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Abstract—One of the fundamental obstacles for quantum
computation (especially in noisy intermediate-scale quantum
(NISQ) era) to be a near-term reality is the manufacturing
gate/measurement technologies that make the system state quite
fragile due to decoherence. As the world we live in is quite far
away from the ideal, complex particle-level material imperfections
due to interactions with the environment are an inevitable part of
the computation process. Hence keeping the accurate state of the
particles involved in the computation becomes almost impossible.
In this study, we posit that any physical quantum computer sys-
tem manifests more multiple error source processes as the number
of qubits as well as depth of the circuit increase. Accordingly, we
propose a semi-supervised quantum error mitigation technique
consisting of two separate stages each based on an unsupervised
and a supervised machine learning model, respectively. The
proposed scheme initially learns the error types/processes and
then compensates the error due to data processing and the
projective measurement all in the computational basis.

Keywords—Quantum Error Mitigation, Semi-supervised Learn-
ing, Clustering

I. INTRODUCTION

The amount of controlled hardware qubits in the era of
noisy intermediate-scale quantum (NISQ) devices is insuffi-
cient to enable quantum error correction (QEC) due to the
increased number of physical qubits [1] and complex inter-
actions in between. As the main philosophy behind NISQ is
to reduce the calculation load by implementing some parts
of the algorithms using classical computation, alternative fault
tolerance methods have gained attraction. Quantum error mit-
igation (QEM), on the other hand, can reduce manufactur-
ing and measurement mistakes by repeating experiments and
postprocessing data in classical means. In other words, QEM
does not necessarily call for extra physical qubits to use for
error rectification. There are several QEM methods available
in the literature. Extrapolation [2], probabilistic error cancel-
lation [3], quantum subspace expansion [4], and symmetry
verification [5] are some of the examples of QEM techniques
that are shown to be promising. In addition, the learning-
based approaches are recently shown to be effective against
the composite (typically non-linear [6]) error cases and better
handle such adversities [7] in a quantum computation setting.

Despite the exact methods given for QEM, the applicability
of such methods to real quantum computers is pretty limited.
Developing QEM methods irrespective of gate-independent de-
polarizing noise and/or physical noise characterization frame-
works [8] might be key to the success of future NISQ comput-
ers. Moreover, the characterization of the composite error due
to applying various gates and measurements is shown to be
of non-linear nature in a number of past studies [6]. However,

all such learning approaches are typically fully-supervised and
focus on a single model to fit all types of errors, independent
of the number of qubits involved as well as the depth and other
features of the circuits.

In this work, we have hypothesized that quantum comput-
ers (particularly the ones manufactured based on superconduct-
ing materials) tend to manifest multiple error processes acting
on the input being processed. To validate/test the hypothesis,
we carefully designed an experiment and collected data to
form a dataset, and then present an error mitigation strategy
based on two traditional machine learning techniques applied
in sequential order. The main difference compared to past
literature is that our approach is based on an unsupervised error
process characterization which is followed by a supervised
classification, hence the name semi-supervised quantum error
mitigation (SSQEM). More specifically, we primarily apply
a clustering approach to group error types/processes based
on the error/distance quantifier using Johnson-Shannon (JS)
divergence. Then, for a selected cluster, a specific classifier
is trained/cross-validated based on the data that belongs to
that group only. Later, supervised classical classifiers (such as
Logistic Regression, LDA, etc.) and a deep learning framework
are used to estimate the overall error due to multiple stages of
gates (depth of the circuit) and the final measurement operation
at the end.

The rest of the paper is organized as follows. In section
II, the background, as well as the details of the proposed
method, are provided. In our study, we have created our own
dataset based on IBM’s quantum computers. The details of
the data collection process are also provided. In section III,
we have provided our experiments and the results to validate
the hypothesis of the paper. Finally, we conclude our paper in
Section IV with a few future directions.

