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ABSTRACT 
 

EAFT: EVOLUTIONARY ALGORITHMS FOR GCC FLAG TUNING 

Burak TAĞTEKİN 

M.Sc in Information Technologies 

Thesis Advisor: Asst. Prof. Dr. Tuna ÇAKAR 

April 2023, 53 Pages 

 
The runtime of written codes is a matter of great importance, especially for 

code that is compiled once and executed multiple times. It is very important for 

developers to ensure that the resources required by a code are used as efficiently as 

possible, and that the runtime is as low as possible. Developers who use compilers 

such as GCC or LLVM to compile and run code written in C or C++ can optimize their 

code manually and, with certain optimization pointers, are able to make it run faster. 

This will provide the shorter runtime, but completıng this manual optimization is 

within the abilities of every developer since determining the right combination from 

more than 200 flags requires significant expertise. 

 
Many studies have tackled this issue. In this study, Evolutionary Algorithms 

for GCC Flag Tuning (EAFT) have been developed as a solution to this problem. This 

Autotuner, which is completely open-source, runs the code provided by the end user 

according to the specifications also selected by the end user, and searches for the most 

suitable optimization markers. For the code to be given In line with this study, which 

specifically addresses the end user, the user can input the code path directly from the 

Terminal, as well as specify the selection method and the crossover to be used. These 

choices can be made without the need to alter the code. The genetic algorithm and 

particle swarm optimization to be used is also presented to the user in EAFT, and 

unlike in other studies, genetic algorithm contain not one but several models. 

 
Keywords: Compiler, GCC, Evolutionary Algorithms, Genetic Algorithm, Autotuner. 
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ÖZET 

EAFT: EVRİMSEL ALGORİTMALAR İLE GCC İŞARETÇİ OPTİMİZASYONU 

Burak TAĞTEKİN 

Bilişim Teknolojileri Tezli Yüksek Lisans Programı 
 

Tez Danışmanı: Dr. Öğr. Üyesi Tuna ÇAKAR 
 

Nisan 2023, 53 Sayfa  
 

Yazılan kodların çalışma süresi, özellikle de bir kez derlenip birden fazla kez 

çalıştırılacak olanlar için çok büyük önem arz etmektedir. Çalışma süresi boyunca 

kodun kullanacağı kaynakların verimli hale getirilmesi ya da bekleme sürelerinin 

azaltılması birçok geliştirici için çok önemlidir. C, C++ gibi kodların derlenip 

çalıştırılması hususunda GCC ya da LLVM gibi derleyiciler kullananlar bu konuda 

optimizasyon işini manuel bir şekilde yapıp kodun belirli optimizasyon işaretçileri ile 

daha kısa sürede çalışmasını sağlayabilir. Bu durum yukarıda bahsi gecen yararları 

sağlayacaktır ancak seçimi yapmak her geliştirici için o kadar da kolay olmamaktadır 

zira 200’den fazla flag içerisinden doğru kombinasyonu seçmek uzmanlık isteyen bir 

alandır. 

 
Bu problemin de önüne geçmek için literatürde birçok çalışma yapılmıştır. Bu 

çalışma kapsamında ise bu soruna bir çözüm olarak EAFT: Evolutionary Algorithms 

for GCC Flag Tuning geliştirilmiştir. Tamamen açık kaynaklı olan bu Autotuner, son 

kullanıcının temin edeceği kodu, yine son kullanıcının seçeceği özellikler 

doğrultusunda çalıştırıp onun için en uygun olan optimizasyon işaretçilerini arar. Son 

kullanıcıya özellikle hitap eden bu çalışma doğrultusunda verilecek olan kod için 

kullanıcı hangi seçim metodunu kullanacağından hangi çaprazlamanın kullanılmasını 

istediğine kadar birçok noktada direkt olarak Terminal üzerinden seçim 

yapılabilmesine olanak sağlar. Bu seçimler EAFT içerisinde bir kısım ya da kod 

değiştirilmeden yapılabilecek kolaylıktadır. Kullanılacak olan evrimsel algoritma da 

EAFT içerisinde kullanıcının seçimine sunulmuştur ve evrimsel algoritmalar diğer 

çalışmalardan farklı olarak bir değil birden fazla model içerir. 

 
Anahtar Kelimeler: Derleyici, GCC, Evrimsel Algoritmalar, Genetik Algoritma. 
 
Bilim Dalı Sayısal Kodu: 123456 
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1. INTRODUCTION 

 
1.1 Purpose of the Thesis 
 

Programs written in C and C++ languages are widely used today in many 

different areas, from operating systems to image processing applications. Many 

software developers prefer these languages for performance reasons. 

 
Programming languages have many features, some of which differ from a 

language to the next. This thesis will focus on “compile”, one of the features that differ 

the most between languages. Tools such as Clang or GNU Compiler Collection (GCC) 

are necessary to run code written in C and C++ languages; these tools are called 

compilers and their purpose is to convert source code to machine code. Many processes 

occurring during compilation will be mentioned and detailed in this thesis, but the 

focus will be on the way developers can intervene in the optimization stages. 

 
In order to convert source code to machine code, a compiler performs a series 

of operations. These can directly affect the runtime of the code, potentially shortening 

it when applied correctly. In applications where gaining mere seconds is important—

for instance in telecommunication systems—shortening the code execution time is of 

great importance. The purpose of this thesis is to introduce methods that can be applied 

to shorten the code runtime, and to present a heuristic search algorithm that can be 

used for this purpose. In this study, we used GCC 9.3, which contains 212 flags; other 

versions of GCC may have a different total number of flags. 

 
Heuristic search is a technique in artificial intelligence that aims at providing 

an approximate solution for a problem, rather than the single best result; it is 

particularly useful when the set to be searched is very large. Several algorithms can 

find solutions to the problems faced by computer scientists; in this thesis, Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO) will be used to find the most 

appropriate optimization sequence of the 212 flags contained in GCC 9.3. 
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1.2 Literature Review 
 
The search for the best optimization flags has been the subject of much 

research, and different approaches have been employed to try and solve the issue. 

 
Opentuner is a general purpose Autotuner. It can find the most suitable flags 

using several search algorithms that it implements and runs together [4]. Rather than 

implementing these algorithms in a generic way, Evolutionary Algorithms for GCC 

Flag Tuning (EAFT) uses binary search algorithms that fully match the GCC flag 

optimization. In this way, EAFT ensures that only the flags that will enable the code 

to run faster will be included. Compared to Opentuner, which is written in Python, 

GOLANG is used in the EAFT implementation. Not only is Go language faster than 

Python in terms of multi-threading, but the runtime of the search algorithm is also 

shorter. 

 
Studies on flag optimization are not concerned exclusively with search 

algorithms. By making static and dynamic analyses, it is the structure of the code itself 

that is examined. These analyses are also conducive to making prediction models. 

 
Static analyses can be done on the assembly code of the program with tools 

such as LLVM-MCA [5]. By using tools such as Ithemal [6] that evaluate the features 

coming from LLVM-MCA, it is possible to predict the runtime of a code without the 

need to actually run it. A consequence of only predicting the runtime of a code is that 

multiple features cannot be determined. The code may be processing the input values 

it receives from outside, or it may rely on a value it calculates at runtime. For such 

reasons, only estimating the code’s runtime is not always desirable. This issue is 

known in the literature as the “Halting Problem” [6]. Likewise, the runtime of the code 

can be increased or shortened simply by changing the input size, without altering the 

code structure. In this case, the analysis tools will not be able to interpret the situation 

and will thus not be able to make correct predictions, since they will not detect any 

change in the code. As shown in Figure 1.1, whether the input given to the square 

function is 1 or 1,000,000, there is no difference in the LLVM-MCA output. 
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Figure 1.1: Input Effect on Assembly. 

 

Unlike LLVM-MCA, Ithemal [6] analyzes only a basic block code instead of the 

assembly code of the whole program. There are too many basic blocks in long and 

complex programs, and if we consider the conditions they contain, we notice that the 

working structure of the code is highly variable. As shown in Figure 1.2, a simple if / 

else in the code leads to two different possibilities. This results in lower accuracy 

values along with an increased complexity of the code. 

Cobayn [8] is a tool that aims at predicting the static feature values of the code 

as a speedup prediction using Bayesian networks. This tool releases static features with 

Milepost GCC [9]. The fact that the team that developed Milepost worked with 

versions 4.X.X of GCC and did not make the project compatible with newer GCC 

versions led to the project eventually becoming obsolete. This GCC versions are 

outdated for Cobayn using Milepost. On the other hand, Cobayn implemented with 

Matlab is more complex to use than EAFT, written in Go language. The static features 

released by Milepost have inspired other works [9]. These features, numbering 56 in 

total, comprise the number of basic blocks in the assembly code, the total number of 

edges in the control flow graph, the number of direct calls in the method, the total 

number of instructions, and the number of methods that return integers or pointers. 
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These features search for information in the assembly code (as mentioned in the 

Cobayn), along with the flags that will speed up the code. The order of the flags is also 

important and that issue has been investigated in several studies, including as part of 

the Cobayn method [10]. Wang et al. [11] did a research on Feature Engineering from 

static code features. They used machine learning models to identify code structure and 

attempted compilation processes using models. As the authors mentioned, Machine 

Learning is not a panacea, one of the main issue being that the code structures 

significantly differ from a program to next. 

