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Abstract. Here we extend the perturbation approach, previously presented in the literature for 
Eringen’s two-phase local/nonlocal mixture model, to free vibration of purely flexible beams. In 
particular, we expand the eigenvalues and the eigenvectors into power series of the fraction 
coefficient of the non-local material response up to 2nd order. We show that the family of 0th order 
bending couples satisfy the natural and essential boundary conditions of the 1st order; hence, the 
1st order solution can conveniently be constructed using the eigenspace of the 0th order with no 
necessity of additional conditions. We obtain the condition of solvability that provides the 
incremental eigenvalue in closed form. We further demonstrate that the 1st order increment of the 
eigenvalue is always negative, providing the well-known softening effect of long-range 
interactions among the material points of a continuum modelled with Eringen’s theory. We 
examine a simply supported beam as a benchmark problem and present the incremental 
eigenvalues in closed form. 
Introduction 
Structures with comparable internal and external length scales can be modelled by suitable quasi-
continuum models, for which the distances shorter than their scale parameters have no physical 
meaning. Among many well-established models, we focus on Eringen’s strain driven model, due 
to the efforts of Eringen and co-workers [1,2]. The application of this model to finite domains, 
however, needs additional mathematical conditions (the meaning of which is dubious) for a 
solution to exist in a certain form [3]. This led to criticisms on the validity of the material model 
itself, despite its strong mathematical and philosophical foundations [4].  

Here we use the perturbation approach proposed in [5] to investigate free vibration of purely 
flexible beams composed of a local/nonlocal mixture. We get a hierarchy of equations that at the 
0th order match with the well-known ones of local elastic beams. We show that the family of 0th 
order bending couples satisfy the natural and essential boundary conditions of 1st order; hence, the 
1st order solution can conveniently be built using the 0th order eigenspace with no need of 
additional conditions. Exploiting the eigenfunctions orthogonality, we obtain a condition of 
solvability that provides the incremental eigenvalues in closed form and proves that the 1st order 
increment of the eigenvalue is always negative, yielding the well-known softening effect of long-
range actions among the material points of a continuum according to Eringen’s theory. 
Direct 1-D Beam Model 
We fix an origin and a Cartesian coordinate frame 𝑥𝑥𝑥𝑥𝑥𝑥, equipped with ortho-normal base vectors 
{𝒊𝒊, 𝒋𝒋,𝒌𝒌}, in the 3D Euclidean ambient space. The reference configuration of a beam is defined as a 
collection of equal plane cross-sections attached through their centroid to a portion of the z-axis of 
length l, called beam axis. Another configuration is described by the translation of the cross-
sections centroids, represented by the vector field u(z); and by the cross-sections rotation, 
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represented by the orthogonal tensor field R(z). A suitable difference between these two 
configurations provides the following strain measures 

𝐄𝐄 =
𝑑𝑑𝐑𝐑
𝑑𝑑𝑑𝑑

𝐑𝐑T, 𝐞𝐞 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑧𝑧𝐤𝐤 + 𝐮𝐮) − 𝐑𝐑𝐑𝐑, (1) 
where E is a skew-symmetric tensor field of the curvature of the beam in the actual configuration 
and e provides shearing and elongation of the beam axis. 

We are interested in planar motion; that is, the forces and couples acting on the beam are in the 
𝑦𝑦𝑦𝑦 plane, and the deformed beam axis is also in the 𝑦𝑦𝑦𝑦 plane. Therefore, the components 𝑤𝑤, 𝑣𝑣 of 
u(z) along 𝑧𝑧 and 𝑦𝑦 respectively are nonzero, and the only nonzero rotation angle 𝛺𝛺 of the cross-
sections is about the 𝑥𝑥-axis. Usual assumptions of small-amplitude displacements and rotations 
lead to following linearized strain measures 

𝜀𝜀 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝛾𝛾 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝛺𝛺, 𝜒𝜒 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, (2) 
where ε, γ, and χ stand for axial elongation, shearing strain, and bending curvature, respectively, 
while the displacement components and rotation now describe their first-order increments. 

