

MQTT PROTOCOL DATA SECURITY WITH
OTP BLOCKCHAIN-BASED IDENTITY

 AND
 DATA VERIFICATION

BATUHAN PARLAKAY

MEF UNIVERSITY

AUGUST 2023

MEF UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

MASTER’S IN MECHATRONICS AND ROBOTICS ENGINEERING

M.Sc THESIS

MQTT PROTOCOL DATA SECURITY WITH
 OTP BLOCKCHAIN-BASED IDENTITY

 AND
 DATA VERIFICATION

 Batuhan PARLAKAY

ORCID NO: 0009-0004-6186-3587

Thesis Advisor: Asst. Prof. Dr. Tuba AYHAN

AUGUST 2023

ACADEMIC HONESTY PLEDGE

 This is to certify that I have read the graduation project and it has been judged

to be successful, in scope and in quality and is acceptable as a graduation project

Master's Degree in Mechatronics and Robotics Engineering.

 Name Surname: Batuhan PARLAKAY

 Signature:

i

ABSTRACT

MQTT PROTOCOL DATA SECURITY WITH OTP BLOCKCHAIN-BASED

IDENTITY AND DATA VERIFICATION

Batuhan PARLAKAY

M.Sc. in Mechatronics and Robotics Engineering

Thesis Advisor: Asst. Prof. Dr. Tuba AYHAN

August 2023, 133 Pages

The widespread Internet of Thing presence in almost every aspect of our lives

has been made possible by the fast development of technology these past few years.

The internet of things is in a wide area. For example cell phones, tablets, computers

and all other devices with sensors. Among the technologies used to facilitate efficient

communication, between these IoT devices the MQTT protocol stands out. Exposure

of security vulnerabilities existing in MQTT, and the development of effective

countermeasures is a key objective of this thesis.

The MQTT server's client architecture was built between the Raspberry Pi and

the computer. To be used by MQTT Broker and publisher subscribers, Python

programs have been developed. The use of the wireshark API has been recommended

to check for system security vulnerabilities. During that process, the safety issues at

packet and module level have been examined in an experimental manner. The MQTT

protocol has been found to be vulnerable to attacks.

Although encryption can be performed on port 8388 with Secure Sockets (SSL)

and Transport Layer Security (TLS) protocols to address the security vulnerabilities

found in the standard MQTT configuration, this is not preferred and is not scalable.

Instead, a structure has been developed on port 1883 again, using smart contracts,

digital signatures to only allow authorized users to connect to the MQTT broker,

providing authentication and encryption for the publisher and subscriber. Extra

security measures are offered with authentication, message denial, data integrity, and

selective privacy.

ii

In the area of Smart Contracts major progress has been made. A smart contract,

ensuring transparency and traceability in every transaction offering benefits, plays an

important role. Smart contracts consist of an automated set of instructions which, when

certain conditions have been fulfilled, shall be executed automaticly. Users'

permissions as well as Digital Signatures could be included in these conditions. Better

scalability is also provided by this system.

Using A system has been developed using Smart Contract technology to

perform user authentication and permission management for users connected to an

MQTT broker. Authorization processes such as adding, removing, granting, or

denying user permissions can be executed through a smart contract. Similarly, a user

seeking to access and publish or read data on the MQTT broker must not only possess

the necessary authorization but also approve a digitally signed message based on their

unique OTP (One-Time Password) information. The Elliptic Curve digital signature

algorithm is used for this signature.

Users with access permissions can verify the digital signature using their public

key and OTP information. Once the smart contract confirms the user's permission to

publish data, they can proceed with their publication or perform encrypted data

readings This design is intended to stop entry and manipulation of data, within the

system.

In contrast with the data security offered by SSL or TLS, this new and effective

method provides additional protection against attacks on Data Centres such as

potential Distributed Denial of Service attack from Sybil.

Upon completion of this thesis, it was determined that the Broker gained

immunity against attacks due to the implemented security measures.Consequently the

thesis offers an examination of MQTT in relation, to attacks and suggests an enhanced

security mechanism to counteract these attacks.

Keywords : IoT, MQTT, OTP, Blockchain, Smart Contract, HbMQTT, ECDSA,

Digital Signature

Numeric Code of the Field : 92905

iii

ÖZET

MQTT PROTOKOLÜ VERİ GÜVENLİĞİNİN OTP BLOKZİNCİR TABANLI

KİMLİK VE VERİ DOĞRULAMA İLE SAĞLANMASI

Batuhan PARLAKAY

Mekatronik ve Robotik Mühendisliği Tezli Yüksek Lisans Programı

Tez Danışmanı: Dr. Öğr. Üyesi Tuba AYHAN

Ağustos 2023, 133 Sayfa

Son yıllarda teknolojinin hızla gelişmesiyle birlikte, Nesnelerin İnterneti (IoT)

adını verdiğimiz akıllı cihazlar ve sistemler hayatımızın her alanında kendine yer

bulmaktadır. IoT, akıllı telefonlar, tabletler, PC'ler ve üzerinde sensör bulunan

neredeyse her şeyi kapsayan geniş bir kavramdır. Bu kapsamda, IoT cihazları arasında

verimli ve güvenli iletişim sağlamak amacıyla MQTT protokolü önemli bir role

sahiptir. Bu tezde, MQTT protokolünün güvenlik zafiyetlerini tespit etmek ve bu

zafiyetlere karşı etkili önlemler geliştirmek hedeflenmektedir.

Tez kapsamında, Raspberry Pi ve bilgisayar arasında MQTT server client

mimarisi oluşturulmuştur. MQTT Broker ve yayıncı/abone istemcileri için Python

programları geliştirilmiş, sistem üzerinde çeşitli güvenlik açıklarını tespiti sağlanırken

Shodan API'sinden ve Wireshark’dan yararlanılmıştır. Bu süreçte, paket ve konu

düzeyindeki güvenlik sorunları deneysel olarak incelenmiştir.

Akıllı sözleşmeler, dijital imzalar, OTP kullanarak 1883 numaralı portunda bir

yapı geliştirilmiştir. Bu, yayıncı ve abone için kimlik doğrulama ve şifreleme

sağlayarak yalnızca yetkili kullanıcıların MQTT brokerine bağlanmasına olanak tanır.

Kimlik doğrulama, mesaj reddetme, veri bütünlüğü ve seçici gizlilik gibi ek güvenlik

önlemleri sunulmaktadır.

MQTT brokerına erişim, veri yayınlama veya okuma isteyen bir kullanıcının

sadece gerekli yetkiye sahip olması yetmez, aynı zamanda benzersiz OTP (Tek

Seferlik Şifre) bilgilerine dayalı olarak dijital imzalı bir mesajı onaylaması da

gereklidir. Bu imza Elips Kavisli Dijital İmza Algoritması'na dayanır. Erişim izinlerine

iv

sahip kullanıcılar, dijital imzayı genel anahtar ve OTP bilgilerini kullanarak

doğrulayabilirler.

Dijital imzalar, asimetrik şifreleme tekniklerini kullanarak, iletilen her bir

MQTT mesajının bütünlüğünü ve kökenini doğrular. Bu, iletilen verinin

değiştirilmediğini ve belirli bir cihaz veya kullanıcıdan geldiğini garantiler.

SSL/TLS, bağlantı bazında çalışır ve tüm bağlantıyı şifreler. Geniş ölçekteki

sistemlerde, SSL/TLS sertifikalarının yönetimi ve sürekli şifreleme/şifre çözme

işlemleri, özellikle düşük kapasiteli IoT cihazlarında ek işlem yükü oluşturabilir. Akıllı

sözleşmeler ve dijital imzaların kullanımı, geniş ölçekteki çok sayıda yayınlayıcı ve

abone içeren sistemlerde, SSL/TLS'ye göre daha ölçeklenebilir bir çözüm sunabilir.

Tez çalışması sonucunda, geliştirilen güvenlik önlemleri sayesinde Broker'ın

saldırılara karşı bağışık olduğu tespit edilmiştir. Bu tez, MQTT protokolündeki

güvenlik tutarsızlıklarının ve alınabilecek önlemlerin özlü bir incelemesini sunarak,

alanındaki çalışmalara katkı sağlamayı hedeflemektedir. Bu sayede, IoT sistemlerinde

veri iletişiminin daha güvenli ve etkin bir şekilde gerçekleştirilmesine yardımcı

olunacaktır.

Anahtar Kelimeler : IoT, MQTT, OTP, Blockchain, Akıllı Sözleşme, HbMQTT,

ECDSA, Dijital İmza

Bilim Dalı Sayısal Kodu: 92905

v

ACKNOWLEDGEMENT

I am incredibly grateful, to my advisor, Associate Professor Tuba AYHAN for

the help and support she provided throughout my masters thesis journey. Her guidance,

at every step of this research process has been absolutely essential. Greatly

appreciated.

I am truly thankful, for the support I have received from my father, Muharrem

PARLAKAY, my mother, Nermin PARLAKAY and my brother, Tunahan

PARLAKAY. Thank you all much. I am grateful for everything that you've been

giving to me in my career as a teacher.

I would also like to thank my colleagues at DACEL, the company where I had

my first professional experience.

I sincerely thank everyone mentioned above for your contributions in bringing

this master's thesis to completion.

vi

TABLE OF CONTENTS

ABSTRACT ... i

ÖZET .. iii

ACKNOWLEDGEMENT ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

ABBREVIATIONS .. x

INTRODUCTION .. 1

1. IOT PROTOCOLS .. 3

1.1. IoT Session Layer Protocols: A Comparative Analysis 3

2. BLOCKCHAIN & MQTT: CORE CONCEPTS .. 5

2.1. The MQTT Protocol .. 5

2.1.1. The Benefits and Use Cases of Publish-Subscribe Messaging 7

2.1.2. HBMQTT ... 9

2.2. Blockchain ... 10

2.2.1. Smart Contract ... 11

2.2.2. Public and Private Key Cryptography in MQTT 13

2.2.3. Consensus Algorithm ... 15

2.3. Digital Signature and OTP .. 18

2.4. Remix IDE and Ganache ... 21

2.5. Decentralized Identity Management ... 23

3. SYSTEM ... 24

4.EVALUATION .. 32

4.1. Comparative Analysis ... 32

4.2 Performance Benchmarking ... 36

4.3 Security Analysis ... 38

5. SECURITY MECHANISMS .. 51

5.1. The Absence of Authentication Mechanisms for User Verification ... 53

5.2 Transmitting User Credentials in Plain Text within Connect Command
Packets .. 55

5.3 Blockchain Authentication Mechanism to Authenticate 59

CONCLUSION AND FUTURE WORK ... 68

REFERENCES ... 72

vii

APPENDIXES .. 80

A: MQTT Broker Code .. 80

B: Python Code: Integration of Broker and Smart Contract 86

C: MQTT Python Attacks .. 132

viii

LIST OF FIGURES

Figure 1:The primary components of the MQTT protocol .. 8
Figure 2: The publish-subscribe messaging sequence diagram 9
Figure 3: Blockchain network .. 10
Figure 4: An overview of blockchain transaction processes 15
Figure 5: Smart contract execution in ethereum network .. 17
Figure 6: Digital signature diagram ... 18
Figure 7:Elliptic curve digital signature algorithm .. 21
Figure 8: Remix Ide ... 21
Figure 9: Ganache truffle suite ... 22
Figure 10: Metamask wallet ... 22
Figure 11:The introduction and configuration of devices .. 24
Figure 12: Smart contract function blocks ... 25
Figure 13: A general template for an accesscontrol smart contract: 27
Figure 14:MQTT and OTP blockchain-based system configuration 28
Figure 15: Storage in smart contract transaction .. 29
Figure 16:Recommendation-based overview ... 30
Figure 17:MQTT and OTP blockchain-based system configuration 31
Figure 18: TLS/SSL Sequence Diagram .. 33
Figure 19:Proposed Solution Sequence Diagram .. 34
Figure 20: Our Method Memory Usage ... 36
Figure 21:SSL/TLS Memory Usage .. 37
Figure 22:Our Method CPU Usage .. 37
Figure 23:SSL/TLS CPU Usage .. 38
Figure 24:Results of the security analysis conducted with ProVerif. 43
Figure 25:Results of the security analysis conducted with Scyther 50
Figure 26:MQTT connection analyses ... 52
Figure 27:MQTT data transmission started ... 54
Figure 28:Easy access to data through network MQTT broadcast analysis 54
Figure 29:Connection with a Null Username and Password 54
Figure 30:Easy data access with MQTT explorer .. 55
Figure 31:Exposed MQTT credentials in wireshark .. 56
Figure 32: Manipulated scada data .. 57
Figure 33: Attack scenario ... 57
Figure 34:Mqtt broker timeout after attack .. 58
Figure 35: User access permission ... 60
Figure 36: Obtaining OTP user password .. 61
Figure 37: User with MQTT broker permission .. 62
Figure 38:User without MQTT permissionn .. 63
Figure 39: Access with an incorrect private key .. 63
Figure 40:User permission information for subscription ... 64
Figure 41:Encrypted MQTT data analysis ... 64
Figure 42:User OTP permission ... 65

ix

Figure 43:Transaction block record ... 66
Figure 44:User with access permission MQTT connection 67
Figure 45:Graph illustrating MQTT usage .. 68
Figure 46:Distribution of most commonly used ports in MQTT connections 69
Figure 47:MQTT server connection results ... 69

x

ABBREVIATIONS

IOT : Internet Of Things

SCADA : Supervisory Control and Data Acquisition

OTP : One Time Password

MQTT : Message Queuing Telemetry Transport

PoW : Proof of Work

PoS : Proof of Stake

TLS : Transport Layer Security

SSL : Secure Sockets Layer

ECDSA : Elliptic Curve Digital Signature Algorithm

RSA : Rivest–Shamir–Adleman

DSA : Digital Signature Algorithm

1

INTRODUCTION

The popularity of Internet of Things (IoT) applications has seen a rise, in the

year leading to a corresponding increase, in concerns regarding their security. The

MQTT protocol, known as Message Queuing Telemetry Transport is a communication

protocol utilized extensively in Internet of Things (IoT) systems due, to its nature and

energy efficiency. MQTT, however, has a number of serious security vulnerabilities.

User authentication is one of the most important processes [1].

The The objective The objective herein is to devise a fortified security and

authorization mechanism for the MQTT user authentication process by integrating

one- time password (OTP) systems with blockchain technology, smart contracts,

digital signature, asymmetric encryption mechanisms.

Particular, it should be considered that username and password information in

the MQTT protocol can be easily decrypted using network monitoring tools, such as

Wireshark, and manipulated by malicious individuals [2]. To enhance the MQTT user

authentication process, the use of smart contracts is suggested. In this method

individuals are incorporated into the system by validating their permissions through

contracts. If the user has access permission, they can create a username and password

as desired. These login details will be utilized to establish a connection via MQTT.

One-time password (OTP) systems can be implemented to further increase the

security of MQTT user authentication. OTP systems generate different and temporary

passwords for each use, reducing the risk of unauthorized access for users [3].

Furthermore if we combine OTP with signatures it can enhance the security

mechanism to a level. In the scope of this thesis, a demo is conducted using a Raspberry

Pi, utilizing MQTT's broker, publisher, and subscriber features to read temperature and

humidity values connected to the Raspberry Pi on another computer within the same

network, thereby establishing a security mechanism.

The developed security mechanism utilizes smart contracts, OTP, and digital

signatures to enable the observation of MQTT traffic. Asymmetric encryption has been

preferred for data encryption. The use of the Elliptic Curve Digital Signature

Algorithm has become prevalent, in signatures. Additional details of the reasons for

making such a choice shall be given under the following sections. Access can be

2

controlled, monitored, and limited through smart contracts, OTPs, and digital

signatures. Additionally, coupled with data encryption, unauthorized access becomes

nearly impossible. Four fundamental strategies have been identified to enhance IoT

security: employing blockchain for communication protection, authenticating users,

recognizing legitimate IoT devices, and configuring IoT settings.

The fundamentals of the MQTT protocol and existing literature on security

vulnerabilities in user authentication is examined first. Subsequently, the integration

of smart contracts is discussed in detail, along with how they can be used to add users

and verify their permissions.

In the following sections, the inclusion of digital signature and OTP systems in

the user authentication process and the role they play in this process is discussed.

Various approaches, algorithms, and technologies related to OTP will be examined,

and the most suitable method will be selected for use in the application section of the

thesis.

The details of the demo conducted with Raspberry Pi and the steps of the

integrations carried out is described in the see, providing a guiding resource for readers

to implement this security mechanism in their projects.

Solutions to the security problems in the authentication process for MQTT will

be presented. In order to increase security, it is aimed to develop a security mechanism

based on smart contracts, digital signatures and OTP. The level of security will thus

be increased and protection of user data privacy and safety improved.

3

1. IOT PROTOCOLS

1.1. IoT Session Layer Protocols: A Comparative Analysis

Different communication protocols are used for the internet of things system,

and these have been optimized according to individual parameters, in particular taking

into account those criteria which include data transmission, energy efficiency or

security. A brief introduction of main Internet protocols, including MQTT,AMQP,

DDS, CoAP and XMPP, as well as the reasons why it's a good protocol compared to

others will be provided here [4].

MQTT (Message Queuing Telemetry Transport): This protocol stands out for

its lightweight, energy-efficient, and low bandwidth requirements, making it

particularly suitable for low-resource devices. MQTT uses the publisher subscriber

model for data transmission to provide low latency and excellent reliability.

Communication may be facilitated by the Advanced Message Queuing

Protocol, AMQP. The AMQP is more sophisticated and fluid in its communication

capabilities, but requires higher resource consumption as well as the requirement to

carry larger numbers of channels.

DDS (Data Distribution Service): Designed for real-time systems, DDS

delivers high performance and low latency. Though this protocol is widely used in

large scale and distributed systems, due to resource scarcity and bandwidth constraints

it may not be appropriate for lowresource Internet of Things systems.

CoAP (Constrained Application Protocol): CoAP is designed for devices with

low power and resource constraints. This protocol, like HTTP, is designed to respond

in a fast and simplified way. However, due to CoAP operating over UDP, it may not

be as successful as MQTT in terms of reliability.

XMPP (Extensible Messaging and Presence Protocol): his protocol provides

features such as instant messaging and presence information. XMPP is designed

especially for real-time and interactive applications but comes with higher resource

consumption and complexity.

4

MQTT is known for its design minimal bandwidth needs, energy efficiency

and quick response time. Therefore, it is advantageous, especially for low- resource

IoT systems. While some applications may find the flexibility, security, and

complexity features offered by other protocols important, MQTT has become a more

common choice in IoT systems thanks to its simplicity and performance. The

publisher- subscriber model of MQTT facilitates the management of data exchange

and communication. This particular model guarantees that as the number of devices

grows the system will also be able to expand and remain easily manageable. Compared

to the protocols, this allows communication in a manner that is energy efficient and

minimises transmission of data. However, other protocols are not scalable and

manageable, providing no flexibility for the development of a security mechanism.

And undoubtedly, MQTT is the simplest and most stable among them [5].