 

 
 

Figure 1.2: Branching 
 

Using a different codebase, Cooper et al. [12] also tackled optimization 

problems. The authors tried to reduce the code size by changing the optimization flags, 

and reached their goals using genetic algorithms. Their research also showed that a set 

of optimization flags reduces the code size regardless of the structure of the code. 

 
Zhong et al. [13] tried to decrease code runtime with a different heuristic search 

method, Simulated Annealing. As the authors of the study acknowledged, their GCC 

version was not one of the most recent. This is important, since GCC performs better 

on optimization when the compiler version and the architectures are more recent. 

Zhong et al. pointed out that their optimization reduced the code runtime when 

compared with O3 optimization level, but not more than other tools mentioned in this 

literature review. 

 
Dubach et al. [14] created a series of features through code assembly. In their 

research, they used the UTDSP Benchmark; ten different problems were considered, 

some of which provided a maximum speedup of 50%, others a speedup of 1%. 
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Static features are usually created from assembly to represent the structure of the code. 

Although it seems reasonable to collect information about flag optimization by 

removing the embeddings of the code with approaches such as the one described in 

[15], two problems arise. First, as long as the flags do not change the high-level 

structure of the code, help can be obtained from the assembly level to see the change. 

Since other approaches examines the code semantically, the predicted result changes 

when the names of the functions given in [15] are changed. Since this is an undesirable 

result, the approach described in [15] is not useful for our study. 

 
The order of the optimization flags to be selected is also important. Ashouri et 

al. [16] achieved a runtime acceleration of 4% by relocating the optimization flags 

when they compiled the code according to the measurements made in his study. Phase-

ordering is tackled right after having selected the optimization flags. 

 
Alongisde static features, the scientific literature is also concerned with the 

dynamic feature values of the code and the selection of optimization flags. In the 2007 

study by Cavazos et al. [1], the authors collected the feature values that could be 

obtained when the code was running. As shown in Figure 1.4, values such as cache hit, 

branches, and total cycle were used. As a result, by using PathScale compiler in 

SPEC2000, these values improved by 10%. 

 
In a study by Ashouri et al. [17], the code was profiled using Micro-

architectural Independent Characterization of Applications ( MICA ) tool. No other 

static analysis was used in the study and only the dynamic profiling task was 

undertaken by MICA. The model the authors built using Bayesian networks achieved 

an average speedup of 1.5 times in the cBench benchmark. Unlike other studies, [17] 

considered only eight optimization flags, which corresponds to approximately 6% of 

the total number of flags. 
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1.3 Overview 
 
 The thesis is organized as follows. Chapter 2 first considers the Compilation, 

then elaborates on Optimization flags and compilers. Chapter 3 explores in detail the 

searching algorithms, models, crossover techniques and other elements used in 

EAFT. The various stages of the autotuning process are illustrated as necessary. 

Chapter 4 is concerned with the Command Line Interface (CLI). In Chapter 5, a 

thorough discussion of the results obtained from our experiments and analyze the 

performance of EAFT on various benchmark problems were provided. Finally, thesis 

conclude by summarizing findings and suggesting directions for future research. 

 
 

Table 1.1 Features from [1] 
 

Floating Point Branch Stats L1 & L2 Cache TLB Statistics 

Add Instructions Data Hit, Miss Data Lookaside Miss 

Multiply Cond. Mispredict Instruction Hit, Miss Reads Instruction lookaside Miss 

Total Instructions Cond. Taken Load: Store, Miss Total lookaside Miss 

Total Ops  Total: Access, Hit, Miss  

Cycles    
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2. BACKGROUND 
 

2.1. Compiler 
 

Briefly, a compiler converts an expression written in a way that can be 

understood by a human into a statement that can be understood by hardware [18]. In 

computer science, this conversion is usually done from a high-level language to a 

lower-level language such as assembly, machine code etc. By high-level language, we 

refer to languages with high intelligibility, designed to be easy to use, for instance by 

being free of details such as memory management. Technically, purification is the 

most basic criterion to determine whether a language is high-level. The compiler is 

responsible for making this language easier to execute by a machine, at the cost of 

lesser intelligibility by humans [2]. 

 
2.2 Interpreters 

 
Like Interpreters, Compilers do not deal with the whole code at once, instead 

they progress step by step in the desired direction and provide results along the way so 

that the program does not give a generic error in case of errors present in the unused 

parts of the code. Interpreters usually transform code into middleware such as bytecode 

or Intermediate Representation. This incremental progression gives better debugging 

chances than compilers, but also leads to performance loss. Today, commonly used 

languages such as Python, Perl, or Ruby, are run by Interpreters. Despite significant 

Preprocessor 

Compiler 

Assembler 

Linker / Loader 

Source Code 

Modified Source Code 

Assembly Program 

Library Imports 

Target Machine Code 

Machine Code 

Figure 2.1: From Source Code to Machine Code. 
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differences, Compilers and Interpreters also have a lot in common, such as the ability 

to tokenize the code and to perform specific analysis. The translation of the code into 

the target language within the compiler is the result of several steps (see Figure 2.1). 

 
2.3 Optimization 

 
The optimization parameters to be given to the compiler, the main subject of 

this study, directly affect some of the transformations that will be applied in the 

conversion to the target code. Most of the programs written in the 1950s contained 

code written in languages close to assembly level and developed by developers who 

knew the requirements of the hardware they were working with. While the systems 

used today are significantly better than the hardware of that period, the number of 

developers writing low-level code has decreased considerably [18]. As mentioned 

above, code written in high-level languages relies heavily on the developer’s ability to 

make few mistakes and work efficiently, rather than on hardware compatibility. The 

optimization difference can be reduced thanks to the optimization flags to be provided 

to the selected compiler [19]. Selecting the right optimization flags requires 

considerable experience. There are predefined optimization flags in GCC; version 9.3 

contains more than 200 of them. Knowing the role of every single flag is a near 

impossible task for most developers. In this situation, many software developers get 

help from predefined optimization flags. Some default flags are shown in Table 2.1. 

These flags have different effects on the code. A “+” symbol in a column means that 

the value is greater—for example, in row -O0, the code’s Execution Time is longer. 

This is actually the price to pay for the desired optimization. Increasing the 

optimization level may be a way to reduce this time, but it should be remembered that 

a change in the optimization level will lead the values of other metrics to change 

accordingly. For example, shortening the Execution Time of the code will cause a 

greater memory usage. This is not a good solution for a system that does not have 

enough memory. Likewise, the Compile Time of the code also increases over time. 

Compile Time can be ignored for code that is compiled once and executed many times. 

Since the main purpose of this study is to shorten the Execution Time of the code, 

other metrics will be disregarded. 
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Table 2.1 Effects of Optimization Flags. 
 

Option Execution Time Code Size Memory Usage Compilation Time 

-O0 + + - - 

-O1 - - + + 

-O2 -  + ++ 

-O3 --  + +++ 

-Os  -  ++ 

-Ofast --  + +++ 

 
O1: Shortens the execution time of the code without making an optimization 

that would cause the compilation time to be excessively long. 

O2: Applies further optimization than O1. It increases the compilation time as 

well as shortens the code execution time. 

O3: Building up on O2, O3 tries to shorten the execution time of the code by 

making further optimizations. 

 
Optimization levels progress cumulatively. For example, O2 uses the flags that 

the O1 optimization level has opened, and adds further optimizations, as seen in Table 

2.2. In total, there are 111 flags in Table 2.2, but the figure does not illustrate all 

options. There are differences according to the GCC version used [20]. GCC 11, for 

instance, has a total of 232 flags. With the correct selection from these 232 flags, the 

code can be run faster than with the predefined optimization flags. It must also be noted 

that using the same flags for every problem or every code does not provide the same 

optimization; it is therefore necessary to specify a different set of flags for each code. 

 
As mentioned previously, understanding the functions of optimization flags 

and using them correctly requires expertise. This can get complicated for GCC 11 and 

the 200+ flags it contains [21]. With the increase in the size of a project, the burden on 

the person in charge of flag selection also increases. This person will need to keep 

track of where improvements are made in the structure of the code. This is also a very 

unefficient and unsustainable situation, especially for a large team. 
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Table 2.2 Optimization Flags. 
 

