

EAFT: EVOLUTIONARY ALGORITHMS FOR

GCC FLAG TUNING

BURAK TAĞTEKİN

MEF UNIVERSITY

APRIL 2023

MEF UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

MASTER’S IN INFORMATION TECHNOLOGIES

M.Sc THESIS

EAFT: EVOLUTIONARY ALGORITHMS FOR GCC

FLAG TUNING

 Burak TAĞTEKİN

ORCID No: 0000-0002-8405-5695

Asst. Prof. Dr. Tuna ÇAKAR

APRIL 2023

ACADEMIC HONESTY PLEDGE

 This is to certify that I have read the graduation project and it has been judged to

be successful, in scope and in quality and is acceptable as a graduation project Master’s

Degree in Information Technologies.

 Name Surname: Burak TAĞTEKİN

 Signature:

i

ABSTRACT

EAFT: EVOLUTIONARY ALGORITHMS FOR GCC FLAG TUNING

Burak TAĞTEKİN

M.Sc in Information Technologies

Thesis Advisor: Asst. Prof. Dr. Tuna ÇAKAR

April 2023, 53 Pages

The runtime of written codes is a matter of great importance, especially for

code that is compiled once and executed multiple times. It is very important for

developers to ensure that the resources required by a code are used as efficiently as

possible, and that the runtime is as low as possible. Developers who use compilers

such as GCC or LLVM to compile and run code written in C or C++ can optimize their

code manually and, with certain optimization pointers, are able to make it run faster.

This will provide the shorter runtime, but completıng this manual optimization is

within the abilities of every developer since determining the right combination from

more than 200 flags requires significant expertise.

Many studies have tackled this issue. In this study, Evolutionary Algorithms

for GCC Flag Tuning (EAFT) have been developed as a solution to this problem. This

Autotuner, which is completely open-source, runs the code provided by the end user

according to the specifications also selected by the end user, and searches for the most

suitable optimization markers. For the code to be given In line with this study, which

specifically addresses the end user, the user can input the code path directly from the

Terminal, as well as specify the selection method and the crossover to be used. These

choices can be made without the need to alter the code. The genetic algorithm and

particle swarm optimization to be used is also presented to the user in EAFT, and

unlike in other studies, genetic algorithm contain not one but several models.

Keywords: Compiler, GCC, Evolutionary Algorithms, Genetic Algorithm, Autotuner.

Numeric Code of the Field: 123456

ii

ÖZET

EAFT: EVRİMSEL ALGORİTMALAR İLE GCC İŞARETÇİ OPTİMİZASYONU

Burak TAĞTEKİN

Bilişim Teknolojileri Tezli Yüksek Lisans Programı

Tez Danışmanı: Dr. Öğr. Üyesi Tuna ÇAKAR

Nisan 2023, 53 Sayfa

Yazılan kodların çalışma süresi, özellikle de bir kez derlenip birden fazla kez

çalıştırılacak olanlar için çok büyük önem arz etmektedir. Çalışma süresi boyunca

kodun kullanacağı kaynakların verimli hale getirilmesi ya da bekleme sürelerinin

azaltılması birçok geliştirici için çok önemlidir. C, C++ gibi kodların derlenip

çalıştırılması hususunda GCC ya da LLVM gibi derleyiciler kullananlar bu konuda

optimizasyon işini manuel bir şekilde yapıp kodun belirli optimizasyon işaretçileri ile

daha kısa sürede çalışmasını sağlayabilir. Bu durum yukarıda bahsi gecen yararları

sağlayacaktır ancak seçimi yapmak her geliştirici için o kadar da kolay olmamaktadır

zira 200’den fazla flag içerisinden doğru kombinasyonu seçmek uzmanlık isteyen bir

alandır.

Bu problemin de önüne geçmek için literatürde birçok çalışma yapılmıştır. Bu

çalışma kapsamında ise bu soruna bir çözüm olarak EAFT: Evolutionary Algorithms

for GCC Flag Tuning geliştirilmiştir. Tamamen açık kaynaklı olan bu Autotuner, son

kullanıcının temin edeceği kodu, yine son kullanıcının seçeceği özellikler

doğrultusunda çalıştırıp onun için en uygun olan optimizasyon işaretçilerini arar. Son

kullanıcıya özellikle hitap eden bu çalışma doğrultusunda verilecek olan kod için

kullanıcı hangi seçim metodunu kullanacağından hangi çaprazlamanın kullanılmasını

istediğine kadar birçok noktada direkt olarak Terminal üzerinden seçim

yapılabilmesine olanak sağlar. Bu seçimler EAFT içerisinde bir kısım ya da kod

değiştirilmeden yapılabilecek kolaylıktadır. Kullanılacak olan evrimsel algoritma da

EAFT içerisinde kullanıcının seçimine sunulmuştur ve evrimsel algoritmalar diğer

çalışmalardan farklı olarak bir değil birden fazla model içerir.

Anahtar Kelimeler: Derleyici, GCC, Evrimsel Algoritmalar, Genetik Algoritma.

Bilim Dalı Sayısal Kodu: 123456

iii

 Tüm süreç boyunca

desteğini esirgemeyen aileme ve

maalesef aramızdan ayrılan

Köpeğim Roma’ya ithaf ediyorum…

iv

TABLE OF CONTENTS

ABSTRACT ... i

ÖZET ... ii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

1.INTRODUCTION ... 1

1.1 Purpose of the Thesis ... 1

1.2 Literature Review ... 2

1.3 Overview .. 6

2.BACKGROUND ... 7

2.1. Compiler .. 7

2.2 Interpreters ... 7

2.3 Optimization ... 8

2.4 Selecting the Best Flag Sequence .. 11

2.4.1 Optimization Space .. 12

2.5 Benefits and Problems .. 12

2.5.1 Polybench .. 12

2.5.2 Optimization Effects on Compiler ... 13

2.5.3 Comparison between O2 and O3 ... 16

3.EVOLUTIONARY ALGORITHMS ... 21

3.1 Genetic Algorithm .. 21

3.1.1 Inspiration and First Look ... 21

3.1.2 Crossover and Mutation ... 23

3.1.2.1 Partially Mapped Crossover .. 24

3.1.2.2 Ordered Crossover ... 25

3.1.2.3 Generalized N-Point Crossover ... 25

3.1.2.4 Uniform Crossover .. 26

3.1.2.5 Edge Recombination Crossover .. 26

3.1.3 Selection Methods ... 27

3.1.3.1 Roulette Selection ... 27

3.1.3.2 Tournament Selection ... 28

3.1.4 Mutation ... 28

3.1.5 Genetic Algorithm Models .. 28

v

3.1.5.1 Generational Model ... 28

 3.1.5.2 Steady State Model ... 29

3.1.5.3 Down to Size Model .. 30

3.1.5.4 Ring Model .. 31

3.1.5.5 Only Mutation Model .. 32

3.2 Particle Swarm Optimization ... 32

3.2.1 Formulization of PSO .. 32

4. RESULTS 34

4.1 Command Line Interface .. 34

5. DISCUSSION ... 43

CONCLUSION AND FUTURE WORKS ... 47

REFERENCES …………………..……………………………………………….………49

vi

LIST OF TABLES

Table 1.1 Features from [1] .. 6

Table 2.1 Effects of Optimization Flags .. 9

Table 2.2 Optimization Flags ... 10

Table 2.3 Polybench Benchmarks .. 13

Table 4.1 Benchmark Results .. 35

Table 4.2 All Flag Opening Results ... 36

vii

LIST OF FIGURES

Figure 1.1 Input Effect on Assembly ... 3

Figure 1.2 Branching .. 4

Figure 2.1 From Source Code to Machine Code. ... 7

Figure 2.2 O2 Optimization Effects of Polybench ... 15

Figure 2.3 O2 vs O3 Optimization Levels ... 16

Figure 2.4 O2 vs O3 For Each Benchmark .. 17

Figure 2.5 Runtime Distribution of Benchmarks with Flags 18

Figure 2.6 Runtime Distribution of All Benchmark with Flags 20

Figure 3.1 Finches Beak [3] ... 22

Figure 3.2 Optimization Flag Representation in Chromosome 23

Figure 3.3 From Gene to Population .. 23

Figure 3.4 Partially Mapped Crossover ... 24

Figure 3.5 Ordered Crossover .. 25

Figure 3.6 Generalized N-Point Crossover .. 26

Figure 3.7 Edge Recombination Crossover ... 27

Figure 3.8 Generational Model .. 29

Figure 3.9 Steady State Model ... 30

Figure 3.10 Down to Size Model ... 31

Figure 3.11 Ring Model ... 31

Figure 4.1 CLI .. 34

Figure 4.2 2MM Population Changes .. 38

Figure 4.3 Mutation Rate Changes ... 38

Figure 4.4 Crossover Rate .. 39

Figure 4.5 Seidel-2D Population Changes ... 39

Figure 4.6 Seidel-2D Crossover Rate ... 40

Figure 4.7 EAFT vs Opentuner M.M. .. 40

Figure 4.8 EAFT vs Opentuner TSP .. 41

Figure 4.9 EAFT vs Opentuner Time Comparison ... 41

viii

ABBREVIATIONS

CLI : Command Line Interface

DTS : Down to Size

ERX : Edge Recombination Crossover

GA : Genetic Algorithm

GCC : GNU Compiler Collection

GM : Generational Model

OX : Ordered Crossover

PMX : Partially Mapped Crossover

PSO : Particle Swarm Optimization

RM : Ring Model

SSM : Steady State Model

TSP : Travelling Salesman Problem

UX : Uniform Crossover

1

1. INTRODUCTION

1.1 Purpose of the Thesis

Programs written in C and C++ languages are widely used today in many

different areas, from operating systems to image processing applications. Many

software developers prefer these languages for performance reasons.

Programming languages have many features, some of which differ from a

language to the next. This thesis will focus on “compile”, one of the features that differ

the most between languages. Tools such as Clang or GNU Compiler Collection (GCC)

are necessary to run code written in C and C++ languages; these tools are called

compilers and their purpose is to convert source code to machine code. Many processes

occurring during compilation will be mentioned and detailed in this thesis, but the

focus will be on the way developers can intervene in the optimization stages.