5

2. BLOCKCHAIN & MQTT: CORE CONCEPTS

2.1. The MQTT Protocol

The system shall be set up as a MQTT client server structure, which allows

clients to interact with the MQTT broker for sending and receiving messages. The

main components of MQTT are the publisher, subscriber, and broker [6]. The MQTT

protocol has been standardized by OASIS (Organization for the Advancement of

Structured Information Standards), a consortium that develops and publishes a range

of data protocols and standards. According to the work of the OASIS MQTT Technical

Committee, the publisher is responsible for generating messages and sending them to

the broker. The subscriber, on the other hand, listens to specific topics to receive

messages from the broker. The broker shall act as a intermediary, manage the

communication routes and ensure that messages reach their intended recipients.

The general architecture of the MQTT protocol [7], one of the most important

aspects is the topic-based filtering mechanism. Topics are hierarchical and can be

organized in a way that reflects the structure of the data being transmitted. For

example, a topic hierarchy for a smart home system might be organized as

"home/room/device/sensor." When a subscriber wants to receive messages related to

a specific topic, it subscribes to that topic by sending a subscription request to the

broker. The broker then forwards any relevant messages to the subscriber as they are

published.

The quality of service level, which determines the guarantee of the delivery of

messages, is another important aspect of MQTT. QoS 0 provides no guarantee of

message delivery, while QoS 1 ensures that the message will be delivered at least once,

possibly with duplicates. QoS 2 guarantees that the message will be delivered exactly

once, with no duplicates. The choice of QoS level depends on the application

requirements and the trade-offs between message delivery guarantees, latency, and

network overhead.

MQTT also provides a mechanism for maintaining persistent sessions between

clients and the broker. When a client connects to the broker, it can specify whether it

wants to establish a clean session or a persistent session. In a clean session, all

subscriptions and messages are discarded when the client disconnects, while in a

6

persistent session, the broker retains the client's subscriptions and any undelivered

messages until the client reconnects. This guarantees that clients can receive any

messages they missed even if there were disconnections or interruptions, in the

network.

In terms of security, MQTT is supporting the Transport Security LayerTLS

protocol for communicating with clients in encrypted mode to a broker. In the studies

that were carried out, some deficiencies have been noted. These protocols only provide

encryption and have weak scalability. With smart contracts and digital signatures, the

security mechanism is rebuilt from the ground up. In addition, the user authentication

system of MQTT is now supplemented with an OTPOneTimePassword mechanism

which previously relied only on a username and password. Security is greatly enhanced

by personalised passwords with a six digit number.

MQTT was not designed for security reasons, although it has been widely used.

According to a survey conducted by the IoT developer community, MQTT is the

second most popular IoT messaging protocol [8]. The rapid growth of MQTT

necessitates that a sequential security version and mitigation process should be

designed considering the resource constraint structure of the device. Therefore, for

MQTT's security implementations, it has been determined that TLS/SSL restricts

resources [9].

As far as safety is concerned, the decentralized structure of blockchain

technology has its advantages. It is believed that through the use of smart contracts and

digital signatures, the security mechanisms on MQTT can be replaced. Furthermore

by implementing these proposed methods we aim to not authenticate user identities.

Also ensure the utmost data integrity and accuracy. Smart contracts, records become

immutable and actions can be traced. As a result, safety measures and assurance on the

reliability of data will be introduced.

 SSL/TLS, though a robust security protocol, still has some weaknesses. For

instance, it is vulnerable to attacks through certificate authorities, which can lead to

the breaching of security in the system. Also, for SSL/TLS to operate successfully, it

requires a complex certificate infrastructure that needs to be properly configured and

managed.

7

On By virtue of its decentralized architecture, it remains resilient against

vulnerabilities associated with certificate authorities. A higher degree of simplicity

and less resource requirements, as well as a reduction in complexity compared to the

complexities encountered by SSL/TLS protocols, characterises Smart Contracts'

configuration and management.

In summation, the security fortification of MQTT can be effectively facilitated

through the integration of smart contracts, digital signatures, and OTP mechanisms.

However, in order for this concept to be fully achieved it is crucial that we effectively

tackle obstacles. These concerns revolve around making sure that the technologies

utilized in relation, to the Internet of Things are suitable and capable of adapting to

scales.

A substantial body of literature [10] [11] [12] [13], are adopting blockchain-

based solutions to ensure the security of complex IoT systems. Hence, by incorporating

MQTT's secure communication into a blockchain-based IoT system, the system can

leverage the benefits of both technologies. As MQTT provides a simple and effective

communication model that ensures the real time and reliable exchange of data between

IoT devices, blockchain can provide safe, transparent or tamper proof records for

transactions. A solution to create Internet of Things systems meeting the needs of

security and performance, while also offering flexibility and higher levels of protection

is provided by combining MQTT with blockchain.

2.1.1. The Benefits and Use Cases of Publish-Subscribe Messaging

The publish-subscribe model is a communication structure consisting of three

main elements: publisher, subscriber, and broker. Within this structure, publishers send

messages according to specific topics, and these messages carry information

containing metadata related to the topics. In the MQTT protocol, clients initiate the

communication process by establishing a TCP/IP connection with the broker. After

completing the authentication stage, the client becomes part of the system by

subscribing to relevant topics or publishing messages to those topics, as shown in

Figure 1.

8

Figure 1:The primary components of the MQTT protocol

Prada et al. [14] have deliberated on the efficiency of the MQTT protocol in

facilitating communication with devices limited by resources. There are benefits for a

range of Internet of ThingsIoT applications that this model offers, e.g. adaptability and

capability to adapt as the needs evolve. There is no direct connection between

publishers and subscribers, allowing the system to be expandable and accommodating

for the addition of new devices. Moreover the use of the publish subscribe model

enhances the efficiency of communication while also minimizing power consumption.

The broker is responsible, for overseeing and improving the communication,

between publishers and subscribers. The system therefore has a way of dealing with

data transmission and security controls. The MQTT protocol effectively harnesses the

benefits offered by this model in the realm of IoT guaranteeing energy efficiency and

minimal delays. Therefore, the publish-subscribe model and MQTT protocol have

become a popular choice in IoT applications [15]. Figure 2 shows the Publish-

Subscribe methodology as presented.

9

Figure 2: The publish-subscribe messaging sequence diagram

2.1.2. HBMQTT

HBMQTT is an open-source MQTT broker written in the Python programming

language. Utilizing the publisher-subscriber model of the MQTT protocol, it enables

data transmission between IoT devices. HBMQTT allows users to develop and

customize their own private MQTT brokers [16].

One of advantages of HBMQTT is the flexible configuration options it offers.

Users can write configuration files in Python, allowing them to tailor the broker's

features and behavior. In particular in areas such as security, encryption and

authorisations this is of great importance.

There have been no issues with integrating smart contracts directly into the

broker configuration. The security and reliability of this system is further enhanced by

the use of asymmetric cryptographic mechanisms for subscribers, while at the same

time publishers benefit from Digital Signatures. Security and flexibility of

authentication and authorization procedures will be significantly improved through the

integration of systems.

HBMQTT, a customizable and secure MQTT broker developed with Python,

provides a strong and reliable communication infrastructure for IoT systems. The

HBMQTT assures the security and reliability of data transfer in Internet of Things

environments, by offering flexible configuration options, features to protect users from

unauthorised access as well as integrated blockchains.

10

2.2. Blockchain

Blockchain, a decentralized and distributed ledger technology, emerged in

2008 alongside Bitcoin, creating a significant revolution [17]. This new technology

allows for safe, reliable and secure data storage with due regard to the management of

supply chains, identity verification as well as other types of information in a manner

that is also compatible with transactions.

As illustrated in Figure 3, the Blockchain consists of an database and a network

of nodes. A blockchain database maintains records in the form of blocks, which are

shared, distributed, tamper-resistant, and append-only. Although blocks are accessible

to all blockchain users, they cannot be deleted or modified by them. Blocks are chained

together because each block has the hash value of the previous one. There are several

verified transactions in every block. Additionally, each block includes a timestamp

indicating the time of its creation and a random number (nonce) for cryptographic

operations. The blockchain network consists of nodes that safeguard the network as a

distributed peer, to peer system. All the nodes are able to access the blocks. They don't

have authority, over them [18] [19].

Figure 3: Blockchain network

The blockchain architecture is generally divided into four layers. The

bottommost layer, the data layer, ensures the immutability of the overall data of the

blockchain by utilizing asymmetric encryption, digital signatures, timestamps,

cryptographic hash functions, and Merkle trees composed of blocks. The network layer

verifies the accuracy of transmitted data by validating them through a dissemination

11

mechanism. Using algorithms, the consensus layer ensures that node confidence and

data consistency are maintained.

The application layer encompasses real-world scenarios in which the

blockchain is implemented [20]. According to research Ethereum serves as a

Blockchain platform utilized for creating security solutions based on smart contracts.

Furthermore the initial studies have shown that Solidity is widely preferred as the

programming language, for developing Ethereum contracts. The common reason that

leads researchers to choose Ethereum as a Blockchain platform and prefer Solidity as

the smart contract language is Ethereum's support for customizable smart contract

programming and Solidity's similarity to JavaScript in terms of syntax [21] [22] [23].

To tackle cyber security issues and vulnerabilities in the Internet of Things, some

initial studies have also explored IBM Hyperledger Fabric as a Blockchain platform.

Additionally, other primary research [24] [25] employed custom-built

Blockchain platforms. Moreover when it comes to tackling security concerns, in the

Internet of Things (IoT) primary studies have utilized characteristics found in

Blockchain platforms. It is worth noting that the primary studies suggested smart

contract-based security solutions that can be implemented on any Blockchain platform

capable of executing smart contracts [26] [27].

As a result of all these findings, it has been determined that there is potential

and a need to utilize blockchain for identity authentication in the MQTT and IoT

mechanisms. Blockchain can be employed to securely and immutably store and share

individuals' identity information. Furthermore it is crucial to develop methods and

strategies that can enhance the utilization of technology for this specific objective.

2.2.1. Smart Contract

Smart contract, introduced with the advent of blockchain technology, are self-

executing contracts with the terms of the agreement directly written into code. These

contracts, providing a safe, transparent and decentralised way of conducting various

operations and processes, shall be automaticly applied and enforced by the conditions

set out in this Agreement. Smart contracts to deal with user authentication issues within

the MQTT protocol have been developed for this particular case.

12

Ethereum is the preferred smart contract platform. The technology, behind the

Ethereum platform was created by Vitalik Buterin. A user transaction or a message

from another smart contract can activate a smart contract.Because a smart contract is

stored on the blockchain it cannot be. Will only come into effect when one of these

two events takes place.The code of the contract is executed by the Ethereum Virtual

Machine (EVM) and provides a set of instructions that enable programmers to build

arbitrary contracts applicable to any situation [28].

There has been research conducted to showcase how Blockchain can be applied

in domains, including Identity Verification and Access Control [29] [30] [31] [32]

[33].

Current security solutions in existing internet and IoT systems generally rely

on a single trusted central authority, which makes them vulnerable to various attacks

starting from a single point of failure, such as Denial of Service. On the other hand,

using Smart Contracts based security solutions does not require significant changes in

existing network infrastructure but rather takes advantage of key features of both

cryptocurrencies and smart contracts. Most primary studies have relied on the

decentralized, immutable, and auditable properties of blockchain technology. Some

primary studies have utilized the customizable nature of smart contracts and the

intrinsic properties of blockchain to develop identity verification, authorization, and

access control solutions on top of blockchain for IoT [34].

The smart contract named AccessControl is designed to manage user access

and authentication in a secure and decentralized manner. The contract stores allowed

users, their usernames, and passwords in a mapping structure. The contract owner has

the exclusive authority to grant and revoke access, as well as add, delete, or retrieve

user information. Since a smart contract is stored on the blockchain it cannot be. Only

if certain conditions are met will it enter into force. By utilizing the features of

technology the smart contract adds an extra layer of protection, to the MQTT protocol.

This method is seen as an advancement, in enhancing the security ,

dependability of systems. In the future utilizing contracts and blockchain technology

has the potential to enhance trustworthiness and security not for MQTT but, for other

protocols.

13

The potential of combining the blockchain technology with current

communication protocols has been highlighted when a contract for user authentication

is integrated into MQTT.

2.2.2. Public and Private Key Cryptography in MQTT

Consider the blockchain as a daily ledger. Records are grouped into

timestamped blocks. Each one is defined by an encryption hash. Each block refers to

the one preceding it. This establishes a connection between these blocks, thereby

creating a chain, or blockchain - see Figure 4. Any node with access can read this

sequential, backward-linked list of blocks [35], understand what the state of ongoing

data [36] is in the network as it changes in real time.

In order to ensure safe communication and identity verification, a component

of cryptography, namely public and private key cryptography, has a critical role to

play. In this encryption system each user possesses a pair of keys; a key that can be

freely shared with others and a private key that remains confidential. The public key

would be used to encrypt messages when the private key was used for decryption. This

way of using keys allows for communications to be made in the absence of

compromising any information.

Users interact with the blockchain through a pair of private/public keys [37].

They use their private keys to sign their transactions, and they can be addressed in the

network through their public keys. Authentication, integrity and unrepudiation in the

network are brought about by asymmetric cryptography. Each signed transaction is

broadcast by a user's node to its peer-to-peer hops.

Neighbor peers ensure the incoming transaction is valid before further

forwarding it; invalid transactions are discarded. The transaction is then transmitted

all the way across the network.

The transactions collected and validated by the network are arranged and

packaged in a time-stamped candidate block over a predetermined time interval. It's

called the mining process. The mining node broadcasts this block back to the network.

The selection of the mining node and the content of the block depends on the consensus

mechanism used by the network.

14

Nodes validate the proposed block, ensuring through transaction and hash that

it references the correct previous block in their chain. If this is the case, they add the

block to their chain and apply the transactions it contains, updating accordingly. The

proposed block shall be discarded if this does not happen, indicating the end of each

round.

In this high-level security mechanism, it is evident that public and private key

cryptography will play a crucial role in enhancing security within the context of

integrating blockchain technology for MQTT user authentication. Granting access

permission to a user through a smart contract is only possible with administrative

authority. To possess this authority, the user must be able to validate the digitally

signed message created with a private key unique to their public key. Upon obtaining

authorization, the user can proceed to authorize specific publishers and subscribers in

MQTT broadcasts, a process that is also integrated with OTP for an added layer of

security.

The system that incorporates public and private cryptography into the MQTT

user authentication process leverages the strengths of both blockchain technology and

cryptographic methods. Security measures to limit access and allow authorised users

to use the system shall be implemented in the process of integration. Furthermore in

the realm of devices that utilize both private keys there is a promising opportunity to

merge communication protocols with cryptographic techniques to effectively tackle

the increasing security challenges.

15

Figure 4: An overview of blockchain transaction processes

2.2.3. Consensus Algorithm

The smart contract developed for user security operates on the Ethereum

network. Smart contracts running on the Ethereum network indirectly benefit from

Ethereum's consensus algorithm. The Proof of Work consensus algorithm is currently

used for Ethereum. It is currently undergoing a transition, towards the Proof of Stake

(PoS) algorithm. The consensus algorithm enables the nodes, within the network to

reach an agreement regarding the legitimacy of transactions and blocks. This ensures

the accuracy and validity of transactions performed on the blockchain [38].

Proof of Work algorithm carries out transaction approvals through a process

called mining. During this process miners strive to solve puzzles. The miner who

successfully discovers the solution is then able to add the block and receive transaction

fees and rewards as a result. This method leads to energy inefficiency and

centralization due to the high energy consumption of nodes in the network [39].

Proof of Stake algorithm, on the other hand, uses nodes called "validators"

instead of miners. These nodes participate in the validation process by locking

("staking") their cryptocurrencies in the network. Block validators are randomly

selected based on the amount of cryptocurrency they hold and the duration of the lock.

16

It made the network safer and more transparent, thanks to this method which

substantially reduces energy consumption [40].

The constraints of computational resources for any single entity make the

imitation of multiple entities on a network futile. Specifically, any node can find the

precise nonce, a random number that results in the SHA-256^2 hash of a block header,

including the anticipated number of leading zeros. This will configure its block to be

the next mining block in the network. Any node that can solve this puzzle establishes

the so-called Proof-of-Work (PoW) and earns the privilege to shape the next block in

the chain. Because this includes a one-way cryptographic hash function, any other

node can easily verify that the given answer meets the requirement [41] [42].

Apart from SHA-256, other hashing algorithms such as Blake-256 [43] and

scrypt [44], which is used in Litecoin, can be employed for PoW. There are

mechanisms that incorporate multiple algorithms, such as Myriad [45]. An alternative

to PoW, Proof-of-Stake (PoS), requires much less CPU computation for mining. In

PoS, a node's chance of mining the next block is proportional to the balance of that

node [46]. PoS schemes have their own strengths and weaknesses, and their real-world

applications have proven to be quite intricate [47].

Smart contracts operating on the Ethereum network benefit from the security

and verification advantages provided by the consensus algorithm. For example, in the

specified smart contract, the accuracy and security of transactions managing user

access control are ensured through the Ethereum network's consensus algorithm. In

this case the consensus algorithm allows users to have a taste for the benefits of

decentralization technology, by ensuring that digital contracts are reliability and

transparency.

In the defence of contracts against cyber attacks and malicious acts, the

consensus algorithm also plays a role. private networks where participants are

whitelisted, there is no need for costly consensus mechanisms like PoW; there is no

risk of a Sybil attack [48]. This removes the requirement for a motivation, for mining.

Gives us the opportunity to select from a broader selection of consensus protocols. The

Ethereum networks smart contracts provide a framework for transactions and storing

17

data thanks, to the level of security and verification offered by this robust consensus

algorithm.

 Furthermore, the network of smart contracts is guaranteed to be trusted and

transparent by a consensus algorithm. Every Ethereum node is storing an upto date

copy of the blockchain, and continuous synchronization between nodes remains in

place. As a result, transactions and changes can be seen and verified by everyone. The

general processing flow can be observed in Figure 5. As far as the data are concerned,

that feature provides advantages such as identity verification and access control [49].

Smart contract on the Ethereum network benefit from the security, verification,

and transparency advantages provided by the consensus algorithm. Applications or

services running on a secure, transparent structure can be made available to and used

by users and developers. In the wide acceptance and efficient application of intelligent

contracts and decentralised applications, consensus algorithm is an integral part of

technology which serves as a major factor.

Figure 5: Smart contract execution in ethereum network

18

2.3. Digital Signature and OTP

To verify the authenticity and accuracy of documents or data, an electronic

signature is a verification mechanism. It uses a pair of keys (private and public). The

public key is used to generate a digital signature of the message, whereas the private

key will be used for validation in Figure 6. This technique is carried out using

asymmetric encryption algorithms like RSA (Rivest–Shamir–Adleman) or DSA

(Digital Signature Algorithm).

A hash function generates a unique value from the data and this value is

encrypted with the private key. The digital signature formed in this way is attached to

the message. The receiver side decrypts this signature with the public key and

calculates the hash value by applying the same hash function to the rest of the message.

If these two hash values match, the integrity of the message is verified [50].

Figure 6: Digital signature diagram

Digital signatures are indeed crucial for verifying and preserving the integrity

of data coming from IoT (Internet of Things) devices, especially when working with

lightweight protocols such as MQTT (Message Queuing Telemetry Transport).

On On the other hand, SSL/TLS protocols bring a heavier computational load.

This is due to the need to compute a MAC (Message Authentication Code) to verify

the integrity of every message and the requirement to decrypt each message. Moreover,

the "handshake" implementation of SSL/TLS may have a significant effect on

performance for networks with insufficient capacity as well as high latency.