O1 O2 O3 
auto-inc-dec align-functions gcse-after-reload 
branch-count-reg align-jumps inline-functions 
combine-stack-adjustments align-labels ipa-cp-clone 
compare-elim align-loops loop-interchange 
cprop-registers caller-saves loop-unroll-and-jam 
dce code-hoisting peel-loops 
defer-pop crossjumping predictive-commoning 
delayed-branch cse-follow-jumps split-paths 
dse cse-skip-blocks tree-loop-distribute-patterns 
forward-propagate delete-null-pointer-checks tree-loop-distribution 
guess-branch-probability devirtualize tree-loop-vectorize 
if-conversion devirtualize-speculatively tree-partial-pre 
if-conversion2 expensive-optimizations tree-slp-vectorize 
inline gcse unswitch-loops 
unctions-called-once gcse-lm vect-cost-model 
ipa-profile hoist-adjacent-loads version-loops-for-strides 
ipa-pure-const inline-small-functions  
ipa-reference indirect-inlining  
ipa-reference-addressable ipa-bit-cp  
merge-constants ipa-cp  
move-loop-invariants ipa-icf  
omit ipa-ra  
rame-pointer ipa-sra  
reorder-blocks ipa-vrp  
shrink-wrap isolate-erroneous-paths-dereference  
shrink-wrap-separate lra-remat  
split-wide-types optimize-sibling-calls  
ssa-backprop optimize-strlen  
ssa-phiopt partial-inlining  
tree-bit-ccp peephole2  
tree-ccp reorder-blocks-algorithm=stc  
tree-ch reorder-blocks-and-partition  
tree-coalesce-vars reorder-functions  
tree-copy-prop rerun-cse-after-loop  
tree-dce schedule-insns  
tree-dominator-opts schedule-insns2  
tree-dse sched-interblock  
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Table 2.2: Optimization Flags (continued) 
 

O1 O2 O3 

tree sched-spec  

orwprop store-merging  

tree strict-aliasing  

re thread-jumps  

tree-phiprop tree-builtin-call-dce  

tree-pta tree-pre  

tree-scev-cprop tree-switch-conversion  

tree-sink tree-tail-merge  

tree-slsr tree-vrp  

tree-sra   

tree-ter   

unit-at-a-time   
 
Selecting the right flag set poses two challenges. The first one, already 

mentioned, is to select the right flags from the entire pool (232 flags for GCC 11) to 

compose the most appropriate flagset. The second one is to provide these selected flags 

to the compiler in the correct order. The order of the selection of the optimization flags 

is important as it will affect the execution time of the code, as revealed in the study of 

Ashouri et al. [16]. This situation, known as “Phase-Ordering” in the literature, will 

not be further investigated in the framework of this thesis, whose scope is primarily 

focused on the selection of the the right flags. 

 
2.4 Selecting the Best Flag Sequence 

 
The selection of the appropriate flags for the code whose runtime we aim at 

reducing creates a cluster that contains a certain number of flags. As mentioned above, 

the order of the flags to be provided to the compiler from this set will affect the 

optimization structure of GCC. Ashouri et al. [8] have shown that these flags will 

affect the result even without phase-ordering. 
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2.4.1 Optimization Space 
 
For the compiler, a flag can have two states: On or Off. This will be represented 

by a 0 or a 1 on the genetic algorithm, as shown in formula 2.4.1. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = {0, 1} 

(2.4.1.) 

A marker was needed to indicate whether the optimization flags were toggled 

on or off. Markers prefixed with “fno” are represented as closed, and markers prefixed 

with “f” are represented as open. In the GCC -O2 -fno -unsafemath -optimizations -

finline -functions statement, the -unsafe -math -optimizations flag needs to be turned 

off, and inline-functions needs to be turned on. As mentioned above, this is a binary 

search problem. If ten flags were used, the probability of selection best optimization 

flag sequence would be close to like 2!!. Considering that recent GCC versions have 

more than 200 flags, this probability quickly grows to exponential levels, as each 

additional flag doubles the total search set. There are also parameter fields in the flags. 

These flags, which accept values in a certain range, will not be discussed in this thesis. 

While developing EAFT, tests and necessary developments have been made for the 

optimization flags that will work on GCC. 

 

2.5 Benefits and Problems 
 

Compiler optimization may not make as noticeable a difference as the 

development of CPU structures used to make. Within the scope of the thesis, this 

subject is also discussed and examined. Before providing the reader with the results of 

our research, we will present the benchmark used in this study, Polybench. 

 
2.5.1 Polybench 

 
Polybench is a benchmark tool written in C language with different problems, 

and that contains different predefined input options [22]. These 30 codes perform 

different operations such as image processing, physics simulation, dynamic 

programming, and statistical operations. The benchmark’s details are presented in 

Table 2.5.1. Polybench was selected because it is already used in several publications, 

especially for compiler optimization. Since the upper limits of the loops can be defined 

by the user, the latter can directly determine the working time. This gives the user the 
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option to try the benchmark with different inputs, which means that it is useful to 

evaluate more than one state of an algorithm, and it thus leads to a good optimization 

series. 

 
2.5.2 Optimization Effects on Compiler 

 
In this section, we will examine the effectiveness of the optimization levels on 

the benchmark. A review by Ezhil et al. [23] gives a preview of the effectiveness of 

optimization flags on the cBench benchmark. Let us dig a little deeper into this with 

Polybench. In the study by Perez et al., the authors experienced a 40% improvement 

in runtime with optimization flags. In their experiment, they used the GCC version 7.1, 

a different version than the one used in this study. 

 

Table 2.3 Polybench Benchmarks. 
 

Benchmark Description 

2mm 2d Matrix Multiplications (D=A.B; E=C.D) 

3mm 3d Matrix Multiplications (E=A.B; F=C.D; G=E.F) 

Adi Alternating Direction Implicit Solver 

Atax Matrix Transposition and Vector Multiplication 

Bicg BicG Sub Kernel of BicGStab Linear Solver 

Cholesky Cholesky Decomposition 

Correlation Correlation Computation 

Covariance Covariance Computation 

Doitgen Multiresolution kernel analysis  

Durbin Toeplitz Solver 

Dynprog Dynamic Programming in 2D 

Fdtd-2d 2-D Finite Different Time Domain Kernel 

Fdtd-apml FDTD Using Anisotropic Perfectly Matched Layer 

Gauss-filter Gaussian Filter 

Gemm Matrix-Multipl C=alpha.A.B+beta.C 

Gemver Vector Multiplication and Matrix Addition 
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Table 2.3 Polybench Benchmarks (continued) 

 
Gesummv Scalar, Vector and Matrix Multiplication 

Gramschmidt Gram-Schmidt Decomposition 

Jacobi-1d 1-D Jacobi Stencil Computation 

Jacobi-2d 2-D Jacobi Stencil Computation 

Lu LU Decomposition 

Ludcmp LU Decomposition 

Mvt Matrix Vector Product and Transpose 

Reg-detect 2-D Image Processing 

Seidel 2-D Seidel Stencil Computation 

Symm Symmetric Matrix-Multiply 

Syr2k Symmetric Rank-2k Operations 

Syrk Symmetric Rank-k Operations 

Trisolv Triangular Solver 

Trmm Triangular matrix-multiply 
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Figure 2.1: O2 Optimization Effects of Polybench. 

 
The graph on Figure 2.2 shows the difference in compilation runtime under 

normal conditions and with O2 optimization; it reveals that the optimization levels did 

not provide the same improvement in runtime for each code. In this study, we 

attempted to reduce the measurement errors by running each benchmark five times 

with the same optimization flags, substracting the highest and lowest values, and 

taking into account the average of the remaining three values. In this way, the 

compilation runtime differences that may occur because of the specifications of the 

computer on which the measurement is made are reduced to a minimum. In Figure 2.2, 

the codes with relatively high operating times (between 0 and 20 seconds) are shown 

on the left side, while the other codes with a runtime between 0 and 1 second are on 
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the right side. Seidel-2d, trmm and covariance optimization markers were least 

affected by optimization, while the runtimes of 3mm, head-3d, and fdtd-2d codes were 

greatly shortened. As mentioned in the Optimization section (section 2.3), shortening 

the runtime of the code by increasing its optimization levels has side effects. For 

example, O3 optimization level reduces the code’s runtime more than O2, while 

significantly increasing the size of the code [24]. Since all optimization levels have 

trade-offs like increasing compilation time when try to decrease run time of a given 

code, within the scope of this study the results will be compared exclusively with the 

O2 optimization level. 