In order to convert source code to machine code, a compiler performs a series

of operations. These can directly affect the runtime of the code, potentially shortening

it when applied correctly. In applications where gaining mere seconds is important—

for instance in telecommunication systems—shortening the code execution time is of

great importance. The purpose of this thesis is to introduce methods that can be applied

to shorten the code runtime, and to present a heuristic search algorithm that can be

used for this purpose. In this study, we used GCC 9.3, which contains 212 flags; other

versions of GCC may have a different total number of flags.

Heuristic search is a technique in artificial intelligence that aims at providing

an approximate solution for a problem, rather than the single best result; it is

particularly useful when the set to be searched is very large. Several algorithms can

find solutions to the problems faced by computer scientists; in this thesis, Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO) will be used to find the most

appropriate optimization sequence of the 212 flags contained in GCC 9.3.

2

1.2 Literature Review

The search for the best optimization flags has been the subject of much

research, and different approaches have been employed to try and solve the issue.

Opentuner is a general purpose Autotuner. It can find the most suitable flags

using several search algorithms that it implements and runs together [4]. Rather than

implementing these algorithms in a generic way, Evolutionary Algorithms for GCC

Flag Tuning (EAFT) uses binary search algorithms that fully match the GCC flag

optimization. In this way, EAFT ensures that only the flags that will enable the code

to run faster will be included. Compared to Opentuner, which is written in Python,

GOLANG is used in the EAFT implementation. Not only is Go language faster than

Python in terms of multi-threading, but the runtime of the search algorithm is also

shorter.

Studies on flag optimization are not concerned exclusively with search

algorithms. By making static and dynamic analyses, it is the structure of the code itself

that is examined. These analyses are also conducive to making prediction models.

Static analyses can be done on the assembly code of the program with tools

such as LLVM-MCA [5]. By using tools such as Ithemal [6] that evaluate the features

coming from LLVM-MCA, it is possible to predict the runtime of a code without the

need to actually run it. A consequence of only predicting the runtime of a code is that

multiple features cannot be determined. The code may be processing the input values

it receives from outside, or it may rely on a value it calculates at runtime. For such

reasons, only estimating the code’s runtime is not always desirable. This issue is

known in the literature as the “Halting Problem” [6]. Likewise, the runtime of the code

can be increased or shortened simply by changing the input size, without altering the

code structure. In this case, the analysis tools will not be able to interpret the situation

and will thus not be able to make correct predictions, since they will not detect any

change in the code. As shown in Figure 1.1, whether the input given to the square

function is 1 or 1,000,000, there is no difference in the LLVM-MCA output.

3

Figure 1.1: Input Effect on Assembly.

Unlike LLVM-MCA, Ithemal [6] analyzes only a basic block code instead of the

assembly code of the whole program. There are too many basic blocks in long and

complex programs, and if we consider the conditions they contain, we notice that the

working structure of the code is highly variable. As shown in Figure 1.2, a simple if /

else in the code leads to two different possibilities. This results in lower accuracy

values along with an increased complexity of the code.

Cobayn [8] is a tool that aims at predicting the static feature values of the code

as a speedup prediction using Bayesian networks. This tool releases static features with

Milepost GCC [9]. The fact that the team that developed Milepost worked with

versions 4.X.X of GCC and did not make the project compatible with newer GCC

versions led to the project eventually becoming obsolete. This GCC versions are

outdated for Cobayn using Milepost. On the other hand, Cobayn implemented with

Matlab is more complex to use than EAFT, written in Go language. The static features

released by Milepost have inspired other works [9]. These features, numbering 56 in

total, comprise the number of basic blocks in the assembly code, the total number of

edges in the control flow graph, the number of direct calls in the method, the total

number of instructions, and the number of methods that return integers or pointers.

4

These features search for information in the assembly code (as mentioned in the

Cobayn), along with the flags that will speed up the code. The order of the flags is also

important and that issue has been investigated in several studies, including as part of

the Cobayn method [10]. Wang et al. [11] did a research on Feature Engineering from

static code features. They used machine learning models to identify code structure and

attempted compilation processes using models. As the authors mentioned, Machine

Learning is not a panacea, one of the main issue being that the code structures

significantly differ from a program to next.

Figure 1.2: Branching

Using a different codebase, Cooper et al. [12] also tackled optimization

problems. The authors tried to reduce the code size by changing the optimization flags,

and reached their goals using genetic algorithms. Their research also showed that a set

of optimization flags reduces the code size regardless of the structure of the code.

Zhong et al. [13] tried to decrease code runtime with a different heuristic search

method, Simulated Annealing. As the authors of the study acknowledged, their GCC

version was not one of the most recent. This is important, since GCC performs better

on optimization when the compiler version and the architectures are more recent.

Zhong et al. pointed out that their optimization reduced the code runtime when

compared with O3 optimization level, but not more than other tools mentioned in this

literature review.

Dubach et al. [14] created a series of features through code assembly. In their

research, they used the UTDSP Benchmark; ten different problems were considered,

some of which provided a maximum speedup of 50%, others a speedup of 1%.

5

Static features are usually created from assembly to represent the structure of the code.

Although it seems reasonable to collect information about flag optimization by

removing the embeddings of the code with approaches such as the one described in

[15], two problems arise. First, as long as the flags do not change the high-level

structure of the code, help can be obtained from the assembly level to see the change.

Since other approaches examines the code semantically, the predicted result changes

when the names of the functions given in [15] are changed. Since this is an undesirable

result, the approach described in [15] is not useful for our study.

The order of the optimization flags to be selected is also important. Ashouri et

al. [16] achieved a runtime acceleration of 4% by relocating the optimization flags

when they compiled the code according to the measurements made in his study. Phase-

ordering is tackled right after having selected the optimization flags.

Alongisde static features, the scientific literature is also concerned with the

dynamic feature values of the code and the selection of optimization flags. In the 2007

study by Cavazos et al. [1], the authors collected the feature values that could be

obtained when the code was running. As shown in Figure 1.4, values such as cache hit,

branches, and total cycle were used. As a result, by using PathScale compiler in

SPEC2000, these values improved by 10%.

In a study by Ashouri et al. [17], the code was profiled using Micro-

architectural Independent Characterization of Applications (MICA) tool. No other

static analysis was used in the study and only the dynamic profiling task was

undertaken by MICA. The model the authors built using Bayesian networks achieved

an average speedup of 1.5 times in the cBench benchmark. Unlike other studies, [17]

considered only eight optimization flags, which corresponds to approximately 6% of

the total number of flags.

6

1.3 Overview

 The thesis is organized as follows. Chapter 2 first considers the Compilation,

then elaborates on Optimization flags and compilers. Chapter 3 explores in detail the

searching algorithms, models, crossover techniques and other elements used in

EAFT. The various stages of the autotuning process are illustrated as necessary.

Chapter 4 is concerned with the Command Line Interface (CLI). In Chapter 5, a

thorough discussion of the results obtained from our experiments and analyze the

performance of EAFT on various benchmark problems were provided. Finally, thesis

conclude by summarizing findings and suggesting directions for future research.

Table 1.1 Features from [1]

Floating Point Branch Stats L1 & L2 Cache TLB Statistics

Add Instructions Data Hit, Miss Data Lookaside Miss

Multiply Cond. Mispredict Instruction Hit, Miss Reads Instruction lookaside Miss

Total Instructions Cond. Taken Load: Store, Miss Total lookaside Miss

Total Ops Total: Access, Hit, Miss

Cycles

7

2. BACKGROUND

2.1. Compiler

Briefly, a compiler converts an expression written in a way that can be

understood by a human into a statement that can be understood by hardware [18]. In

computer science, this conversion is usually done from a high-level language to a

lower-level language such as assembly, machine code etc. By high-level language, we

refer to languages with high intelligibility, designed to be easy to use, for instance by

being free of details such as memory management. Technically, purification is the

most basic criterion to determine whether a language is high-level. The compiler is

responsible for making this language easier to execute by a machine, at the cost of

lesser intelligibility by humans [2].

2.2 Interpreters

Like Interpreters, Compilers do not deal with the whole code at once, instead

they progress step by step in the desired direction and provide results along the way so

that the program does not give a generic error in case of errors present in the unused

parts of the code. Interpreters usually transform code into middleware such as bytecode

or Intermediate Representation. This incremental progression gives better debugging

chances than compilers, but also leads to performance loss. Today, commonly used

languages such as Python, Perl, or Ruby, are run by Interpreters. Despite significant

Preprocessor

Compiler

Assembler

Linker / Loader

Source Code

Modified Source Code

Assembly Program

Library Imports

Target Machine Code

Machine Code

Figure 2.1: From Source Code to Machine Code.

8

differences, Compilers and Interpreters also have a lot in common, such as the ability

to tokenize the code and to perform specific analysis. The translation of the code into

the target language within the compiler is the result of several steps (see Figure 2.1).

2.3 Optimization

The optimization parameters to be given to the compiler, the main subject of

this study, directly affect some of the transformations that will be applied in the

conversion to the target code. Most of the programs written in the 1950s contained

code written in languages close to assembly level and developed by developers who

knew the requirements of the hardware they were working with. While the systems

used today are significantly better than the hardware of that period, the number of

developers writing low-level code has decreased considerably [18]. As mentioned

above, code written in high-level languages relies heavily on the developer’s ability to

make few mistakes and work efficiently, rather than on hardware compatibility. The

optimization difference can be reduced thanks to the optimization flags to be provided

to the selected compiler [19]. Selecting the right optimization flags requires

considerable experience. There are predefined optimization flags in GCC; version 9.3

contains more than 200 of them. Knowing the role of every single flag is a near

impossible task for most developers. In this situation, many software developers get

help from predefined optimization flags. Some default flags are shown in Table 2.1.

These flags have different effects on the code. A “+” symbol in a column means that

the value is greater—for example, in row -O0, the code’s Execution Time is longer.

This is actually the price to pay for the desired optimization. Increasing the

optimization level may be a way to reduce this time, but it should be remembered that

a change in the optimization level will lead the values of other metrics to change

accordingly. For example, shortening the Execution Time of the code will cause a

greater memory usage. This is not a good solution for a system that does not have

enough memory. Likewise, the Compile Time of the code also increases over time.

Compile Time can be ignored for code that is compiled once and executed many times.