The balance in the actual shape, in the absence of the so-called nonlocal residuals, read 
𝑑𝑑𝐧𝐧
𝑑𝑑𝑑𝑑

+ 𝐪𝐪 = 𝟎𝟎,
𝑑𝑑𝐦𝐦
𝑑𝑑𝑑𝑑

+
𝑑𝑑(𝑧𝑧𝐤𝐤 + 𝐮𝐮)

𝑑𝑑𝑑𝑑
× 𝐧𝐧 + 𝐭𝐭 = 𝟎𝟎, (3) 

where n,m are inner force and couple, while q,t stand for the external force and couple densities, 
respectively. When the couples and forces lie in the 𝑦𝑦𝑦𝑦 plane, Eq. (3) lead to the following scalar 
incremental balance equations 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑞𝑞𝑧𝑧 = 0,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑞𝑞𝑦𝑦 = 0,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑇𝑇 + 𝑡𝑡𝑥𝑥 = 0, (4) 

where: N, T, M are the increments of the inner normal force, shear force, and bending couple, 
respectively; qz, qy, tx are the increments of the external actions reduced to the beam axis in the 
direction indicated by the subscripts. 

The linear elastic problem is closed by the constitutive equation, which relates strain measures 
and dual work-conjugate internal actions. Here we assume that the beam is purely flexible, and the 
material obeys Eringen’s model of a two-phase local/nonlocal mixture: 

𝑀𝑀 = 𝐵𝐵[(1 − 𝜉𝜉)𝜒𝜒 + 𝜉𝜉𝜉𝜉 ∗ 𝜒𝜒], (5) 
where B is the bending stiffness of the cross-section and 𝜉𝜉 is the nonlocal portion of the material 
response; the latter is modelled by the kernel function 𝐾𝐾, accounting for long-range interactions 
among material points. We consider an exponential kernel in the following form 

𝐾𝐾 ∗ 𝑓𝑓 = � 𝐾𝐾(𝜁𝜁, 𝑧𝑧)𝑓𝑓(𝜁𝜁)𝑑𝑑𝑑𝑑
𝐿𝐿

0
, 𝐾𝐾(𝜁𝜁, 𝑧𝑧) =

1
2𝜅𝜅

𝑒𝑒
|𝑧𝑧−𝜁𝜁|
𝜅𝜅 , � 𝐾𝐾(𝜁𝜁, 𝑧𝑧)𝑑𝑑𝑑𝑑

∞

−∞
= 1 (6) 

where κ is called nonlocal parameter and is a rough measure of a ‘radius of activity’ or ‘radius of 
extinction’ of long-range interactions. 
Transverse Vibration 
Let the only non-zero component of external action be transverse inertia, that is,   

𝑞𝑞𝑧𝑧 = 𝑡𝑡𝑥𝑥 = 0, 𝑞𝑞𝑦𝑦 = −𝑚𝑚𝑣̈𝑣, (7) 
m being the mass of the beam per unit length of its axis and over-dots denote time derivatives. If 
the fields of interest are harmonic in time with angular frequency 𝜔𝜔, we choose to use the same 
notation to indicate their spatial part only, and define the following nondimensional quantities: 

𝑧𝑧̅ =
𝑧𝑧
𝐿𝐿

, 𝑣̅𝑣 =
𝑣𝑣
𝐿𝐿

, 𝜅̅𝜅 =
𝜅𝜅
𝐿𝐿

, 𝑇𝑇� =
𝑇𝑇𝐿𝐿2

𝐵𝐵
, 𝑀𝑀� =

𝑀𝑀𝑀𝑀
𝐵𝐵

, 𝜆̅𝜆 =
𝑚𝑚𝜔𝜔2𝐿𝐿2

𝐵𝐵
 . (8) 

For the ease of notation, the overbars will be omitted, except when confusion may arise.  
With the assumptions on the initial and current shape of the beam, the transverse and axial 

motions are uncoupled. We are interested only in the transverse motion that is quantified by: the 
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transverse displacement component 𝑣𝑣; the cross-section rotation angle 𝛺𝛺; its dual work conjugate, 
the bending couple 𝑀𝑀; and, for balance, the shear force 𝑇𝑇. The corresponding four 1st order 
integral-differential equations may be reduced into a single one of 4th order after trivial operations 

(1 − 𝜉𝜉)𝑓𝑓𝐼𝐼𝐼𝐼 + 𝜉𝜉�𝐾𝐾 ∗ 𝑓𝑓(𝑖𝑖)�
(4−𝑖𝑖)

− 𝜆𝜆𝜆𝜆 = 0,   𝑓𝑓 = 𝑣𝑣 ⇒ 𝑖𝑖 = 1, 𝑓𝑓 = 𝑇𝑇 ⇒ 𝑖𝑖 = 3,
𝑓𝑓 = 𝛺𝛺 ⇒ 𝑖𝑖 = 2, 𝑓𝑓 = 𝑀𝑀 ⇒ 𝑖𝑖 = 4; (9) 

where the superscript in the parentheses indicates the order of the spatial derivative.  
The usual boundary conditions are listed in Table 1. 

