non-dimensional parallel; 
we omit the passages and keep the same symbols, 
with an abuse of notation but with the aim of saving 
space. Eq. (26) can be easily submitted to the usual 
formal �-power series expansion, so that we can 
obtain the terms that enter the boundary conditions at 
the various orders of the hierarchy of bulk equations 
Eq. (16). We can thus see that the boundary condi-
tions in terms of the bending couple are

for a free, simply supported, and a clamped end, 
respectively. That is, in any case the boundary condi-
tions expressed in terms of the bending couple at each 
order are represented by the same operator acting on 
the corresponding field; hence, higher-order bending 
couples can be projected onto the basis of the zeroth-
order eigenspace of bending couples.

We must remark that the simple expressions in Eq. 
(26), (27) hold only because we choose to investigate 
‘small’ transverse translational vibration of the cross-
sections of purely flexible, Euler-Bernoulli beams. 
Had we considered shearing strain in addition to 

(25)
v��
1
− v��

0
+ K ∗ v��

0
= 0, v���

1
− v���

0
+ (K ∗ v��

0
)� = 0

(26)T=M�, v=−
T �

��2
=−

M��

��2
, Ω=−

M���

��2

(27)
M0 = 0, M�

0
= 0, M1 = 0, M�

1
= 0,

M0 = 0, M��
0
= 0, M1 = 0, M��

1
= 0,

M��
0
= 0, M���

0
= 0, M��

1
= 0, M���

1
= 0

bending curvature to represent the deformation of the 
beam, and rotary inertia of its cross-sections in addi-
tion to that in translation to represent the mass dis-
tribution properties of the beam, the boundary con-
ditions would have been strongly coupled and not as 
simple as in Eqs. (26), (27). It is apparent that a start-
ing investigation like this one suitably considers the 
most simple setting, in order to catch the essentials of 
the considered behaviour.

3.2 � Fredholm compatibility condition

Imposing the boundary conditions (23) at each beam 
end provides four algebraic equations in terms of the 
unknown state vector � k,0 . At the zeroth-order in � , 
implying local elasticity, these conditions in matrix 
form read

In order to have non-trivial solutions for �0,0 , and, 
subsequently, for the state vector �0 at all points 
of the beam according to Eq. (18), the 4 × 4 matrix 
H(�0) shall be singular, which equals to search the 
values of �0 for which

whence rank(H(𝜆0))<4 ; thus, (29) provides the 
family of the zeroth-order eigenvalues �0 for ‘small’ 
vibration to exist.

Moving up to higher orders in � , we end up with a 
non-homogeneous system of algebraic equations in 
terms of the higher-order state vector at a given point 
z0:

It is important that, since the matricant is the same at 
each order, the matrix H in (30) is identical to that in 
(28). The non-homogeneous forcing term bk , which is 
a function of all eigenvalues up to the kth order, con-
sists of elements of the kind of gk in Eq. (18)2 evalu-
ated at z = 0 or z = L . Since H(�0) is singular, the 
condition for the existence of non-trivial � k,0 and, 
hence, of non-trivial solutions at the k-th order of 
the formal �-power series expansion, is that the sys-
tem (30) be compatible. According to the well-known 
theorem by Rouché and Capelli, this equals to requir-
ing the rank of H to be equal to that of the matrix 

(28)H(�0)�0,0 = 0

(29)det(H(�0)) = 0

(30)H(�0)� k,0 = �k(�0, �1,… , �k)
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obtained by appending the column of known terms bk 
to H . This condition equals to resort to the vectors �̃ 
such that

that is, the vectors of the null space of the transpose of 
H(�0) , which is well-defined since the matrix is real-
valued and in a finite dimensional vector space. The 
vectors �̃ are not trivial if H(�0) is singular (imply-
ing that its transpose is singular as well), as required 
by Eq. (29). Then, taking the ordinary dot product of 
both sides of Eq. (30) with �̃ and operating standard 
operations of matrix algebra yields