 
2.5.3 Comparison between O2 and O3 

 
In the previous section, the effects of the O2 optimization marker on the 

Polybench data were examined. Does O3 optimization always provide a lower runtime 

when compared to O2 optimization, which is deemed to be the most effective by GCC 

? The answer to this question is to be found in Figure 2.3. The formula  

 
Figure 2.2 O2 vs O3 Optimization Levels. 
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𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐹𝑎𝑐𝑡𝑜𝑟 = "!"
"#$%&'()

 can be used to express the results of the O2 

optimization level displayed on Figure 2.3. Likewise, the speedup factor was also 

calculated for O3. 

As shown on Figure 2.3, the O2 optimization marker gave better results for 9 

out of 30 benchmark codes. For most of the remaining benchmarks, the difference in 

runtime was barely noticeable. This is the case with the basic optimization levels. A 

possibly clearer way to examine the differences in runtime is to calculate how much 

the optimization speeds up each code individually—this is shown on Figure 2.4. The 

green dots in the graph show the runtime of the code without optimization, while the 

orange dots show the O2 and the blue dots, the O3 runtime. The Y axis in Figure 2.4 

also represents the runtime. Code such as seidel-2d, already tackled above when  

 
Figure 2.3 O2 vs O3 For Each Benchmark. 
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examining Figure 2.3, could not be significantly optimized. Several factors 

could account for this, but one of the most straightforward reason is that the 

optimization flags do not work effectively because of the complex structure of the 

code. This situation is also mentioned in the Cole study [21]. Upon examination of the 

runtimes through the Polybench codes, we saw that for some codes the predefined 

optimization levels were insufficient. In line with this inadequacy, we aim at finding a 

better optimization by turning on and off the optimization flags in the optimization 

levels, rather than using the GCC predefined optimization levels. In order to find the 

most appropriate flags, a genetic algorithm, which is one of the heuristic search 

algorithms, will be used. The examination of the effectiveness of heuristic search 

algorithms, or the way the benchmarks runtimes in Polybench can be reduced with the 

specified flags, will make for a good introduction before moving on to the explanation 

of the study itself. But first, the distribution of the runtime for a few benchmarks will 

be examined using violin plots (Figure 2.5). 

It is necessary to give an important detail here. The graphs in Figures 2.5 

represent the optimization flags deemed the most useful according to previous studies 

[4]. 

 
Figure 2.4 Runtime Distribution of Benchmarks with Flags. 
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Figure 2.5 shows the extent to which the code can be improved when all 

possibilities are taken into account. Each graph shows the number of codes included 

in the O2 and O3 optimization levels, and which ones runs faster. Unfortunately, it is 

not always possible to consider all the possible combinations of code and optimization 

flags, as shown in Figure 2.6. This can be explained by the multiplicity of optimization 

levels, as well as by the length of code runtime. For example, running all combinations  

of eight optimization flags at O2 level for a code whose average working time is 10 

minutes would take up to 42 hours—almost two days. 

 
Figure 2.6. gives the distribution of all possible combinations of flags. We 

expect the distribution of optimizations made using O2 and O3 to be very similar. It 

was shown in Table 2.2 that the optimization markers also progress cumulatively, 

and that some of the flags that are added to O2 are actually equal to those of the O3 

optimization level. Differences between the distributions is expected too, since all of 

the optimization markers tried here are not equal to all flags that O2 and O3 have in 

common. This situation is rarely witnessed simply because each flag does not have 

the same effect on every code; that is the reason why the distribution in the Cholesky 

code differs drastically from the others. If we consider the 2mm code, we see that 

while it peaks at 5 seconds, it is most of the time running in 2.5 seconds 
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Figure 2.6 Runtime Distribution of All Benchmark with Flags. 
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3. EVOLUTIONARY ALGORITHMS 
 

Several evolutionary algorithms were implemented in EAFT; they will be 

examined in this chapter. 

 
3.1 Genetic Algorithm 
 
3.1.1 Inspiration and First Look 
 
Many systems are made by imitating living beings in nature. One of them, in the field 

of computers science, is the evolutionary algorithms that imitate the evolutionary 

development processes of living beings, such as the reactions of living beings to the 

events in nature [25], and use it as a tool. Researchers interested in the adaptation 

processes of living beings to their environment have imitated natural selection and 

turned it into a search algorithm [26]. It is obvious that in imitating this evolutionary 

process, researchers were inspired by Darwin’s theory of evolution [27]. The survival 

of living beings in their natural environment or the changes they undergo to pursue 

their goals also forms the basis of the genetic algorithm. We will illustrate our meaning 

through the example of the polar bear. Polar bears lived in polar regions with their 

black fur in the early periods [28]. Because of this, they were strongly contrasting with 

the color of the ice, making them more easily distinguishable than other living beings 

whose predominant color was white. If we assume that the most important factor of 

survival for polar bears, is the objective function, we can postulate that this factor is 

low for black bears. Let us suppose that one of them caused its fur to turn white as a 

result of a mutation in its genetic structure; presumably this change increased his 

chances of survival. In this case, this white bear, which may live longer than its 

competitors, will have a higher chance of mating, and the offspring from this bear will 

resemble its ancestors and also be white, with similarly longer chances of survival than 

the other bears whose fur remained black [29]. Another example, using the finch birds 

described in Darwin’s Beagle diaries and later included in his works, may bring further 

clarification. The beaks of the finches on other islands took a different from the beaks 

of the birds on the mainland, and this change was brought about by the need to access 

different types of food sources [30]. 
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The Darwin’s work, can be thought of as the ability of living beings to find 

food or improve their chances of survival with adapting environment. This underlies 

the genetic algorithm that seeks to find solutions to very different problems, and for 

this reason, genetic algorithm is used in machine learning, optimization, and solving 

problems [31]. Although other algorithms exist—for instance evolutionary 

algorithms—the most popular algorithm is the genetic algorithm [32]. The genetic 

algorithm helps us find the best solution within a very large search set, without having 

to go through every single option. This will save time, as explained in the Optimization 

section (section 2.3). A consequence of the genetic algorithm’s constantly producing 

better results is also something that humanity has used for thousands of years: 

crossover. The fact that the offspring produced by two individuals has unique 

characteristics, with genes inherited from both parents, gives each living being a 

unique place in the population. Each feature given by the parents to the offspring is 

called a gene, and a set of these genes is called a chromosome [32]. The characteristics 

given by these genes affect the behavior of an individual or creature, its reactions in a 

given environment, its chances of survival, and many other aspects. These features 

affect the Fitness value, which is what we seek to improve. In this thesis, we will 

determine which genes are the best to calculate a shorter code runtime; for this, we 

will sequence the genes from the individual resulting from the crossover. Each gene 

can take the value of 0 or 1, and the chromosome structure formed by all the genes 

represents the optimization flags in the GCC. The aspect of this structure is illustrated 

in Figure 3.2. Each chromosome represents an individual, and a assemblage of 

chromosomes is called a population. The representation of chromosome and gene is 

illustrated in Figure 3.3. 

 
Figure 3.1 Finches Beak [3] 
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3.1.2 Crossover and Mutation 
 

So far, we have considered the origins of the genetic algorithm rather than the 

way it works. Crossover is the method that determines how the offspring of two 

individuals will receive its genes. The quality of the method is further improved by the 

application of numerical methods, such as Average Crossover, that consider the 

average of the gene values from the parents [33]. This situation is not suitable for the 

scenario mentioned above, because the values 1 and 0 shown in the representation are 

used as categories, not as numbers. Another important criterion is the preservation of 

the uniqueness of the genes as a result of crossover. The absence of a duplicate gene 

is important for some of the problems. A case study [34] showed that since each gene 

represents a unique value, the individual created by crossover also preserves this 

uniqueness. Although this situation is of limited importance in EAFT, a crossover 

method that preserves the situation has been implemented. The crossover methods 

implemented in EAFT are presented in the following sections. 

 
  

0 0 0 1 1 1 1 

-fdelayed-branch -fno-unsafe-math-optimizations 

Gene 

Chromosome 0 0 0 1 1 1 1 

1 0 0 0 1 1 1 

Population 

Figure 3.2 Optimization Flag Representation in Chromosome. 

Figure 3.3 From Gene to Population. 
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3.1.2.1 Partially Mapped Crossover 
 
Partially Mapped Crossover (PMX) is a permutational crossover method in 

which gene uniqueness is preserved. It is a crossover method that produces two 

offspring from two parents. It consists of multiple stages, illustrated in Figure 3.4. Step 

1: a random range is selected for crossover. This range should not cover the same index 

value, nor all chromosomes. Later, this value is also selected for the other parent. In 

step 2, the genes contained in the selected range are swapped. After this substitution, 

the crossover is not yet complete since there are duplicate genes. In order to eliminate  

STEP 2 

5 2 7 3 4 6 1 8 

3 8 5 1 4 7 2 6 

3 2 7 1 4 7 1 8 

5 8 5 3 4 6 2 6 

3 2 6 1 4 7 5 8 

5 3 4 6 

3 1 4 7 

5 8 1 3 4 6 2 7 

STEP 1 

STEP 3 

STEP 4 

1 -> 3 -> 5 
4 -> 4 
7 -> 6 

Figure 3.4 Partially Mapped Crossover. 
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these duplicate genes, the mapping process, which gives its name to the 

crossover, is performed (step 3): the chromosomes not included in the initial selection 

are changed according to this mapping. At the end of the process, in step 4, two 

offspring are produced. 