II. METHODS

A. Theory - Background

In an n-qubit quantum circuit there are 2n possible out-
comes that can be observed after measurement using com-
putational bases. Let p = [p(0) p(1) . . . p(2n − 1)] be
the distribution of the possible measurement outcomes. To
solve a specific problem, many quantum algorithms are built
with the goal of encoding the solution in the probability
distribution. The observed probability distribution, however,
can differ from the ideal probability distribution, sometimes
pretty dramatically, due to interactions with the environment
during execution and the final readout errors. If we let the
measurement result to be p̂ = {p̂(i)}, then the main objective
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Fig. 1: An example depth-10 random QC with n = 4.

is to find a transformation F (denoted by F∗) such that the
error between p and p̂ is minimized. In otherwords,

F∗ =F D(p,F(p̂)) (1)

where D(., .) is an appropriate distance metric. For instance, in
our study we use Johnson-Shannon (JS) divergence in place of
this measure. A number of studies assumed the transformation
to be linear and hence estimated Λ−1 (namely Λ∗−1) based
on the data (such as least squares or a more generic regression
model etc.) such that p̂ = Λp. Thus, the estimate would be
given by Λ∗−1

p̂ [9].

In this work, we categorize the error into m groups and
hence we look for a collection of transformations, {Fi}

m
i=1

and an unsupervised category mapper f(.) whose output is an
integer from the set {1, 2, . . . ,m} indicating the group index.
The mapping f() is untrained. Hence the final quantum error
mitigation will output Ff(p̂)(p̂) ≈ p.

B. Dataset Generation

To be able to generate our dataset, IBM’s Qiskit framework
was utilized on the IBMQ’s portal that provides access to
real quantum computers. Python was used as the scripting
language. In the data set preparation phase, to simplify our
analysis, one, two, three and four-qubit quantum circuits with
depth of 10 were created randomly and the contents of the
dataset (the measurement outcomes) are generated by running
these circuits on both simulators as well as quantum computers
(five–qubit ibmq_belem). Ten one and two-qubit quantum
gates, namely X gate, Y gate, Z gate, Hadamard (H) gate,
phase (S) gate, T gate, CX gate, CZ gate, SWAP gate, Toffoli
(CCX) gate are used, which are typically utilized in the im-
plementation of various quantum algorithms. Number of gates
in each circuit along with the number of stages are uniformly
randomly chosen for each quantum circuit. In addition, some
of the irrelevant/impractical circuits (such as concatenation
of the same gate 10 times in a row) are removed from the
dataset. Such filtering helped generate more practical circuits.
An example random circuit for n = 4 qubits is shown in Fig.
1, where multiple single and two-input quantum gates are used.

The measurements are conducted both on the simulator
(simulator_statevector) and a real quantum computer.
After the measurement at the end of each circuit, the probabil-
ities are recorded into a database. The same set of operations
were also executed on the real quantum device ibmq_belem.
In order for our methods to give more meaningful results,
the number of entries generated in the dataset is expected
to be large. However, a large number of circuits could not
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Fig. 2: The semi-supervised QEM pipeline. QC: Quantum Computer
ibmq_belem.

be run due to overloading and queuing mechanism used to
schedule real quantum computers on IBMQ portal. We could
have successfully completed running a total of 750 circuits on
the portal.

A data frame was created to store the data in which
seven main variables, namely, quantum circuit, number of
qubits, number of states, state vector, conjugate of the state
vector, measurement result and the measurement error, were
recorded. In addition to these variables, due to the maximum
number of qubits used is four, a total of 16 state vectors, their
conjugates, complex conjugates, simulator probabilities and
real quantum device probabilities were stored in the database.

C. SSQEM: Clustering

After the dataset is generated, we put it through the semi-
supervised QEM pipeline as illustrated in Fig. 2. The first step
of the pipeline is to conduct error characterization. Since we
did not know a priori about the number of error processes
prevalent in a quantum computer acting on the circuit, we
have used clustering methods to group measurement errors
(real quantum device v.s. simulator outputs). We have clustered
circuits based on the number of qubits, the depth as well as
error processes they operate on. The overall processing layout
as well as the details of the implementation is given next.

An automated clustering infrastructure has been created for
the clustering process. Before clustering, some of the known
scaling methods were first applied to the raw data and their
comparisons were made in a loop. These are standardization,
min-max scaling, robust scaling, Box-Cox transformation,
Yeo-Johnson scaling, Gaussian-pdf scaling, max-abs scaling,
L2 normalization and uniform-pdf scaling methods. These
methods are previously shown to be effective before further
processing [10], [11].