Table 1. Natural and essential boundary conditions for particular selection of f. 
 pin clamp free 

v 
𝑓𝑓 = 0,  

(1 − 𝜉𝜉)𝑓𝑓′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′ = 0 
𝑓𝑓 = 0,  
𝑓𝑓′ = 0 

(1 − 𝜉𝜉)𝑓𝑓′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′ = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉(𝐾𝐾 ∗ 𝑓𝑓′′)′ = 0 

Ω 
(1 − 𝜉𝜉)𝑓𝑓′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′ = 0 

(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉(𝐾𝐾 ∗ 𝑓𝑓′)′′ = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉(𝐾𝐾 ∗ 𝑓𝑓′)′′ = 0 

𝑓𝑓 = 0 
(1 − 𝜉𝜉)𝑓𝑓′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′ = 0 

(1 − 𝜉𝜉)𝑓𝑓′′ + 𝜉𝜉(𝐾𝐾 ∗ 𝑓𝑓′)′ = 0 

T 𝑓𝑓′ = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′′ = 0 

𝑓𝑓′ = 0 
𝑓𝑓′′ = 0 

𝑓𝑓 = 0 
(1 − 𝜉𝜉)𝑓𝑓′′′ + 𝜉𝜉𝜉𝜉 ∗ 𝑓𝑓′′′ = 0 

M 𝑓𝑓 = 0 
𝑓𝑓′′ = 0 

𝑓𝑓′′ = 0 
𝑓𝑓′′′ = 0 

𝑓𝑓 = 0 
𝑓𝑓′ = 0 

It is notable that when the bending couple is used as the unknown field in Eq. 9, none of the 
classical boundary conditions include the convolution.  
 
Perturbation with respect to the Nonlocal Fraction 
If, as physically reasonable, all the quantities of interest depend on the nonlocal fraction 𝜉𝜉 of the 
material response, we can approximate them by their 𝜉𝜉-power series expansions about a given 
value 𝜉𝜉0 

𝑓𝑓 ≅�
(𝜉𝜉 − 𝜉𝜉0)𝑗𝑗

𝑗𝑗!
𝑓𝑓𝑗𝑗

𝑛𝑛

𝑗𝑗=0
, 𝜆𝜆 ≅�

(𝜉𝜉 − 𝜉𝜉0)𝑗𝑗

𝑗𝑗!
𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=0
, 𝑓𝑓𝑗𝑗 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝜉𝜉=𝜉𝜉0

. (10) 

A crucial choice for our aim is 𝜉𝜉0 = 0, corresponding to a purely local elastic response. Thus, 
all quantities of interest are evaluated as if the beam were local. The expansions in Eq. 10 are fully 
reliable for ‘small’ values of 𝜉𝜉, i.e., 𝜉𝜉 ≅ 0.1, but are expected to give satisfactory results also for 
‘moderate’ values of 𝜉𝜉, i.e., 𝜉𝜉 ≅ 0.3 − 0.5; in our applications we will give a numerical example. 

Inserting Eq. 10 into Eq. 9 provides a hierarchy of equations for different orders of 𝜉𝜉: 
0th order: 𝑓𝑓0𝐼𝐼𝐼𝐼 − 𝜆𝜆0𝑓𝑓0 = 0, (11) 
1st order: 𝑓𝑓1𝐼𝐼𝐼𝐼 − 𝜆𝜆0𝑓𝑓1 = 𝑓𝑓0𝐼𝐼𝐼𝐼 − �𝐾𝐾 ∗ 𝑓𝑓0

(𝑖𝑖)�
(4−𝑖𝑖)

+ 𝜆𝜆1𝑓𝑓0, (12) 

2nd order: 𝑓𝑓2𝐼𝐼𝐼𝐼 − 𝜆𝜆0𝑓𝑓2 = 2𝑓𝑓1𝐼𝐼𝐼𝐼 − 2 �𝐾𝐾 ∗ 𝑓𝑓1
(𝑖𝑖)�

(4−𝑖𝑖)
+ 2𝜆𝜆1𝑓𝑓1 + 𝜆𝜆2𝑓𝑓0, (13) 

or, in general, 
𝐷𝐷𝑓𝑓0 = 0, 𝐷𝐷𝑓𝑓𝑘𝑘 = 𝑏𝑏𝑘𝑘, 𝑘𝑘 = 1,2,3, … (14) 

for which the usual pattern of perturbation expansions is apparent: that is, the differential operator 
𝐷𝐷(∙) = 𝑑𝑑4(∙) 𝑑𝑑𝑑𝑑4⁄ − 𝜆𝜆0(∙) is the same at all orders and the ‘forcing’ terms on the right side depend 
on the solutions of previous orders. It is crucial to remark is that we turned the integral-differential 
system into a set of differential equations by perturbing the unknown field and the eigenvalues 
about the local problem, a solution of which we know to exist and be unique. 