19

Therefore, Digital Signatures can be more advantageous in IoT devices that are

typically resource-limited and in applications where energy efficiency is critical.

Moreover they plan to combine these elements with contracts in order to simplify the

management and execution of keys and transactions. This simplifies the

implementation of signature systems leading to a decrease, in the requirement, for

securely storing and managing account keys.

The elliptic curve digital signature algorithm (ECDSA) has been chosen as the

digital signature method. ECDSA operates on the basis of group theory defined over

an elliptic curve. Each user selects a random point (private key) on the elliptic curve

and obtains another point (public key) by multiplying this point a certain number of

times. While this multiplication process can be performed easily, the reverse operation

(i.e., the division operation) to return to the starting point is computationally

impractical, forming the foundation of ECDSA's security.

Despite having smaller key sizes, ECDSA provides a similar level of security

compared to RSA and DSA. For instance the security level of a 256 bit ECDSA key is

equivalent, to that of a 3072 bit RSA key. This leads to a decrease, in the amount of

memory. Bandwidth used by ECDSA, which ultimately leads to faster processing

times and lower overall energy consumption. These attributes play a role especially

when it comes to devices that operate with constrained energy and processing

capabilities [51].

The ECDSA is a method to guarantee safety through the use of curve

cryptography and also known as Elliptic Curve Digital Signature Algorithm. The same

level of safety is ensured. But it requires shorter key lengths. Such specific

functionality may be appreciated by devices that are restricted in access to resources

such as those available through the Internet of Things. There are advantages, to

utilizing a time span, which include decreased utilization of processing power and

memory reduced energy consumption and enhanced overall performance.

ECDSA provides an advantage over more resource efficient algorithms such

as RSA that are widespread in the application of standard SSL andTLS protocols.

Given ECDSA's ability to provide an optimal level of security by using SSL/TLS

protocols with equivalent or lower resource usage, it has been found that its use is a

20

very effective tool in securing the integrity and verification of Internet of Things

devices.

When combined with smart contracts, digital signature becomes even stronger.

Smart contracts allow for the secure management and verification of digital signatures.

With this it makes digital signatures widely available and easier to use.

In digital signature applications, the OTP (One-Time Password) mechanism is

often used as an additional layer of security. Users have the freedom to generate and

modify their usernames and passwords frequently as they desire. These passwords are

included in the content of the digital signature and are known only to a specific user.

In this way, validating the integrity and authenticity of a message requires not only the

use of the public key but also the input of this OTP password. In order to prevent

unauthorised access and data manipulation, this process shall ensure that the

confidentiality of signatures is strengthened. In particular, if it helps to enhance overall

security, e.g. as regards devices and large data flows, it will be of great benefit.

Lastly, MQTT security can be greatly improved if the correct application of

ECDSA is made in Figure 7. This offers a faster and more efficient solution, and

ensures the integrity, verification, and encryption of data coming from IoT devices

[52].

21

Figure 7:Elliptic curve digital signature algorithm

2.4. Remix IDE and Ganache

Figure8, Remix IDE is a popular and user-friendly web tool used for writing,

compiling, and testing Ethereum-based smart contracts. It is utilized to ensure that

smart contracts written in Solidity language function correctly and produce the

expected results [53].

Figure 8: Remix Ide

22

Figure 9, Ganache is a personal blockchain for Ethereum development,

allowing developers to deploy and test smart contracts in a safe and controlled

environment. It provides a built-in network of test Ethereum accounts with pre-

allocated test Ether, making it easy to simulate transactions and interactions with smart

contracts without the risk of spending real Ether [54].

Figure 9: Ganache truffle suite

Connecting Ganache to a MetaMask wallet Figure 10 enables seamless testing

of smart contract functionality with test Ether transactions, further enhancing the

development process [55]. In order to ensure the security and reliability of Smart

Contracts prior to their deployment on the Ethereum network, a complete testing

environment is created in combination with IDE Remix and Ganache.

Figure 10: Metamask wallet

23

2.5. Decentralized Identity Management

Decentralizing identity management is an important part of the solution with a

view to improving data security and privacy in MQTT protocols. The secure storage

of data related to identity, authorisation credentials and Digital Rights can already be

used in these systems. By ensuring the immutability of data, blockchain technology

can be leveraged [56] .

The ability of individuals to have control over identity and the protection of

personal data is one aspect which makes a difference. In order to eliminate the

requirement of authority, centralised identity management plays an important role.

In October 2016 Dyn, a provider of DNS services experienced a DDoS attack.

Caused major websites, like Twitter, Amazon, Tumblr, Reddit, Spotify and others to

go offline for several hours [57]. The fact that IP and user identity spoofing attacks can

be very effective is demonstrated by the "Dyn attack" incident.

Better defense against IP and user identity spoofing can be provided by the use

of cryptography based identities and access management systems. When IP spoofing

attacks are launched, such as in subsequent versions of the Mirai botnet, the

immutability of validated blockchains can prevent devices from connecting to a

network by disguising themselves with fake signatures [58]. In this context, the

example of Filament's Taps explains this point effectively [59].

Embracing decentralized identity management for user authentication in the

MQTT protocol not only strengthens overall system security but also fosters trust

among users. By incorporating technology into identity and data verification processes

MQTT has the capability to provide an trustworthy authentication system. As a result

this establishes the groundwork, for communication systems that're more secure and

dependable guaranteeing the privacy, integrity and accessibility of data throughout the

network.

24

3. SYSTEM

The experimental setup and configuration, as shown in Figure 11, are

explained. In this experimental setup, an MQTT client running on a Raspberry Pi 2

[60], an MQTT broker executed with a Python script, and an integrated blockchain

security mechanism at the broker's location are utilized. An integrated sensor for

measuring temperature and humidity is included in the Raspberry Pi. DHT11 sensor

was employed for measuring temperature and humidity levels [61]. Secondly, by

setting up the MQTT broker on another computer, a connection is established with the

Raspberry Pi. During this connection and data exchange, MQTT packets are analyzed

using the Wireshark network analysis tool. Through these analyses, the contribution

of OTP blockchain-based identity and digital signature data verification methods to

data security over the MQTT protocol will be demonstrated. In this chapter, the

experimental setup will be explained step by step in detail through a figure, and the

analyses and results obtained during this process will be evaluated.

Figure 11:The introduction and configuration of devices

In our blockchain model, using the Ethereum blockchain due to its distributed

information transfer capabilities, smart contracts are deployed in order to enhance user

security. Allowing easy access to everyone is not desired because malicious

manipulations can lead to problems. Therefore, a mechanism has been created where

only users added and granted access permission through a smart contract can access

25

and publish data. The system will terminate a connection if an unauthorised user tries

to access it. Hence, the authorization mechanism is of utmost importance.

As indicated in Figure 12, users can be added or removed with the help of a

smart contract. If a user is added to the system, access permission to the desired data

is given to the desired user again with the help of a smart contract. If desired, access

can also be blocked.

Figure 12: Smart contract function blocks

Only the users you specify and the data you permit can be monitored in the

system. As previously mentioned, it offers a simple mechanism with its unchangeable

structure and personalized address structure for everyone. Thus, blockchain

technology and smart contracts together have developed a user security mechanism.

The standard version of MQTT does not incorporate a robust mechanism to

authenticate users and devices. Consequently, unauthorized users or devices could

potentially conduct publish (pub) or subscribe (sub) operations.

MQTT lacks a mechanism for proper permission control. There's a deficiency

in constraining which topics users or devices can access or broadcast. The security

26

problems associated with MQTT are commonly addressed by using the SSL Sockets

Layer and TLS Transport Layer Security. Encryption and verification techniques,

which are designed to strengthen the security measures for transmitting data over

networks, shall be covered by these protocols.

However, the solution of SSL/TLS has certain limitations. It does not offer a

solution regarding permission control. It does not provide a mechanism to determine

who can broadcast to which topics or subscribe to them. It may be difficult and time

consuming to distribute and manage certificates, in particular on large Internet of

Things networks. Smart contracts offer a better proposal for solutions at this stage.

 In the Ethereum platform Solidity is a programming language that was

specially designed to build contracts. The increasing popularity of it is starting to be

embraced by developers. Is now considered the standard language for writing smart

contracts due to its seamless integration with the Ethereum Virtual Machine (EVM)

and its capability to handle intricate blockchain logic effectively. The contract's coded

on the Ethereum platform using Solidity, a programming language that can be used to

create smart contracts.

In this smart contract, the aim is to implement a simple access control system

for managing user permissions on the blockchain. The smart contract named

"AccessControl" consists of several variables, functions, and a modifier. Please refer

to Figure 13 for an explanation of AccessControls contract structure and components.

To gain an understanding of how the contract functions this diagram provides a

depiction of the variables, functions and modifier involved.

27

Figure 13: A general template for an accesscontrol smart contract:

The first step in the proceess is for the user to deploy the AccessControl smart

contract on the Ethereum blockchain. This is done by compiling the Solidity code and

submitting a contract creation transaction to the Ethereum node. A unique contract

address that can serve as a reference point for future interactions with smart contracts

will be generated on the Ethereum node once this transaction has been confirmed.

After receiving the contract address from the Ethereum node, the user stores it

for future reference. This address will be used whenever the user wants to interact with

the AccessControl smart contract, such as when adding users, granting or revoking

permissions, and checking access statuses.

A user will call the addUser(...) function on a smart contract, which returns an

Ethereum address, username and password argument when adding a new user to access

control system.This function links the provided Ethereum address to the specified

username and password and creates a new entry in the contract's username and

password mapping.

28

After the new user has been added to the system, the contract owner (the user

who deployed the contract – admin) can grant them access permission by calling the

grantAccess(...) function, passing the new user's Ethereum address as an argument.

The allowed mapping is updated with this function and the value of a given address is

set to true.

To check the access permission status of a user, the contract owner can call the

hasAccess(...) function, passing the user's Ethereum address as an argument. To

determine whether a specified user has been granted access rights, this function

provides either true or false value.

Figure 14, the sequence diagram provides a visual representation of the steps

involved in deploying and interacting with the AccessControl smart contract on the

Ethereum blockchain. It's a method to comprehend the flow of events and

communication, among the elements, within the system. The user can effectively

administer access permissions for different users in the EthereumBased Access

Control System by performing these steps.

Figure 14:MQTT and OTP blockchain-based system configuration

29

Additionally, since every operation provides a decentralized and immutable

transaction structure, monitoring of the data is also ensured Figure 15. An

infrastructure that automatically records all permissions granted, denied, user additions

and removals has been established.

Figure 15: Storage in smart contract transaction

Enhancing the security of the MQTT protocol through the implementation of

an MQTT Broker. Developed using the Python language and the hbmqtt library, the

MQTT Broker replaces traditionally resource-intensive SSL and TLS protocols with

the lighter and more energy-efficient OTP and digital signatures to enhance security.

The Elliptic Curve Digital Signature Algorithm is preferred for digital signatures.

Whether a client is a publisher or a subscriber, they must have received

authorization in a smart contract on the Ethereum blockchain. As a publisher, a user

can create an MQTT message. However, the broker, which is awaiting the message,

expects the content of the signed message to include the authorized address and the

OTP information specifically generated for that address. Therefore, besides having

access permission, the publisher's message must contain accurate information to pass

the verification of the digitally signed content by the broker. Otherwise, the broker will

not validate the message.

The broker is committing a transaction to the blockchain when he has verified

his client's identity. This ensures that the data integrity and its origin are checked, as

well as enabling a broker to operate independently of where it is located.

30

The overall overview of the suggested method is depicted in Figure 16. This is

a very important step in guaranteeing the security of MQTT protocol, as Smart

Contracts, Digital Signers and OTP techniques will be integrated into this approach.

Figure 16:Recommendation-based overview

Several crucial steps are involved in the authentication and access control

process for internet of Things devices, with MQTT brokering, smart contracts or

digitally signature playing an important role. The application that registers and

configures users and devices by means of Smart Contracts shall manage the first step.

Then the application will request a connection to MQTT broker, which in turn shall

facilitate transfer of clients' identity to Smart Contracts.

Smart contracts inform the application of client information and access control

data in order to keep the process going. An OTP (One-Time Password) specific to the

user is obtained. This one-time password (OTP) is assigned to each user and is

constantly renewed. When initializing the broker, the user's access-permitted address

and their corresponding OTP information are awaited.

31

Publishers create MQTT messages and include the expected information in

their digital signatures. The security and integrity of published information shall be

ensured by this Digital Signatories. Subscribers similarly decrypt the asymmetrically

encrypted data, provided they are authorized users.

Every authorized operation is recorded and viewable on the blockchain. In

order to efficiently and safely manage the process of authentication and access control

for connected devices, this approach effectively complements Smart Contracts, OTP

or digital signatures set out in Figure 17.

Figure 17:MQTT and OTP blockchain-based system configuration

32

4.EVALUATION

4.1. Comparative Analysis

SSL/TLS technology has been utilized on the internet for a period making it

extensively adopted. The issue of SSL certificates by certification authorities is one

aspect of this system. Numerous companies have come to recognize the significance

of keeping their SSL certificates up, to date after the OpenSSL Heartbleed

vulnerability was uncovered. This incident triggered a search for more advanced

technologies [62] .

The Heartbleed hack is the kind of security vulnerability that was discovered

in 2014 due to a problem with an OpenSSL library. This vulnerability surfaces in the

"heartbeat" extension used in TLS/SSL communication. An attacker could exploit this

vulnerability to steal critical information from your server by using a data exchange

error with the client. Such attacks allow attackers to access information that is not

publicly available in server memory, e.g. user logon credentials. A major concern for

the safety of the Internet was raised by the Heartbleed attack that has caused a large

number of websites to review and reinforce their security measures.

A comprehensive comparison of integrated authentication systems using

MQTT is presented. Figure 18 includes a sequence diagram depicting the functioning

of TLS/SSL, while Figure 19 contains the sequence diagram of the proposed solution.

Upon comparing the two processes, it has been determined that the existing method,

integrated with TLS (Transport Layer Security) and SSL (Secure Socket Layer),

exhibits certain adverse effects.

33

Figure 18: TLS/SSL Sequence Diagram

In research and the measured results [63], TLS requires additional processes

and security handshakes during the connection establishment process. Increased

connection times can result from these other processes, especially in scenarios with an

increasing loss rate for packets or a deterioration of network conditions. This is

because network issues such as packet loss hinder the proper transmission of data and

impact the connection establishment process.

As a result of this, the TLS/SSL protocol increases RAM consumption in data

processing by creating additional buffers for authentication and data encryption

processes. In the context of certificates based authentication processes, which use large

key lengths, this increase is especially pronounced. As the key length increases, the

size of the generated buffers also grows, resulting in a significant rise in RAM usage.

34

Figure 19:Proposed Solution Sequence Diagram

However, in the context of identity authentication based on smart contracts, the

mechanism of creating extra buffers is mitigated. Smart contracts transparently store

digital certificates and other authentication-related information in a blockchain,

ensuring data immutability and traceability. This means that changes such as the

setting up of additional buffers are not being implemented, thus making data

processing more efficient.

Therefore, cryptographic algorithms like ECDSA, used in conjunction with

smart contracts, can have shorter key lengths, resulting in lower RAM consumption

and reduced creation of extra buffers. This enables resource constrained devices to

have a performance advantage and increases the efficiency of security authentication

processes.

35

Especially when performing a TLS handshake with a certificate that has a large

key length between MQTT clients connecting to the broker, a significant CPU

workload has been observed.

Furthermore, during user authentication using smart contracts, smart contracts

have been employed to add, remove, and grant communication access permissions to

authorized users. At this point, it has been observed that the key length of smart

contracts has a significant impact. Particularly, using a shorter key length in user

authentication with ECDSA (Elliptic Curve Digital Signature Algorithm) results in a

considerable reduction in CPU usage. The lower CPU workload requirement of

ECDSA positions smart contracts as a faster and more efficient authentication method

compared to TLS/SSL. This advantage can make the ECDSA and smart contracts a

fast, more effective authentication method than TLS SSL offering significant benefits

both in terms of efficiency and performance.

Smart contracts also enable all authentication processes to be recorded

transparently and traceably on the blockchain. A system of more transparently and

reliable certificates may also be established and managed. Moreover, the security of

certificates can be enhanced against fraudulent activities such as counterfeiting and

tampering due to the immutability of data on the blockchain.

Finally, an independent design and management of the identity authentication

process can be achieved as a result of the decentralised nature of Smart Contracts. In

order to ensure security and reliability, this prevents a single central authority from

controlling all processes.

36

4.2 Performance Benchmarking

When examining the methods employed and the results obtained in the

comparative analysis described in Section 4.1, it is observed that the conducted tests

yield similar outcomes in terms of performance evaluation. Furthermore, in [64] , [65]

and [66] research articles, comparisons between smart contracts and SSL/TLS have

been carried out, and similar results have been reported in those studies. As a result, it

has been found that low energy consumption is the major factor in Internet of things

applications and their results are confirmed through performance tests.

In the pursuit of performance analysis for the system under consideration, an

MQTT broker and its associated clients have been developed in alignment with the

proposed plan. The authentication and authorization system of the evolved MQTT, in

addition to the authentication conducted via the TLS SSL channel, have been

juxtaposed against a proprietary method. After the authorization process, data

transmission to the broker was progressively carried out with 50 publisher users.

Upon examining the data in Figure 20-21, it is observed that the implemented

approach leads to a reduction in memory usage by approximately 34.54% compared

to TLS. For internet of things applications such a result can be regarded as favourable.

Figure 20: Our Method Memory Usage

37

Figure 21:SSL/TLS Memory Usage

Additionally, in Figure 22-23, it can be seen that the computational overhead

of TLS reaches approximately 3.4% of the CPU, while our approach's CPU overhead

is around 1.190%. As a result, in terms of CPU overhead, our approach shows

approximately 65 % less CPU workload compared to TLS.

Figure 22:Our Method CPU Usage

38

 Figure 23:SSL/TLS CPU Usage

4.3 Security Analysis

In the digital era, information security and cryptographic measures are vital for

all technological solutions. This section discusses the thorough cryptographic

assessment of 'MQTT Otp Blockchain-based Identity and Data Verification' using

renowned tools such as ProVerif and Scyther. [67] [68]

Firsly, ProVerif is recognized as an instrumental tool tailored for the automatic

verification of protocols. It is intended to verify the integrity of security features which

are inherent in a specific protocol. Through an exhaustive exploration of all

conceivable execution pathways of such protocols, ProVerif discerns whether the

stipulated security attributes are consistently upheld. With this context, an in-depth

scrutiny of the underlying code and the subsequent results derived from this analysis

will be presented.

39

40

41

42

43

Critical information about our protocol's reliability and robustness was gained

from an extensive security analysis carried out via ProVerif. It was our primary

objective to ensure the security and integrity of private keys, digital signatures or

messages in this protocol.

It was determined that the authorization processes are under admin control, and

these controls are safeguarded in a way that attackers cannot breach. Unauthorized

attempts to start the broker were detected and blocked, proving these attack attempts

were unsuccessful. The integrity of the digital signatures in the system was fully

preserved, and it was ascertained that these signatures are secure against unauthorized

modifications. It was proven that decrypted messages were not displayed to

unauthorized individuals and these messages can only be accessed by authorized users.

The results obtained clearly show that a security protocol we have implemented

has been effectively and safely applicable in all key areas as described in Figure 24.