Since the main purpose of this study is to shorten the Execution Time of the code,

other metrics will be disregarded.

9

Table 2.1 Effects of Optimization Flags.

Option Execution Time Code Size Memory Usage Compilation Time

-O0 + + - -

-O1 - - + +

-O2 - + ++

-O3 -- + +++

-Os - ++

-Ofast -- + +++

O1: Shortens the execution time of the code without making an optimization

that would cause the compilation time to be excessively long.

O2: Applies further optimization than O1. It increases the compilation time as

well as shortens the code execution time.

O3: Building up on O2, O3 tries to shorten the execution time of the code by

making further optimizations.

Optimization levels progress cumulatively. For example, O2 uses the flags that

the O1 optimization level has opened, and adds further optimizations, as seen in Table

2.2. In total, there are 111 flags in Table 2.2, but the figure does not illustrate all

options. There are differences according to the GCC version used [20]. GCC 11, for

instance, has a total of 232 flags. With the correct selection from these 232 flags, the

code can be run faster than with the predefined optimization flags. It must also be noted

that using the same flags for every problem or every code does not provide the same

optimization; it is therefore necessary to specify a different set of flags for each code.

As mentioned previously, understanding the functions of optimization flags

and using them correctly requires expertise. This can get complicated for GCC 11 and

the 200+ flags it contains [21]. With the increase in the size of a project, the burden on

the person in charge of flag selection also increases. This person will need to keep

track of where improvements are made in the structure of the code. This is also a very

unefficient and unsustainable situation, especially for a large team.

10

Table 2.2 Optimization Flags.

O1 O2 O3
auto-inc-dec align-functions gcse-after-reload
branch-count-reg align-jumps inline-functions
combine-stack-adjustments align-labels ipa-cp-clone
compare-elim align-loops loop-interchange
cprop-registers caller-saves loop-unroll-and-jam
dce code-hoisting peel-loops
defer-pop crossjumping predictive-commoning
delayed-branch cse-follow-jumps split-paths
dse cse-skip-blocks tree-loop-distribute-patterns
forward-propagate delete-null-pointer-checks tree-loop-distribution
guess-branch-probability devirtualize tree-loop-vectorize
if-conversion devirtualize-speculatively tree-partial-pre
if-conversion2 expensive-optimizations tree-slp-vectorize
inline gcse unswitch-loops
unctions-called-once gcse-lm vect-cost-model
ipa-profile hoist-adjacent-loads version-loops-for-strides
ipa-pure-const inline-small-functions
ipa-reference indirect-inlining
ipa-reference-addressable ipa-bit-cp
merge-constants ipa-cp
move-loop-invariants ipa-icf
omit ipa-ra
rame-pointer ipa-sra
reorder-blocks ipa-vrp
shrink-wrap isolate-erroneous-paths-dereference
shrink-wrap-separate lra-remat
split-wide-types optimize-sibling-calls
ssa-backprop optimize-strlen
ssa-phiopt partial-inlining
tree-bit-ccp peephole2
tree-ccp reorder-blocks-algorithm=stc
tree-ch reorder-blocks-and-partition
tree-coalesce-vars reorder-functions
tree-copy-prop rerun-cse-after-loop
tree-dce schedule-insns
tree-dominator-opts schedule-insns2
tree-dse sched-interblock

11

Table 2.2: Optimization Flags (continued)

O1 O2 O3

tree sched-spec

orwprop store-merging

tree strict-aliasing

re thread-jumps

tree-phiprop tree-builtin-call-dce

tree-pta tree-pre

tree-scev-cprop tree-switch-conversion

tree-sink tree-tail-merge

tree-slsr tree-vrp

tree-sra

tree-ter

unit-at-a-time

Selecting the right flag set poses two challenges. The first one, already

mentioned, is to select the right flags from the entire pool (232 flags for GCC 11) to

compose the most appropriate flagset. The second one is to provide these selected flags

to the compiler in the correct order. The order of the selection of the optimization flags

is important as it will affect the execution time of the code, as revealed in the study of

Ashouri et al. [16]. This situation, known as “Phase-Ordering” in the literature, will

not be further investigated in the framework of this thesis, whose scope is primarily

focused on the selection of the the right flags.

2.4 Selecting the Best Flag Sequence

The selection of the appropriate flags for the code whose runtime we aim at

reducing creates a cluster that contains a certain number of flags. As mentioned above,

the order of the flags to be provided to the compiler from this set will affect the

optimization structure of GCC. Ashouri et al. [8] have shown that these flags will

affect the result even without phase-ordering.

12

2.4.1 Optimization Space

For the compiler, a flag can have two states: On or Off. This will be represented

by a 0 or a 1 on the genetic algorithm, as shown in formula 2.4.1.

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = {0, 1}

(2.4.1.)

A marker was needed to indicate whether the optimization flags were toggled

on or off. Markers prefixed with “fno” are represented as closed, and markers prefixed

with “f” are represented as open. In the GCC -O2 -fno -unsafemath -optimizations -

finline -functions statement, the -unsafe -math -optimizations flag needs to be turned

off, and inline-functions needs to be turned on. As mentioned above, this is a binary

search problem. If ten flags were used, the probability of selection best optimization

flag sequence would be close to like 2!!. Considering that recent GCC versions have

more than 200 flags, this probability quickly grows to exponential levels, as each

additional flag doubles the total search set. There are also parameter fields in the flags.

These flags, which accept values in a certain range, will not be discussed in this thesis.

While developing EAFT, tests and necessary developments have been made for the

optimization flags that will work on GCC.

2.5 Benefits and Problems

Compiler optimization may not make as noticeable a difference as the

development of CPU structures used to make. Within the scope of the thesis, this

subject is also discussed and examined. Before providing the reader with the results of

our research, we will present the benchmark used in this study, Polybench.

2.5.1 Polybench

Polybench is a benchmark tool written in C language with different problems,

and that contains different predefined input options [22]. These 30 codes perform

different operations such as image processing, physics simulation, dynamic

programming, and statistical operations. The benchmark’s details are presented in

Table 2.5.1. Polybench was selected because it is already used in several publications,

especially for compiler optimization. Since the upper limits of the loops can be defined

by the user, the latter can directly determine the working time. This gives the user the

13

option to try the benchmark with different inputs, which means that it is useful to

evaluate more than one state of an algorithm, and it thus leads to a good optimization

series.

2.5.2 Optimization Effects on Compiler

In this section, we will examine the effectiveness of the optimization levels on

the benchmark. A review by Ezhil et al. [23] gives a preview of the effectiveness of

optimization flags on the cBench benchmark. Let us dig a little deeper into this with

Polybench. In the study by Perez et al., the authors experienced a 40% improvement

in runtime with optimization flags. In their experiment, they used the GCC version 7.1,

a different version than the one used in this study.

Table 2.3 Polybench Benchmarks.

Benchmark Description

2mm 2d Matrix Multiplications (D=A.B; E=C.D)

3mm 3d Matrix Multiplications (E=A.B; F=C.D; G=E.F)

Adi Alternating Direction Implicit Solver

Atax Matrix Transposition and Vector Multiplication

Bicg BicG Sub Kernel of BicGStab Linear Solver

Cholesky Cholesky Decomposition

Correlation Correlation Computation

Covariance Covariance Computation

Doitgen Multiresolution kernel analysis

Durbin Toeplitz Solver

Dynprog Dynamic Programming in 2D

Fdtd-2d 2-D Finite Different Time Domain Kernel

Fdtd-apml FDTD Using Anisotropic Perfectly Matched Layer

Gauss-filter Gaussian Filter

Gemm Matrix-Multipl C=alpha.A.B+beta.C

Gemver Vector Multiplication and Matrix Addition

14

Table 2.3 Polybench Benchmarks (continued)

Gesummv Scalar, Vector and Matrix Multiplication

Gramschmidt Gram-Schmidt Decomposition

Jacobi-1d 1-D Jacobi Stencil Computation

Jacobi-2d 2-D Jacobi Stencil Computation

Lu LU Decomposition

Ludcmp LU Decomposition

Mvt Matrix Vector Product and Transpose

Reg-detect 2-D Image Processing

Seidel 2-D Seidel Stencil Computation

Symm Symmetric Matrix-Multiply

Syr2k Symmetric Rank-2k Operations

Syrk Symmetric Rank-k Operations

Trisolv Triangular Solver

Trmm Triangular matrix-multiply

15

Figure 2.1: O2 Optimization Effects of Polybench.

The graph on Figure 2.2 shows the difference in compilation runtime under

normal conditions and with O2 optimization; it reveals that the optimization levels did

not provide the same improvement in runtime for each code. In this study, we

attempted to reduce the measurement errors by running each benchmark five times

with the same optimization flags, substracting the highest and lowest values, and

taking into account the average of the remaining three values. In this way, the

compilation runtime differences that may occur because of the specifications of the

computer on which the measurement is made are reduced to a minimum. In Figure 2.2,

the codes with relatively high operating times (between 0 and 20 seconds) are shown

on the left side, while the other codes with a runtime between 0 and 1 second are on

16

the right side. Seidel-2d, trmm and covariance optimization markers were least

affected by optimization, while the runtimes of 3mm, head-3d, and fdtd-2d codes were

greatly shortened. As mentioned in the Optimization section (section 2.3), shortening

the runtime of the code by increasing its optimization levels has side effects. For

example, O3 optimization level reduces the code’s runtime more than O2, while

significantly increasing the size of the code [24]. Since all optimization levels have

trade-offs like increasing compilation time when try to decrease run time of a given

code, within the scope of this study the results will be compared exclusively with the

O2 optimization level.

2.5.3 Comparison between O2 and O3

In the previous section, the effects of the O2 optimization marker on the

Polybench data were examined. Does O3 optimization always provide a lower runtime

when compared to O2 optimization, which is deemed to be the most effective by GCC

? The answer to this question is to be found in Figure 2.3. The formula

Figure 2.2 O2 vs O3 Optimization Levels.

17

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐹𝑎𝑐𝑡𝑜𝑟 = "!"
"#$%&'()

 can be used to express the results of the O2

optimization level displayed on Figure 2.3. Likewise, the speedup factor was also

calculated for O3.