 
3.1.2.2 Ordered Crossover 

 
Ordered Crossover (OX), like PMX, is a crossover method where uniqueness 

is preserved. With this method, one offspring is produced from two parents. The genes 

to be introduced into the offspring are taken from a random index selected from either 

parent (step 1). After these genes are transferred, the same genes from parent 2 are 

discarded, and the remaining genes are transferred to the offspring, in order [35]. An 

example of this crossover is shown in Figure 3.5. 

 

 
Figure 3.5 Ordered Crossover. 

 
3.1.2.3 Generalized N-Point Crossover 

 
Unlike PMX and OX, N-Point Crossover is not a permutational crossover 

method; instead, it includes a lighter method of computational power. The crossover 

starts with a randomly selected number N, which can only be as high as the total 

number of genes in the chromosome. After the number N is determined, the 

chromosomes are randomly divided into N parts. After splitting both parents’ 

chromosome, the genes are swapped, thus creating two offspring [36]. As seen in 

Figure 3.6, the gene 1 occurs more than once in offspring 1. Likewise, genes 3 and 8 

appear more than once in offspring 2. This situation is not problematic for EAFT and 

in the context of this study, because this situation has been implemented especially for 

the use of different types of crossover methods. 

5 2 7 3 4 6 1 8 

3 8 5 1 4 7 2 6 

Parent One 

5 8 1 3 4 6 2 7 

Parent Two 

Offspring 
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Figure 3.6 Generalized N-Point Crossover. 

 
3.1.2.4 Uniform Crossover 

 
Unlike other methods, Uniform Crossover (UX) uses no index value. The 

genes to be transferred from each parent are randomly switched to create an offspring 

with a certain probability [37]. The threshold value can be input as a parameter; it is 

0.5 by default. 

 
3.1.2.5 Edge Recombination Crossover 

 
Edge Recombination Crossover (ERX) is a crossover method that aims at 

minimizing the empty edges, since they affect the performance of the algorithm. The 

edges between the nodes remain important, as exemplified by the Travelling Salesman 

Problem (TSP) [33]. In the first step, the neighbors of each gene from both parents are 

listed. The algorithm starts by selecting a random gene, which is transferred to the 

offspring. This transferred gene is removed from all other neighbor lists, then the genes 

in its neighbor list are considered: whichever gene has the least number of neighbors 

is selected, and in case of equality, a random choice is made [38]. The newly selected 

gene is added to the offspring and the algorithm continues in the same way until the 

sequence is completed. A simulation of this crossover method is illustrated in Figure 

3.7. 

5 2 7 3 4 6 1 8 

3 8 5 1 4 7 2 6 

2 1 1 4 5 7 6 6 Offspring One 

2 8 3 4 3 5 7 8 Offspring Two 

5 2 7 3 4 6 1 8 Parent One 

3 8 5 1 4 7 2 6 Parent Two 
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Figure 3.7 Edge Recombination Crossover. 

 
3.1.3 Selection Methods 

 
Selection methods come from the true nature of creatures. Darwin’s research 

showed that selection criteria are a part of evolution [39]. This method or process is 

known as “Natural Selection.” Darwin’s works state that differences or variations in 

phenotypes between individuals are a key element of natural selection. In genetic 

algorithm, a population comprises many individuals, and some or all of them, 

depending on the model type, will produce offspring. The questions that need to be 

asked are: how do we determine which individual will mate with another individual? 

Should everyone in a population produce an offspring? In any given population, 

individuals have a different probability of finding mates to produce offspring. 

According to Darwin, the fittest individuals have a higher chance to find a mate [40]. 

In genetic algorithm, this probability will depend on two basic things: selection 

probability and fitness value. In EAFT, two popular selection methods—the 

“Roulette” and the “Tournament”—have been implemented. 

 
3.1.3.1 Roulette Selection 

 
This selection is based on a real-world game: Roulette [41]. In this game, every 

number on the roulette wheel has the same probability to come out, but genetic 

algorithm implementation is a bit different and more in line with Darwin’s work, as 

mentioned above. In this selection method, individuals that have a higher fitness value 

have a higher degree of agency, or in other words have a higher chance to mate [42]. 

1 2 3
3 

4
4 

5
5 

6
6 

7
7 

8
8 

2 8
8 

1
1

4
1

3
1

7
7 

5
5 

6 
6 

Edge List  
 
1 – 2,8,4 
2 – 1,3,6,8 
3 – 2,4,7 
4 – 3,5,1 
5 – 4,6,7 
6 – 5,7,2 
7 – 6,8,3,5 
8 – 7,1,2 
 

1 0 0 0 0 0 0 0 

1 2 0 0 0 0 0 0 

1 2 8 0 0 0 0 0 

1 2 8 7 0 0 0 0 

1 2 8 7 3 0 0 0 

1 2 8 7 3 4 0
0 

0 

1 2 8 7 3 4 5
0 

0 

1 2 8 7 3 4 5
0 

8 

Offspring in Each İteration 

Parent One 

Parent Two 



 

 

28 

3.1.3.2 Tournament Selection 
 
Tournament selection is a selection method where tournaments occur between 

randomly chosen individuals. The algorithm starts with the selection of a number N of 

individual from a given population. After the selection, each individual’s probability 

to win is determined based on their fitness value. For example, if 5 out of 100 selected 

randomly in a population. Calculate probability distributions of these individuals and 

run several tournaments. Number of this tournaments is game changer metric because 

if the number of tournaments is high, the individuals that have small chances of 

winning will probably not mate and if it is small this is going to be like random 

selection from population [43].  

In both selection methods, the fittest individual will be the one with the highest 

theoretical probability of mating. 

 
3.1.4 Mutation 

 
Mutation is based on biological mutation [44]. It ensures that the diversity of 

chromosomes is preserved, and that genes lost in the process are recovered. Mutation 

rate is a parameter in EAFT and can be changed in CLI. 

 
3.1.5 Genetic Algorithm Models 

 
In EAFT, more than one genetic algorithm model as well as a wide variety of 

crossover methods are proposed to the user. By using these models rather than 

traditional genetic algorithm models, our aim is to find better sequences in the GCC 

optimization flag set [45]. As in Flag Optimization with Genetic Algorithm ( FOGA ), 

only one model was excluded. 

 
3.1.5.1 Generational Model 

 
The Generational Model (GM) is the one of the most common genetic 

algorithm models in literature [46]; whenever a genetic algorithm is described, it is 

usually a generational model [47]. Initially, its aim was to produce a number N of 

offspring and to replace the population with these new children [48] (exceptionally, 

they could be the first generation if there has been no generation before). The flowchart 

in Figure 3.8 illustrates the process. In the process of generating new individuals, 
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selection and crossover are typically performed at the beginning, followed by the 

application of mutation towards the end. 

 
3.1.5.2 Steady State Model 

 
Steady State Model (SSM) is a bit different than the Generational Model. In 

this model, only one new member joins the population with each iteration [49]. With 

this implementation, not all new offspring creates a new population since there are 

many similarities and overlap between children and parents. The other difference is 

that only two parents are selected in the whole population to generate a new offspring. 

Not all individuals in the population end up creating a new offspring. After selecting 

two parents, the crossover is applied and as a result, if two parents generate two 

children, only the best two will be chosen from this four-member family. This is the 

main idea behind the Steady State Model [50]. The process is then repeated until the 

acceptance criteria are reached. 

 
The flowchart in Figure 3.9 shows the additional steps of SSM. As mentioned 

previously, the new step compares the fitness value of all the members of a family 

(two offspring and two parents) to find the two best members. A generation population 

that contains exclusively the new offspring may not be ideal in all situations. In SSM, 

Mutation 

 

Population with N 
number of individual 

Criteria 
Reached ? 

Choose 2 Individual 
as Parent 

Produce 2 
offsprings 

Change population 
with previously 

generated 
 

Figure 3.8 Generational Model. 
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the population always contains the individuals with the highest fitness value, whereas 

in GM, the new offspring takes the place of the parents’ independently from the fitness 

value of the individual. Each situation has pros and cons, and the choice of the one to 

use depends on the end user of EAFT. Some studies have considered the types of 

problems that could be solved with this type of model, and they have concluded that 

rule-based systems could use SSM [26]. These two models, as well as the models that 

will be presented below, are all optional for the end user. 