The boundary conditions for different 𝜉𝜉-orders are provided in Tables 2-3. 
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Table 2. 0th order boundary conditions for particular selections of f. 
 pin clamp free 

v 
𝑓𝑓0 = 0,  
𝑓𝑓0

′′ = 0 
𝑓𝑓0 = 0,  
𝑓𝑓0′ = 0 

𝑓𝑓0
′′ = 0 

𝑓𝑓0
′′′ = 0 

Ω 
𝑓𝑓0

′ = 0 
𝑓𝑓′′′ = 0 

𝑓𝑓0
′′′ = 0 

𝑓𝑓0 = 0 
𝑓𝑓0

′ = 0 
𝑓𝑓0

′′ = 0 

T 
𝑓𝑓0

′ = 0 
𝑓𝑓0

′′′ = 0 
𝑓𝑓0

′ = 0 
𝑓𝑓0

′′ = 0 
𝑓𝑓0 = 0 
𝑓𝑓0

′′′ = 0 

M 
𝑓𝑓0 = 0 
𝑓𝑓0′′ = 0 

𝑓𝑓0′′ = 0 
𝑓𝑓0′′′ = 0 

𝑓𝑓0 = 0 
𝑓𝑓0′ = 0 

Table 3. 1st order boundary conditions for particular selections of f. 
 pin clamp free 

v 
𝑓𝑓1 = 0,  

𝑓𝑓1
′′ = 𝑓𝑓0

′′ − 𝐾𝐾 ∗ 𝑓𝑓0′′ 
𝑓𝑓1 = 0,  
𝑓𝑓1′ = 0 

𝑓𝑓1
′′ = 𝑓𝑓0

′′ − 𝐾𝐾 ∗ 𝑓𝑓0′′ 
𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − �𝐾𝐾 ∗ 𝑓𝑓0
′′�′ 

Ω 
𝑓𝑓1
′ = 𝑓𝑓0

′ − 𝐾𝐾 ∗ 𝑓𝑓0
′ 

𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − �𝐾𝐾 ∗ 𝑓𝑓0
′�′′ 

𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − �𝐾𝐾 ∗ 𝑓𝑓0
′�′′ 

𝑓𝑓1 = 0 
𝑓𝑓1
′ = 𝑓𝑓0

′ − 𝐾𝐾 ∗ 𝑓𝑓0
′ 

𝑓𝑓1
′′ = 𝑓𝑓0

′′ − �𝐾𝐾 ∗ 𝑓𝑓0
′�′ 

T 
𝑓𝑓1
′ = 0 

𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − 𝐾𝐾 ∗ 𝑓𝑓0
′′′ 

𝑓𝑓1
′ = 0 

𝑓𝑓1
′′ = 0 

𝑓𝑓1 = 0 
𝑓𝑓1
′′′ = 𝑓𝑓0

′′′ − 𝐾𝐾 ∗ 𝑓𝑓0
′′′ 

M 
𝑓𝑓1 = 0 
𝑓𝑓1′′ = 0 

𝑓𝑓1′′ = 0 
𝑓𝑓1′′′ = 0 

𝑓𝑓1 = 0 
𝑓𝑓1′ = 0 

We see that the 1st order equations admit nonhomogeneous boundary conditions even though the 
corresponding 0th order equations have homogeneous boundary conditions. 
 