As shown on Figure 2.3, the O2 optimization marker gave better results for 9

out of 30 benchmark codes. For most of the remaining benchmarks, the difference in

runtime was barely noticeable. This is the case with the basic optimization levels. A

possibly clearer way to examine the differences in runtime is to calculate how much

the optimization speeds up each code individually—this is shown on Figure 2.4. The

green dots in the graph show the runtime of the code without optimization, while the

orange dots show the O2 and the blue dots, the O3 runtime. The Y axis in Figure 2.4

also represents the runtime. Code such as seidel-2d, already tackled above when

Figure 2.3 O2 vs O3 For Each Benchmark.

18

examining Figure 2.3, could not be significantly optimized. Several factors

could account for this, but one of the most straightforward reason is that the

optimization flags do not work effectively because of the complex structure of the

code. This situation is also mentioned in the Cole study [21]. Upon examination of the

runtimes through the Polybench codes, we saw that for some codes the predefined

optimization levels were insufficient. In line with this inadequacy, we aim at finding a

better optimization by turning on and off the optimization flags in the optimization

levels, rather than using the GCC predefined optimization levels. In order to find the

most appropriate flags, a genetic algorithm, which is one of the heuristic search

algorithms, will be used. The examination of the effectiveness of heuristic search

algorithms, or the way the benchmarks runtimes in Polybench can be reduced with the

specified flags, will make for a good introduction before moving on to the explanation

of the study itself. But first, the distribution of the runtime for a few benchmarks will

be examined using violin plots (Figure 2.5).

It is necessary to give an important detail here. The graphs in Figures 2.5

represent the optimization flags deemed the most useful according to previous studies

[4].

Figure 2.4 Runtime Distribution of Benchmarks with Flags.

19

Figure 2.5 shows the extent to which the code can be improved when all

possibilities are taken into account. Each graph shows the number of codes included

in the O2 and O3 optimization levels, and which ones runs faster. Unfortunately, it is

not always possible to consider all the possible combinations of code and optimization

flags, as shown in Figure 2.6. This can be explained by the multiplicity of optimization

levels, as well as by the length of code runtime. For example, running all combinations

of eight optimization flags at O2 level for a code whose average working time is 10

minutes would take up to 42 hours—almost two days.

Figure 2.6. gives the distribution of all possible combinations of flags. We

expect the distribution of optimizations made using O2 and O3 to be very similar. It

was shown in Table 2.2 that the optimization markers also progress cumulatively,

and that some of the flags that are added to O2 are actually equal to those of the O3

optimization level. Differences between the distributions is expected too, since all of

the optimization markers tried here are not equal to all flags that O2 and O3 have in

common. This situation is rarely witnessed simply because each flag does not have

the same effect on every code; that is the reason why the distribution in the Cholesky

code differs drastically from the others. If we consider the 2mm code, we see that

while it peaks at 5 seconds, it is most of the time running in 2.5 seconds

20

Figure 2.6 Runtime Distribution of All Benchmark with Flags.

21

3. EVOLUTIONARY ALGORITHMS

Several evolutionary algorithms were implemented in EAFT; they will be

examined in this chapter.

3.1 Genetic Algorithm

3.1.1 Inspiration and First Look

Many systems are made by imitating living beings in nature. One of them, in the field

of computers science, is the evolutionary algorithms that imitate the evolutionary

development processes of living beings, such as the reactions of living beings to the

events in nature [25], and use it as a tool. Researchers interested in the adaptation

processes of living beings to their environment have imitated natural selection and

turned it into a search algorithm [26]. It is obvious that in imitating this evolutionary

process, researchers were inspired by Darwin’s theory of evolution [27]. The survival

of living beings in their natural environment or the changes they undergo to pursue

their goals also forms the basis of the genetic algorithm. We will illustrate our meaning

through the example of the polar bear. Polar bears lived in polar regions with their

black fur in the early periods [28]. Because of this, they were strongly contrasting with

the color of the ice, making them more easily distinguishable than other living beings

whose predominant color was white. If we assume that the most important factor of

survival for polar bears, is the objective function, we can postulate that this factor is

low for black bears. Let us suppose that one of them caused its fur to turn white as a

result of a mutation in its genetic structure; presumably this change increased his

chances of survival. In this case, this white bear, which may live longer than its

competitors, will have a higher chance of mating, and the offspring from this bear will

resemble its ancestors and also be white, with similarly longer chances of survival than

the other bears whose fur remained black [29]. Another example, using the finch birds

described in Darwin’s Beagle diaries and later included in his works, may bring further

clarification. The beaks of the finches on other islands took a different from the beaks

of the birds on the mainland, and this change was brought about by the need to access

different types of food sources [30].

22

The Darwin’s work, can be thought of as the ability of living beings to find

food or improve their chances of survival with adapting environment. This underlies

the genetic algorithm that seeks to find solutions to very different problems, and for

this reason, genetic algorithm is used in machine learning, optimization, and solving

problems [31]. Although other algorithms exist—for instance evolutionary

algorithms—the most popular algorithm is the genetic algorithm [32]. The genetic

algorithm helps us find the best solution within a very large search set, without having

to go through every single option. This will save time, as explained in the Optimization

section (section 2.3). A consequence of the genetic algorithm’s constantly producing

better results is also something that humanity has used for thousands of years:

crossover. The fact that the offspring produced by two individuals has unique

characteristics, with genes inherited from both parents, gives each living being a

unique place in the population. Each feature given by the parents to the offspring is

called a gene, and a set of these genes is called a chromosome [32]. The characteristics

given by these genes affect the behavior of an individual or creature, its reactions in a

given environment, its chances of survival, and many other aspects. These features

affect the Fitness value, which is what we seek to improve. In this thesis, we will

determine which genes are the best to calculate a shorter code runtime; for this, we

will sequence the genes from the individual resulting from the crossover. Each gene

can take the value of 0 or 1, and the chromosome structure formed by all the genes

represents the optimization flags in the GCC. The aspect of this structure is illustrated

in Figure 3.2. Each chromosome represents an individual, and a assemblage of

chromosomes is called a population. The representation of chromosome and gene is

illustrated in Figure 3.3.

Figure 3.1 Finches Beak [3]

23

3.1.2 Crossover and Mutation

So far, we have considered the origins of the genetic algorithm rather than the

way it works. Crossover is the method that determines how the offspring of two

individuals will receive its genes. The quality of the method is further improved by the

application of numerical methods, such as Average Crossover, that consider the

average of the gene values from the parents [33]. This situation is not suitable for the

scenario mentioned above, because the values 1 and 0 shown in the representation are

used as categories, not as numbers. Another important criterion is the preservation of

the uniqueness of the genes as a result of crossover. The absence of a duplicate gene

is important for some of the problems. A case study [34] showed that since each gene

represents a unique value, the individual created by crossover also preserves this

uniqueness. Although this situation is of limited importance in EAFT, a crossover

method that preserves the situation has been implemented. The crossover methods

implemented in EAFT are presented in the following sections.

0 0 0 1 1 1 1

-fdelayed-branch -fno-unsafe-math-optimizations

Gene

Chromosome 0 0 0 1 1 1 1

1 0 0 0 1 1 1

Population

Figure 3.2 Optimization Flag Representation in Chromosome.

Figure 3.3 From Gene to Population.

24

3.1.2.1 Partially Mapped Crossover

Partially Mapped Crossover (PMX) is a permutational crossover method in

which gene uniqueness is preserved. It is a crossover method that produces two

offspring from two parents. It consists of multiple stages, illustrated in Figure 3.4. Step

1: a random range is selected for crossover. This range should not cover the same index

value, nor all chromosomes. Later, this value is also selected for the other parent. In

step 2, the genes contained in the selected range are swapped. After this substitution,

the crossover is not yet complete since there are duplicate genes. In order to eliminate

STEP 2

5 2 7 3 4 6 1 8

3 8 5 1 4 7 2 6

3 2 7 1 4 7 1 8

5 8 5 3 4 6 2 6

3 2 6 1 4 7 5 8

5 3 4 6

3 1 4 7

5 8 1 3 4 6 2 7

STEP 1

STEP 3

STEP 4

1 -> 3 -> 5
4 -> 4
7 -> 6

Figure 3.4 Partially Mapped Crossover.

25

these duplicate genes, the mapping process, which gives its name to the

crossover, is performed (step 3): the chromosomes not included in the initial selection

are changed according to this mapping. At the end of the process, in step 4, two

offspring are produced.

3.1.2.2 Ordered Crossover

Ordered Crossover (OX), like PMX, is a crossover method where uniqueness

is preserved. With this method, one offspring is produced from two parents. The genes

to be introduced into the offspring are taken from a random index selected from either

parent (step 1). After these genes are transferred, the same genes from parent 2 are

discarded, and the remaining genes are transferred to the offspring, in order [35]. An

example of this crossover is shown in Figure 3.5.

Figure 3.5 Ordered Crossover.

3.1.2.3 Generalized N-Point Crossover

Unlike PMX and OX, N-Point Crossover is not a permutational crossover

method; instead, it includes a lighter method of computational power. The crossover

starts with a randomly selected number N, which can only be as high as the total

number of genes in the chromosome. After the number N is determined, the

chromosomes are randomly divided into N parts. After splitting both parents’

chromosome, the genes are swapped, thus creating two offspring [36]. As seen in

Figure 3.6, the gene 1 occurs more than once in offspring 1. Likewise, genes 3 and 8

appear more than once in offspring 2. This situation is not problematic for EAFT and

in the context of this study, because this situation has been implemented especially for

the use of different types of crossover methods.

5 2 7 3 4 6 1 8

3 8 5 1 4 7 2 6

Parent One

5 8 1 3 4 6 2 7

Parent Two

Offspring

26

Figure 3.6 Generalized N-Point Crossover.

3.1.2.4 Uniform Crossover

Unlike other methods, Uniform Crossover (UX) uses no index value. The

genes to be transferred from each parent are randomly switched to create an offspring

with a certain probability [37]. The threshold value can be input as a parameter; it is

0.5 by default.