named Fredholm’s compatibility condition, which 
ensures that non-trivial state vectors � k,0 exist, 
though depending on a normalisation parameter [65]. 
Eq. (32) enables us to find higher-order eigenvalues, 
i.e., the variation of natural angular frequencies with 
respect to those of local elasticity after the formal 
expansion in terms of the non-local fraction coeffi-
cient � . If we pose the bulk problem with the fourth-
order ODE in terms of the bending couple, Eq. (21), 
and then perform the �-expansion, Eq. (22), the dif-
ferential operator of the zeroth-order equation

is self-adjoint with respect to the scalar product (20). 
Then, the family of eigensolutions {Mj

0
} associated 

with the j-th eigenvalue �j
0
 is an orthogonal basis 

(the property of orthogonality of the eigenmodes 
expressed in terms of the bending couple is proved in 
the Appendix to save space here) and the j-th solution 
of the first-order equation Eq. (22)1 has expression

since the boundary conditions are identical at each 
order. Then, the �-first-order equation in Eq. (22) 
becomes

(31)
[
H(𝜆0)

]T
�̃ = 0

(32)�̃ ⋅ �k = 0,

(33)D(⋅) =
d4

dz4
(⋅) − �0(⋅)

(34)Ml
1
= Ml

0
+
∑
l≠j

bljM
j

0

Multiplying both sides with Mm
0

 and integrating over 
the domain provides the orthogonality condition for 
l = m

Solving (36) for �m
1
 provides the first-order incre-

ment of the m-th eigenvalue with respect to the non-
local elastic fraction in closed form (details are in the 
Appendix):

It is barely necessary to remark how important 
closed-form solutions in view of applications are. 
With Eq. (37), the first-order approximation to the m-
th eigenvalue is

where a tilde is used to prevent abuse of notations.

4 � Illustrative examples

Here we present the results of the procedure presented 
in the previous sections for the paradigmatic cases of 
the simply supported and the clamped-free beam. For 
each of these two cases, we will understand that the bulk 
problem is expressed in terms of the single Eq. (21), for-
mally expanded in � as in Eq. (22). Then, we provide 
the relevant expression of the boundary operator �(�0) , 
find the natural angular frequencies as well as the natu-
ral modes, and, by resorting to the solvability condition 
at the first order, we provide the closed-form expres-
sions for the first-order increment of the natural angular 
frequencies for ‘small’ non-local volume fractions. For 
sake of space and just to show the features of the pro-
posed technique, we limit to these two steps, i.e., we do 
not look for the first-order incremental modes and we 
do not impose the solvability condition for the third step 

(35)

∑
l≠j

blj�
j

0
M

j

0
−�l

0

∑
l≠j

bljM
j

0
=�l

0
Ml

0
−K ∗(�l

0
Ml

0
)+�l

1
Ml

0

(36)∫
1

0

Mm
0

(
�m
0
Mm

0
− �m

0
K ∗ Mm

0
+ �m

1
Mm

0

)
dz = 0

(37)�m
1
= �m

0

⟨
Mm

0
,K ∗ Mm

0

⟩
−
⟨
Mm

0
,Mm

0

⟩
⟨
Mm

0
,Mm

0

⟩

(38)𝜆̃m = 𝜆m
0
+ 𝜉𝜆m

1
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of the hierarchy, Eq. (22)
3
 (second order in � ). Indeed, 

from the point of view of the applications, being able to 
evaluate the variations of the natural angular frequencies 
in closed form already provides a remarkable means of 
describing the behaviour of this kind of nano-beams.

4.1 � Simply supported beam

The boundary conditions at the zeroth- and first-order �
-expansion are expressed by Eq. (27)1 . We may then eval-
uate H and perform the subsequent steps of the procedure.