Figure 24:Results of the security analysis conducted with ProVerif.

44

Following ProVerif, Scyther, a tool that automates the security analysis of

protocols, was utilized to evaluate the security of the MQTTAuthorization protocol.

This code delineates how the MQTT Authorization protocol interacts with various

roles and operations, such as User, Smartcontract, Admin, Publisher, Subscriber, and

Broker. The protocol covers a number of processes such as digital signature validation,

data transmission using encryption keys and authorizations from different roles.

Interactions between commands are represented by 'send' and 'recv', which

indicate data transfer between two parties. The 'match' and 'not match' statements

check the correctness of digital signatures and other data. 'Macro' statements display

the outcomes of specific operations and definitions; whereas 'claim' statements test

specific security attributes and states of the protocol. In Scyther, 'claims' are used to

test security attributes and potential attacks. For instance, 'Nisynch' checks against

replay attacks, while 'Niagree' guarantees messages are securely and correctly

transmitted. 'Alive' confirms that the protocol steps are approved by both parties, and

'weakagree' ensures an attacker cannot impersonate another entity. The secrecy or

'secret' claim confirms the safety of information exchanged during communication.

45

46

47

48

49

50

Based on the Scyther analysis Figure 25, it has been determined that all roles

defined in the protocol are secure. This indicates that effective safeguards are in place

to protect data signature, keys and authorization processes as set out in the Protocol.

Given the role that authorization processes play in thwarting access, from potential

attackers these findings hold immense value.

Figure 25:Results of the security analysis conducted with Scyther

51

5. SECURITY MECHANISMS

The MQTT protocol, which was created for devices, with resources has

become vulnerable to security issues due, to its simplicity and low processing power

requirements. The low level of processing to transmit messages is the cause of these

vulnerabilities. A number of studies have been carried out in the literature with a view

to detecting and mitigating these vulnerabilities [69]. In general, when MQTT protocol

is implemented with default settings, it lacks several security mechanisms. In order to

ensure safety, configuration of settings is required. Even with active security settings,

it cannot be claimed that MQTT applications provide complete security, as they remain

susceptible to various attacks.

 Additional security measures such as username, password, or client certificates

should be used for user authentication in MQTT. However, client information such as

client identifier, username, password, and client certificates can be collected or

authentication information can be guessed, enabling unauthorized access to a rogue

MQTT client. Malicious clients accessing the MQTT service using fake identities can

publish unauthorized messages and subscribe to unauthorized messages. This can lead

to the leakage of sensitive information, sending unauthorised control instructions for

Internet of Things devices and causing damage to infrastructure or individuals using

such devices. Furthermore, the messages of publishers and subscribers can be

eavesdropped by unauthorised traders posing as legitimate brokers.

 In 2019, Alaiz Moreton, in 2020, Ivan Vaccari, and most recently in 2021,

Danish Javeed [70], created datasets for the detection of attacks in MQTT networks

[71] [72]. Based on the findings derived from these datasets it has been observed that

the MQTT network is susceptible, to forms of attacks. These include Denial of Service

(DoS) Brute Force, Malformed, Flood, SlowIte and Man, in the Middle (MitM)

attacks.

Network events can be examined using Wireshark [73]. During a network

analysis, the sequence of operations in which a broker attempts to publish data to topics

can be observed, as shown in Figure 26. When an MQTT transmission starts, Connect

and Connect Ack messages can be observed, and when data transmission begins,

Publish Message messages emerge. Upon receiving this message, the broker forwards

52

it to the subscribers of the topic. Wireshark has the ability to capture and analyze

network traffic allowing us to observe these operations. In addition this approach will

greatly simplify the comprehension and transmission of data through MQTT. By

utilizing Wireshark for network traffic analysis, events in an MQTT-based network

can be examined, and security vulnerabilities or issues can be identified.

Figure 26:MQTT connection analyses

Connect and Connect Ack are message types used in the MQTT protocol to

facilitate communication between the client and the broker. The Connect message is

used by the client to send a connection request to the broker. In this message, the client

specifies its credentials, the version of the MQTT protocol, client identifier, and

connection parameters. After receiving the Connect message, the broker examines the

client's credentials and connection parameters for authentication.

The Connect Ack (Connect Acknowledge) message, on the other hand, is a

response sent by the broker. The broker verifies the client and either approves or rejects

the connection request after receiving the Connect message. The Connect Ack message

informs the client about the connection status and may include additional connection

parameters. If the connection is successful, the client can begin performing MQTT

publications upon receiving this message.

As suggested in the "System" section, higher levels of security can be achieved

through the use of applications. This can be accomplished through two mechanisms:

Authentication and Authorization. Authentication and authorization shall be the means

by which one or more entities can prove identity to another entity, while authorisation

refers to a mechanism for granting or rejecting access to services based on an

individual's identity.

In addition, in order to increase security against hackers, a solution can be

provided by combining technology, consensus algorithms and distributed architecture

along with the use of blockchain public keys, efficient usage of smart contracts or

53

integrated one time passwordsOTPs. The architecture of the blockchain allows this

method to create a database, while at the same time allowing network members to

agree by means of consensus algorithms. Secure authentication and encryption while

protecting data confidentiality and integrity shall be ensured through the use of Digital

Signatures and Public Keyes. By automatically Automating business procedures with

their features, smart contracts offer the potential to increase security. Furthermore

incorporating one time passwords (OTP) into the authentication process enhances

security by generating a password for every session adding a level of defense, against

potential attacks. The combination of a coherent solution and the user centered

approach will result in an efficient strategy to counter different attacks. Any user

wishing to publish or subscribe must first have access permission and possess OTP

information, and they should also enter their private key information to decrypt the

digital signature.

5.1. The Absence of Authentication Mechanisms for User Verification

In situations where an authentication mechanism is not present, any client has

the capability to publish and/or subscribe to any given topic, consequently creating a

significant threat to data privacy. Data managed by brokers, or intermediaries, may

encompass sensitive information, which can be accessed merely by supplying the

corresponding topic name. The absence of identity verification measures and the lack

of restrictions on data publication and subscription to registered organizations increase

the risk.

As shown in Figures 27 and 28, it can be observed that MQTT publication

starts on the network and, as demonstrated by malicious programmers, the simplest

example such as accessing temperature values can be easily examined. This situation

is not limited to temperature values but applies to any data in a factory. Considering

the need for data protection and the importance of confidentiality in SCADA systems,

this situation is an unacceptable drawback.

54

Figure 27:MQTT data transmission started

Figure 28:Easy access to data through network MQTT broadcast analysis

In Figure 29, another examination revealed the absence of a username and

password mechanism for MQTT in the network. Not specifying a username and

password in an MQTT publication where the port and IP address are automatically

known is a widely adopted method worldwide [74]. It is evident how incorrect and

detrimental this situation can be. Access to the system can be obtained within seconds.

Figure 29:Connection with a Null Username and Password

As a result of all these findings, it has been demonstrated that unauthorized

access and monitoring of data can easily be achieved by establishing connections to

any MQTT service (such as MQTT Explorer [75]). Based on the findings shown in

Figure 30 it can be inferred that the system does not possess a security mechanism.

55

Figure 30:Easy data access with MQTT explorer

5.2 Transmitting User Credentials in Plain Text within Connect Command
Packets

The MQTT protocol is designed to be connection-oriented, and insufficient

attention has been given to its security aspects. If an approved authentication

mechanism is enabled, the data cannot be accessed by unauthorised users. In the

second scenario, even if you create a username and password for MQTT connection

authorization, your credentials are forwarded in plain text to allow an attacker to

impersonate legitimate users that would be able to access their data using intercepted

packets. In Figure 31, when examining the MQTT publication through the Wireshark

application, it appears that the username is "mqtt" and the password is "pass"

There is a chance for the values to be manipulated in this scenario. A detailed

connection command packet reveals the username and password in plain text,

potentially exposing them to unauthorized access. The risk of data manipulation due

to this vulnerability is increased.

56

Figure 31:Exposed MQTT credentials in wireshark

A potential attack scenario example can be considered with a SCADA system,

assuming the usage of Inductive Automation's [76] Ignition SCADA software. In this

scenario, a SCADA operator is conducting a system review without being aware that

a malicious programmer has gained unauthorized access to the system.

SCADA supervisory control and data acquisition systems are designed to track

and monitor industrial processes, such as electricity transmission grids, production

facilities or other vital infrastructure.

Once the attacker captures the connection packet and obtains the credentials, it

is sufficient to impersonate a legitimate client. The broker doesn't even know about the

attack. As shown in Figure 32, the attacker manipulates the “transformer's”

temperature value in a malicious manner. As a result, continuous alarms are triggered

in the system. Due to the lack of understanding of the emergencies and the root cause

throughout the factory, there may be disruptions in production. As a result this leads

to effects, on both the operational aspects resulting in tangible and intangible

disadvantages.

57

Figure 32: Manipulated scada data

DDoS and Sybil attacks can appear directly as MQTT publishers and both

access the system by sending data intensively and enable manipulated data flow.

Because from all these network analyses, it has now discovered how to access the

Broker.

For example, in Figure 33 Dos Attack and Sybil attack scenarios were

performed. Python plays a role, in the analysis process. Particularly, the Locust

package, used for modeling attack scenarios and performance measurements,

constitutes one of the cornerstones of our project. This package allows the possibility

to carry out experiments which may be repeated.

Figure 33: Attack scenario

58

As seen here, the Broker system has automatically errored due to excessive

network load, or as in Figure 34 it has been subject to manipulation resulting in non-

genuine errors occurring on the system. Due to the excessive data access attempts on

my website, the system eventually encountered a timeout error.

Figure 34:Mqtt broker timeout after attack

SSL or TLS only introduces encryption to the recommended mechanism here.

It has no impact on the Subscribe or Publish data transmission. Therefore, scaling and

control mechanisms in IoT systems fail. Advancing this with smart contracts is much

better. For authentication of user and device identities, the Blockchain can use Digital

Signatories as well as Public and Private Keypairs. This will enable the identification

of who has performed each transaction and prevent unauthorized users from accessing

this system. When certain conditions are fulfilled, the Smart Contract may be executed

on its own. For instance, a smart contract can determine whether a user has the

authority to publish or subscribe to certain topics. Data protection is also ensured by

the Blockchain. Data protection for transactions and data is possible with digital

signatures and encryption techniques. The protection of the confidentiality of user data

that are not authorised must also be ensured.

By employing Transport Layer Security(TLS) or Secure Sockets Layer (SSL)

over port 8883 (the standard port used for secure MQTT connections), packets between

the client and the broker are transmitted over a secure communication channel. This is

not sufficient, however. A challenge in using this mechanism arises when the client

frequently reconnects, as the overhead required for maintaining the session becomes

significant. Therefore, it is not recommended to use this mechanism in cases of

frequent reconnection.

59

The solution proposed shall include the use of blockchain technology as well

as digital signature with user authentication mechanisms. In order to preserve the

integrity of data exchanged and to prevent authentication procedures from going

wrong, digitally signed documents play an essential role. Moreover the utilization of

the ECDSA algorithm, for generating signatures can efficiently tackle concerns related

to identity security. The security of that process is further enhanced by the immutable

and transparent nature of the blockchain.

5.3 Blockchain Authentication Mechanism to Authenticate

A smart contract was created to control whether users have access permission

to the MQTT broker, and this contract has a mapping structure that holds the

information about which users can access which data.

Users are added solely by admin privileges using smart contract functions, as

depicted in Figure 35. The desired username and password are determined accordingly.

The dates on which users are granted access permission are also shared. As a result,

you can easily scale your users for MQTT in mere seconds. This is not a feature

typically found in MQTT Brokers. Now a permitted user is defined in the system.

Users can be configured as desired. Admin user's identity is verified using digital

signatures. An OTP (One-Time Password) that changes each time is generated using

ECDSA. To authenticate the digital signature, the user needs to input the OTP and the

correct public key known only to the admin user, as indicated in the visual. This shall

make it possible to ensure a reliable authentication of the user's administration account,

as well as prevent unauthorised access. Since the smart contract, ECDSA, OTP and

MQTT are integrated with each other, every operation performed here automatically

customizes the connection settings.

60

Figure 35: User access permission

Afterwards, authorized users can connect to the broker by providing the

required information accurately, as shown in Figure 36, and then defining the OTP

code specific to their own Public Key for OTP password access. The OTP code

consists of a constantly changing 6-digit password structure. This OTP information

will be used when signing messages with digital signatures. Hence, this information is

protected only with permissions granted to admin privileges.

61

Figure 36: Obtaining OTP user password

 After completing these operations, the first step required to access MQTT

publication as a publisher or subscriber is accomplished. The access of a publisher is

restricted by a digital signature generated using smart contracts and the Elliptic Curve

Digital Signature Algorithm (ECDSA). This ensures that the publisher's identity and

data security are authorised.

The waiting broker in this case is expecting a digital signature for confirmation.

The incoming signed message should contain the access-permitted address and the

OTP information specific to that address. Therefore, the publisher's message, apart

from having access permission to publish, must also include a digitally signed

verification of accurate information. Otherwise, the broker will not approve this

message.

62

On the subscriber side, users with both access permissions and the ability to

verify digital signatures decrypt the data. In this way, communication between the

publisher and subscriber is protected by a robust encryption algorithm that requires

both parties to possess their respective keys and authorization through smart contracts.

Access control and data security of the MQTT broker is ensured by this approach.

For each piece of data received by the MQTT broker, the broker can query the

user's public key who wants to read this data to the blockchain. This query is directed

to the smart contract in the blockchain. The smart contract receives the query and

checks its internal mapping structure. If the mapping indicates that the user has

permission to read the data, the smart contract returns a Figure 37 confirmation

message.

Figure 37: User with MQTT broker permission

The MQTT broker checks the response from the smart contract. The user shall

be given permission to read the information when receiving a confirmation message.

The user's ability to view data is disabled when an error message appears. If an

unauthorized user attempts to access the broker, the system, as shown in Figure 38,

will sever its connection with the publisher by declaring an invalid signature. As a

result, the system will be effectively prevented from being manipulated and attacked.

63

Figure 38:User without MQTT permissionn

Furthermore, if publishers and subscribers fail to correctly validate their digital

signatures with the system, their data access permissions will not be considered. Data

access permissions will be disregarded when there is a mismatch with the expected

public key or OTP during the validation of the digital signature, resulting in an 'invalid

signature' response, as shown in Figure 39.

Figure 39: Access with an incorrect private key

To initiate the system's broker and subscription structure, it is required to be a

registered user of the system again (Figure 40) and to correctly validate the digital

signature generated with the user's unique OTP. This ensures that the desired

publishing and subscribing to the broker are prevented unless the authentication

process is successful. In case of providing incorrect information, the subscription and

publishing access will be denied.

64

Figure 40:User permission information for subscription

These methods, combined with smart contract, OTP and digital signature,

result in a more secure system that resolves the previously mentioned issues. As shown

in Figure 41, network traceability has been eliminated with the authentication

mechanism. Complete confidentiality has been achieved. There is no access to data in

any way. Smart contracts, OTPs and digital signatures to guarantee data security and

authentication are a part of this process.

Figure 41:Encrypted MQTT data analysis

A decentralised and secured infrastructure for authentication of user identities

is provided by the Blockchain Authentication Mechanism. The MQTT authentication

process requires users to have unique identity credentials that match those registered

on the Blockchain. This verification procedure shall ensure that unauthorised access is

prevented and the system's communication environment has been secured. With this

structure, unauthorized users are prevented from manipulating the data, making it

impossible.

65

With the OTP security mechanism, a dynamic and unique password is available

in order to ensure that no one can gain unauthorised access. Messages in digital

signatures contain a unique OTP along with public keys. Only those with access

permission and the ability to correctly validate the message with OTP can obtain access

permission.It ensures the security of MQTT users and the Broker during the

authentication process, allowing secure data publishing and subscription operations.

As mentioned in Figure 42 an authorized user with permission can access their one-

time passwords through the help of Google Authenticator by scanning the QR code

upon request.

Figure 42:User OTP permission

 Encryption Smart contracts operate without the need for a central authority or

intermediary, providing greater freedom and independence in terms of trust compared

to SSL. In order to improve reliability and speed of transactions, they shall be

automatically introduced when certain preconditions have been fulfilled with respect

to the elimination of errors by humans or intervention. Stored on the blockchain in a

manner that is visible and verifiable by all participants, smart contracts enhance

transparency and increase trustworthiness. Smart contracts, when they work in

conjunction with Blockchain technology, guarantee data integrity which enables

almost no change or manipulation of transactions so as to enhance security.

66

Encryption and decryption processes enable secure data sharing and allow only

authorized users to access plain-text data. It is shared that unauthorized users are

unable to access the data on the network. Because the data is now in the form of

certificates rather than plain text. In Figure 43, it is also shared that every transaction

is recorded.

Figure 43:Transaction block record

A unique broker has been developed by bringing all of these together under an

MQTT Broker structure. As shown in Figure 44, authorized users who request a

connection and provide the correct credentials (such as the blockchain smart contract

access permission username and password, the same user's public, digital signature

and finally the OTP security code) are shared the permission that the data stream is

allowed, provided that the appropriate access permissions match the public keys and

the asymmetric encryption and digital signature are successfully verified.

67

Figure 44:User with access permission MQTT connection

The Blockchain Authentication Mechanism, digital signature and the

integrated OTP security mechanism with Digital Signatures developed for the MQTT

protocol play a significant role in ensuring security. The security vulnerabilities of

MQTT protocols are addressed through these techniques, which provide a safe

environment for communication. With this structure, unauthorized users are prevented

from manipulating the data, making it impossible.

68

CONCLUSION AND FUTURE WORK

An initial observation made in practice is, for a general assessment the Shodan

and Python API were used in the analysis. Shodan is a search tool that scans the

Internet and uses different filters like protocol names and port numbers in order to

locate devices which are freely available. When the results are examined, it shows the

total number of publicly accessible devices using the MQTT protocol. Additionally, it

displays the distribution of MQTT Broker hosting servers worldwide [74]. Currently,

there are “501,525” MQTT Brokers in use worldwide, as shown in Figure 45.

Figure 45:Graph illustrating MQTT usage

%99.79 of the devices use port 1883 for communication via the MQTT

Protocol. The remaining devices use HTTPS, Port 8081, and Port 8883 services and

ports. For the purpose of identifying servers that allow unauthorised access, this

information was used. The assessment provided in Figure 46 therefore shows that

there is a strong need for a security system based on the ports to be exploited, while at

the same time this system is vulnerable to different types of attacks.

69

Figure 46:Distribution of most commonly used ports in MQTT connections

 In this section, Using 500 devices from Port 1883 as a sample for an analysis.

Here, the client attempts to subscribe to a topic called 'random' without specifying a

username and password. When the Broker receives the connect message, it may

perform some checks and then return a Connection code in the connect ack.

 Figure 47 from the graph, it is observed that %65 of the servers allow

unauthorized access to topics. That is, a client can publish or subscribe to any topic

without credentials. The first line of defense, authentication, has not been enabled on

most servers and can be used by attackers to carry out various attacks. Details such as

server version, number of clients, message count, etc., are revealed. It can be used to

steal all data passing through the Broker.