 
3.1.5.3 Down to Size Model 

 
Down to Size (DTS) model uses different strategies to select the best 

individuals. In contrast to the other two models, DTS generates two population 

members. In this model, there are two selection steps. The first step of the model 

selects the parents who will create the offspring, then counts the offspring as part of 

the population. If the number N of parents in the population P generates offspring M, 

the size of population P at the end of this step is M + N. This model leads to the initial 

population nearly doubling after a round of offspring generation. Following the 

application of mutation in the genetic algorithm, the newly generated individuals 

undergo another round of selection, and their acceptance is determined based on 

predefined criteria. The selection methods are mentioned in selection section. With 

this method, EAFT gives the end user the choice of selection method. The flowchart 

in Figure 3.10 illustrates this method’s process. 
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Figure 3.9 Steady State Model. 
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3.1.5.4 Ring Model 

 
The Ring Model (RM) is a topological model. In RM, individuals in the 

population are all neighbors. The selection is completed in a different way than in the 

other models: whereas other models used selection methods to choose their mates, in 

this model, an individual can choose its mate only within its neighbors [51]. Figure 

5.11 shows how the process works. After an individual is selected, it generates an  

 
offspring with its neighbor. Then, depending on the fitness value, the offspring may 

replace the parent. The model then continues until converge its criteria. 
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Figure 3.10 Down to Size Model. 

Figure 3.11 Ring Model. 
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3.1.5.5 Only Mutation Model 
 
The Only Mutation model is the simplest of all models. It aims to change 

individuals only through mutation; there is no crossover in this model. If the mutation 

rate is increased too much, the model will generate random chromosomes and the 

individual’s fitness values will not converge as desired; for that reason, it is important 

to choose the correct mutation rate. Conversely, if the mutation rate is too low, then 

no change will take place in the chromosomes, and the fitness value will not change 

visibly either. 

 
3.2 Particle Swarm Optimization 

 
Particle Swarm Optimization (PSO) is another evolutionary algorithm option 

that EAFT users can select. It is also an evolutionary algorithm whose origin is to be 

looked for in the movements and attitudes of living beings in their natural 

environment—in particular, it is inspired by the social behavior of bees, fish, or birds 

[52]. In this algorithm, an individual is represented in the same way as in the genetic 

algorithm: as a chromosome. A particle is a candidate solution. Each particle 

represents an optimization flag sequence. In the scientific literature, PSO is mostly 

used with continuous values but, as mentioned, the compiler optimization problem has 

a binary representation, and values are always binary. Further, some PSO 

implementations for binary problems exist, like those presented by Khanesar et al. 

[53]. In EAFT, the Eberhart version of PSO [54] was implemented with binary 

modifications based on the approach used by Eberhart et al. [55]. 

 
3.2.1 Formulization of PSO 

 
Unlike in the genetic algorithm, in the PSO the global and personal best values 

of individuals matter. As formulated by Eberhart [54], each particle is in position 𝑋# =

7𝑥#* , 𝑥#" , 𝑥#+ … , 𝑥#,: and has a velocity of 𝑉# = 7𝑣#* , 𝑣#" , 𝑣#+ , … , 𝑣#,:. In this situation, 

particles’ best values are 𝑃#-).& = 7𝑝#* , 𝑝#" , 𝑝#+ … , 𝑝#,: and the global bests are 

represented as 𝑃$-).& = 7𝑝$* , 𝑝$" , 𝑝$+ … , 𝑝$,:. In order to calculate the velocity and 

position of a particle in a swarm, we use the following formula: 
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v%(t + 1) = w. v%(t) + c!ϕ!7p% − x%(t): + c&ϕ& Jp' − x%(t)K 

(3.1) 

	x%(t + 1) = x%(t) + v%(t + 1)  

(3.2) 

c1 and c2 are positive constants, and ϕ1 and ϕ2 are random values between 0 

and 1. In addition to (3.1), function (3.3) can be used to calculate the velocity of 

particles as probability. 

V%/(t) = sig Jv%((t)K =
1

1 + 𝑒)*'0(")
 

(3.3) 

 

x%((t + 1) = Q
1, 𝑟#- 	< 	sig(𝑣#-(t))
0, Else.

 

(3.4) 

𝑟#- is a random value between [0, 1]. According to changes in velocity, function (3.2) 

will be used to determine the position of a particle, instead of function (3.4). 
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4. RESULTS 

 
4.1 Command Line Interface 

EAFT is a tool designed for end users. It differs from other autotuners in 

several ways, one of which is CLI, which allows end users to choose options such as 

the evolutionary algorithm, the crossover, the mutation rate etc. without changing any 

line of code. The Callback Notification field contains information on the population, 

such as where to find the best fitness value, or the population’s unique ID. A unique 

ID could then be used to search the population in JSON. EAFT stores all iteration 

results in a JSON file for analysis or other future use. The algorithm first runs with O2 

and O3 optimization levels as baseline and compares each fitness value with these 

baseline. Figure 4.1 shows the CLI for a population of 5; in that problem, the best 

fitness value is the same as the lowest (0.21), and has an improvement of 0.41. The 

values for O2 and O3 are also provided, in the List field. In this problem, the 

algorithm’s O2 runtime is 0.37 second and the best candidate solution for a population 

of 5 has a runtime of 0.21 second. In order to follow the algorithm’s process, the Hall 

of Fame field was added. It shows the best individual in each population. The last field, 

Current Fitness Value, provides in real-time the fitness values that have just been 

calculated. Hall of Fame provides an overall view of the general process, while Current 

Figure 4.1: CLI. 

 

Figure 4.0.2 CLI 
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Fitness Value shows only part of it but in greater detail. Finally, the Population Stats 

field shows the population statistics. 

 

Table 4.1 Benchmark Results 
 

PROBLEM O3 GM SSM DTS RM PSO 

2mm 0.9979 0.6028 0.9867 0.9796 0.5237 0.7441 

3mm 1.0002 0.3709 0.9743 0.9756 0.3351 0.3875 

deriche 0.9658 0.9779 0.9912 0.9931 0.9255 0.9706 

cholesky 0.8242 0.8077 0.8458 0.8016 0.7994 0.814 

jacobi-2d 0.6272 0.2553 0.6297 0.6197 0.5347 0.6281 

durbin 1.0056 0.8839 0.938 0.8906 0.832 0.9019 

mvt 1.0088 0.9519 0.9624 0.9735 0.9028 0.9746 

heat-3d 0.6013 0.4912 0.5189 0.5074 0.4427 0.4607 

atax 1.0018 0.9671 0.9823 0.9628 0.9372 0.9817 

doitgen 0.9646 0.5688 0.9809 0.4122 0.3835 0.8203 

floyd-warshall 1.0862 0.892 0.9573 0.9515 0.8423 0.9171 

correlation 0.99 0.9405 0.9897 0.9832 0.8204 0.9124 

gesummv 1.0397 0.9668 0.969 0.9676 0.8767 0.9611 

bicg 0.9671 0.8289 0.9013 0.9353 0.759 0.8304 

trisolv 0.964 0.9078 0.9517 0.9532 0.8833 0.8912 

trmm 0.9895 0.9672 1.0254 0.9641 0.9541 0.9766 

jacobi-1d 0.9494 0.9241 0.968 0.9467 0.9228 0.9308 

syr2k 0.7944 0.7324 0.9216 0.803 0.7183 0.6775 

gemver 1.004 0.9434 0.9694 0.9569 0.8677 0.9273 

nussinov 0.9894 0.8669 0.9292 0.9186 0.8554 0.8763 

ludcmp 0.8371 0.6923 0.8302 0.7295 0.6777 0.6924 

covariance 0.9851 0.7938 0.9884 0.9792 0.6933 0.9428 

adi 0.94 0.804 0.9435 0.8542 0.7972 0.811 

syrk 0.8276 0.6804 0.6723 0.7015 0.653 0.6686 

seidel-2d 0.8834 0.8206 0.8931 0.8293 0.8012 0.8279 

symm 0.9445 0.8459 0.9729 0.8659 0.8627 0.8602 

fdtd-2d 0.6852 0.6279 0.687 0.6464 0.6252 0.6295 

lu 0.8536 0.8374 0.8681 0.8479 0.7731 0.8495 

gramschmidt 0.9734 0.9473 0.9712 0.96 0.9366 0.9387 

gemm 0.6142 0.518 0.547 0.5151 0.4739 0.5096 
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Table 4.2: All Flag Opening Results 
 