4.1.1 � Zeroth‑order solution

The pinned boundary conditions at both ends of the 
beam lead to the following non-zero components of the 
coefficients matrix H(�0)

As already discussed, imposing the determinant of 
H(�0) to vanish in order to find non-trivial solutions 
for the natural vibration of the considered nano-
beams provides a non-linear algebraic equation in 
terms of �0 , which leads to

where n ∈ ℤ
+ is the mode number. By recalling (9), 

it is apparent that the natural angular frequencies in 
(40)1 are exactly those for local elastic simply sup-
ported beams. In addition, we now can insert the 
state vector �0,0 in (40)2 into Eq. (18), keeping into 
account Eq. (19) and (17), and obtain the natural 
modes, which are the well-known sines.

The vector �̃ satisfying Eq.(31) turns out to be 
expressed in terms of a free parameter of normalisa-
tion p as follows

(39)

H11 = 1 = H24,

H31 =
cos �

1∕4

0
+ cosh �

1∕4

0

2
= H44,

H32 = −
sin �

1∕4

0
+ sinh �

1∕4

0

2�
1∕4

0

= −H43,

H33 =
sin �

1∕4

0
− sinh �

1∕4

0

2�
3∕4

0

= −
H42

�0
,

H34 =
cos �

1∕4

0
− cosh �

1∕4

0

2�
1∕2

0

=
H41

�0

(40)�n
0
= n4�4, �0,0 = Ω0,0

{
0, 1,−n2�2, 0

}T

4.1.2 � First‑order solution

The non-zero components of the vector �1 , represent-
ing the non-homogeneous part of the first-order dif-
ferential equation (22), are

The full solution of the set of field equations at the 
first-order of the formal �-expansion and the non-
homogeneous part of the system in (30) for the same 
step are too long to be reported and thus are omitted 
for brevity. The condition of orthogonality Eq. (32) 
for this problem leads to

In order to have non-trivial �̃ ,�0 , Eq. (43) yields

which provides the slope of the curve � vs. � at � = 0 , 
that is, the linear approximation to the variation of the 
fundamental eigenvalues with the nonlocal fraction of 
the material response in the neighbourhood of a fully 
local linear elastic material. We remark that using Eq. 
(37) provides the same result of Eq. (44), provided 
that

well-known for locally elastic Euler-Bernoulli beams.

(41)�̃ = p
{
−(−1)nn2𝜋2,−(−1)n, n2𝜋2, 1

}T
.

(42)

f1,2=�0,0

n2�2�

[
e
−

z

� −(−1)ne
z−1

� −2n�� sin(n�z)
]

2
(
n2�2�2 + 1

)

f1,3=Ω0,0

�1 sin(�z)

�

(43)

pΩ0,0

2n�
(
1 + �2�2n2

)2
{
(−1)n+1

[
�n
1

(
�2�2n2+1

)2

+�6�2n6
(
�2�2n2−2�+1

)]
−e−

1

� 2�6�3n6
}
=0

(44)�n
1
=−

�6�2n6
{
1+�

[
�2�n2+2e−

1

� (−1)n−2
]}

(
�2�2n2 + 1

)2

(45)Mn
0
(z) = −n�Ω0,0 sin n�z,
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4.2 � Cantilevered beam

4.2.1 � Zeroth‑order solution

We assume the clamp at the cross-section correspond-
ing to z = 0 , while that at z = 1 is free. Then, the 
coefficients matrix �(�0) has the following non-zero 
components

The characteristic equation and the corresponding 
non-trivial solutions for the initial state vector are

It is apparent that Eq. (47)1 provides an implicit 
expression for the eigenvalues of the wholly local 
beam that coincides with the well-known results of 
the literature.