Figure 47:MQTT server connection results

Internet of Things IoT enables device capabilities to be increased by allowing

them to connect with other connected devices and facilitating data exchange. With

each passing year the Internet is witnessing an increase, in the number of devices

joining its network. In our own way of life, this constant growth is bringing about a

change. But the protection of such Internet enabled devices from cyber security

70

vulnerabilities needs to be urgently addressed. Focusing on the MQTT protocol, which

is extensively employed in IoT due to its low bandwidth requirements, efficiency, and

reliability even in challenging conditions.

After carrying out experiments on the MQTT protocol we have come across

vulnerabilities that could potentially be exploited by individuals, with ill intentions.

Leveraging the Shodan web search engine and Python APIs, we have observed a lack

of authentication mechanisms on the majority of MQTT Broker servers. Exploiting

this situation means that an attacker who has unauthorised access to data or the leakage

of unnecessary information can compromise a whole range of systems. Therefore, in

order to address these vulnerabilities we have introduced robust security controls

including the modification of Broker configuration files.

A conceptual proof encompassing the design and implementation of a

blockchain-based identity authentication and authorization scheme has been presented.

The solution given is based on the Ethereum blockchain.

The motivation behind this, lies in the inherent weakness of the local identity

authentication mechanism provided by the protocol. This is due to its reliance on the

simple transmission of a plaintext message containing a username and password from

the client to the MQTT broker. However, considering the constraints posed by

resource-limited devices, in order to implement robust identity authentication,

lightweight mechanisms such as OTP, smart contracts, and digital signatures have

been favored over TLS/SSL within the protocol.

The straightforward incorporation of the OTP mechanism into MQTT

messaging has been observed in general studies to potentially leave certain security

vulnerabilities exposed. With the solution of smart contracts and digital signatures,

results can be obtained by overcoming the negativities that may occur. Users with

access privileges through smart contracts will utilize OTP information in the

transmission of digital signatures, thus mitigating these vulnerabilities. As a result, a

more robust scheme is presented compared to the standard approach [65], [66].

The Elliptic Curve Digital Signature Algorithm (ECDSA) has been

extensively. Compared in studies regarding the security of MQTT [77], [78].

71

However, it has been noted that none of these works have encountered an

integration of ECDSA with OTP, as proposed within the framework of this thesis.

Furthermore the combination of ECDSA, with contracts has been found to introduce

new possibilities, for research. Based on the studys results it seems that ECDSA shows

promise in meeting the security needs of Internet of Things devices. Particularly, the

security mechanism proposed throughout this thesis has been designed with

consideration of IoT device constraints and performance needs, aiming to achieve

secure communication with reduced resource consumption. When it comes to security

studying the comparison, between ECDSA and other safety algorithms in literature has

provided us with insights, into their strengths and weaknesses. Nonetheless, research

on internet of things security has been encouraged by the new avenues for integration

into ECDSA with OTP and Smart Contracts.

A way to allow users the possibility of managing their identities and data

without reliance on an authority is also part of our solution. Additionally we conducted

an analysis to assess the performance of our systems. Based on the results of our study

it appears that the approach we have adopted for offering and distributing identity

verification in MQTT is proving to be successful. In addition we conducted a

comparison of the CPU and memory utilization, between our method and SSL/TLS in

relation, to storage needs. A better performance was achieved. It makes sure that the

hardware doesn't create any performance issues or disrupt its functioning all while

collaborating smoothly with the applications.

Ultimately, leveraging the inherent trust provided by blockchain, increased

levels of accountability and forensic capabilities are achieved at no cost. Future efforts

could involve extending the scope of the Smart Contract's identity verification

capabilities and introducing our solution using a number of distributed Blockchain

systems, e.g. CORDA or Iota. Furthermore it is still feasible to carry out investigations

regarding the assessment of effectiveness, in consensus mechanisms.

72

 REFERENCES

[1] S. Andy, B. Rahardjo and . B. Hanindhito, "Attack Scenarios and Security

Analysis of Mqtt communication in IoT system", 4th International Conference
on Electrical Engineering, Computer Science and Informatics, 2017, pp. 1-6,
doi: 10.1109/EECSI.2017.8239179.

[2] A. R. Alkhafaje, A. M. A. Al-muqarm and A. H. Alwan, "Security and
Performance Analysis of Mqtt Protocol with Tls in IoT Networks", 2021 4th
International Iraqi Conference on Engineering Technology and Their
Applications (IICETA), Najaf, Iraq, pp. 206-211, 2021, doi:
10.1109/IICETA51758.2021.9717495.

[3] A. S. W. Tang, J. H. Bong, Q. L. Teh, S. Sivalingam, S. Suet, Y. Chan, S. Y.
Khoo and T. M. Nafy, "Authentication of IoT device with the enhancement of
One-time Password", Journal of IT in Asia, 29-40, 2021, doi:
:10.33736/jita.3841.2021.

[4] B. H. Çorak, M. Guzel, F. Yildirim and S. Ozdemir, "Comparative Analysis of
IoT Communication Protocols", Conference: 2018 International Symposium on
Networks, Computers and Communications, (ISNCC), Rome, Italy, pp.1-6,
2018, doi: 10.1109/ISNCC.2018.8530963.

[5]

H. G. Hamid and Z. T. Alisa, "Survey on IoT application layer protocols",
Baghdad, Iraq: Indonesian Journal of Electrical Engineering and Computer
Science,Vol. 21, No. 3, pp. 1663-1672, 2021,
doi: 10.13140/RG.2.2.11387.85283.

[6]

O. M. T. Committee, “Mqtt Version 5.0", Oasis, Committee Specification, 02,
2018.

[7] L. Cruz-Piris, D. Rivera, I. Marsa-Maestre, E. e de la Hoz and J. R. Velasco,
"Access Control Mechanism for IoT Environments Based on Modelling
Communication Procedures as Resources", Sensors, vol. 18, no. 3, p. 917, Mar.
2018, doi: 10.3390/s18030917.

[8] R. Neisse, G. Baldini and G. Steri, "Enforcement of Security Policy Rules for
the Internet of Things, Conference" , 2014 IEEE 10th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Larnaca, Cyprus, pp. 165-172, 2014,
doi: 10.1109/WiMOB.2014.6962166.

[9] D. Soni and A. Makwana, "A Survey on Mqtt: A protocol of internet of things",
2017.

73

[10] K. Christidis, and M. Devetsikiotis, "Blockchains and smart contracts for the
internet of things" , IEEE Access , 2016, vol. 4, pp. 2292-2303, 2016, doi:
10.1109/ACCESS.2016.2566339.

[11] A. Dorri, S. Kanhere and R. Jurdak, "Blockchain in internet of things:
Challenges and solutions", [https://arxiv.org/abs/1608.05187], (Last Access
Date: August 28, 2023)

[12] N. Kshetri, "Can blockchain strengthen the internet of things?", in IT
Professional, vol. 19, no. 4, pp. 68-72, 2017, doi: 10.1109/MITP.
2017.3051335.

[13] A. Ouaddah, A. Elkalam and A. Ouahman, "A new Blockchain-based access
control framework for the Internet of Things, Secur. Commun. Networks",
2016, doi: 10.1002/sec.1748.

[14] A. P. Miguel, R. Perfecto, A. Seraffın, M. Antonio and D. Manuel,

"Communication with resource-constrained devices through Mqtt for control
education", IFAC-PapersOnLine, vol. 49, no. 6, pp. 150–155, 2016, 2016.

[15] T.Jaffey, "MQTT and CoAP, IoT Protocols", [https://eclipse.org/615

community/eclipsenewsletter/2014/febru-ary/article2.php], (Last Access Date:
August 23, 2023)

[16] "HBMQTT", GitHub: [https://github.com/beerfactory/hbmqtt],

(Last Access Date: August 23, 2023)

[17] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System"
[https://bitcoin.org/bitcoin.pdf], (Last Access Date: August 23, 2023)

[18] I. Eyal, A. E. Gencer, . E. G. Sirer and . R. V. Renesse, "Bitcoin-NG: a scalable

blockchain protocol, USA: 13th Usenix Conference on Networked Systems
Design and Implementation", 2015.

[19] M. Mettler, "Blockchain technology in healthcare: The revolution starts here"

IEEE 18th International Conference on e-Health Networking, Applications and
Services (Healthcom), Munich, Germany, pp. 1-3, 2016, doi: 10.1109/
/HealthCom.2016.7749510.

[20] N. Alilwit, "Authentication Based on Blockchain", IEEE 39th International
Performance Computing and Communications Conference (IPCCC), pp. 1-6,
2020.

[21] X. He, S. Alqahtani, R. Gamble and M. Papa, "Securing over-the-air IoT
firmware updates using blockchain", Proceedings of the International
Conference on Omni-Layer Intelligent Systems, pp. 164-171, 2019, doi:
10.1145/3312614.3312649.

74

[22] X. He, R. Gamble and M. Papa, "A Smart Contract Grammar to Protect IoT
Firmware Updates using Hyperledger Fabric", 2019 IEEE 10th Annual
Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Canada, 2019, pp. 0034-0042, doi: 10.1109/IEMCON.
2019.8936223.

[23] S. Sun, S. Chen, R. Du, W. Li and D. Qi, "Blockchain Based Fine-Grained and
Scalable Access Control for IoT Security and Privacy", 2019 IEEE Fourth
International Conference on Data Science in Cyberspace (DSC), Hangzhou,
China, 2019, pp. 598-603, doi: 10.1109/DSC.2019.00097.

[24] U. Guin, P. Cui and A. Skjellum, "Ensuring Proof-of-Authenticity of IoT Edge
Devices Using Blockchain Technology", 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), Canada, pp. 1042-
1049, 2018, doi: 10.1109/Cybermatics_2018.2018.00193.

[25] G. Ali, N. Ahmad, Y. Cao, Q. E. Ali , F. Azim and H. Cruickshank, "Bcon:

Blockchain based access Control across multiple conflict of interest domains",
Journal of Network and Computer Applications, vol. 147, 2019, doi:
10.1016/j.jnca.2019.102440.

[26] A. El Kalam, A. Outchakoucht and H. Es-Samaali, "Emergence-based access

control: New approach to secure the internet of things", Proceedings of the 1st
International Conference on Digital Tools & Uses Congress, pp. 1-11, 2018,
doi: 10.1145/3240117.3240136.

[27] B. Tang, H. Kang, J. Fan and R. Sandhu, "Iot passport: a blockchain-based trust
framework for collaborative internet-of-things", Proceedings of the 24th Acm
Symposium on Access Control Models and Technologies, pp. 83-92, 2019,
doi: 10.1145/3322431.3326327.

[28] "Solidity Documentation", [http://solidity.readthedocs.org/en/latest/],
(Last Access Date: August 23, 2023)

[29] S. E. Kafhali, C. Chahir, M. Hanini and K. Salah, "Architecture to manage

Internet of Things Data using Blockchain and Fog Computing", Proceedings of
the 4th International Conference on Big Data and Internet of Things,
Association for Computing Machinery, New York, NY, USA, Article 32, 1–8,
2020.

[30] C. Dukkipati, Y. Zhang and L. Cheng, "Decentralized, blockchain based access
control framework for the heterogeneous internet of things", Proceedings of the
Third ACM Workshop on Attribute-Based Access Control, 2018, doi:
10.1145/3180457.3180458.

75

[31] S.-M. Choi, B. C. Kim, B.-H. Cho, K. W. Kang , K.-H. Choi, J.-T. Kim, S.-H.
Lee, M.-S. Park, M.-K. Kim and K.-H. Cho, "Comparison of two motor subtype
classifications in de novo Parkinson's disease", International Conferance on
Advances in Computing and Communication Engineering, ICACCE,IEEE,vol.
54, pp-74-78, 2018.

[32] S. Sun, S. Chen, R. Du, W. Li and D. Qi, "Blockchain Based Fine-Grained and
Scalable Access Control for IoT Security and Privacy", 2019 IEEE Fourth
International Conference on Data Science in Cyberspace (DSC), China, 2019,
pp. 598-603, doi: 10.1109/DSC.2019.00097.

[33] E. Kfoury and D. Khoury, "Distributed Public Key Infrastructure and PSK

Exchange Based on Blockchain Technology", 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), Canada, 2018, pp.
1116-1120, doi: 10.1109/Cybermatics_2018.2018.00203.

[34] U. Javaid, M. Aman and B. Sikdar, "Blockpro: Blockchain based data
provenance and integrity for secure iot environments", Proceedings of the 1st
Workshop on Blockchain-Enabled Networked Sensor Systems, 2018,
doi: 10.1145/3282278.3282281.

[35] A. M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital

Cryptocurrenciess", 1st ed. Sebastopol, USA: O’Reilly Media, Inc., 2014.

[36] "Eris Industries Documentation Blockchains",
[https://docs.erisindustries.com/explainers/], (Last Access Date: August 23,
2023)

[37] "Understanding Public Key Cryptography", [https://learn.microsoft.com/en-

us/previous-versions/tnarchive/aa998077v=exchg.65)?redirectedfrom
=MSDN], (Last Access Date: August 23, 2023)

[38] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert and P. Saxena, "A
computationally-scalable byzantine consensus protocol for blockchains",
IACR Cryptology ePrint Archive, 2015.

[39] A. Gervais, G. O. Karame, K. Wu, V. Glykantzis, H. Ritzdorf and S. Capkun,
"On the security and performance of proof of work blockchains", Acm Sigsac
Conference on Computer and Communications Security, 2016.

[40] S. King and S. Nadal, "PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-
Stake", 2012.

[41] "Announcing the Secure Hash Standard",
[https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-
01/documents/fips180-2.pdf], (Last Access Date: August 23, 2023)

76

[42] "Hashcash-Bitcoin WiKi", [https://en.bitcoin.it/wiki/Hashcash], (Last Access
Date: August 23, 2023)

[43] J.-P. Aumasson, L. Henzen, W. Meier and . R. C. W. Phan, "SHA-3 Proposal

Blake", [https://131002.net/blake/blake.pdf], (Last Access Date: August 23,
2023)

[44] C. Percival, Tarsnap,"The Scrypt Key Derivation Function and Encryption

Utility", [http://www.tarsnap.com/scrypt.html], (Last Access Date: August 23,
2023)

[45] Myriad."A Coin for Everyone", [http://myriadcoin.org/home], (Last Access

Date: August 23, 2023)

[46] V.Buterin,"OnStake", [https://blog.ethereum.org/2014/07/05/stake/.], (Last
Access Date: August 23, 2023)

[47] V. Buterin, "Slasher Ghost, and Other Developments in Proof of Stake",

[https://blog.ethereum.org/2014/10/03/slasherghost-developments-proof-
stake/], (Last Access Date: August 23, 2023)

[48] T. Swanson, "Consensus-as-a-service: A brief report on the emergence of

permissioned, distributed ledger systems."
[http://www.ofnumbers.com/2015/04/06/consensus-as-a-service-a-brief-
report-on-the-emergence-oft-on-the-emergence-ofpermissioned-distributed-
ledger-systems/], (Last Access Date: August 23, 2023).

[49] S. Maitra, V. P. Yanambaka, A. Abdelgawad, D. Puthal and K. Yelamarthi,

"Proof-of-Authentication Consensus Algorithm:Blockchain-based IoT
Implementation", 2020 IEEE 6th World Forum on Internet of Things (WF-
IoT), New Orleans, LA, USA, 2020, pp. 1-2, doi: 10.1109/WF-
IoT48130.2020.9221187.

[50] A. Fauzan, P. Sukarno and A. Arif Wardana, "Overhead Analysis of the Use of
Digital Signature in MQTT Protocol for Constrained Device in the Internet of
Things System", 3rd International Conference on Computer and Informatics
Engineering, Yogyakarta, Indonesia, 2020, pp. 415-420, doi:
10.1109/IC2IE50715.2020.9274651.

[51] Y. Genç and E. Afacan, "Design and Implementation of an Efficient Elliptic

Curve Digital Signature Algorithm (ECDSA)", IEEE International IOT,
Electronics and Mechatronics Conference, Canada, 2021, pp. 1-6, doi:
10.1109/IEMTRONICS52119.2021.9422589

[52] H. C. Pöhls and B. Petschkuhn, "Towards compactly encoded signed IoT

messages", IEEE 22nd International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), Lund, Sweden,
2017, pp. 1-6, doi: 10.1109/CAMAD.2017.8031622.

77

[53] E.Foundation,"Ethereum Remix - Ethereum IDE",
[https://remix.ethereum.org/.], (Last Access Date: August 23, 2023)

[54] T.Suite,"Ganache-Oneclickblockchain",
[https://www.trufflesuite.com/ganache], (Last Access Date: August 23, 2023)

[55] MetaMask, "MetaMask - A crypto wallet & gateway to blockchain apps",

[https://metamask.io/.], (Last Access Date: August 23, 2023)

[56] N. Kshetri, "Can Blockchain Strengthen the Internet of Things", IEEE IT
Professional, vol. 19, no. 4, pp. 68-72, 2017, doi:
10.1109/MITP.2017.3051335.

[57] J. Scott and D. Spaniel, "Rise of the Machines: The Dyn Attack Was Just a
Practice Run", Institute for Critical Infrastructure Technology, 2017.

[58] J. A. Jerkins, "Motivating a Market or Regulatory Solution to IoT Insecurity
with the Mirai Botnet Code", Department of Computer Science and Information
Systems, 2017, Las Vegas, NV, USA, 2017, pp. 1-5, doi:
10.1109/CCWC.2017.7868464.

[59] F. Taps, "Foundations for the Next Economic Revolution, Filament"

[https://blockchainlab.com/pdf/Filament%20Foundations.pdf], (Last Access
Date: August 23, 2023)

[60] R.P.Foundation,"RaspberryPi2ModelB",

[https://www.raspberrypi.org/products/raspberry-pi-2-model-b/], (Last Access
Date: August 23, 2023)

[61] L. Aosong Electronics Co., "DHT11 Digital Humidity and Temperature

Sensor", [http://www.aosong.com/userguide/DHT11.pdf.], (Last Access Date:
August 23, 2023)

[62] W. Liang Zhang, "Analysis of SSL Certificate Reissues and Revocations in the

Wake of Heartbleed", 2018, pp. 109-116, doi: 10.1145/3176244.

[63] Prantl, Thomas & Iffländer, Lukas & Herrnleben, Stefan & Engel, Simon &
Kounev, Samuel & Krupitzer, Christian, "Performance Impact Analysis of
Securing MQTT Using TLS", Conference: ICPE '21: ACM/SPEC International
Conference on Performance Engineering , 2021, pp. 241-248, doi:
10.1145/3427921.3450253.

[64] Abubakar, Mwrwan & Jaroucheh, Zakwan & Al-Dubai, Ahmed & Liu,

Xiaodong, "Blockchain-based identity and authentication scheme for MQTT
protocol", In 2021 The 3rd International Conference on Blockchain
Technology, 2021, pp. 73-81, doi: 10.1145/3460537.3460549.

78

[65] Buccafurri, Francesco & Romolo, Celeste, "A Blockchain-Based OTP-
Authentication Scheme for Constrainded IoT Devices Using MQTT", 2019,
pp. 1-5, doi: 10.1145/3386164.3389095.

[66] F. Buccafurri, V. De Angelis, and R. Nardone, “Securing MQTT by
Blockchain-Based OTP Authentication,” Sensors, vol. 20, no. 7, p. 2002, Apr.
2020, doi: 10.3390/s20072002.