3.1.2.5 Edge Recombination Crossover

Edge Recombination Crossover (ERX) is a crossover method that aims at

minimizing the empty edges, since they affect the performance of the algorithm. The

edges between the nodes remain important, as exemplified by the Travelling Salesman

Problem (TSP) [33]. In the first step, the neighbors of each gene from both parents are

listed. The algorithm starts by selecting a random gene, which is transferred to the

offspring. This transferred gene is removed from all other neighbor lists, then the genes

in its neighbor list are considered: whichever gene has the least number of neighbors

is selected, and in case of equality, a random choice is made [38]. The newly selected

gene is added to the offspring and the algorithm continues in the same way until the

sequence is completed. A simulation of this crossover method is illustrated in Figure

3.7.

5 2 7 3 4 6 1 8

3 8 5 1 4 7 2 6

2 1 1 4 5 7 6 6 Offspring One

2 8 3 4 3 5 7 8 Offspring Two

5 2 7 3 4 6 1 8 Parent One

3 8 5 1 4 7 2 6 Parent Two

27

Figure 3.7 Edge Recombination Crossover.

3.1.3 Selection Methods

Selection methods come from the true nature of creatures. Darwin’s research

showed that selection criteria are a part of evolution [39]. This method or process is

known as “Natural Selection.” Darwin’s works state that differences or variations in

phenotypes between individuals are a key element of natural selection. In genetic

algorithm, a population comprises many individuals, and some or all of them,

depending on the model type, will produce offspring. The questions that need to be

asked are: how do we determine which individual will mate with another individual?

Should everyone in a population produce an offspring? In any given population,

individuals have a different probability of finding mates to produce offspring.

According to Darwin, the fittest individuals have a higher chance to find a mate [40].

In genetic algorithm, this probability will depend on two basic things: selection

probability and fitness value. In EAFT, two popular selection methods—the

“Roulette” and the “Tournament”—have been implemented.

3.1.3.1 Roulette Selection

This selection is based on a real-world game: Roulette [41]. In this game, every

number on the roulette wheel has the same probability to come out, but genetic

algorithm implementation is a bit different and more in line with Darwin’s work, as

mentioned above. In this selection method, individuals that have a higher fitness value

have a higher degree of agency, or in other words have a higher chance to mate [42].

1 2 3
3

4
4

5
5

6
6

7
7

8
8

2 8
8

1
1

4
1

3
1

7
7

5
5

6
6

Edge List

1 – 2,8,4
2 – 1,3,6,8
3 – 2,4,7
4 – 3,5,1
5 – 4,6,7
6 – 5,7,2
7 – 6,8,3,5
8 – 7,1,2

1 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0

1 2 8 0 0 0 0 0

1 2 8 7 0 0 0 0

1 2 8 7 3 0 0 0

1 2 8 7 3 4 0
0

0

1 2 8 7 3 4 5
0

0

1 2 8 7 3 4 5
0

8

Offspring in Each İteration

Parent One

Parent Two

28

3.1.3.2 Tournament Selection

Tournament selection is a selection method where tournaments occur between

randomly chosen individuals. The algorithm starts with the selection of a number N of

individual from a given population. After the selection, each individual’s probability

to win is determined based on their fitness value. For example, if 5 out of 100 selected

randomly in a population. Calculate probability distributions of these individuals and

run several tournaments. Number of this tournaments is game changer metric because

if the number of tournaments is high, the individuals that have small chances of

winning will probably not mate and if it is small this is going to be like random

selection from population [43].

In both selection methods, the fittest individual will be the one with the highest

theoretical probability of mating.

3.1.4 Mutation

Mutation is based on biological mutation [44]. It ensures that the diversity of

chromosomes is preserved, and that genes lost in the process are recovered. Mutation

rate is a parameter in EAFT and can be changed in CLI.

3.1.5 Genetic Algorithm Models

In EAFT, more than one genetic algorithm model as well as a wide variety of

crossover methods are proposed to the user. By using these models rather than

traditional genetic algorithm models, our aim is to find better sequences in the GCC

optimization flag set [45]. As in Flag Optimization with Genetic Algorithm (FOGA),

only one model was excluded.

3.1.5.1 Generational Model

The Generational Model (GM) is the one of the most common genetic

algorithm models in literature [46]; whenever a genetic algorithm is described, it is

usually a generational model [47]. Initially, its aim was to produce a number N of

offspring and to replace the population with these new children [48] (exceptionally,

they could be the first generation if there has been no generation before). The flowchart

in Figure 3.8 illustrates the process. In the process of generating new individuals,

29

selection and crossover are typically performed at the beginning, followed by the

application of mutation towards the end.

3.1.5.2 Steady State Model

Steady State Model (SSM) is a bit different than the Generational Model. In

this model, only one new member joins the population with each iteration [49]. With

this implementation, not all new offspring creates a new population since there are

many similarities and overlap between children and parents. The other difference is

that only two parents are selected in the whole population to generate a new offspring.

Not all individuals in the population end up creating a new offspring. After selecting

two parents, the crossover is applied and as a result, if two parents generate two

children, only the best two will be chosen from this four-member family. This is the

main idea behind the Steady State Model [50]. The process is then repeated until the

acceptance criteria are reached.

The flowchart in Figure 3.9 shows the additional steps of SSM. As mentioned

previously, the new step compares the fitness value of all the members of a family

(two offspring and two parents) to find the two best members. A generation population

that contains exclusively the new offspring may not be ideal in all situations. In SSM,

Mutation

Population with N
number of individual

Criteria
Reached ?

Choose 2 Individual
as Parent

Produce 2
offsprings

Change population
with previously

generated

Figure 3.8 Generational Model.

30

the population always contains the individuals with the highest fitness value, whereas

in GM, the new offspring takes the place of the parents’ independently from the fitness

value of the individual. Each situation has pros and cons, and the choice of the one to

use depends on the end user of EAFT. Some studies have considered the types of

problems that could be solved with this type of model, and they have concluded that

rule-based systems could use SSM [26]. These two models, as well as the models that

will be presented below, are all optional for the end user.

3.1.5.3 Down to Size Model

Down to Size (DTS) model uses different strategies to select the best

individuals. In contrast to the other two models, DTS generates two population

members. In this model, there are two selection steps. The first step of the model

selects the parents who will create the offspring, then counts the offspring as part of

the population. If the number N of parents in the population P generates offspring M,

the size of population P at the end of this step is M + N. This model leads to the initial

population nearly doubling after a round of offspring generation. Following the

application of mutation in the genetic algorithm, the newly generated individuals

undergo another round of selection, and their acceptance is determined based on

predefined criteria. The selection methods are mentioned in selection section. With

this method, EAFT gives the end user the choice of selection method. The flowchart

in Figure 3.10 illustrates this method’s process.

Population with N
number of individual

Choose 2 individual
as parent

Produce 2 offspring

Mutation

Criteria Reached ?

Choose best 2
member of family

Figure 3.9 Steady State Model.

31

3.1.5.4 Ring Model

The Ring Model (RM) is a topological model. In RM, individuals in the

population are all neighbors. The selection is completed in a different way than in the

other models: whereas other models used selection methods to choose their mates, in

this model, an individual can choose its mate only within its neighbors [51]. Figure

5.11 shows how the process works. After an individual is selected, it generates an

offspring with its neighbor. Then, depending on the fitness value, the offspring may

replace the parent. The model then continues until converge its criteria.

Choose
Parents

Produce
Offspring

Produce 2 offspring

Mutation

Population with N
number of individual

Choose N individual for
next generation

Criteria
Reached?

Produce M number of offspring

N
Individuals

Select 2
Neighbours

Produce 2
Offsprings

Mutate
Offsprings

Fitness
Calculation

Select best
offsprings

and
Neighbours

Replace
with First
Neighbour

Figure 3.10 Down to Size Model.

Figure 3.11 Ring Model.

32

3.1.5.5 Only Mutation Model

The Only Mutation model is the simplest of all models. It aims to change

individuals only through mutation; there is no crossover in this model. If the mutation

rate is increased too much, the model will generate random chromosomes and the

individual’s fitness values will not converge as desired; for that reason, it is important

to choose the correct mutation rate. Conversely, if the mutation rate is too low, then

no change will take place in the chromosomes, and the fitness value will not change

visibly either.

3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another evolutionary algorithm option

that EAFT users can select. It is also an evolutionary algorithm whose origin is to be

looked for in the movements and attitudes of living beings in their natural

environment—in particular, it is inspired by the social behavior of bees, fish, or birds

[52]. In this algorithm, an individual is represented in the same way as in the genetic

algorithm: as a chromosome. A particle is a candidate solution. Each particle

represents an optimization flag sequence. In the scientific literature, PSO is mostly

used with continuous values but, as mentioned, the compiler optimization problem has

a binary representation, and values are always binary. Further, some PSO

implementations for binary problems exist, like those presented by Khanesar et al.

[53]. In EAFT, the Eberhart version of PSO [54] was implemented with binary

modifications based on the approach used by Eberhart et al. [55].

3.2.1 Formulization of PSO

Unlike in the genetic algorithm, in the PSO the global and personal best values

of individuals matter. As formulated by Eberhart [54], each particle is in position 𝑋# =

7𝑥#* , 𝑥#" , 𝑥#+ … , 𝑥#,: and has a velocity of 𝑉# = 7𝑣#* , 𝑣#" , 𝑣#+ , … , 𝑣#,:. In this situation,

particles’ best values are 𝑃#-).& = 7𝑝#* , 𝑝#" , 𝑝#+ … , 𝑝#,: and the global bests are

represented as 𝑃$-).& = 7𝑝$* , 𝑝$" , 𝑝$+ … , 𝑝$,:. In order to calculate the velocity and

position of a particle in a swarm, we use the following formula:

33

v%(t + 1) = w. v%(t) + c!ϕ!7p% − x%(t): + c&ϕ& Jp' − x%(t)K

(3.1)

	x%(t + 1) = x%(t) + v%(t + 1)

(3.2)

c1 and c2 are positive constants, and ϕ1 and ϕ2 are random values between 0

and 1. In addition to (3.1), function (3.3) can be used to calculate the velocity of

particles as probability.

V%/(t) = sig Jv%((t)K =
1

1 + 𝑒)*'0(")

(3.3)

x%((t + 1) = Q
1, 𝑟#- 	< 	sig(𝑣#-(t))
0, Else.

(3.4)

𝑟#- is a random value between [0, 1]. According to changes in velocity, function (3.2)

will be used to determine the position of a particle, instead of function (3.4).