Eq. (47) implies that the vector �̃ satisfying Eq. 
(31) is given by

(46)

H11 = 1 = H22,

H31=−
�
3∕4

0

2

(
sinh �

1∕4

0
+ sin �

1∕4

0

)
=−�0H43,

H32=
�
1∕2

0

2

(
cosh �

1∕4

0
− cos �

1∕4

0

)
=−H41,

H33=
1

2

(
cosh �

1∕4

0
+ cos �

1∕4

0

)
=H44

H34=
�
1∕4

0

2

(
sinh �

1∕4

0
− sin �

1∕4

0

)
=H42

(47)

1

2

(
1 + cos �

1∕4

0
cosh �

1∕4

0

)
= 0

�0,0 = M0,0{0, 0, �, 1},

� = −
�
1∕4

0

(
cos �

1∕4

0
+ cosh �

1∕4

0

)

sin �
1∕4

0
+ sinh �

1∕4

0

where, as in Eq. (41), p is a free parameter of 
normalisation.

The non-homogeneous parts of both systems of 
bulk differential equations and of boundary algebraic 
conditions are too long to be reported and will be 
omitted for sake of space, since they add no particular 
interesting results to our investigation.

On the other hand, we present the closed-form 
expression for the first incremental eigenvalue �1 
resulting from imposing the solvability of the field 
equations at this step. This expression is given in 
terms of 11 numerical coefficients x1, x2,… , x11 , 
deriving from the finite integration involved in the 
solvability condition Eq. (37), and the values of 
which are reported in Table 1 for the first four zeroth 
order (i.e., wholly local elastic) eigenvalues.

(48)

𝝍̃ =
{
a1, a2, a3, 1

}
p,

a1=−
�
1∕2

0
sin �

1∕4

0
sinh �

1∕4

0

cos �
1∕4

0
+ cosh �

1∕4

0

, a3=
1

�
,

a2=(�
1∕4

0
)
sin �

1∕4

0
cosh �

1∕4

0
−cos �

1∕4

0
sinh �

1∕4

0

cos �
1∕4

0
+ cosh �

1∕4

0

.

(49)

�n
1
=

1(
1∕�n

0
− �4

)2
[
e
−

1

� �3
(
x1�

2 + x2� + x3
)

+�
(
x4�

7 + x5�
6 + x6�

5 + x7�
4 + x8�

3

+x9�
2 + x10� + x11
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Table 1   Coefficients for 
clamped-free beam

�
0

12.3624 485.519 3806.55 14617.3

x
1

2.15558 − 4.1491 3.9938 − 4.00027
x
2

3.13197 − 1.73574 1.0177 − 0.727592
x
3

1.13765 − 0.181534 0.0648327 − 0.0330847
x
4

− 12.3624 − 485.519 − 3806.55 − 14617.3
x
5

3.78953 45.7117 123.203 241.82
x
6

−0.858244 13.2943 45.9042 98.9182
x
7

− 2 − 2 − 2 − 2
x
8

1 1 1 1
x
9

0.30653 0.0941502 0.0323661 0.0165434
x
10

0.0694239 − 0.0273816 −0.0120593 − 0.00676721
x
11

− 0.161781 − 0.0041193 − 5.25411×10−4 − 0.000136824
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5 � Numerical results and discussion

After having provided the explicit expressions for 
both addends �0, �1 of the formal first-order expan-
sion of the eigenvalues of the natural transverse 
vibration for the two paradigmatic schemes of sim-
ply supported and clamped-free beam, we provide 
some particular numerical results for their actual sum 
using Eq. (38).These values are obtained by assum-
ing both different amounts of the non-local fraction � 

in the mixture representing the linear elastic response 
of the nano-beam and of the non-local characteristic 
length parameter � (we recall that we are operating 
with non-dimensional quantities), and are reported in 
Table  2, together with the corresponding numerical 
values provided in some recent literature.

It is immediately apparent that our perturbation 
approach can reply almost exactly the results found 
in the literature, with a somehow slight stiffening 
effect due to the coarse truncation of the formal series 
expansion at the first order. Yet such a coarse trunca-
tion well suffices to provide reliable results, and, once 
again, those results come from closed-form expres-
sions. It is also highly remarkable that the results of 
our linear perturbation approach are reliable even for 
moderate non-local fractions, which is not to be taken 
for granted in advance.