[67] Bruno Blanchet, "ProVerif 2.04: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial," November 30, 2021.

[68] C. J. F. Cremers, "Scyther - Semantics and Verification of Security Protocols,"

[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer
Science], 2006.

[69] C. &. D. N. Patel, "A Novel MQTT Security framework In Generic IoT Model",
Procedia Computer Science, 171, 2020, doi: 10.1016/j.procs.2020.04.150.

[70] D. Javeed, T. Gao and M. Khan, "A Hybrid Deep Learning-Driven SDN

Enabled Mechanism for Secure Communication in Internet of Things (IoT)",
Sensors, 2021, vol. 21, no. 14, p. 4884, Jul. 2021, doi: 10.3390/s21144884.

[71] MQTTset, "a new dataset for MQTT", https://www.kaggle.com/

cnrieiit/mqttset], (Last Access Date: August 23, 2023)

[72] AWS, "CSE-CIC-IDS2018", [https://www.unb.ca/cic/datasets/ids-2018.html]
, (Last Access Date: August 23, 2023)

[73] Wireshark, "Wireshark: Go Deep", [https://www.wireshark.org/], (Last Access

Date: August 23, 2023)

[74] Shodan, "Shodan: World's First Search Engine for Internet-Connected
Devices", [https://www.shodan.io], (Last Access Date: August 23, 2023)

[75] M. Explorer, "MQTT Explorer - MQTT Client and Testing Tool", [https://mqtt-

explorer.com], (Last Access Date: August 23, 2023)

[76] I. Automation, "Ignition Scada", [https://inductiveautomation.com], (Last
Access Date: August 23, 2023)

[77] P H. Hidayat, P. Sukarno and A. A. Wardana, "Overhead Analysis on the Use

of Digital Signature in MQTT Protocol", 2019 International Conference on
Electrical Engineering and Informatics (ICEEI), 2019, Bandung, Indonesia,
2019, pp. 87-92, doi: 10.1109/ICEEI47359.2019.8988861.

79

[78] Amanlou, Sanaz & Abu Bakar, Khairul Azmi, "Lightweight Security
Mechanism over MQTT Protocol for IoT Devices", (IJACSA) International
Journal of Advanced Computer Science and Applications, 2020, pp. 202-207.

80

APPENDIXES

A: MQTT Broker Code

import logging
import asyncio
from hbmqtt.broker import Broker
from hbmqtt.client import MQTTClient, ClientException
from hbmqtt.mqtt.constants import QOS_1
import os
import subprocess
from eth_account import Account
from eth_account.messages import encode_defunct
from coincurve.keys import PrivateKey
import binascii
import json
from ecies import decrypt

logger = logging.getLogger(__name__)

def broker_coro():
 config = {
 'listeners': {
 'default': {
 'max-connections': 50000,
 'bind': '192.168.50.228:1883',
 'type': 'tcp',
 },
 'tcp-ssl-1': {
 'bind': '192.168.50.228:8883'
 },
 'ws-1': {
 'bind': '192.168.50.228:8080',
 'type': 'ws',
 },
 },
 'auth': {
 'allow-anonymous': True,
 'password-file':
os.path.join(os.path.dirname(os.path.realpath(__file__)),
"passwd.txt"),
 },
 'plugins': ['auth_file', 'auth_anonymous'],
 'topic-check': {
 'enabled': True,
 'plugins': ['topic_taboo'],
 },
 }

81

 broker = Broker(config=config)
 yield from broker.start()

@asyncio.coroutine
def brokerGetMessage():
 script_path =
"C:/Users/User/Desktop/thesis_code/Suggestion/blockchain_SmartContract/
subscrice_allowing.py"
 python_exe =
"D:/Users/User/anaconda3/envs/mqtt_authentication/python.exe"
 process = subprocess.Popen([python_exe, script_path],
stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 private_key = None
 public_key = None
 result = False

 for line in iter(process.stdout.readline, b''):
 line_decoded = line.decode().split()
 if line_decoded[0] == 'True':
 result = True
 if len(line_decoded) > 1:
 public_key = line_decoded[1]
 private_key = line_decoded[2]
 elif line_decoded[0] == 'False':
 result = False
 break

 if not result:
 raise Exception("Abonelik Doğrulanmadı")
 else:
 print("Abonelik Doğrulandı, Public Key: ", public_key)

 specific_public_key = public_key

 if specific_public_key != public_key:
 raise Exception("Yetersiz izin, belirli bir public_key olmadan
abone olamazsınız")

 C = MQTTClient()
 yield from C.connect('mqtt://mqtt:pass@192.168.50.228:1883/')
 yield from C.subscribe([
 ("Topic/Sicaklik", QOS_1),
 ("Topic/Nem", QOS_1)
])
 logger.info('Subscribed!')

 max_invalid_messages = 10

82

 invalid_message_count = 0

 priv_key_hex_Ox =private_key
 priv_key_hex = priv_key_hex_Ox[2:] # Bu, "0x" önekini kaldırır
 priv_key = PrivateKey.from_hex(priv_key_hex)

 try:
 for i in range(1, 100):
 message = yield from C.deliver_message()
 packet = message.publish_packet
 data = packet.payload.data.decode('utf-8')

 try:
 address, signature, message = data.split(",", 2)
 except ValueError:
 print(f"Invalid data format: {data}")
 invalid_message_count += 1
 if invalid_message_count >= max_invalid_messages:
 raise SystemExit("Too many invalid signatures,
stopping connection with publisher.")
 continue

 encrypted_message_hex = binascii.unhexlify(message)
 try:
 decrypted_message = decrypt(priv_key.to_hex(),
encrypted_message_hex)
 except ValueError:
 print("Invalid signature and decryption key.")
 continue
 print("Decrypted Message (raw): ", decrypted_message)

 try:
 dict_message = json.loads(decrypted_message)
 msg_to_verify = json.dumps(dict_message)
 except json.JSONDecodeError:
 print("JSON decoding failed.")
 continue

 message_encoded = encode_defunct(text=msg_to_verify)

 try:
 signer = Account.recover_message(message_encoded,
signature=signature)
 if signer.lower() == address.lower():

 print("Valid signature.")
 else:
 print("Invalid signature.")

83

 print(signer)
 print(address)
 except:
 print("Signature validation failed.")

 print("Decrypted Message: ", decrypted_message.decode())

 except ClientException as ce:
 logger.error("Client exception : %s" % ce)

if __name__ == '__main__':
 formatter = "[%(asctime)s] :: %(levelname)s :: %(name)s ::
%(message)s"
 logging.basicConfig(level=logging.INFO, format=formatter)
 asyncio.get_event_loop().run_until_complete(broker_coro())
 while True:
 try:
 asyncio.get_event_loop().run_until_complete(brokerGetMessag
e())
 except SystemExit as e:
 print(f"Caught system exit ({e}), restarting...")
 except Exception as e:
 print(f"Caught exception ({e}), restarting...")
 asyncio.get_event_loop().run_forever()

import paho.mqtt.client as mqtt
from eth_account import Account
from eth_account.messages import encode_defunct
from ecies import encrypt
from coincurve.keys import PrivateKey
import json
import binascii

USERNAME = "mqtt"
PASSWORD = "pass"

Özel anahtarınız (Dikkatli olun, bu bilgiyi gizli tutun!)
priv_key_hex =
"0x2f76a24d52adb8e40b05360f74c4f2d54f3d9042acad0baa966db2b4d7619e26"

Create key objects
priv_key = PrivateKey.from_hex(priv_key_hex[2:]) # "0x" önekini
çıkarın
pub_key = priv_key.public_key
pub_key_hex = "0x" + pub_key.format(compressed=False).hex()[2:] # "0x"
önekini ekleyin

84

print(pub_key_hex)

Account nesnesini oluştur
account = Account.from_key(priv_key_hex)

client = mqtt.Client()
client.username_pw_set(USERNAME, PASSWORD)

client.connect('192.168.50.228', 1883)

while True:
 # Kullanıcıdan mesajı al
 user_input = input('Message : ')

 # Dijital imzalı mesajı oluştur
 message = {"message": user_input}
 # Dijital imzalı mesajı oluştur
 message_encoded = encode_defunct(text=user_input)
 signed_message = account.sign_message(message_encoded)
 signature = signed_message.signature.hex()

 # Mesajı şifrele
 replaced_message = user_input.replace(":", "#COLON#")
 encrypted_message = encrypt(pub_key_hex[2:],
replaced_message.encode()) # "0x" önekini çıkarın

 # Mesajı yayınla
 data_to_send =
f"{account.address},{signature},{binascii.hexlify(encrypted_message).de
code()}"
 client.publish("Topic/Sicaklik", data_to_send)

import paho.mqtt.client as mqtt
from ecies import decrypt
from coincurve.keys import PrivateKey
import binascii
from eth_account import Account
from eth_account.messages import encode_defunct
import json

USERNAME = "mqtt"
PASSWORD = "pass"

Özel anahtarınız
priv_key_hex =
"0x2f76a24d52adb8e40b05360f74c4f2d54f3d9042acad0baa966db2b4d7619e26"

85

Create key objects
priv_key = PrivateKey.from_hex(priv_key_hex[2:]) # "0x" önekini
çıkarın

def on_connect(client, userdata, flags, rc):
 print("Connected with result code "+str(rc))
 client.subscribe("Topic/Sicaklik")

def on_message(client, userdata, msg):
 print("Message Received...")
 data_received = msg.payload.decode()
 address, signature, message = data_received.split(",", 2)

 # Decrypt the received message
 encrypted_message_hex = binascii.unhexlify(message)
 decrypted_message = decrypt(priv_key.to_hex(),
encrypted_message_hex)

 print("Decrypted Message (raw): ", decrypted_message)

 # Verify the signature
 try:
 # Converting the string message back to its dictionary format
using 'json.loads()'
 dict_message = json.loads(decrypted_message)
 msg_to_verify = json.dumps(dict_message)
 except json.JSONDecodeError:
 print("JSON decoding failed.")
 return

 # Verify the signature
 message_encoded = encode_defunct(text=decrypted_message.decode())

 try:
 signer = Account.recover_message(message_encoded,
signature=signature)
 if signer.lower() == address.lower():
 print("Valid signature.")
 print(signer)
 print(address)
 else:
 print("Invalid signature.")
 print(signer)
 print(address)
 except:
 print("Signature validation failed.")

 print("Decrypted Message: ", decrypted_message.decode())

86

client = mqtt.Client()
client.username_pw_set(USERNAME, PASSWORD)

client.on_connect = on_connect
client.on_message = on_message

client.connect('192.168.50.228', 1883)

client.loop_forever()

B: Python Code: Integration of Broker and Smart Contract

import tkinter as tk
import paho.mqtt.client as mqtt
from web3 import Web3
import pyotp
from threading import Thread
import subcribe
from datetime import datetime

ganache_url = "http://127.0.0.1:8545"
abi = [
 {
 "inputs": [],
 "stateMutability": "nonpayable",
 "type": "constructor"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "AccessGranted",
 "type": "event"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",

87

 "name": "user",
 "type": "address"
 }
],
 "name": "AccessRevoked",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "internalType": "string",
 "name": "username",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "password",
 "type": "string"
 }
],
 "name": "addUser",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "deleteUser",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",

88

 "type": "address"
 }
],
 "name": "grantAccess",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "mqttRequest",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "indexed": False,
 "internalType": "uint256",
 "name": "requestCount",
 "type": "uint256"
 }
],
 "name": "MqttRequest",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],

89

 "name": "revokeAccess",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "indexed": False,
 "internalType": "string",
 "name": "username",
 "type": "string"
 }
],
 "name": "UserAdded",
 "type": "event"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "UserDeleted",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "",
 "type": "address"
 }
],
 "name": "allowed",
 "outputs": [
 {

90

 "internalType": "bool",
 "name": "",
 "type": "bool"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getAccessTime",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getLastMqttRequest",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [

91

 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getNumMqttRequest",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getUser",
 "outputs": [
 {
 "internalType": "string",
 "name": "username",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "password",
 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }

92

],
 "name": "hasAccess",
 "outputs": [
 {
 "internalType": "bool",
 "name": "",
 "type": "bool"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [],
 "name": "owner",
 "outputs": [
 {
 "internalType": "address",
 "name": "",
 "type": "address"
 }
],
 "stateMutability": "view",
 "type": "function"
 }
]

contract_address = "0xaEc657570F78cb48381A32536fAEB8aFD1d8182d"

client = mqtt.Client()

web3 = Web3(Web3.HTTPProvider(ganache_url))
contract = web3.eth.contract(address=contract_address, abi=abi)

owner_address = "0x4756424923c96B2574d1c473DB46cBF002D787d3"

def request_mqtt(address):
 address = public_key_entry.get()
 num_mqtt_requests =
contract.functions.getNumMqttRequest(address).call()

 if num_mqtt_requests >= 4:
 result_label.config(text="Maximum request count reached.",
foreground="red")
 return False

93

 try:
 tx_hash =
contract.functions.mqttRequest(address).transact({'from':
owner_address})
 receipt = web3.eth.wait_for_transaction_receipt(tx_hash)
 if receipt['status'] == 1 :
 result_label.config(text="MQTT request successful",
foreground="red")
 return True
 else:
 result_label.config(text="MQTT request failed",
foreground="red")
 return False
 except Exception as e:
 print(f"Exception occurred while requesting MQTT: {e}")
 return False

def get_user(address):
 result = contract.functions.getUser(address).call()
 retrieved_username = result[0]
 retrieved_password = result[1]

 return retrieved_username, retrieved_password

def is_valid_private_key(eth_address, private_key):
 from web3 import Web3
 web3 = Web3(Web3.HTTPProvider('http://127.0.0.1:8545'))
 account = web3.eth.account.from_key(private_key)
 return account.address.lower() == eth_address.lower()

def verify_otp():
 # Public keyden secret değerini oku
 public_key = public_key_entry.get()
 otp = otp_entry.get()
 with open('C:/Users/User/Desktop/mqtt_contract_class/otp_data.txt',
'r') as file:
 for line in file:
 if line.startswith(public_key):
 secret = line.split(',')[1].strip()
 break
 else:
 result_label.config(text="Public Key in not defined",
foreground="red")
 return

94

 # OTP doğrulamasını yap
 totp = pyotp.TOTP(secret)
 if totp.verify(otp):
 result_label.config(text="OTP is Correct", foreground="green")
 else:
 result_label.config(text="OTP is not Correct",
foreground="red")

def register_user():
 user_eth_address = public_key_entry.get()
 user_private_key = private_key_entry.get()
 username = username_entry.get()
 password = password_entry.get()

 if is_valid_private_key(user_eth_address, user_private_key):
 # Kullanıcı adı ve şifre alanlarının dolu olup olmadığını
kontrol et
 if username and password:
 # Kullanıcı adı ve şifreyi akıllı sözleşmedeki
verilerle karşılaştır
 retrieved_username, retrieved_password =
get_user(user_eth_address)
 if username == retrieved_username and password ==
retrieved_password:
 result_label.config(text="User information is
correct",fg="green",font=("Helvetica", 12, "bold"))
 else:
 result_label.config(text="Username and password is
incorrect.",fg="red",font=("Helvetica", 12, "bold"))

 else:
 result_label.config(text="The username and password
cannot be empty.",fg="red",font=("Helvetica", 12, "bold"))

 else:
 result_label.config(text="Private key is wrong. No
permission to register has been granted.",fg="red",font=("Helvetica",
12, "bold"))

def on_connect():
 user_eth_address = public_key_entry.get()

95

 result_label.config(text="Connection successful!",
foreground="green")
 new_window = tk.Toplevel(window)
 new_window.title("MQTT Data")
 new_window.geometry("400x400")

 data_label = tk.Label(new_window, text="Data will be displayed
here.", justify=tk.LEFT, anchor='nw')
 data_label.pack(padx=10, pady=10, fill=tk.BOTH, expand=True)

 temp_topic = user_eth_address
 #humidity_topic = "Topic/Nem"
 previous_values = []

 def display_mqtt_message(client, userdata, message):
 if message.topic == temp_topic:
 value = f"Sıcaklık: {message.payload.decode()} °C"
 #elif message.topic == humidity_topic:
 #value = f"Nem: {message.payload.decode()} %"

 previous_values.append(value)
 data_label.config(text="\n".join(previous_values))

 subcribe.client.on_message = display_mqtt_message

def on_connect_fail():
 result_label.config(text="Connection failed!", foreground="red")

def connect():
 public_key = public_key_entry.get()
 hostname = hostname_entry.get()
 port = int(port_entry.get())
 private_key = private_key_entry.get()

 username = username_entry.get()
 password = password_entry.get()
 if not request_mqtt(public_key):
 return

 # OTP doğrulamasını yap
 verify_otp()

 if result_label["text"] != "OTP is Correct":
 result_label.config(text="OTP is incorrect, connection
denied",fg="red",font=("Helvetica", 12, "bold"))
 return

96

 # Kullanıcı adı, şifre ve public key'i doğrulamak için
register_user fonksiyonunu çağırırız
 register_user()

 # Kullanıcı adı ve şifreyi akıllı sözleşmedeki verilerle
karşılaştırırız
 retrieved_username, retrieved_password = get_user(public_key)
 if username != retrieved_username or password !=
retrieved_password:
 result_label.config(text="Username or password is
incorrect.",fg="red",font=("Helvetica", 12, "bold"))
 return

 if not hostname or not port:
 result_label.config(text="Please fill in all fields",
foreground="red")
 return

 try:
 has_access = contract.functions.hasAccess(public_key).call()
 if has_access and is_valid_private_key(public_key,
private_key):
 client=mqtt.Client()
 client.username_pw_set(username, password)
 client.on_connect = on_connect
 client.connect(hostname, port)
 client.loop_start()
 else:
 result_label.config(text="Access denied or incorrect
private key", foreground="red")
 except Exception as e:
 result_label.config(text="Error: " + str(e), foreground="red")

 def start_connection():
 try:
 subcribe.connect(hostname, port, username, password)
 window.after(0, on_connect)
 except Exception as e:
 print(e)
 window.after(0, on_connect_fail)

 connection_thread = Thread(target=start_connection)
 connection_thread.start()

97

def adding_user():
 # Kullanıcı erişimi, reddi, adı ve şifresi
 from user_control_mechanism import UserAccessGUI
 app = UserAccessGUI()
 app.start()
 app.run()

def otp_user():
 # Kullanıcıya özel OTP
 from create_otp import SmartContractApp
 app = SmartContractApp()
 app.run()

GUI'nin ekran ortasında açılması için yardımcı fonksiyon
def center_window(window):
 window.update_idletasks()
 width = window.winfo_width()
 height = window.winfo_height()
 x = (window.winfo_screenwidth() // 2) - (width // 2)
 y = (window.winfo_screenheight() // 2) - (height // 2)
 window.geometry('{}x{}+{}+{}'.format(width, height, x, y))

window = tk.Tk()
window.title("MQTT Connection")
window.geometry("600x600") # Pencere boyutunu ayarlayabilirsiniz

Frame
frame = tk.Frame(window)
frame.pack(pady=50)

Add User Button - Yeni eklenen buton
adding_button = tk.Button(window, text="User Access Permission",
command=adding_user)
adding_button.pack(side="top", pady=10)
adding_button.configure(width=20)

Add User Button - Yeni eklenen buton

98

otp_button = tk.Button(window, text="User OTP Mechanism",
command=otp_user)
otp_button.pack(side="top", pady=10)
otp_button.configure(width=20)

