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Abstract: A crucial step in understanding natural language is detecting mentions that refer to real-world entities
in a text and correctly identifying their boundaries. Mention detection is commonly considered a preprocessing step
in coreference resolution which is shown to be helpful in several language processing applications such as machine
translation and text summarization. Despite recent efforts on Turkish coreference resolution, no standalone neural
solution to mention detection has been proposed yet. In this article, we present two models designed for detecting
Turkish mentions by using feed-forward neural networks. Both models extract all spans up to a fixed length from input
text as candidates and classify them as mentions or not mentions. The models differ in terms of how candidate text spans
are represented. The first model represents a span by focusing on its first and last words, whereas the representation
also covers the preceding and proceeding words of a span in the second model. Mention span representations are formed
by using contextual embeddings, part-of-speech embeddings, and named-entity embeddings of words in interest where
contextual embeddings are obtained from pretrained Turkish language models. In our evaluation studies, we not only
assess the impact of mention representation strategies on system performance but also demonstrate the usability of
different pretrained language models in resolution task. We argue that our work provides useful insights to the existing
literature and the first step in understanding the effectiveness of neural architectures in Turkish mention detection.
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1. Introduction
Coreference resolution addresses the identification of all mentions in a text that refer to the same real-world
entity (e.g., a person or a location) [1]. Resolving coreferent entities can be handled by detecting text spans
that constitute entity mentions and grouping (clustering) these mentions into coreference chains based on the
entities that they refer to. The task has been commonly formulated in one of three forms [2]: i) the mention-pair
model where the goal is to determine whether two mentions are coreferent or not, ii) the mention-ranking model
that aims to select the correct antecedent of a mention from a set of candidates, and iii) the entity-mention
model with the goal of determining whether a mention is referring to an entity represented by a partially formed
mention cluster or not. This challenging task plays a crucial role in text understanding and has been widely
studied in various language processing applications, such as machine translation [3], question answering [4], and
information extraction [5].

Entity mentions have different lifespans in the text where some mentions appear only once (singleton
mentions) and some mentions are repeated further in the text after their introduction (coreferent mentions) [6].
A considerable attention has been devoted to differentiating singleton mentions from coreferent mentions and
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identifying their boundaries in the text [7]. The literature has showed that filtering out singleton mentions
significantly reduces the search space and hence improves the performance of downstream coreference cluster-
ing [8]. It is also important to note that entity mentions that spread across a text might take varying forms,
such as a noun phrase, a named entity, or a pronoun.

Many traditional coreference resolution studies have utilized rule-based, statistical-based, or deep learning-
based methodologies. In rule-based methods [9], a number of hand-crafted rules that rely on linguistic features
(e.g., synonymity relations and part-of-speech tags of words) and external knowledge resources are used [10].
The adaptation of such solutions to new languages and domains is not straightforward and requires tremendous
manual effort. On the other hand, statistical-based methods use learning methodologies (e.g., decision tree and
support vector machine) to resolve coreferent entities and require large-scale training data [11–13]. Mention de-
tection is often defined as a sequence labeling or classification problem and clustering predictions are performed
by assigning scores to mention pairs that indicate whether the mentions are coreferent or not. Deep learning-
based methods eliminate the need of feature engineering by learning required features and underlying relations
between entity mentions directly from the text [14, 15]. With recent advancements in neural architectures (e.g.,
transformers), the widespread availability of large-scale language models, and the representational power of
word embeddings, these approaches significantly improve upon previous state-of-the-art results in coreference
resolution.

The literature has followed two main approaches to integrate the main components of a resolution
system. In pipeline approaches, mention detection and mention clustering components are developed separately
and combined in a pipeline [16, 17]. The major drawback of these approaches is that the performance of
mention detection has a significant impact on clustering performance due to error cascading (e.g., incorrect
identification or missing of entity mentions) [18]. On the other hand, mention detection and clustering tasks are
jointly performed in end-to-end approaches which often benefit from deep learning architectures [19–21]. These
architectures enable all spans extracted from a text to be identified as candidate mentions and the top-scoring
candidates to be considered for clustering. However, developing the best-performing architecture is still an open
research issue with much room for improvement especially in domains with limited data.