Problem All Flags Runtime Just Level Runtime Level Change Ratio 

adi 18.895 8.814 -O2 2.144 
adi 19.006 7.741 -O3 2.455 
gramschmidt 6.646 1.852 -O2 3.589 
gramschmidt 6.538 1.819 -O3 3.594 
deriche 0.471 0.248 -O2 1.896 
deriche 0.471 0.257 -O3 1.829 
fdtd-2d 2.233 1.325 -O2 1.686 
fdtd-2d 2.219 0.944 -O3 2.352 
heat-3d 5.634 1.771 -O2 3.181 
heat-3d 5.724 1.104 -O3 5.185 
2mm 8.057 2.271 -O2 3.548 
2mm 8.145 2.269 -O3 3.590 
ludcmp 23.075 12.708 -O2 1.816 
ludcmp 23.314 9.670 -O3 2.411 
trmm 4.362 0.790 -O2 5.519 
trmm 4.398 0.806 -O3 5.459 
durbin 0.081 0.081 -O2 1.000 
durbin 0.087 0.080 -O3 1.092 
cholesky 22.465 10.948 -O2 2.052 
cholesky 21.875 9.349 -O3 2.340 
atax 0.160 0.090 -O2 1.780 
atax 0.101 0.084 -O3 1.208 
floyd-warshall 56.024 10.616 -O2 5.278 
floyd-warshall 57.004 10.609 -O3 5.373 
jacobi-2d 3.812 1.100 -O2 3.467 
jacobi-2d 3.734 0.781 -O3 4.781 
correlation 7.364 1.419 -O2 5.191 
correlation 7.210 1.421 -O3 5.076 
symm 3.267 1.098 -O2 2.977 
symm 3.319 1.099 -O3 3.020 
3mm 12.343 3.484 -O2 3.543 
3mm 12.555 3.473 -O3 3.615 
syr2k 4.360 1.172 -O2 3.720 
syr2k 4.248 0.765 -O3 5.555 
doitgen 3.801 0.603 -O2 6.303 
doitgen 3.793 0.592 -O3 6.412 
syrk 1.121 0.482 -O2 2.324 
syrk 1.093 0.350 -O3 3.120 
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Table 4.2: All Flag Opening Results (continued) 
 

Problem All Flags Runtime Just Level Runtime Level Change Ratio 

doitgen 3.801 0.603 -O2 6.303 
doitgen 3.793 0.592 -O3 6.412 
syrk 1.121 0.482 -O2 2.324 
syrk 1.093 0.350 -O3 3.120 
jacobi-1d 0.078 0.085 -O2 0.909 
jacobi-1d 0.071 0.078 -O3 0.914 
gemver 0.124 0.100 -O2 1.242 
gemver 0.126 0.087 -O3 1.455 
mvt 0.130 0.095 -O2 1.372 
mvt 0.120 0.091 -O3 1.318 
covariance 7.385 1.416 -O2 5.216 
covariance 7.218 1.415 -O3 5.102 
bicg 0.111 0.102 -O2 1.086 
bicg 0.103 0.101 -O3 1.027 
nussinov 6.017 1.952 -O2 3.082 
nussinov 6.233 1.957 -O3 3.184 
gemm 1.400 0.618 -O2 2.265 
gemm 1.411 0.351 -O3 4.020 
seidel-2d 0.561 0.251 -O2 2.236 
seidel-2d 0.561 0.217 -O3 2.579 
trisolv 0.089 0.083 -O2 1.067 
trisolv 0.098 0.087 -O3 1.118 
gesummv 0.096 0.088 -O2 1.091 
gesummv 0.093 0.083 -O3 1.123 
lu 31.538 12.436 -O2 2.536 
lu 31.712 10.785 -O3 2.940 

 

The values in the “All Flags Runtime” column are calculated with the statement 

gcc -O2 -fx -fy -fz, 199 total available flags. The values in the “Just Level Runtime” 

column are calculated with the statement gcc -O2. The values in the “Change Ratio” 

column are the result of the division of All Flags Runtime by Just Level Runtime.  

Upon analysis of the benchmark results (Table 4.1), it appears that the Ring 

Model found most of the best results and showed the best performance according to 

the O2 working time. In order to better understand the results, Table 4.2 shows the 

runtime changes when all the optimization flags are turned on. In all problems but two, 

turning on the flags resulted in an extension of the code's runtime. 
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Figure 4.2: 2MM Population Changes on Runtime. 
 
Figure 4.2 shows how different population numbers for the EAFT fine-tuning 

process of the 2MM Benchmark code affected the optimal code runtime value. After 

the fourth iteration, the runtime for population values of 50 and 100 showed an 

increase—an undesirable situation—before decreasing like all the other population 

values. The 350-population value, unlike the others, reached its lowest value already 

in the fourth iteration. Although the 200 and 250 population values did not reach their 

lowest value by the fourth iteration, they still decreased significantly during the study. 

 

 

Figure 4.3: Mutation Rate Effect on Run Time for 2MM. 
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We have also examined the fine-tuning of EAFT in mutation rate. Values 

between 0.1 and 0.9 are plotted in Figure 4.3: they show how a 0.2 mutation value 

resulted in a shorter runtime than the other values. 

 

 

Figure 4.4: Crossover Rate on Run Time for 2MM. 
 

The last parameter examined for EAFT fine-tuning is Crossover Rate. One of 

the main goals of EAFT is to find the best runtime and to keep it as short as possible. 

Since the crossover rate determines the possibility individuals have to produce 

offspring, it also indirectly affects the runtime of EAFT. Although most results are 

close to the same runtime value—a Crossover rate of 0.7—further shortening the 

runtime of EAFT and reaching the optimal value in a relatively shorter time, is 

preferable than the others. 

 

 
Figure 4.5: Seidel-2D Population Changes. 

 



 

 

40 

For the Seidel-2D code, we tried to fine-tune the Population Number, as shown 

in Figure 4.5. Although the 200 and 250 population numbers seem more reasonable in 

terms of use, a population of 50 reached a lower runtime in an earlier iteration than the 

other values. This situation may change depending on the structure of the code and is 

interpreted as a very unreasonable situation. 

 

 
Figure 4.6: Seidel-2D Crossover Rate. 

 
A Crossover Rate fine-tuning has also been tested in the Seidel-2D benchmark. For 

this problem, 0.9 and 1 crossover values achieved the best results in the fifth iteration, 

followed the 0.5 crossover value in the following iteration. 

 

 

Figure 4.7: EAFT vs Opentuner on Matrix Multiplication Code. 
 
To better understand the results, we compared EAFT and Opentuner, since 

both do similar work. Figure 4.7 shows how much uptime the Matrix Multiplication 
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(MM) C++ code in Opentuner obtained with two tools. From the seventh iteration 

onwards, EAFT and Opentuner progressed in parallel, with EAFT achieving a faster 

result. 

 

 

Figure 4.8: EAFT vs Opentuner on TSP Code. 
 
We then compared the runtime of TSP_GA, a C++ code included in Opentuner. 

With this code, the runtime difference between Opentuner and EAFT was very wide 

as early as the third iteration, with EAFT achieving a much better result; the results 

continued to progress in parallel afterwards. 

 
Figure 4.9: Opentuner vs EAFT Time Comparison. 
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In Figure 4.9, the Opentuner code was run twice for the same problem 

(TSPGA), named v1 and v2 in the legend. In both versions, EAFT achieved a better 

result than Opentuner. 
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5. DISCUSSION 
 
EAFT is a tool for users who wants to shorten the runtime of the programs they 

use. To best guide the users, the research and implementation presented above was 

worked on a benchmark. These results are valid exclusively in Polybench. As 

mentioned in the Compiler section (2.1), most codes are different and no single 

solution is valid for all types of code. All the results are presented in Table 4.1. To 

better explain the results, the O2 runtime of all problems in the benchmark was set to 

1. Then, all remaining working times of the problems were multiplied by this ratio. In 

this way, using 2mm as an example, the runtime of O3 was 1% faster than O2’s. 

Likewise, O2 had 48% less uptime than RM O2. The resulting RM thus found is the 

best value for that problem, and the best results for the other problems are emphasized 

in bold in the table. When we consider all the problems, it seems that the Ring Model 

is the model that provides the best result in the vast majority of cases. It is possible 

that this situation is due to the similarity of the structure of all the benchmarks. As 

explained before, all problems, although they are very different from each other, are 

eventually mathematical solutions. Exceptionally, Ring Model did not provide the best 

result: for instance, PSO found the best result in syrk2k, and GM did so in symm. 

There were also cases where the O3 runtime was longer than that of O2. For most of 

the cases, RM had better runtimes than O2. This is a benefit of using several different 

models. For most problems, other models have achieved results close to those of RM. 

For 2MM, the difference between the results of GM and RM is minimal. Likewise, the 

best model for TRMM is only 5% faster than O2. 