Hostname
hostname_label = tk.Label(frame, text="Hostname:")
hostname_label.grid(row=0, column=0, sticky="e", padx=(20, 10),
pady=10)
hostname_entry = tk.Entry(frame)
hostname_entry.grid(row=0, column=1, sticky="w", padx=(0, 20), pady=10)

Port
port_label = tk.Label(frame, text="Port:")
port_label.grid(row=1, column=0, sticky="e", padx=(20, 10), pady=10)
port_entry = tk.Entry(frame)
port_entry.grid(row=1, column=1, sticky="w", padx=(0, 20), pady=10)

Username
username_label = tk.Label(frame, text="Username:")
username_label.grid(row=2, column=0, sticky="e", padx=(20, 10),
pady=10)
username_entry = tk.Entry(frame)
username_entry.grid(row=2, column=1, sticky="w", padx=(0, 20), pady=10)

Password
password_label = tk.Label(frame, text="Password:")
password_label.grid(row=3, column=0, sticky="e", padx=(20, 10),
pady=10)
password_entry = tk.Entry(frame, show="*")
password_entry.grid(row=3, column=1, sticky="w", padx=(0, 20), pady=10)

Public Key
public_key_label = tk.Label(frame, text="Public Key:")
public_key_label.grid(row=4, column=0, sticky="e", padx=(20, 10),
pady=10)
public_key_entry = tk.Entry(frame)
public_key_entry.grid(row=4, column=1, sticky="w", padx=(0, 20),
pady=10)

Private Key
Private Key
private_key_label = tk.Label(frame, text="Private Key:")
private_key_label.grid(row=5, column=0, sticky="e", padx=(20, 10),
pady=10)
private_key_entry = tk.Entry(frame)
private_key_entry.grid(row=5, column=1, sticky="w", padx=(0, 20),
pady=10)

99

result_label = tk.Label(frame, text="", foreground="red")
result_label.grid(column=1, row=8, padx=(0, 5), pady=(10, 5),
sticky=tk.W)

OTP
otp_label = tk.Label(frame, text="OTP:")
otp_label.grid(row=6, column=0, sticky="e", padx=(20, 10), pady=10)
otp_entry = tk.Entry(frame)
otp_entry.grid(row=6, column=1, sticky="w", padx=(0, 20), pady=10)

connect_button = tk.Button(frame, text="Connect", command=connect)
connect_button.grid(row=7, column=1, padx=(0, 20), pady=10)

Exit Button
exit_button = tk.Button(window, text="Exit", command=window.quit)
exit_button.pack(side="bottom", pady=10)
exit_button.configure(width=20) # Buton genişliğini ayarlayabilirsiniz

GUI'nin ekran ortasında açılmasını sağla
center_window(window)

window.mainloop()
from tkinter import *
from web3 import Web3
from file_access import request_private_key, is_valid_private_key
from passlib.hash import sha512_crypt
import secrets
import pyotp
import qrcode
import os
from tkinter import messagebox
import pyodbc

class SmartContractApp:
 def __init__(self):
 self.ganache_url = "http://127.0.0.1:8545"
 self.abi= [
 {
 "inputs": [],
 "stateMutability": "nonpayable",
 "type": "constructor"
 },
 {
 "anonymous": False,
 "inputs": [

100

 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "AccessGranted",
 "type": "event"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "AccessRevoked",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "internalType": "string",
 "name": "username",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "password",
 "type": "string"
 }
],
 "name": "addUser",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [

101

 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "deleteUser",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "grantAccess",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "mqttRequest",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "indexed": False,

102

 "internalType": "uint256",
 "name": "requestCount",
 "type": "uint256"
 }
],
 "name": "MqttRequest",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "revokeAccess",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "indexed": False,
 "internalType": "string",
 "name": "username",
 "type": "string"
 }
],
 "name": "UserAdded",
 "type": "event"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"

103

 }
],
 "name": "UserDeleted",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "",
 "type": "address"
 }
],
 "name": "allowed",
 "outputs": [
 {
 "internalType": "bool",
 "name": "",
 "type": "bool"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getAccessTime",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",

104

 "type": "address"
 }
],
 "name": "getLastMqttRequest",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getNumMqttRequest",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getUser",
 "outputs": [
 {
 "internalType": "string",
 "name": "username",
 "type": "string"
 },

105

 {
 "internalType": "string",
 "name": "password",
 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "hasAccess",
 "outputs": [
 {
 "internalType": "bool",
 "name": "",
 "type": "bool"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [],
 "name": "owner",
 "outputs": [
 {
 "internalType": "address",
 "name": "",
 "type": "address"
 }
],
 "stateMutability": "view",
 "type": "function"
 }
]

 self.contract_address =
"0xaEc657570F78cb48381A32536fAEB8aFD1d8182d"

 self.web3 = Web3(Web3.HTTPProvider(self.ganache_url))

106

 self.contract =
self.web3.eth.contract(address=self.contract_address, abi=self.abi)

 self.otp_codes = {}

 self.window = Tk()
 self.window.title("User OTP Mechanism")
 self.window.geometry("550x500")

 self.create_widgets()

 # Load data
 self.load_data()

 self.window.mainloop()

 def create_widgets(self):
 self.eth_address_label = Label(self.window, text="Adresses:")
 self.eth_address_label.place(x=60, y=60)

 self.eth_address_entry = Entry(self.window)
 self.eth_address_entry.place(x=180, y=60)

 self.access_button = Button(self.window, text="Public Key
Control", command=self.check_access)
 self.access_button.place(x=320, y=55)

 self.access_label = Label(self.window, text="")
 self.access_label.place(x=60, y=90)

 self.private_key_label = Label(self.window, text="Private
Key:")
 self.private_key_label.place(x=60, y=120)

 self.private_key_entry = Entry(self.window, state="disabled")
 self.private_key_entry.place(x=180, y=120)

 self.check_button = Button(self.window, text="Private Key
Control", command=self.check_private_key, state="disabled")
 self.check_button.place(x=320, y=115)

 self.username_label = Label(self.window, text="Username:",
state="disabled")
 self.username_label.place(x=60, y=200)

 self.username_entry = Entry(self.window, state="disabled")
 self.username_entry.place(x=180, y=200)

107

 self.password_label = Label(self.window, text="Password:",
state="disabled")
 self.password_label.place(x=60, y=230)

 self.password_entry = Entry(self.window, state="disabled",
show="*")
 self.password_entry.place(x=180, y=230)

 self.private_key_entry.bind("<KeyRelease>",
self.enable_check_button)

 self.register_button = Button(self.window, text="Username And
Password Control", command=self.register_user, state="disabled")
 self.register_button.place(x=320, y=206)

 self.qr_button = Button(self.window, text="Generate QR Code",
command=self.display_qr_code, state="disabled")
 self.qr_button.place(x=60, y=310)

 self.otp_entry = Entry(self.window, state="disabled", show="*")
 self.otp_entry.place(x=180, y=310)

 self.verify_otp_button = Button(self.window, text="User OTP
Verify", command=self.verify_otp_entry, state="disabled")
 self.verify_otp_button.place(x=320, y=305)

 self.private_key_entry.bind("<KeyRelease>",
self.enable_register_button)
 self.username_entry.bind("<KeyRelease>",
self.enable_register_button)
 self.password_entry.bind("<KeyRelease>",
self.enable_register_button)

 def update_database_single_entry(self, publickey, otpkey):
 # Veritabanı bağlantısı kurma
 server = "DESKTOP-UO8R7VH\SQL2022"
 database = "MQTT"
 conn = pyodbc.connect(f'Driver={{SQL
Server}};Server={server};Database={database};Trusted_Connection=yes;')
 cursor = conn.cursor()

 # Veritabanına ekleme
 cursor.execute("INSERT INTO OTPInfo (PublicKey, OTPKey) VALUES
(?, ?)", (publickey, otpkey))

 # Değişiklikleri onaylama ve bağlantıyı kapatma
 conn.commit()

108

 conn.close()

 def delete_database_single_entry(self, publickey):
 # Veritabanı bağlantısı kurma
 server = "DESKTOP-UO8R7VH\SQL2022"
 database = "MQTT"
 conn = pyodbc.connect(f'Driver={{SQL
Server}};Server={server};Database={database};Trusted_Connection=yes;')
 cursor = conn.cursor()

 # Veritabanından silme
 cursor.execute("DELETE FROM OTPInfo WHERE PublicKey = ?",
(publickey,))

 # Değişiklikleri onaylama ve bağlantıyı kapatma
 conn.commit()
 conn.close()

 def enable_check_button(self, event):
 if self.private_key_entry.get():
 self.check_button.config(state="normal")
 self.username_label.config(state="normal")
 self.password_label.config(state="normal")

 def enable_register_button(self, event):
 if self.private_key_entry.get() and self.username_entry.get()
and self.password_entry.get():
 self.register_button.config(state="normal")

 def check_access(self):
 user_eth_address = self.eth_address_entry.get()

 if self.contract.functions.hasAccess(user_eth_address).call():
 self.access_label.config(text="The user is registered in
the system. Access granted.", fg="green",font=("Helvetica", 12,
"bold"))
 self.access_label.place(x=90,y=450)
 self.private_key_entry.config(state="normal")
 self.check_button.config(state="normal")
 self.username_entry.config(state="disabled")
 self.password_entry.config(state="disabled")
 else:
 self.access_label.config(text="The user is not registered
in the system. Access denied.",fg="red",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)

109

 def get_user(self, address):
 result = self.contract.functions.getUser(address).call()
 retrieved_username = result[0]
 retrieved_password = result[1]

 return retrieved_username, retrieved_password

 def check_private_key(self):
 user_eth_address = self.eth_address_entry.get()
 user_private_key = self.private_key_entry.get()
 username = self.username_entry.get()
 password = self.password_entry.get()

 if is_valid_private_key(user_eth_address, user_private_key):
 self.access_label.config(text="Private key is correct.
Access granted." , fg="green",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)

 self.username_entry.config(state="normal")
 self.password_entry.config(state="normal")

 self.contract.functions.addUser(user_eth_address, username,
password).transact()
 else:
 self.access_label.config(text="Private key information
incorrect. Access denied.",fg="red",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)

 def register_user(self):
 user_eth_address = self.eth_address_entry.get()
 user_private_key = self.private_key_entry.get()
 username = self.username_entry.get()
 password = self.password_entry.get()

 if is_valid_private_key(user_eth_address, user_private_key):
 # Kullanıcı adı ve şifre alanlarının dolu olup olmadığını
kontrol et
 if username and password:
 # Kullanıcı adı ve şifreyi akıllı sözleşmedeki
verilerle karşılaştır
 retrieved_username, retrieved_password =
self.get_user(user_eth_address)
 if username == retrieved_username and password ==
retrieved_password:
 self.access_label.config(text="Username and
password is correct.",fg="green",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)

110

 self.username_entry.config(state="normal")
 self.password_entry.config(state="normal")

 self.qr_button.config(state="normal")
 self.verify_otp_button.config(state="normal")
 self.otp_entry.config(state="normal")

 else:
 self.access_label.config(text="Username and
password is incorrect.",fg="red",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)
 else:
 self.access_label.config(text="The username and
password cannot be empty.",fg="red",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)
 else:
 self.access_label.config(text="Private key is wrong. No
permission to register has been granted.",fg="red",font=("Helvetica",
12, "bold"))
 self.access_label.place(x=90,y=450)

 def display_qr_code(self):
 public_key = self.eth_address_entry.get()
 if public_key in self.otp_codes:
 messagebox.showerror("Error", "A QR code has already been
created for this public key.")
 return

 secret = pyotp.random_base32()
 self.otp_codes[public_key] = secret
 data =
pyotp.totp.TOTP(secret).provisioning_uri(name=public_key,
issuer_name='IssuerName')
 img = self.generate_qr_code(data)
 img.save("qr_code.png")
 os.system("qr_code.png")
 self.save_data()
 self.update_database_single_entry(public_key, secret)

 def verify_otp_entry(self):
 public_key = self.eth_address_entry.get()
 otp = self.otp_entry.get()
 if public_key not in self.otp_codes:
 messagebox.showerror("Error", "The user is not
registered.")
 return
 result = self.verify_otp(public_key, otp)

111

 if result:
 messagebox.showinfo("OTP Verification", "OTP verified.")
 self.access_label.config(text="OTP registration has been
successfully completed.",fg="green",font=("Helvetica", 12, "bold"))
 self.access_label.place(x=90,y=450)
 else:
 messagebox.showerror("OTP Verification", "OTP not
verified.")
 self.access_label.config(text="OTP registration has failed.
Your registration could not be completed.",fg="red",font=("Helvetica",
12, "bold"))
 self.access_label.place(x=90,y=450)

 def generate_otp(self, public_key):
 secret = self.otp_codes.get(public_key)
 if secret:
 totp = pyotp.TOTP(secret)
 return totp.now()
 else:
 return None

 def verify_otp(self, public_key, otp):
 secret = self.otp_codes.get(public_key)
 if secret:
 totp = pyotp.TOTP(secret)
 return totp.verify(otp)
 else:
 return False

 def generate_qr_code(self, data):
 qr = qrcode.QRCode(
 version=1,
 error_correction=qrcode.constants.ERROR_CORRECT_L,
 box_size=10,
 border=4,
)
 qr.add_data(data)
 qr.make(fit=True)
 img = qr.make_image(fill_color="black", back_color="white")
 img = img.convert('1')
 return img

 def save_data(self):
 with
open("C:/Users/User/Desktop/thesis_code/Suggestion/blockchain_SmartCont
ract/otp_data.txt", "w") as file:
 for public_key, secret in self.otp_codes.items():
 file.write(f"{public_key},{secret}\n")

112

 def load_data(self):
 try:
 with
open("C:/Users/User/Desktop/thesis_code/Suggestion/blockchain_SmartCont
ract/otp_data.txt", "r") as file:
 for line in file:
 public_key, secret = line.strip().split(",")
 self.otp_codes[public_key] = secret
 except FileNotFoundError:
 pass

if __name__ == '__main__':
 app = SmartContractApp()
 app.run()

import tkinter as tk
from tkinter import messagebox
from web3 import Web3
from web3.auto import w3
from passlib.hash import sha512_crypt
from datetime import datetime as dt
import pyodbc
import datetime
import pytz

class UserAccessGUI:
 def __init__(self):
 self.root = tk.Tk()
 self.root.geometry('800x320')
 self.root.title('User Access Permission')

 self.web3 = Web3(Web3.HTTPProvider('http://localhost:8545'))

 self.ABI=[
 {
 "inputs": [],
 "stateMutability": "nonpayable",
 "type": "constructor"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",

113

 "name": "user",
 "type": "address"
 }
],
 "name": "AccessGranted",
 "type": "event"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "AccessRevoked",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "internalType": "string",
 "name": "username",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "password",
 "type": "string"
 }
],
 "name": "addUser",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",

114

 "type": "address"
 }
],
 "name": "deleteUser",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "grantAccess",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "mqttRequest",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "indexed": False,
 "internalType": "uint256",
 "name": "requestCount",
 "type": "uint256"

115

 }
],
 "name": "MqttRequest",
 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "revokeAccess",
 "outputs": [],
 "stateMutability": "nonpayable",
 "type": "function"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 },
 {
 "indexed": False,
 "internalType": "string",
 "name": "username",
 "type": "string"
 }
],
 "name": "UserAdded",
 "type": "event"
 },
 {
 "anonymous": False,
 "inputs": [
 {
 "indexed": True,
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "UserDeleted",

116

 "type": "event"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "",
 "type": "address"
 }
],
 "name": "allowed",
 "outputs": [
 {
 "internalType": "bool",
 "name": "",
 "type": "bool"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getAccessTime",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],

117

 "name": "getLastMqttRequest",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getNumMqttRequest",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "getUser",
 "outputs": [
 {
 "internalType": "string",
 "name": "username",
 "type": "string"
 },
 {
 "internalType": "string",
 "name": "password",

118

 "type": "string"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [
 {
 "internalType": "address",
 "name": "user",
 "type": "address"
 }
],
 "name": "hasAccess",
 "outputs": [
 {
 "internalType": "bool",
 "name": "",
 "type": "bool"
 }
],
 "stateMutability": "view",
 "type": "function"
 },
 {
 "inputs": [],
 "name": "owner",
 "outputs": [
 {
 "internalType": "address",
 "name": "",
 "type": "address"
 }
],
 "stateMutability": "view",
 "type": "function"
 }
]

 self.CONTRACT_ADDRESS =
'0xaEc657570F78cb48381A32536fAEB8aFD1d8182d'
 self.contract =
self.web3.eth.contract(address=Web3.to_checksum_address(self.CONTRACT_A
DDRESS), abi=self.ABI)
 self.bold_font = ('Arial', 10, 'bold')

119

 self.label_address = tk.Label(self.root, text="Address : ",
font=self.bold_font)
 self.label_address.grid(row=0, column=0, pady=20, sticky='E')

 self.entry_address = tk.Entry(self.root)
 self.entry_address.grid(row=0, column=1, pady=20)

 self.label_username = tk.Label(self.root, text="Username : ",
font=self.bold_font)
 self.label_username.grid(row=1, column=0, pady=20, sticky='E')

 self.entry_username = tk.Entry(self.root)
 self.entry_username.grid(row=1, column=1, pady=20)

 self.label_password = tk.Label(self.root, text="Password : ",
font=self.bold_font)
 self.label_password.grid(row=2, column=0, pady=20, sticky='E')

 self.entry_password = tk.Entry(self.root, show='*')
 self.entry_password.grid(row=2, column=1, pady=20)

 self.label_owner_address = tk.Label(self.root, text="Admin
Adress: ", font=self.bold_font)
 self.label_owner_address.grid(row=0, column=2, pady=20,
sticky='E')

 self.entry_owner_address = tk.Entry(self.root)
 self.entry_owner_address.grid(row=0, column=3, pady=20)

 self.label_owner_private_address = tk.Label(self.root,
text="Admin Private Adress: ", font=self.bold_font)
 self.label_owner_private_address.grid(row=1, column=2, pady=20,
sticky='E')

 self.entry_owner_private_address = tk.Entry(self.root)
 self.entry_owner_private_address.grid(row=1, column=3,
pady=20)

 self.btn_grant_access = tk.Button(self.root, text='Grant
Access', command=self.grant_access, font=self.bold_font)
 self.btn_grant_access.grid(row=3, column=0, padx=50, pady=20)

 self.btn_revoke_access = tk.Button(self.root, text='Revoke
Access', command=self.revoke_access, font=self.bold_font)
 self.btn_revoke_access.grid(row=3, column=1, padx=50, pady=20)

 self.btn_add_user = tk.Button(self.root, text='Add User',
command=self.add_user, font=self.bold_font)