34

4. RESULTS

4.1 Command Line Interface

EAFT is a tool designed for end users. It differs from other autotuners in

several ways, one of which is CLI, which allows end users to choose options such as

the evolutionary algorithm, the crossover, the mutation rate etc. without changing any

line of code. The Callback Notification field contains information on the population,

such as where to find the best fitness value, or the population’s unique ID. A unique

ID could then be used to search the population in JSON. EAFT stores all iteration

results in a JSON file for analysis or other future use. The algorithm first runs with O2

and O3 optimization levels as baseline and compares each fitness value with these

baseline. Figure 4.1 shows the CLI for a population of 5; in that problem, the best

fitness value is the same as the lowest (0.21), and has an improvement of 0.41. The

values for O2 and O3 are also provided, in the List field. In this problem, the

algorithm’s O2 runtime is 0.37 second and the best candidate solution for a population

of 5 has a runtime of 0.21 second. In order to follow the algorithm’s process, the Hall

of Fame field was added. It shows the best individual in each population. The last field,

Current Fitness Value, provides in real-time the fitness values that have just been

calculated. Hall of Fame provides an overall view of the general process, while Current

Figure 4.1: CLI.

Figure 4.0.2 CLI

35

Fitness Value shows only part of it but in greater detail. Finally, the Population Stats

field shows the population statistics.

Table 4.1 Benchmark Results

PROBLEM O3 GM SSM DTS RM PSO

2mm 0.9979 0.6028 0.9867 0.9796 0.5237 0.7441

3mm 1.0002 0.3709 0.9743 0.9756 0.3351 0.3875

deriche 0.9658 0.9779 0.9912 0.9931 0.9255 0.9706

cholesky 0.8242 0.8077 0.8458 0.8016 0.7994 0.814

jacobi-2d 0.6272 0.2553 0.6297 0.6197 0.5347 0.6281

durbin 1.0056 0.8839 0.938 0.8906 0.832 0.9019

mvt 1.0088 0.9519 0.9624 0.9735 0.9028 0.9746

heat-3d 0.6013 0.4912 0.5189 0.5074 0.4427 0.4607

atax 1.0018 0.9671 0.9823 0.9628 0.9372 0.9817

doitgen 0.9646 0.5688 0.9809 0.4122 0.3835 0.8203

floyd-warshall 1.0862 0.892 0.9573 0.9515 0.8423 0.9171

correlation 0.99 0.9405 0.9897 0.9832 0.8204 0.9124

gesummv 1.0397 0.9668 0.969 0.9676 0.8767 0.9611

bicg 0.9671 0.8289 0.9013 0.9353 0.759 0.8304

trisolv 0.964 0.9078 0.9517 0.9532 0.8833 0.8912

trmm 0.9895 0.9672 1.0254 0.9641 0.9541 0.9766

jacobi-1d 0.9494 0.9241 0.968 0.9467 0.9228 0.9308

syr2k 0.7944 0.7324 0.9216 0.803 0.7183 0.6775

gemver 1.004 0.9434 0.9694 0.9569 0.8677 0.9273

nussinov 0.9894 0.8669 0.9292 0.9186 0.8554 0.8763

ludcmp 0.8371 0.6923 0.8302 0.7295 0.6777 0.6924

covariance 0.9851 0.7938 0.9884 0.9792 0.6933 0.9428

adi 0.94 0.804 0.9435 0.8542 0.7972 0.811

syrk 0.8276 0.6804 0.6723 0.7015 0.653 0.6686

seidel-2d 0.8834 0.8206 0.8931 0.8293 0.8012 0.8279

symm 0.9445 0.8459 0.9729 0.8659 0.8627 0.8602

fdtd-2d 0.6852 0.6279 0.687 0.6464 0.6252 0.6295

lu 0.8536 0.8374 0.8681 0.8479 0.7731 0.8495

gramschmidt 0.9734 0.9473 0.9712 0.96 0.9366 0.9387

gemm 0.6142 0.518 0.547 0.5151 0.4739 0.5096

36

Table 4.2: All Flag Opening Results

Problem All Flags Runtime Just Level Runtime Level Change Ratio

adi 18.895 8.814 -O2 2.144
adi 19.006 7.741 -O3 2.455
gramschmidt 6.646 1.852 -O2 3.589
gramschmidt 6.538 1.819 -O3 3.594
deriche 0.471 0.248 -O2 1.896
deriche 0.471 0.257 -O3 1.829
fdtd-2d 2.233 1.325 -O2 1.686
fdtd-2d 2.219 0.944 -O3 2.352
heat-3d 5.634 1.771 -O2 3.181
heat-3d 5.724 1.104 -O3 5.185
2mm 8.057 2.271 -O2 3.548
2mm 8.145 2.269 -O3 3.590
ludcmp 23.075 12.708 -O2 1.816
ludcmp 23.314 9.670 -O3 2.411
trmm 4.362 0.790 -O2 5.519
trmm 4.398 0.806 -O3 5.459
durbin 0.081 0.081 -O2 1.000
durbin 0.087 0.080 -O3 1.092
cholesky 22.465 10.948 -O2 2.052
cholesky 21.875 9.349 -O3 2.340
atax 0.160 0.090 -O2 1.780
atax 0.101 0.084 -O3 1.208
floyd-warshall 56.024 10.616 -O2 5.278
floyd-warshall 57.004 10.609 -O3 5.373
jacobi-2d 3.812 1.100 -O2 3.467
jacobi-2d 3.734 0.781 -O3 4.781
correlation 7.364 1.419 -O2 5.191
correlation 7.210 1.421 -O3 5.076
symm 3.267 1.098 -O2 2.977
symm 3.319 1.099 -O3 3.020
3mm 12.343 3.484 -O2 3.543
3mm 12.555 3.473 -O3 3.615
syr2k 4.360 1.172 -O2 3.720
syr2k 4.248 0.765 -O3 5.555
doitgen 3.801 0.603 -O2 6.303
doitgen 3.793 0.592 -O3 6.412
syrk 1.121 0.482 -O2 2.324
syrk 1.093 0.350 -O3 3.120

37

Table 4.2: All Flag Opening Results (continued)

Problem All Flags Runtime Just Level Runtime Level Change Ratio

doitgen 3.801 0.603 -O2 6.303
doitgen 3.793 0.592 -O3 6.412
syrk 1.121 0.482 -O2 2.324
syrk 1.093 0.350 -O3 3.120
jacobi-1d 0.078 0.085 -O2 0.909
jacobi-1d 0.071 0.078 -O3 0.914
gemver 0.124 0.100 -O2 1.242
gemver 0.126 0.087 -O3 1.455
mvt 0.130 0.095 -O2 1.372
mvt 0.120 0.091 -O3 1.318
covariance 7.385 1.416 -O2 5.216
covariance 7.218 1.415 -O3 5.102
bicg 0.111 0.102 -O2 1.086
bicg 0.103 0.101 -O3 1.027
nussinov 6.017 1.952 -O2 3.082
nussinov 6.233 1.957 -O3 3.184
gemm 1.400 0.618 -O2 2.265
gemm 1.411 0.351 -O3 4.020
seidel-2d 0.561 0.251 -O2 2.236
seidel-2d 0.561 0.217 -O3 2.579
trisolv 0.089 0.083 -O2 1.067
trisolv 0.098 0.087 -O3 1.118
gesummv 0.096 0.088 -O2 1.091
gesummv 0.093 0.083 -O3 1.123
lu 31.538 12.436 -O2 2.536
lu 31.712 10.785 -O3 2.940

The values in the “All Flags Runtime” column are calculated with the statement

gcc -O2 -fx -fy -fz, 199 total available flags. The values in the “Just Level Runtime”

column are calculated with the statement gcc -O2. The values in the “Change Ratio”

column are the result of the division of All Flags Runtime by Just Level Runtime.

Upon analysis of the benchmark results (Table 4.1), it appears that the Ring

Model found most of the best results and showed the best performance according to

the O2 working time. In order to better understand the results, Table 4.2 shows the

runtime changes when all the optimization flags are turned on. In all problems but two,

turning on the flags resulted in an extension of the code's runtime.

38

Figure 4.2: 2MM Population Changes on Runtime.

Figure 4.2 shows how different population numbers for the EAFT fine-tuning

process of the 2MM Benchmark code affected the optimal code runtime value. After

the fourth iteration, the runtime for population values of 50 and 100 showed an

increase—an undesirable situation—before decreasing like all the other population

values. The 350-population value, unlike the others, reached its lowest value already

in the fourth iteration. Although the 200 and 250 population values did not reach their

lowest value by the fourth iteration, they still decreased significantly during the study.

Figure 4.3: Mutation Rate Effect on Run Time for 2MM.

39

We have also examined the fine-tuning of EAFT in mutation rate. Values

between 0.1 and 0.9 are plotted in Figure 4.3: they show how a 0.2 mutation value

resulted in a shorter runtime than the other values.

Figure 4.4: Crossover Rate on Run Time for 2MM.

The last parameter examined for EAFT fine-tuning is Crossover Rate. One of

the main goals of EAFT is to find the best runtime and to keep it as short as possible.

Since the crossover rate determines the possibility individuals have to produce

offspring, it also indirectly affects the runtime of EAFT. Although most results are

close to the same runtime value—a Crossover rate of 0.7—further shortening the

runtime of EAFT and reaching the optimal value in a relatively shorter time, is

preferable than the others.

Figure 4.5: Seidel-2D Population Changes.

40

For the Seidel-2D code, we tried to fine-tune the Population Number, as shown

in Figure 4.5. Although the 200 and 250 population numbers seem more reasonable in

terms of use, a population of 50 reached a lower runtime in an earlier iteration than the

other values. This situation may change depending on the structure of the code and is

interpreted as a very unreasonable situation.

Figure 4.6: Seidel-2D Crossover Rate.

A Crossover Rate fine-tuning has also been tested in the Seidel-2D benchmark. For

this problem, 0.9 and 1 crossover values achieved the best results in the fifth iteration,

followed the 0.5 crossover value in the following iteration.

Figure 4.7: EAFT vs Opentuner on Matrix Multiplication Code.

To better understand the results, we compared EAFT and Opentuner, since

both do similar work. Figure 4.7 shows how much uptime the Matrix Multiplication

41

(MM) C++ code in Opentuner obtained with two tools. From the seventh iteration

onwards, EAFT and Opentuner progressed in parallel, with EAFT achieving a faster

result.