Once found the zeroth- and first-order eigenval-
ues of natural vibration with respect to the formal �
-expansion, it is interesting to find the correspond-
ing non-dimensional natural angular frequencies, 
which are directly linked to the square root of the 
eigenvalues. Then, it is interesting to check how the 
first-order natural angular frequency is related to the 
corresponding zeroth-order one, which represents 
the known value for wholly local elastic beams. This 
also has a practical importance in material model-
ling and identification procedures; the closed-form 

Table 2   Comparison of the values for 𝜆̃1 ; BC= boundary con-
ditions, SS= simply supported, CF= clamped-free

�

BC � 0.25 0.5

SS 0.05 [58] 9.84255 9.81485
[57] 9.84255 9.81485
Present 9.84276 9.81584

0.1 [58] 9.77714 9.67978
[57] 9.77714 9.67978
Present 9.77854 9.68661

CF 0.05 [58] 3.4705 3.41739
[57] 3.4705 3.41739
Present 3.47298 3.4294

0.1 [58] 3.42887 3.32818
[57] 3.42887 3.32818
Present 3.4328 3.34751

Fig. 1   Variation of the 
first-order �-expansions for 
the first four eigenvalues of 
a simply supported beam



3045Meccanica (2022) 57:3033–3049	

1 3
Vol.: (0123456789)

expressions provided herein may well pave the way to 
rapid optimization processes required for those aims.

In Fig.  1 and in the subsequent Fig.  2 we  
present some graphs showing the ratio of the  
first four �-incremental natural angular frequencies 
𝜔̃k =

√
𝜆̃k, k = 1, 2, 3, 4 , and the corresponding local 

natural angular frequencies �k
0
=
√

�k
0
, k = 1, 2, 3, 4 , 

of a simply supported and a clamped-free nano-beam, 
respectively. These results are compared with the cor-
responding ones found in [57]; it is immediate to 
check that the results coincide almost always, with 
slight discrepancies only for higher non-local volume 
fractions, more remarkable for the clamped beam. 
Such discrepancies always show a stiffening aspect of 
our procedure, which are to be expected because of 
the coarse approximation implied by the performed 
perturbation approach in terms of � . The higher dis-
crepancies for the cantilever beam are justified by the 
fact that the curvature in such a beam is, the rest 
being fixed, more remarkable with respect to that of a 
simply supported beam: then, the possible stiffening 
aspect, linked to the hypothesis of purely flexibility, 
becomes more evident.

All curves start from the value 1 attained for � = 0 , 
i.e., their values coincide with those of wholly local 
elastic beams when the non-local fraction vanishes, 
which was well expected.

All curves are monotonically decreasing with 
respect to � , which has a clear physically motivation: 
indeed, the introduction of a portion � behaving non-
locally has a softening effect. This is due to the fact 
that, even though there are more ‘springs’ connecting 
each body-point to the others, the Gaussian-like non-
local response to the same deformation has an inte-
gral effect which is below unity (it would be so on an 
infinite domain), and such a lower response is ampli-
fied by the volume fraction in the mixture, which is 
again lower than unity; all this is easily readable in 
Eqs. (5), (6).

In addition, the curves for greater values of the 
characteristic non-local length � are always below 
those for lower � ; this also has a clear physical mean-
ing, since the greater the radius of the long-range 
material interactions, the more the softening effect. 
To end with, it is also apparent, and physically moti-
vated, that the ratios for simply supported beams 
attain higher values with respect to the corresponding 
ones for cantilever beams, always because the pres-
ence of two constraints limits the deformation of the 
former with respect to that of the latter, all the rest 
being fixed, and this implies a stiffer response.