120

 self.btn_add_user.grid(row=3, column=2, padx=50, pady=20)

 self.btn_delete_user = tk.Button(self.root, text='Delete User',
command=self.delete_user, font=self.bold_font)
 self.btn_delete_user.grid(row=3, column=3, padx=50, pady=20)

 self.label_text = tk.StringVar()
 self.label_text.set('do you have user access?')
 self.lbl_status = tk.Label(self.root,
textvariable=self.label_text, font=self.bold_font)
 self.lbl_status.grid(row=8, column=1, padx=50, pady=20,
sticky='nsew')

 self.btn_check_access = tk.Button(self.root, text='Check
Access', command=self.update_label, font=self.bold_font)
 self.btn_check_access.grid(row=8, column=0, padx=50, pady=20)

 self.btn_allowed_users = tk.Button(self.root, text='Allowed
Users', command=self.show_allowed_users, font=self.bold_font)
 self.btn_allowed_users.grid(row=8, column=3, padx=50, pady=20)

 self.popup_window = None

 def check_address(self, func):
 def wrapper():
 address = self.entry_address.get()
 if not address:
 messagebox.showinfo('Info', 'Please enter an address
first')
 elif not self.contract.functions.hasAccess(address).call():
 messagebox.showinfo('Info', 'User does not have
access')
 else:
 func()

 return wrapper

 def is_valid_private_key(self, eth_address, private_key):
 from web3 import Web3
 web3 = Web3(Web3.HTTPProvider('http://127.0.0.1:8545'))
 account = web3.eth.account.from_key(private_key)
 return account.address.lower() == eth_address.lower()

121

 def isOwner(self, owner_address):
 return owner_address == self.contract.functions.owner().call()

 def grant_access(self):
 owner_address = self.entry_owner_address.get()
 owner_private_address =
self.entry_owner_private_address.get()
 address = self.entry_address.get()

 if not owner_address:
 messagebox.showinfo('Info', 'The admin address cannot be
empty. Please enter the admin address.')
 elif not self.is_valid_private_key(owner_address,
owner_private_address):
 messagebox.showinfo('Info', 'The address does not match the
entered private key.')
 elif not self.isOwner(owner_address):
 messagebox.showinfo('Info', 'The address you have does not
have admin privileges.')
 elif not address:
 messagebox.showinfo('Info', 'The address is not null')
 else:
 tx_hash =
self.contract.functions.grantAccess(address).transact({'from':
owner_address})
 self.web3.eth.wait_for_transaction_receipt(tx_hash)
 messagebox.showinfo('Info', 'Access Granted')

 logs = self.get_logs(0, self.web3.eth.block_number,
'AccessGranted')
 self.process_logs(logs)
 self.start()

 def check_if_address_allowed(self, address):
 return self.contract.functions.hasAccess(address).call()

 def update_label(self):
 address = self.entry_address.get()

 if not address:
 messagebox.showinfo('Info', 'Please enter the address.')
 elif self.check_if_address_allowed(address):
 self.label_text.set('Access Granted')
 self.lbl_status.config(bg='green')
 else:

122

 self.label_text.set('Access Denied')
 self.lbl_status.config(bg='red')

 def add_user(self):
 owner_address = self.entry_owner_address.get()
 owner_private_address = self.entry_owner_private_address.get()
 address = self.entry_address.get()
 username = self.entry_username.get()
 password = self.entry_password.get()

 # Şifreyi şifrele
 hashed_password =
sha512_crypt.using(rounds=5000).hash(password)
 # Kullanıcı adı ve şifreyi dosyaya kaydet

 if not owner_address:
 messagebox.showinfo('Info', 'The admin address cannot be
empty. Please enter the admin address.')
 elif not self.is_valid_private_key(owner_address,
owner_private_address):
 messagebox.showinfo('Info', 'The address does not match the
entered private key.')
 elif not self.isOwner(owner_address):
 messagebox.showinfo('Info', 'The address you have does not
have admin privileges.')
 return
 elif not address:
 messagebox.showinfo('Info', 'The address is not
null')
 else:
 tx_hash =
self.contract.functions.addUser(address,username,password).transact({'f
rom': owner_address})
 self.web3.eth.wait_for_transaction_receipt(tx_hash)
 self.save_credentials_to_file(username, hashed_password)
 self.update_database_single_entry(username,
hashed_password)
 messagebox.showinfo('Info', 'User Added')

 logs = self.get_logs(0, self.web3.eth.block_number,
'UserAdded')
 self.process_logs(logs)
 self.start()

123

 def remove_credentials_from_file(self, username,
file_path="C:/Users/User/Desktop/thesis_code/Suggestion/broker/passwd.t
xt"):
 with open(file_path, "r") as file:
 lines = file.readlines()
 with open(file_path, "w") as file:
 for line in lines:
 if not
line.strip("\n").startswith("{}:".format(username)):
 file.write(line)

 def revoke_access(self):
 owner_address = self.entry_owner_address.get()
 owner_private_address = self.entry_owner_private_address.get()
 address = self.entry_address.get()
 username = self.entry_username.get()

 if not owner_address:
 messagebox.showinfo('Info', 'The admin address cannot be
empty. Please enter the admin address.')
 elif not self.is_valid_private_key(owner_address,
owner_private_address):
 messagebox.showinfo('Info', 'The address does not match the
entered private key.')
 elif not self.isOwner(owner_address):
 messagebox.showinfo('Info', 'The address you have does not
have admin privileges.')
 elif not address:
 messagebox.showinfo('Info', 'The address is not
null')
 else:
 tx_hash =
self.contract.functions.revokeAccess(address).transact({'from':
owner_address})
 self.web3.eth.wait_for_transaction_receipt(tx_hash)
 self.remove_credentials_from_file(username)
 self.delete_database_single_entry(username)
 messagebox.showinfo('Info', 'Access revoked')

 logs = self.get_logs(0, self.web3.eth.block_number,
'AccessRevoked')
 self.process_logs(logs)
 self.start()

124

 def save_credentials_to_file(self, username, hashed_password,
file_path="C:/Users/User/Desktop/thesis_code/Suggestion/broker/passwd.t
xt"):
 with open(file_path, "a+") as file:
 file.seek(0)
 content = file.read()
 if content and not content.endswith("\n"):
 file.write("\n")
 file.write("{}:{}\n".format(username, hashed_password))

 def update_database_single_entry(self, user, passw):
 # Veritabanı bağlantısı kurma
 server = "DESKTOP-UO8R7VH\SQL2022"
 database = "MQTT"
 conn = pyodbc.connect(f'Driver={{SQL
Server}};Server={server};Database={database};Trusted_Connection=yes;')
 cursor = conn.cursor()

 # Veritabanına ekleme
 cursor.execute("INSERT INTO UserInfo (username, password)
VALUES (?, ?)", (user, passw))

 # Değişiklikleri onaylama ve bağlantıyı kapatma
 conn.commit()
 conn.close()

 def delete_database_single_entry(self, user):
 # Veritabanı bağlantısı kurma
 server = "DESKTOP-UO8R7VH\SQL2022"
 database = "MQTT"
 conn = pyodbc.connect(f'Driver={{SQL
Server}};Server={server};Database={database};Trusted_Connection=yes;')
 cursor = conn.cursor()

 # Veritabanından silme
 cursor.execute("DELETE FROM UserInfo WHERE username = ?",
(user,))

 # Değişiklikleri onaylama ve bağlantıyı kapatma
 conn.commit()
 conn.close()

 def delete_user(self):
 owner_address = self.entry_owner_address.get()

125

 owner_private_address = self.entry_owner_private_address.get()
 address = self.entry_address.get()
 username = self.entry_username.get()
 password = self.entry_password.get()

 if not owner_address:
 messagebox.showinfo('Info', 'The admin address cannot be
empty. Please enter the admin address.')
 elif not self.is_valid_private_key(owner_address,
owner_private_address):
 messagebox.showinfo('Info', 'The address does not match the
entered private key.')
 elif not self.isOwner(owner_address):
 messagebox.showinfo('Info', 'The address you have does not
have admin privileges.')
 elif not address:
 messagebox.showinfo('Info', 'The address is not
null')
 else:
 tx_hash =
self.contract.functions.deleteUser(address).transact({'from':
owner_address})
 self.web3.eth.wait_for_transaction_receipt(tx_hash)
 self.remove_credentials_from_file(username)
 self.delete_database_single_entry(username)
 messagebox.showinfo('Info', 'User Deleted')

 logs = self.get_logs(0, self.web3.eth.block_number,
'UserDeleted')
 self.process_logs(logs)
 self.start()

 def show_allowed_users(self):
 allowed_users = []
 for address in self.web3.eth.accounts:
 has_access =
self.contract.functions.hasAccess(address).call()
 if has_access:
 allowed_users.append(address)

 # Popup penceresini oluşturma
 self.popup_window = tk.Toplevel(self.root)
 self.popup_window.title('Allowed Users')
 self.popup_window.geometry('600x300')
 # Kullanıcı adreslerini kopyalayabileceğimiz bir Entry alanı
ekleyelim

126

 for i, user in enumerate(allowed_users):
 entry = tk.Entry(self.popup_window, font=self.bold_font)
 entry.insert(0, user)
 entry.grid(row=i, column=0, padx=50, pady=50, sticky='W')

 access_info = tk.Button(self.popup_window, text='Copy',
command=lambda address=user: self.copy_address(address))
 access_info.grid(row=i, column=1, padx=20, pady=20,
sticky='E')

 # Kopyala düğmesini oluşturma
 copy_button = tk.Label(self.popup_window,
text=self.get_access_info(user), font=self.bold_font)
 copy_button.grid(row=i, column=2, padx=20, pady=20,
sticky='E')

 def copy_address(self, address):
 # Adresi panoya kopyalama
 self.root.clipboard_clear()
 self.root.clipboard_append(address)
 self.root.update() # Panoyu güncelleme

 def get_access_info(self, user):
 # Erişim bilgisini oluşturma
 access_time=self.contract.functions.getAccessTime(user).call()
 formatted_time =
datetime.datetime.fromtimestamp(access_time).strftime("%Y-%m-%d
%H:%M:%S")
 access_info =f"Access granted by admin:
{self.entry_owner_address.get()}\nAccess time: {formatted_time}"

 return access_info

 def get_logs(self, from_block, to_block, event_name):
 event = self.contract.events[event_name]
 logs = event.get_logs(fromBlock=from_block, toBlock=to_block)
 return logs

 def process_logs(self, logs):
 self.conn = pyodbc.connect('Driver={SQL Server};'
 'Server=DESKTOP-UO8R7VH\SQL2022;'
 'Database=MQTT;'
 'Trusted_Connection=yes;')
 self.cursor = self.conn.cursor()

 try:

127

 for log in logs:
 # İşlem günlüğünü SQL veritabanına ekleme işlemi
 from_address = log['address']
 block_number = log['blockNumber']
 block_info = self.web3.eth.get_block(block_number)
 transaction_time =
dt.utcfromtimestamp(block_info['timestamp'])
 local_tz = pytz.timezone('Europe/Istanbul') # Change
this to your timezone
 local_time =
transaction_time.replace(tzinfo=pytz.utc).astimezone(local_tz)
 event_name = log['event']

 # Check if log already exists in the database
 self.cursor.execute('''
 SELECT * FROM TransactionLog WHERE BlockNumber = ? AND
FromAddress = ? AND Event = ?
 ''', block_number, from_address, event_name)
 result = self.cursor.fetchone()
 if result:
 continue # if log exists, skip to the next log

 if event_name == 'UserAdded':
 to_address = log['args']['user']
 username = log['args']['username']
 self.cursor.execute('''
 INSERT INTO TransactionLog (BlockNumber,
FromAddress, ToAddress, UserName, Event, TransactionTime)
 VALUES (?, ?, ?, ?, ?, ?)
 ''', block_number, from_address, to_address,
username, event_name, local_time)
 else:
 to_address = log['args']['user']
 self.cursor.execute('''
 INSERT INTO TransactionLog (BlockNumber,
FromAddress, ToAddress, Event, TransactionTime)
 VALUES (?, ?, ?, ?, ?)
 ''', block_number, from_address, to_address,
event_name, local_time)

 self.conn.commit()
 finally:
 self.conn.close()

 def start(self):
 self.conn = pyodbc.connect('Driver={SQL Server};'
 'Server=DESKTOP-UO8R7VH\SQL2022;'
 'Database=MQTT;'

128

 'Trusted_Connection=yes;')

 self.cursor = self.conn.cursor()

 try:
 # Get the latest block number processed last time
 self.cursor.execute("SELECT MAX(BlockNumber) FROM
TransactionLog")
 result = self.cursor.fetchone()
 last_block_processed = result[0] if result[0] else 0

 latest_block = self.web3.eth.block_number

 # Define event names
 event_names = ["AccessGranted", "AccessRevoked",
"UserAdded", "UserDeleted"]

 for event_name in event_names:
 logs = self.get_logs(last_block_processed + 1,
latest_block, event_name)
 for log in logs:
 # Get transaction details
 from_address = log['address']
 block_number = log['blockNumber'] # Get the block
number of this transaction
 block_info =
self.web3.eth.get_block(block_number) # Get the block information
 transaction_time =
dt.utcfromtimestamp(block_info['timestamp']) # Convert UNIX timestamp
to datetime
 local_tz = pytz.timezone('Europe/Istanbul') #
Change this to your timezone
 local_time =
transaction_time.replace(tzinfo=pytz.utc).astimezone(local_tz)
 event_name = log['event']

 if event_name == 'UserAdded':
 to_address = log['args']['user'] # assuming
'user' is the argument name in your event
 username = log['args']['username'] # Get the
'username' argument from the log
 # Insert transaction details into database
 self.cursor.execute('''
 INSERT INTO TransactionLog (BlockNumber,
FromAddress, ToAddress, UserName, Event, TransactionTime)
 VALUES
 (?,?,?,?,?,?)

129

 ''', block_number, from_address, to_address,
username, event_name, local_time)
 else:
 to_address = log['args']['user'] # assuming
'user' is the argument name in your event
 # Insert transaction details into database
 self.cursor.execute('''
 INSERT INTO TransactionLog (BlockNumber,
FromAddress, ToAddress, Event, TransactionTime)
 VALUES
 (?,?,?,?,?)
 ''', block_number, from_address, to_address,
event_name, local_time)

 # Commit the transaction
 self.conn.commit()
 finally:
 # Close the connection, no matter what happened
 self.conn.close()

 def run(self):
 self.root.mainloop()

if __name__ == '__main__':
 app = UserAccessGUI()
 app.start()
 app.run()

130

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract AccessControl {
 address public owner;
 mapping(address => bool) public allowed;
 mapping(address => string) private usernames;
 mapping(address => string) private passwords;
 mapping(address => uint256) private accessTimes;
 mapping(address => uint256) private requestCounts;
 mapping(address => uint256) private lastRequestTimestamps;

 // Event declarations
 event AccessGranted(address indexed user);
 event AccessRevoked(address indexed user);
 event UserAdded(address indexed user, string username);
 event UserDeleted(address indexed user);
 event MqttRequest(address indexed user, uint256 requestCount);

 constructor() {
 owner = msg.sender;
 }

 modifier onlyOwner() {
 require(msg.sender == owner, "Only the owner can call this
function.");
 _;
 }

 function grantAccess(address user) public onlyOwner {
 allowed[user] = true;
 accessTimes[user] = block.timestamp;
 emit AccessGranted(user); // Trigger event
 }

 function revokeAccess(address user) public onlyOwner {
 allowed[user] = false;
 delete accessTimes[user];
 emit AccessRevoked(user); // Trigger event
 }

 function hasAccess(address user) public view returns (bool) {
 return allowed[user];
 }

 function addUser(address user, string memory username, string
memory password) public onlyOwner {
 usernames[user] = username;

131

 passwords[user] = password;
 emit UserAdded(user, username); // Trigger event
 }

 function getUser(address user) public view returns (string memory
username, string memory password) {
 return (usernames[user], passwords[user]);
 }

 function deleteUser(address user) public onlyOwner {
 delete usernames[user];
 delete passwords[user];
 delete accessTimes[user];
 emit UserDeleted(user); // Trigger event
 }

 function getAccessTime(address user) public view returns (uint256)
{
 return accessTimes[user];
 }

 function mqttRequest(address user) public {
 require(allowed[user], "Access denied.");

 uint256 currentTime = block.timestamp;
 require(requestCounts[user] < 5, "Maximum request count
reached.");
 require(currentTime >= accessTimes[user] && currentTime <
(accessTimes[user] + 1 hours), "Request allowed only during a specific
hour.");

 requestCounts[user]++;
 lastRequestTimestamps[user] = currentTime;
 emit MqttRequest(user, requestCounts[user]);
 }

 function getNumMqttRequest(address user) public view returns
(uint256) {
 return requestCounts[user];
 }

 function getLastMqttRequest(address user) public view returns
(uint256) {
 return lastRequestTimestamps[user];
 }
}

132

C: MQTT Python Attacks

from locust import User, task, events, between
import paho.mqtt.client as mqtt
import random
import time

class MqttClient(mqtt.Client):
 def __init__(self, environment, *args, **kwargs):
 super(MqttClient, self).__init__(*args, **kwargs)
 self.environment = environment
 self.on_publish = self.locust_on_publish

 def connect(self, *args, **kwargs):
 result = super(MqttClient, self).connect(*args, **kwargs)
 if result != mqtt.MQTT_ERR_SUCCESS:
 self.environment.events.request.fire(request_type="mqtt",
name="connect", response_time=0, response_length=0,
exception=Exception(mqtt.error_string(result)))
 self.loop_start()

 def locust_on_publish(self, client, userdata, mid):
 end_time = time.time()
 elapsed_ms = (end_time - self.start_time) * 1000
 self.environment.events.request.fire(request_type="mqtt",
name="publish", response_time=elapsed_ms, response_length=0)

 def locust_on_disconnect(self, client, userdata, rc):
 self.environment.events.request.fire(request_type="mqtt",
name="disconnect", response_time=0, response_length=0,
exception=Exception("Disconnected"))

class MqttUser(User):
 wait_time = between(5, 9)

 def __init__(self, environment, *args, **kwargs):
 super(MqttUser, self).__init__(environment, *args, **kwargs)
 self.client = MqttClient(environment)

 def on_start(self):
 self.client.connect("192.168.50.228", 1883, 60)

 def on_stop(self):
 self.client.disconnect()

 @task(1)
 def publish_temperature(self):

133

 temperature = random.randint(15, 30) # Generate a random
temperature between 15 and 30
 self.client.start_time = time.time()
 self.client.publish("Topic/Sicaklik", str(temperature))

import paho.mqtt.client as mqtt
import time

MQTT broker bilgileri
broker = "192.168.50.228"
port = 1883
username = "mqtt"
password = "pass"

MQTT istemcilerini oluşturma
clients = []
num_clients = 5000 # Oluşturulacak sahte istemci sayısı
for i in range(num_clients):
 client = mqtt.Client("SybilClient" + str(i))

 # Bağlantı durumunu kontrol eden geri çağırma fonksiyonu
 def on_connect(client, userdata, flags, rc):
 if rc == 0:
 print("Client is connected: " + client._client_id.decode())
 else:
 print("Connection failed with result code " + str(rc))

 client.on_connect = on_connect
 client.username_pw_set(username, password)
 clients.append(client)

Her istemciyi MQTT broker'ına bağlama
for client in clients:
 client.connect(broker, port)
 client.loop_start() # Asynchronous network loop başlatılır. Bu,
mesajları göndermek ve almak için gereklidir.

Her istemci için bir mesaj yayınlama
num_messages = 100 # Her istemci tarafından yayınlanacak mesaj sayısı
for client in clients:
 for _ in range(num_messages):
 client.publish("Topic/Sicaklik", "This is a message from Sybil
client")
 time.sleep(0.1) # Her mesaj arasında kısa bir gecikme