Figure 4.8: EAFT vs Opentuner on TSP Code.

We then compared the runtime of TSP_GA, a C++ code included in Opentuner.

With this code, the runtime difference between Opentuner and EAFT was very wide

as early as the third iteration, with EAFT achieving a much better result; the results

continued to progress in parallel afterwards.

Figure 4.9: Opentuner vs EAFT Time Comparison.

42

In Figure 4.9, the Opentuner code was run twice for the same problem

(TSPGA), named v1 and v2 in the legend. In both versions, EAFT achieved a better

result than Opentuner.

43

5. DISCUSSION

EAFT is a tool for users who wants to shorten the runtime of the programs they

use. To best guide the users, the research and implementation presented above was

worked on a benchmark. These results are valid exclusively in Polybench. As

mentioned in the Compiler section (2.1), most codes are different and no single

solution is valid for all types of code. All the results are presented in Table 4.1. To

better explain the results, the O2 runtime of all problems in the benchmark was set to

1. Then, all remaining working times of the problems were multiplied by this ratio. In

this way, using 2mm as an example, the runtime of O3 was 1% faster than O2’s.

Likewise, O2 had 48% less uptime than RM O2. The resulting RM thus found is the

best value for that problem, and the best results for the other problems are emphasized

in bold in the table. When we consider all the problems, it seems that the Ring Model

is the model that provides the best result in the vast majority of cases. It is possible

that this situation is due to the similarity of the structure of all the benchmarks. As

explained before, all problems, although they are very different from each other, are

eventually mathematical solutions. Exceptionally, Ring Model did not provide the best

result: for instance, PSO found the best result in syrk2k, and GM did so in symm.

There were also cases where the O3 runtime was longer than that of O2. For most of

the cases, RM had better runtimes than O2. This is a benefit of using several different

models. For most problems, other models have achieved results close to those of RM.

For 2MM, the difference between the results of GM and RM is minimal. Likewise, the

best model for TRMM is only 5% faster than O2.

Table 4.1 shows how much each model improved over the runtime values of

O2. The difference between these results and those of O2 is due to the fact that they

were recompiled and run with specific combinations of optimization flags. This

situation brings up the following question: how fast will the code runtime be if all the

flags are turned on? The answer to this question is presented in Table 4.2. Let us first

say a word about the columns of the table.. The “All Flags Runtime” column was

compiled by opening all the optimization flags in GCC-11, where this experiment was

performed, then specifying an optimization level (indicated in the “Level” column)

before running the flags. All optimization flags presented here are taken from the

results returned after the gcc-11 --help=optimizers command, according to the

guidelines provided on the GCC official website. The value in the “Change Ratio”

44

column is simply the result of the value in the “All Flags Runtime” column divided by

the value in the “Just Level Runtime” column; this “change ratio” is, in other words,

the answer to the following question: “what is the runtime difference, expressed as a

ratio, between compiling the codes at O2 and O3 levels with, and without, all

optimization flags?” The code compiled with all the optimization flags turned on

naturally performed less well than when compiled with the standard O2 or O3 level,

prolonging the runtime of the code we were instead trying to shorten. All the codes

were slowed down, except for Jacobi 1D and Durbin, the latter only at O2 level. It is

not uncommon for the use of all possible optimization flags to result in a slower

program than if we had use only the O2 optimization level. This can happen for several

reasons:

1. Over-optimization: when all the possible optimization flags are used, the

compiler may perform optimizations that end up actually slowing down the

program. This is known as over-optimization [56].

2. Optimization conflicts: some optimization flags may conflict with each other,

resulting in unexpected behavior and slower program performance.

3. Resource consumption: some optimization flags may require more memory

or processing power, leading to slower overall performance.

4. Compiler bugs: using all possible optimization flags may create bugs or

issues in the compiler, which can result in slower program performance.

It is important to note that optimization flags can have different effects

depending on the specific code being compiled; as mentioned above, using all

optimization flags may occasionally result in faster performance, like Jacobi 1D and

Durbin.

Fine-tuning Genetic Algorithm is important for further usages. It could

improve the performance of Genetic Algorithm to find better solutions in a shorter

time. In order to improve the performance of the Genetic Algorithm, it is first

necessary to determine which code(s) provide the best improvement from the

benchmark. 2MM and Seidel-2d are suitable for this purpose. Afterwards, we need to

examine the effects that changing a single feature have on the result, keeping the other

features constant. Initially, this situation was examined only to find the best result,

while the runtime of EAFT was ignored.

The first experiment with fine-tuning was to change the population number. In

this experiment, presented in Figures 4.2 and 4.5, we considered the population

45

number between 50 and 400 in increments of 50. In this experiment, the values for the

Crossover Rate and the Mutation Rate were 0.9 and 0.01, respectively. Increasing the

population size could initially lead to better solutions, since there is a higher diversity

of individuals and hence the exploration of the search space is increased. However,

this improvement in performance is often short-lived, as the population may converge

to a suboptimal solution after a certain number of generations. This convergence

occurs because of a trade-off between the computational complexity and the diversity

of the population. As the population size increases, the computational complexity of

the algorithm also increases, which can make it more difficult to efficiently explore

the search space. Furthermore, as the population size increases, the probability of

generating duplicate individuals also increases, which in turn reduces the diversity of

the population. Thus, it is crucial to choose an appropriate population size based on

the complexity of the problem and the available computational resources. In general,

the optimal population size is problem-specific and can be determined through

empirical experimentation. As a result of our trials on Polybench with EAFT, we came

to the conclusion that the best result was a population size of 350.

Another experiment examined the effect of changes in the crossover rate. In

this experiment, Crossover Rate values between 0.1 and 1 were tried one by one; the

results are presented in Figures 4.4 and 4.6. This optimal crossover rate, 0.8, led to

the best performance of the Genetic Algorithm. The reason for this optimal crossover

rate can be attributed to the balance between exploration and exploitation of the search

space. When the crossover rate is too low, the algorithm may converge prematurely

and end up not exploiting the good features of different individuals in the population.

Conversely, if the crossover rate is too high, it may result in too much exploitation of

the search space and a lack of diversity in the population. In our experiments, the

optimal crossover rate of 0.7 allowed for sufficient exploitation of the search space

while maintaining a diverse population. This optimal rate allowed the algorithm to

combine the good features from different individuals in the population, while also

avoiding premature convergence toward a suboptimal solution. In conclusion, the

optimal crossover rate for a genetic algorithm is problem-specific and can be

determined through empirical experimentation. In our case, the best crossover rate of

0.7 allowed for a balance between exploitation and exploration of the search space,

resulting in the highest quality solutions.

46

Finally, the effects of different mutation rates on the performance of EAFT

were examined; the results of this experiment, conducted with rates ranging from 0.1

to 1, are presented in Figure 4.3. The results indicate that the best mutation rate for the

given problem was 0.2. This optimal mutation rate led to the best performance of the

genetic algorithm, as it resulted in the highest quality solutions found during the

experiments. The reason for this optimal mutation rate can be attributed to the balance

between exploration and exploitation of the search space. When the mutation rate is

too low, the algorithm may converge prematurely and end up not exploring new

regions of the search space. Conversely, if the mutation rate is too high, it may result

in too much random variation and a lack of convergence toward the optimal solution.

In our experiments, the optimal mutation rate of 0.2 resulted in a diverse population

that allowed for the exploration of new regions of the search space, while also

providing enough stability to converge toward the optimal solution. In conclusion, the

optimal mutation rate for a genetic algorithm is problem-specific and can be

determined through empirical experimentation.

Let us assess the performance of EAFT with the C++ codes included in

Opentuner, using the optimal results. We first ran these codes on Opentuner, then ran

them again with EAFT, and we examined the graph that shows which code reached

the most optimal result. When analyzed for the MatrixMultiply code, Figure 4.7 shows

that EAFT and Opentuner initially progressed in close proximity to each other, before

diverging in a more pronounced way after the fourth iteration. Opentuner could not

find a better result after the fourth iteration. Regarding the TSP_GA code, Opentuner

found a better result in the first two iterations, before being overtaken by EAFT from

the third iteration onwards. The results are presented in Figure 4.8. Finally, we

compared the runtimes of Opentuner and EAFT. Unlike the other experiments, this

comparison was not based on iteration but is presented with the runtime of these tools

on the x-axis, expressed in seconds. EAFT was able to outperform Opentuner not only

in iteration but also in runtime. These results are shown in Figure 4.9.

47

CONCLUSION AND FUTURE WORKS

In this thesis, a genetic algorithm was employed to optimize the selection of EAFT

and GCC optimization flags, with the aim of achieving the best runtime performance

for a given code. The algorithm was designed to explore a vast search space to find the

most optimal parameters within it. In order to do this, we employed several models

and crossover methods that have not been used in other studies. Among these methods,

the different Genetic Algorithm models were identified as the most critical. This

approach led to the identification of more effective optimization parameters and

enabled the algorithm to produce better runtime performances.

 One of the most significant challenges encountered in this study was to find

the right optimization markers. Optimization markers are metrics used to measure the

performance of different optimizations for a given program. Finding an optimization

marker that provides consistent results across different benchmarks was difficult. This

was due to the fact that the optimal parameters for one benchmark may not necessarily

be optimal for another. However, the study fine-tuned the approach to identify the

optimal metrics for EAFT. This approach improved the accuracy of the optimization

and enabled the algorithm to produce more consistent results.

 The values obtained in this study were compared with the results of another

library, Opentuner. The results indicated that EAFT produced better results than

Opentuner. This finding highlighted the effectiveness of the genetic algorithm

approach in optimizing the selection of EAFT and GCC optimization flags. Moreover,

the study showed that fine-tuning the approach can lead to better performance results.

 Future improvements to this study could involve exploring different genetic

algorithm models and crossover methods to improve the efficiency and accuracy

EAFT. Expanding the research to cover a broader range of programming languages

and architectures could also be worth considering. Furthermore, the study could

investigate the impact of different hardware configurations on the performance of the

genetic algorithm. Another aim of future work could be the improvement of the output

format of EAFT. The tool currently produces output in JSON format, which may not

be suitable for all users. Therefore, future work could involve designing an approach

to include the results of EAFT into a database. This would enable more flexibility in

48

the way users can access and analyze the optimization results, and it could facilitate

the integration of EAFT into a CI/CD pipeline for the automated optimization of code.