Fig. 2   Variation of the 
first-order �-expansions for 
the first four eigenvalues of 
a clamped-free beam



3046	 Meccanica (2022) 57:3033–3049

1 3
Vol:. (1234567890)

6 � Conclusions

We presented a perturbation procedure that lets trun-
cated expansions of the natural angular vibration of 
purely flexible nano-beams, the behaviour of which 
is ruled by a mixture of linear elastic local and non-
local mechanical response, be found without resort-
ing to the much debated boundary constitutive condi-
tions that are inherent to Eringen’s model of non-local 
elasticity. We remark that, while the Euler-Bernoulli 
beam model and a constitutive law for a mixture of 
local and non-local linear elastic materials are well 
known in the literature, the original contribution of 
this work relies in this perturbation approach. Indeed, 
considering the non-local behaviour as a perturbation 
of the local one lets the non-local fraction be con-
sidered as a perturbation parameter; a formal series 
expansion provides a hierarchy of bulk equations 
completed by the usual boundary conditions of local 
elasticity. Thus, we reduce the nonlocal problem, 
which so many debates still originates, to a series of 
local problems where the nonlocal fraction, operating 
as a perturbation parameter, is kept into account by 
the forcing terms at the right-hand side of every step 
of the hierarchy. This resolution procedure is original, 
as far as we know, and detaches from previous reso-
lution procedures of similar problems present in the 
literature; in addition, relying on well-known pertur-
bation methods, it permits new ways of semi-analit-
ical procedures in order to find agreeable solutions. 
Indeed, the search for non-trivial solutions asks for 
solvability conditions at successive steps of the hier-
archy that let incremental natural angular frequencies 
of transverse vibration be found in closed form. It is 
not necessary to remark how important from the point 
of design and identification procedures the possibility 
to have closed-form solutions at ease is. The obtained 
results are compared with those of existing literature, 
showing good agreement and adherence to physi-
cal interpretation. Such results can be of interest in 
the modelling and parameter identification of nano-
beams and in all the mechanical problems related.
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Appendix: Details and passages

In the following subsections we will present with 
more detail some of the passages omitted in the text 
for sake of space and readability.

Perturbation expansion

The governing equations for free vibration of Euler-
Bernoulli nanobeams composed of the above 
described mixture of linear local and nonlocal elastic 
materials in terms of nondimensional quantities are 
obtained by replacing Eq. (9) into Eq. (8):

Inserting the formal power series expansions of the 
field functions and of the eigenvalue up to the second 
order in the nonlocal fraction � we have

By collecting like powers of � we obtain the expres-
sions reported in Eqs. (13)–(15).
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Fundamental matrix

For z0 = 0 , the components of the fundamental matrix 
�(z, 0) are listed below.

Orthogonality of the eigenmodes

By using the inner product defined in Eq. (20), the con-
dition of orthogonality for the family of eigensolutions 
{M

j

0
} associated with the j-th eigenvalue �j

0
 is

This may be written, by the aid of variational 
principles,as

In the previous equation, the boundary terms vanish 
due to Eq. (27); then, easy calculations show that

Then, by subtraction of the previous two equations,

By recalling Eq. (20) and accounting for the inequal-
ity �m

0
≠ �l

0
∀ l ≠ m , the last equality of the previous 

equation leads to the searched orthogonality condition
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Fredholm Compatibility

Inserting the eigensolution expansion into the first-
order equation for the lth mode gives

Inserting in Eq. (9) the zeroth-order field equation, 
Eq. (22)-1, we obtain

Multiplying both sides by Mm
0

 gives

and integrating both sides over the domain provides, 
in terms of the inner product defined in Eq. (20),

When l = m we have

Exploiting the orthogonality of eigensolutions proved 
above, ∀j ≠ m,

⟨
Mm

0
,M

j

0

⟩
= 0 , Eq. (13) turns out to 

be

which provides Eq. (37).
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