T I: n =
3.

n = 3 Machine Learning Scoring Metrics

Labels Models Accuracy Precision Recall F1-Score

0 2*KNN 2*0.83 0.88 0.81 0.84

1 0.77 0.85 0.81

0 2*Logistic Regression 2*0.76 0.78 0.81 0.79

1 0.74 0.70 0.72

0 2*Decision Tree 2*0.85 0.91 0.81 0.86

1 0.78 0.90 0.84
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II: n =
4. ETC and XGBoost .

n = 4 Machine Learning Scoring Metrics

Labels Classifier Accuracy Precision Recall F1-Score

0 2*KNN 2*0.73 0.73 0.70 0.71

1 0.73 0.76 0.75

0 2*Logictic Regression 2*0.69 0.68 0.65 0.67

1 0.69 0.72 0.71

0 2*Extra Tree Classifier 2*0.82 0.77 0.87 0.82

1 0.86 0.76 0.81

0 2*XGBoost 2*0.79 0.78 0.78 0.78

1 0.80 0.80 0.80

We have realized that a standard K-means clustering is
more than sufficient for the demonstration of the proposed
scheme. Elbow method, Silhouette score, Davies–Bouldin and
Calinski–Harabasz indexes were used for scoring the num-
ber of clusters that would best fit with the data. Based on
The outputs of the methods used, an appropriate number of
clusters is selected (the number of labels in our context).
Note that this also determines the number of error processes
we assume/identify in the quantum computer. Moreover, we
have used Jensen–Shannon (JS) divergence to calculate the
statistical distance between any two probability vectors such
as simulator and real quantum device probabilities during the
clustering operation. JS divergence between two probability
vectors p and q is defined as,

∫(p||q) =

√

D(p||m) +D(q||m)

2
(2)

where m is is the pointwise mean of p and q, and D(.||.) is
the Kullback-Leibler (KL) divergence. Note that we have

0 ≤ ∫(p||q) ≤ 1. (3)

From our experiements, we have determined that two clusters
is a simple rule of thumb selection and the example in Fig. 1
is based on this assumption. The same figure can be expanded
to apply to more clusters.

D. SSQEM: Classification

The second stage of the proposed semi-supervised ap-
proach is to conduct a classification based on the labeling
information thanks to the clustering algorithm. This is followed
by the estimation of the error and applying it to the output of
a real quantum computer measurement operator.

1) Classification: For each dataset generated for each n-
qubit circuit (with n = 1, 2, 3, 4), 20% of the data is reserved
for testing and 80% for training. We have tested various clas-
sical machine learning models, including nearest neighbors,
logistic regression, decision trees, random forests, XGBoost,
ExtraTrees, SVM and LDA classifiers. Cross-validation is used
for hyperparameter tuning to avoid data leakage and overfit-
ting. We have employed ShuffleSplit method with grid search
in sklearn python library for accurate/strong cross validation.
One of the things we have realized that as n increases the
classification/clustering as well as QEM processes are harder
to tune. For n = 3 and n = 4, classification results are given
in Table ?? and Table ??. As can be seen, ExtraTrees and
XGBoost (more complex classifiers) show good performance
for n = 4, whereas decision trees are good enough for n = 3.
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Fig. 3: Number of clusters v.s. the resulting distortion based on the Elbow
method.

On the other hand, for n = 1, 2, we are able to achieve over
0.92 average accuracy using LDA and Random Forests as well.

2) Error mitigation via Deep Learning: The classification
result does not provide the QEM by itself. We need to
estimate the error in the outcome probabilities to be able to
rectify the read-out values of a quantum computer. The most
basic approach is to use the mean value of all probability
discrepancies i.e., 1

|T |

∑

t p̂t−pt for all training data t ∈ T that

belongs to a specific cluster. Interestingly, this straightforward
approach works quite well for n = 1 and n = 2. However, for
n ≥ 3, the QEM amplifies the error and makes the probabilities
worse than the original quantum computer read-outs.

In our study, we further proposed to use a deep learning
model as a ”transformer”, trained specifically for all m differ-
ent clusters/groups. That is to say, we have used the network
architecture given in Fig. 5 for all the data in each cluster but
parameters of which are optimized (using Adam optimizer)
based on the data in each cluster only. For instance, for m = 2,
we have two different network models that learn the mapping
between the quantum computer read-outs and the simulator
outputs (expected probabilities). After training the network, it
is used to do the QEM for the classified test probability vector
sample. Note that after clustering an imbalance may occur in
the count of data points in each cluster. Thus, different deep
learning networks may be employed for better performance.
However, we are able to show improved performance with
this network as well by confirming our hypothesis.