49

REFERENCES

[1] J. Cavazos, G. Fursin, F. V. Agakov, E. V. Bonilla, M. F. P. O’Boyle, and O.
Temam, “,” in Int. Symp. Code Generation and Optimization (CGO’07), 2007,
pp. 185–197.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, and tools, 2nd ed. Boston, MA, USA: Pearson Addison-Wesley,
2007.

[3] C. Darwin, The voyage of HMS Beagle, 1910.

[4] J. Ansel et al., “Opentuner: An extensible framework for program autotuning,” in
Proc. 23rd int. conf. Parallel Architectures and Compilation, 2014, pp. 303–
316.

[5] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Int. Symp. Code Generation and Optimization
(CGO’04), 2004, pp. 75–86.

[6] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks,” in 36th
Int. Conf. Machine Learning (ICML), 2019, pp. 4505–4515.

[7] L. Burkholder, “The halting problem,” ACM SIGACT News, vol. 18, no. 3, pp. 48–
60, 1987.

[8] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano,
“Cobayn: Compiler autotuning framework using bayesian networks,” in ACM
Transactions on Architecture and Code Optimization (TACO), 2016, vol. 13,
no. 2, pp. 1–25.

[9] G. Fursin et al., “Milepost gcc: Machine learning enabled self-tuning compiler,”
Int. J. Parallel Programming, vol. 39, no. 3, pp. 296–327, 2011.

[10] E. Park, J. Cavazos, and M. A. Alvarez, “Using graph-based program
characterization for predictive modeling,” in Proc. 10th Int. Symp. Code
Generation and Optimization, 2012, pp. 196–206.

[11] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,” in Proc.
IEEE, 2018, vol. 106, no. 11, pp. 1879–1901.

[12] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for reduced code
space using genetic algorithms,” in Proc. ACM SIGPLAN 1999 workshop
Languages, Compilers, and Tools for Embedded Systems (LCTES), 1999, pp.
1–9.

[13] S. Zhong, Y. Shen, and F. Hao, “Tuning compiler optimization options via
simulated annealing,” in 2nd Int. Conf. Future Information Technology and
Management Engineering (FITME), 2009, pp. 305–308.

50

[14] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, and O. Temam,
“Fast compiler optimisation evaluation using code-feature based performance
prediction,” in Proc. 4th Int. Conf. Computing Frontiers, 2007, pp. 131–142.

[15] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed
representations of code,” in Proc. ACM Programming Languages (POPL),
2019, vol. 3, pp. 1–29.

[16] A. H. Ashouri, G. Palermo, J. Cavazos, and C. Silvano, “The phase-ordering
problem: An intermediate speedup prediction approach,” in Automatic Tuning
of Compilers Using Machine Learning. Cham, Switzerland: Springer, 2018,
pp. 71–83.

[17] A. H. Ashouri, G. Mariani, G. Palermo, and C. Silvano, “A bayesian network
approach for compiler auto-tuning for embedded processors,” in 2014 IEEE
12th Symp. Embedded Systems for Real-Time Multimedia (ESTIMedia), pp.
90–97.

[18] W. M. Waite and G. Goos, Compiler construction. New York, NY, USA:
Springer, 1984.

[19] D. Whitfield and M. L. Soffa, “An approach to ordering optimizing
transformations,” in Proc. 2nd ACM SIGPLAN Symp. Principles & Practice of
Parallel Programming, 1990, pp. 137–146.

[20] J. Chen, N. Xu, P. Chen, and H. Zhang, “Efficient compiler autotuning via
bayesian optimization,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 1198–1209.

[21] K. A. Hoste and L. Eeckhout, “Cole: compiler optimization level exploration,” in
Proc. 6th annu. IEEE/ACM int. symp. Code Generation and Optimization,
2008, pp. 165–174.

[22] T. Yuki, “Understanding polybench/c 3.2 kernels,” in Int. workshop Polyhedral
Compilation Techniques (IMPACT), 2014, pp. 1–5.

[23] P. Ezhil et al., “Experimental analysis of optimization flags in GCC,” Turkish J.
Computer and Mathematics Education (TURCOMAT), vol. 12, no. 7, pp.
1875–1879, 2021.

[24] M. T. Jones, “Optimization in GCC,” Linux J., vol. 2005, no. 131, p. 11, 2005.

[25] X. Yu and M. Gen, Introduction to evolutionary algorithms. London, U.K.:
Springer, 2010.

[26] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–
73, 1992.

[27] S. Mirjalili, “Genetic algorithm,” in Evolutionary Algorithms and Neural
Networks: Theory and Applications. Springer, 2019, pp. 43–55.

51

[28] B. Kurtén, “The evolution of the Polar Bear, Ursus maritimus Phipps,” Acta
zoologica Fennica, vol. 108, pp. 3–30, 1964.

[29] J. A. Cahill, “Polar bear taxonomy and evolution,” in Ethology and Behavioral
Ecology of Sea Otters and Polar Bears, R. W. Davis and A. M. Pagano, Eds.
Cham, Switzerland: Springer, 2021, pp. 207–218.

[30] D. Lack, Darwin’s finches. Cambridge, U.K.: Cambridge Univ. Press, 1983.

[31] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for
parameter optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 1–23,
1993.

[32] S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, “Genetic algorithm: Theory,
literature review, and application in image reconstruction,” Nature-Inspired
Optimizers: Theories, Literature Reviews and Applications, S. Mirjalili, J.
Song Dong, and A. Lewis, Eds. Cham, Switzerland: Springer, 2020, pp. 69–
85.

[33] A. J. Umbarkar and P. D. Sheth, “Crossover operators in genetic algorithms: a
review,” ICTACT J. Soft Computing, vol. 6, no. 1, pp. 1083–1092, 2015.

[34] B. Tağtekin, M. U. Öztürk, and M. K. Sezer, “A case study: Using genetic
algorithm for job scheduling problem,” 2021, arXiv:2106.04854.

[35] P. Moscato et al., “On genetic crossover operators for relative order preservation,”
C3P Report, vol. 778, p. 825, 1989.

[36] W. M. Spears and K. A. De Jong, “An analysis of multi-point crossover,” in
Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo, CA,
USA: Morgan Kaufmann Publishers, 1991, pp. 301–315.

[37] G. Syswerda et al., “Uniform crossover in genetic algorithms,” in Proc. 3rd Int.
Conf. Genetic Algorithms (ICGA), 1989, vol. 3, pp. 2–9.

[38] Z. H. Ahmed, “Genetic algorithm for the traveling salesman problem using
sequential constructive crossover operator,” Int. J. Biometrics &
Bioinformatics (IJBB), vol. 3, no. 6, p. 96, 2010.

[39] C. Darwin, Charles Darwin’s natural selection: being the second part of his big
species book written from 1856 to 1858, R. C. Stauffer, Ed. London, U.K. and
New York, NY, USA: Cambridge Univ. Press, 1987.

[40] G. J. Balady, “Survival of the fittest—more evidence,” The New England J. of
Medicine, vol. 346, no. 11, pp. 852–854, 2002.

[41] N. M. Razali and J. Geraghty, “Genetic algorithm performance with different
selection strategies in solving tsp,” in Proc. World Cong. Engineering 2011
(WCE), vol. 2, Hong Kong, China: International Association of Engineers, pp.
1–6.

52

[42] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic
acceptance,” Physica A: Statistical Mechanics and its Applications, vol. 391,
no. 6, pp. 2193–2196, 2012.

[43] B. L. Miller, D. E. Goldberg, “Genetic algorithms, tournament selection, and the
effects of noise,” Complex Systems, vol. 9, no. 3, pp. 193–212, 1995.

[44] M. Kumar, D. Husain, N. Upreti, and D. Gupta, “Genetic algorithm: Review and
application,” Int. J. Information Technology and Knowledge Management, vol.
2, no. 2, pp. 451–454, 2010.

[45] B. Tağtekin, B. Höke, M. K. Sezer, and M. U. Öztürk, “Foga: Flag optimization
with genetic algorithm,” in 2021 Int. Conf. INnovations in Intelligent SysTems
and Applications (INISTA), pp. 1–6.

[46] M. Mitchell, An Introduction to Genetic Algorithms. Cambrige, MA, USA: MIT
Press, 1998.

[47] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking changing
environments,” in Proc. 5th Int. Conf. Genetic Algorithms, S. Forrest, Ed.,
1993, pp. 523-530.

[48] G. Syswerda, “A study of reproduction in generational and steady-state genetic
algorithms,” in Foundations of genetic algorithms, G. J. E. Rawlins, Ed. San
Mateo, CA, USA: Morgan Kaufmann Publishers, 1991, pp. 94–101.

[49] F. Vavak and T. C. Fogarty, “Comparison of steady state and generational genetic
algorithms for use in nonstationary environments,” in Proc. IEEE Int. Conf.
Evolutionary Computation, 1996, pp. 192–195.

[50] D. Whitley and T. Starkweather, “Genitor ii: A distributed genetic algorithm,” J.
Experimental & Theoretical Artificial Intelligence, vol. 2, no. 3, pp. 189–214,
1990.

[51] D. Whitley, S. Rana, and R. B. Heckendorn, “Island model genetic algorithms
and linearly separable problems,” in AISB Int. Workshop Evolutionary
Computing. Berlin, Germany; Heidelberg, Germany: Springer, 1997, pp. 109–
125.

[52] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm
Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[53] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A novel binary particle
swarm optimization,” in 2007 Mediterranean conf. Control & Automation,
2007, pp. 1–6.

[54] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proc. IEEE Int.
Conf. Neural Networks (ICNN), vol. 4, 1995, pp. 1942–1948.

[55] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm
algorithm,” in 1997 IEEE Int. Conf. Systems, Man, and Cybernetics:
Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108.

53

[56] A. Hashimoto and N. Ishiura, “Detecting arithmetic optimization opportunities
for C compilers by randomly generated equivalent programs,” IPSJ Trans.
System LSI Design Methodology, vol. 9, 2016, pp. 21–29.