Constructing a Solution 
We define the scalar product for continuously differentiable functions ℎ,𝑔𝑔 that satisfy the 0th order 
boundary conditions and have support (0,1) as  

The differential operator 𝐷𝐷 is self-adjoint with respect to the scalar product defined in Eq. 15, 

We can also show that the family 𝑓𝑓0𝑖𝑖 of solutions to Eq. 11, associated with the eigenvalue 𝜆𝜆0𝑖𝑖, 
are orthogonal to each other; that is, 

Recalling that the boundary conditions for higher-order equations are homogeneous only if 𝑓𝑓 =
𝑀𝑀, we choose the bending couple as unknown field for convenience in mathematical operations. 
Indeed, it is possible to write the bending couple by the following eigenfunction expansion 

for which the boundary conditions are satisfied; 𝛼𝛼𝑖𝑖𝑖𝑖 are the constants providing the contribution of 
the jth mode onto the ith mode of the 0th order solution.  
Incremental Eigenvalues 
Inserting Eq. 18 into Eq. 12 provides 

〈ℎ,𝑔𝑔〉 = � ℎ(𝑧𝑧)𝑔𝑔(𝑧𝑧)𝑑𝑑𝑑𝑑
1

0
 (15) 

〈𝐷𝐷ℎ,𝑔𝑔〉 = 〈ℎ,𝐷𝐷𝐷𝐷〉. (16) 

〈𝑓𝑓0𝑖𝑖,𝑓𝑓0𝑗𝑗〉 = 0, 𝑖𝑖 ≠ 𝑗𝑗. (17) 

𝑀𝑀𝑘𝑘𝑘𝑘 = 𝑀𝑀0𝑖𝑖 + � 𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀0𝑗𝑗
𝑖𝑖≠𝑗𝑗

, 𝑘𝑘 = 1,2,3, … (18) 
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multiplying both sides by M0i and integrating over the domain leads to 

that is, the 0th order solution for the ith mode shall be orthogonal to the forcing term of the 1st order 
equation for the corresponding mode. This is the Fredholm compatibility (solvability) condition, 
which we can solve for the incremental eigenvalue 

For a bounded and integrable function 𝑔𝑔 with a compact support 𝑆𝑆 the 𝐿𝐿𝑝𝑝 norm is 

Young’s Convolution Identity reads 

Then, we can write 

Since the kernel function 𝐾𝐾 is a positive symmetric radial function, and considering Eq. 6-3, it is  

which, along with Eq. 24, leads to 

Referring to Hölder’s Inequality 

we write 

which, along with Eq. 26, gives 

This is a notable result indicating that the incremental eigenvalue is always negative, which is a 
feature ascribable to the well-known softening behavior of Eringen’s model. 
An Example: Simply supported beam 
For a simply supported beam, the well-known local (0th order) solution reads 

where 𝐶𝐶 is found by a suitable normalization.  
Inserting Eq. 30 into Eq. 21 provides the slope of the 𝜆𝜆 − 𝜉𝜉 curve at 𝜉𝜉 = 0, that is, a linear 

approximation of the dependance of the eigenvalues on the non-local fraction coefficient. Further, 
what is most interesting is that such approximation is given in a closed form as follows  

� 𝛼𝛼𝑖𝑖𝑖𝑖𝜆𝜆0𝑗𝑗𝑀𝑀0𝑗𝑗
𝑖𝑖≠𝑗𝑗

− 𝜆𝜆0𝑖𝑖� 𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀0𝑗𝑗
𝑖𝑖≠𝑗𝑗

= 𝜆𝜆0𝑖𝑖𝑀𝑀0𝑖𝑖 − 𝜆𝜆0𝑖𝑖𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖 + 𝜆𝜆1𝑖𝑖𝑀𝑀0𝑖𝑖 (19) 

� (𝜆𝜆0𝑖𝑖𝑀𝑀0𝑖𝑖𝑀𝑀0𝑖𝑖 − 𝜆𝜆0𝑖𝑖(𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖)𝑀𝑀0𝑖𝑖 + 𝜆𝜆1𝑖𝑖𝑀𝑀0𝑖𝑖𝑀𝑀0𝑖𝑖)𝑑𝑑𝑑𝑑
1

0
= 〈𝑀𝑀0𝑖𝑖,𝑏𝑏1〉 = 0, (20) 

𝜆𝜆1𝑖𝑖 = �
〈𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖,𝑀𝑀0𝑖𝑖〉
〈𝑀𝑀0𝑖𝑖,𝑀𝑀0𝑖𝑖〉

− 1�𝜆𝜆0𝑖𝑖 (21) 

‖𝑔𝑔‖𝑝𝑝 = �� |𝑔𝑔|𝑝𝑝𝑑𝑑𝑑𝑑
 

𝑆𝑆
�
1/𝑝𝑝

. (22) 

‖𝑓𝑓 ∗ 𝑔𝑔‖𝑟𝑟 ≤ ‖𝑓𝑓‖𝑝𝑝‖𝑔𝑔‖𝑞𝑞 , 1/𝑝𝑝 + 1/𝑞𝑞 = 1/𝑟𝑟 + 1. (23) 