III. NUMERICAL RESULTS

For all quantum circuits (n = 1, 2, 3, 4), we have applied
various scaling options and picked the one that performed well.
We have tested LDA, XGBoost and Extreme Tree Classifiers,
and the mean of cross validation scores averaged nearly
around 0.8. After the clustering, we obtain the mean error of
probabilities between the simulator result and read-out value
of the real quantum device. In addition to normal averaging,
we have also used weighted average of the probability errors
by taking the inverse of their JS divergence value. After QEM,
the corrected probability values are compared to the outcome
of the ideal simulator results in statistical sense using JS
divergence. Since as the number of qubits increase, the circuit
becomes more complex and the error processes will be harder
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Fig. 4: The deep learning model used for QEM phase.

to deal with, we focus on n = 4 case which has 25 samples
for label 0 (first cluster) and 23 samples for label 1 (second
cluster) ensuring a balanced dataset in terms of labels.

To improve the QEM part, we have also used deep learning
(DL) as illustrated in Fig. 2 to improve the performance of
error estimation processes. In order to assess the effect of DL,
we turned off the clustering. Without using deep learning, the
JS divergence results turn out to be 0.07, 0.17, 0.26, 0.32 for
n = 1, 2, 3 and 4, respectively. One of the issues we have
realized that the divergence increases for growing n, probably
due to the complexity of the circuit and potential multiple error
processes occurring. On the other hand, using DL, we improve
our performance observations dramatically such as 0.02, 0.14,
0.16 and 0.31, again in the same order of n. Note that for
more complex circuits (such as n > 4 and depth> 10), we
may have to increase the number of clusters to better match
with/combat against the multitude of error processes that will
likely be present.

III: JL with/without DL QEM with/
without for n = 4.

n = 4 Jensen-Shannon Divergence Results

Clusters without DL with DL

0 0.4365 0.3479

1 0.2327 0.1763

No clustering 0.324 0.310

On the other hand, using the idea of clustering, distinct
error characterization and a final DL for QEM promises a
progress in the whole literature of QEM as shown in Table ??.
Despite the results being better for the second cluster (label 1),
the overall average performance improvement with clustering
outperforms the scheme with no clustering, supporting our
original hypothesis. We have also presented a measurement
and post-processing result in Fig. 5 for visual comparison.

Although the tasks taken into account in quantum
supremacy are often theoretically abstract issues, the science
must finally advance to demonstrate actual quantum advantage,
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Fig. 5: An example probability distribution using a simulator and the
proposed QEM.

that is, to solve a problem of practical importance with a
quantum device more effectively than with any other method.
For the implementation of classical quantum algorithms like
Shor’s factoring algorithm [12], Ruth’s phase estimation al-
gorithm [13], and Hamiltonian simulation algorithms [14],
current quantum hardware only has a small number (tens) of
qubits with a non-negligible gate error rate. These algorithms
typically demand one to precisely control millions of qubits
when taking fault-tolerance into account [15].

The so-called noisy intermediate-scale quantum (NISQ)
regime, where we control tens to thousands of noisy qubits
with gate errors that may be on the order of 103 or lower, is
a more realistic scenario for current and near-term quantum
computing before realizing a universal fault-tolerant quantum
computer [16]. Although NISQ computers are not omnipresent,
we may use them to combine quantum and classical computers
to handle some computational tasks [17], such chemical mod-
eling, much more quickly than with classical computers [18].
Fully coherent deep quantum circuits might not be necessary
since a significant amount of the computing load is handled by
the classical computer. These simulation techniques are known
as hybrid quantum-classical algorithms because they employ
both quantum and classical computers [19]. Quantum error
mitigation strategies can also be applied after the experiment
data has been processed in order to correct calculation mistakes
[20]–[22]. Because quantum error mitigation does not need the
encoding of qubits, as complete error correction does, it adds
to a significant reduction in the amount of qubits needed for
NISQ simulation [23], [24].

IV. CONCLUSIONS

In this study, we have hypothesized that the number of
distinct error processes that act on the data in quantum
computers increase as the number of qubits as well as the
depth of the circuit grows. We have done extensive testing in
one of the quantum computers on IBMQ portal and verified our
hypothesis through a two-stage semi-supervised QEM method-
ology. This approach may have the potential to segregate the
error processes and attack each separately in the future. We
believe the results of this study, when extended and tested on
a variety of quantum computers, will lead to improved QEM
methods for future NISQ computers.
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