 
Table 4.1 shows how much each model improved over the runtime values of 

O2. The difference between these results and those of O2 is due to the fact that they 

were recompiled and run with specific combinations of optimization flags. This 

situation brings up the following question: how fast will the code runtime be if all the 

flags are turned on? The answer to this question is presented in Table 4.2. Let us first 

say a word about the columns of the table.. The “All Flags Runtime” column was 

compiled by opening all the optimization flags in GCC-11, where this experiment was 

performed, then specifying an optimization level (indicated in the “Level” column) 

before running the flags. All optimization flags presented here are taken from the 

results returned after the gcc-11 --help=optimizers command, according to the 

guidelines provided on the GCC official website. The value in the “Change Ratio” 
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column is simply the result of the value in the “All Flags Runtime” column divided by 

the value in the “Just Level Runtime” column; this “change ratio” is, in other words, 

the answer to the following question: “what is the runtime difference, expressed as a 

ratio, between compiling the codes at O2 and O3 levels with, and without, all 

optimization flags?” The code compiled with all the optimization flags turned on 

naturally performed less well than when compiled with the standard O2 or O3 level, 

prolonging the runtime of the code we were instead trying to shorten. All the codes 

were slowed down, except for Jacobi 1D and Durbin, the latter only at O2 level. It is 

not uncommon for the use of all possible optimization flags to result in a slower 

program than if we had use only the O2 optimization level. This can happen for several 

reasons: 

1. Over-optimization: when all the possible optimization flags are used, the 

compiler may perform optimizations that end up actually slowing down the 

program. This is known as over-optimization [56]. 

2. Optimization conflicts: some optimization flags may conflict with each other, 

resulting in unexpected behavior and slower program performance. 

3. Resource consumption: some optimization flags may require more memory 

or processing power, leading to slower overall performance. 

4. Compiler bugs: using all possible optimization flags may create bugs or 

issues in the compiler, which can result in slower program performance. 

It is important to note that optimization flags can have different effects 

depending on the specific code being compiled; as mentioned above, using all 

optimization flags may occasionally result in faster performance, like Jacobi 1D and 

Durbin.  

Fine-tuning Genetic Algorithm is important for further usages. It could 

improve the performance of Genetic Algorithm to find better solutions in a shorter 

time. In order to improve the performance of the Genetic Algorithm, it is first 

necessary to determine which code(s) provide the best improvement from the 

benchmark. 2MM and Seidel-2d are suitable for this purpose. Afterwards, we need to 

examine the effects that changing a single feature have on the result, keeping the other 

features constant. Initially, this situation was examined only to find the best result, 

while the runtime of EAFT was ignored.  

The first experiment with fine-tuning was to change the population number. In 

this experiment, presented in Figures 4.2 and 4.5, we considered the population 
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number between 50 and 400 in increments of 50. In this experiment, the values for the 

Crossover Rate and the Mutation Rate were 0.9 and 0.01, respectively. Increasing the 

population size could initially lead to better solutions, since there is a higher diversity 

of individuals and hence the exploration of the search space is increased. However, 

this improvement in performance is often short-lived, as the population may converge 

to a suboptimal solution after a certain number of generations. This convergence 

occurs because of a trade-off between the computational complexity and the diversity 

of the population. As the population size increases, the computational complexity of 

the algorithm also increases, which can make it more difficult to efficiently explore 

the search space. Furthermore, as the population size increases, the probability of 

generating duplicate individuals also increases, which in turn reduces the diversity of 

the population. Thus, it is crucial to choose an appropriate population size based on 

the complexity of the problem and the available computational resources. In general, 

the optimal population size is problem-specific and can be determined through 

empirical experimentation. As a result of our trials on Polybench with EAFT, we came 

to the conclusion that the best result was a population size of 350.  

Another experiment examined the effect of changes in the crossover rate. In 

this experiment, Crossover Rate values between 0.1 and 1 were tried one by one; the 

results are presented in Figures 4.4 and 4.6. This optimal crossover rate, 0.8,  led to 

the best performance of the Genetic Algorithm. The reason for this optimal crossover 

rate can be attributed to the balance between exploration and exploitation of the search 

space. When the crossover rate is too low, the algorithm may converge prematurely 

and end up not exploiting the good features of different individuals in the population. 

Conversely, if the crossover rate is too high, it may result in too much exploitation of 

the search space and a lack of diversity in the population. In our experiments, the 

optimal crossover rate of 0.7 allowed for sufficient exploitation of the search space 

while maintaining a diverse population. This optimal rate allowed the algorithm to 

combine the good features from different individuals in the population, while also 

avoiding premature convergence toward a suboptimal solution. In conclusion, the 

optimal crossover rate for a genetic algorithm is problem-specific and can be 

determined through empirical experimentation. In our case, the best crossover rate of 

0.7 allowed for a balance between exploitation and exploration of the search space, 

resulting in the highest quality solutions. 
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Finally, the effects of different mutation rates on the performance of EAFT 

were examined; the results of this experiment, conducted with rates ranging from 0.1 

to 1, are presented in Figure 4.3. The results indicate that the best mutation rate for the 

given problem was 0.2. This optimal mutation rate led to the best performance of the 

genetic algorithm, as it resulted in the highest quality solutions found during the 

experiments. The reason for this optimal mutation rate can be attributed to the balance 

between exploration and exploitation of the search space. When the mutation rate is 

too low, the algorithm may converge prematurely and end up not exploring new 

regions of the search space. Conversely, if the mutation rate is too high, it may result 

in too much random variation and a lack of convergence toward the optimal solution. 

In our experiments, the optimal mutation rate of 0.2 resulted in a diverse population 

that allowed for the exploration of new regions of the search space, while also 

providing enough stability to converge toward the optimal solution. In conclusion, the 

optimal mutation rate for a genetic algorithm is problem-specific and can be 

determined through empirical experimentation.  

 
Let us assess the performance of EAFT with the C++ codes included in 

Opentuner, using the optimal results. We first ran these codes on Opentuner, then ran 

them again with EAFT, and we examined the graph that shows which code reached 

the most optimal result. When analyzed for the MatrixMultiply code, Figure 4.7 shows 

that EAFT and Opentuner initially progressed in close proximity to each other, before 

diverging in a more pronounced way after the fourth iteration. Opentuner could not 

find a better result after the fourth iteration. Regarding the TSP_GA code, Opentuner 

found a better result in the first two iterations, before being overtaken by EAFT from 

the third iteration onwards. The results are presented in Figure 4.8. Finally, we 

compared the runtimes of Opentuner and EAFT. Unlike the other experiments, this 

comparison was not based on iteration but is presented with the runtime of these tools 

on the x-axis, expressed in seconds. EAFT was able to outperform Opentuner not only 

in iteration but also in runtime. These results are shown in Figure 4.9. 
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CONCLUSION AND FUTURE WORKS 
 

In this thesis, a genetic algorithm was employed to optimize the selection of EAFT 

and GCC optimization flags, with the aim of achieving the best runtime performance 

for a given code. The algorithm was designed to explore a vast search space to find the 

most optimal parameters within it. In order to do this, we employed several models 

and crossover methods that have not been used in other studies. Among these methods, 

the different Genetic Algorithm models were identified as the most critical. This 

approach led to the identification of more effective optimization parameters and 

enabled the algorithm to produce better runtime performances. 

 
 One of the most significant challenges encountered in this study was to find 

the right optimization markers. Optimization markers are metrics used to measure the 

performance of different optimizations for a given program. Finding an optimization 

marker that provides consistent results across different benchmarks was difficult. This 

was due to the fact that the optimal parameters for one benchmark may not necessarily 

be optimal for another. However, the study fine-tuned the approach to identify the 

optimal metrics for EAFT. This approach improved the accuracy of the optimization 

and enabled the algorithm to produce more consistent results. 

 
 The values obtained in this study were compared with the results of another 

library, Opentuner. The results indicated that EAFT produced better results than 

Opentuner. This finding highlighted the effectiveness of the genetic algorithm 

approach in optimizing the selection of EAFT and GCC optimization flags. Moreover, 

the study showed that fine-tuning the approach can lead to better performance results. 

 
 Future improvements to this study could involve exploring different genetic 

algorithm models and crossover methods to improve the efficiency and accuracy 

EAFT. Expanding the research to cover a broader range of programming languages 

and architectures could also be worth considering. Furthermore, the study could 

investigate the impact of different hardware configurations on the performance of the 

genetic algorithm. Another aim of future work could be the improvement of the output 

format of EAFT. The tool currently produces output in JSON format, which may not 

be suitable for all users. Therefore, future work could involve designing an approach 

to include the results of EAFT into a database. This would enable more flexibility in 
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the way users can access and analyze the optimization results, and it could facilitate 

the integration of EAFT into a CI/CD pipeline for the automated optimization of code.  
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