‖𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖‖2 ≤ ‖𝐾𝐾‖1‖𝑀𝑀0𝑖𝑖‖2,. (24) 

�𝐾𝐾(𝜁𝜁, 𝑧𝑧)𝑑𝑑𝑑𝑑
 

𝑆𝑆
= � |𝐾𝐾(𝜁𝜁, 𝑧𝑧)|𝑑𝑑𝑑𝑑

 

𝑆𝑆
;              � 𝐾𝐾(𝜁𝜁, 𝑧𝑧)𝑑𝑑𝑑𝑑

∞

−∞
= 1 ⇒ � 𝐾𝐾(𝜁𝜁, 𝑧𝑧)𝑑𝑑𝑑𝑑

1

0
= ‖𝐾𝐾‖1 ≤ 1,  (25) 

‖𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖‖2 ≤ ‖𝑀𝑀0𝑖𝑖‖2,. (26) 

|〈𝑓𝑓 ∗ 𝑔𝑔〉| ≤ ‖𝑓𝑓‖2‖𝑔𝑔‖2, (27) 

� 𝑀𝑀0𝑖𝑖(𝐾𝐾 ∗𝑀𝑀0𝑖𝑖)𝑑𝑑𝑑𝑑
1

0
≤ �� 𝑀𝑀0𝑖𝑖(𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖)𝑑𝑑𝑑𝑑

1

0
� ≤ �� 𝑀𝑀0𝑖𝑖

2 𝑑𝑑𝑑𝑑
1

0
�
1/2

�� |𝐾𝐾 ∗𝑀𝑀0𝑖𝑖|2𝑑𝑑𝑑𝑑
1

0
�
1/2

, (28) 

� 𝑀𝑀0𝑖𝑖(𝐾𝐾 ∗𝑀𝑀0𝑖𝑖)𝑑𝑑𝑑𝑑
1

0
≤ � 𝑀𝑀0𝑖𝑖𝑀𝑀0𝑖𝑖𝑑𝑑𝑑𝑑

1

0
⇒
∫ 𝑀𝑀0𝑖𝑖(𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖)𝑑𝑑𝑑𝑑
1
0

∫ 𝑀𝑀0𝑖𝑖𝑀𝑀0𝑖𝑖𝑑𝑑𝑑𝑑
1
0

=
〈𝐾𝐾 ∗ 𝑀𝑀0𝑖𝑖,𝑀𝑀0𝑖𝑖〉
〈𝑀𝑀0𝑖𝑖,𝑀𝑀0𝑖𝑖〉

≤ 1. (29) 

𝑀𝑀0𝑖𝑖 = 𝐶𝐶 sin 𝑖𝑖𝑖𝑖𝑖𝑖 , 𝜆𝜆0𝑖𝑖 = 𝑖𝑖4𝜋𝜋4 (31) 
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Table 4. Comparison of eigenvalues for different parameters. 

 𝜅𝜅 = 0.05 𝜅𝜅 = 0.1 
 𝜉𝜉 = 0.25 𝜉𝜉 = 0.5 𝜉𝜉 =  0.25 𝜉𝜉 = 0.5 

[5] 9.84255 9.81485 9.77714 9.67978 
[6] 9.84255 9.81485 9.77714 9.67978 

Present 9.84276 9.81584 9.77854 9.68661 

It is apparent in Table 4 that our perturbation approach can reply almost exactly the results 
found in the literature. It must be remarked that our linear perturbation approach is reliable even 
for moderate non-local fractions, which is not to be taken for granted in advance. That is, even 
though perturbations are usually reliable only for ‘small’ values of the perturbation parameter, in 
this case, as advanced previously, our perturbation yields reliable results also for ‘non-small’ 
values of 𝜉𝜉, i.e., 𝜉𝜉 = 0.5. 
Conclusions 
By a perturbation approach we turned the integral-differential field system for beams composed 
of a two-phase local/nonlocal mixture into a hierarchy of bulk equations completed by the usual 
boundary conditions of local elasticity. Non-triviality of solutions and solvability conditions at 
successive steps of the hierarchy led to closed-form solutions for incremental natural angular 
frequencies of transverse natural vibration. Using well-known basic identities and inequalities of 
functional analysis we showed that the incremental eigenvalue is always negative, providing the 
well-known softening effect of Eringen’s theory. The closed-form expressions can be of interest 
in the modelling and identification of nanomaterials. 
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