Despite the substantial amount of research devoted to high-resource languages, there is a limited number
of mention detection and clustering approaches developed for less-resourced languages [22–24], including Turkish.
The majority of Turkish studies have tackled the pronoun resolution problem [25] and utilized traditional
statistical-based methods including naive Bayes, support vector machine, and k-nearest neighbor [26, 27]. The
first work on Turkish that broadly addresses coreference resolution has followed the mention-pair approach
and used decision tree and support vector machine classifiers fed by linguistic features [28]. Recently, deep
learning-based Turkish coreference resolution studies which followed the mention-ranking approach have been
introduced [29, 30]. The first of these studies [29] has experimented with two different models to cluster entity
mentions by assuming that the mention detection task is completed in advance. The first neural model captures
fine-grained linguistic features of entity mentions as input, whereas the second model uses a neural architecture
with embeddings learned from large-scale language models as input. The study has reported the impact of
various pretrained Turkish language models on mention clustering. The second study [30] has applied a similar
end-to-end model to the dataset used in the first study after being extended with the incorporation of dropped
pronouns. The only work that addressed Turkish mention detection is a rule-based system which marks all
noun phrases, pronouns, named entities, and capitalized common nouns as entity mentions [31].
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This article presents the first deep learning-based study on mention detection in Turkish. Our two-step
approach first automatically extracts all possible candidate mentions from a text by limiting the number of words
that a candidate can span. These candidates are then passed through a feed-forward neural network in order
to be classified as mentions or not mentions. For this purpose, two neural models with different mention span
representation strategies are explored. In the first model, a candidate span is represented with its first and last
words, whereas the words that respectively precede and follow the candidate are also considered in the second
model. Both models represent candidate mentions by combining word embeddings (contextual representations
of words) with the embeddings that reflect part-of-speech (POS) tags and named-entity information of words in
focus. In the experiments, we assess the performance of our mention detection models and measure the impact
of Turkish language models on mention representation. Moreover, we compare our model performances with
the performance of a transformer-based sequence labeling (token classification) model.

The rest of the article is organized as follows. Section 2 discusses related work on mention detection.
Section 3 introduces the neural models and mention span representation strategies used in the study. Section 4
describes the dataset used in experiments and the language models along with the neural model parameters.
Section 5 presents the experimental results and Section 6 concludes the article with future work.

2. Related work
Mention detection research has evolved from rule-based [32, 33] and machine learning-based [34, 35] approaches
to recent studies that heavily depend on neural network methodologies. By using deep learning architectures,
the researchers have demonstrated that the semantic and syntactic features of input text can be automatically
learned to identify singleton and coreferent mentions that appear in the context. Some previous research have
proposed standalone mention detection approaches, whereas most studies have integrated a mention detector
in their end-to-end coreference resolution systems [19, 36, 37].

Recurrent neural networks (RNN), particularly long short-term memory networks (LSTM), have been
frequently used by prior mention detection studies. One of the earlier studies [38] defined the problem as a
sequence labeling task and benefited from different variations of an RNN architecture (e.g., with ELMAN
and JORDAN methods). All words in a sentence were converted into embeddings which are formed by
concatenating word embeddings (trained from a large corpus) with a binary vector containing different features
(e.g., capitalization and trigger words). The robustness of proposed architectures was measured across different
domains in the evaluations. Sequence labeling was also the main objective of a later research study [39] which
managed nested mentions as well (i.e., a single word is tagged with multiple labels). In the study, a sequence-to-
sequence model encoded words of a sentence using a bidirectional LSTM (Bi-LSTM) network and the decoder
initialized with the last hidden state of the encoder was implemented as an LSTM network. Pointer networks,
an extension of RNNs, were also used in mention detection studies. These networks were shown to be effective
in addressing detection problems of overlapped and singleton mentions in multiple languages [40]. A more
recent study also targeted nested mention problem by using a StackLSTM architecture [41]. Sentences with
overlapping mentions were converted into forests and a shift-reduce parser-based system was used to learn the
constructs of these forests. Processed nested mentions were kept in a stack which was encoded via a Stack-
LSTM. The words in a sentence were represented as a concatenation of three embeddings that correspond to
word embeddings, POS tag embeddings, and character-level embeddings learned by a Bi-LSTM network. The
use of Stack-LSTM and shift-reduce parser was later seen in other coreference studies [42].
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Table 1. Standalone neural mention detection systems for other languages.

Study Architecture Objective Input representation Language F-1

[38] RNN Sequence labeling Word embedding,
feature embedding

English,
Dutch

0.899
0.835

[40] Pointer network Sequence labeling Word+POS embedding English,
Korean

0.797
0.801

[41] Stack-LSTM Mention sequence
generation

Word embedding,
POS embedding,
Character embedding (Bi-LSTM)

English 0.753

[44] FFN Classification

i) Word embedding,
Char embedding (Bi-LSTM)
ii) Word embedding (Bi-LSTM)
iii) Deep bidirectional transformers

English 0.888

[46] FFN Classification

Word embedding,
POS embedding,
NER embedding,
feature embedding

English 0.752

[47] MLP Classification Word embedding
(Recursive autoencoder) English 0.827

[48] Fully connected
network Classification

Word embedding,
feature embedding
(CNN)

Hindi 0.670

[49] FFN Classification
Word embedding,
character embedding
(FOFE encoding)

English,
Chinese,
Spanish

0.909
0.753
0.756

A pioneer end-to-end coreference resolution work [19], despite not proposing a standalone mention
detector, applied an exhaustive search method to identify all possible text spans and assign each span a
score indicating its probability of being a mention. The words in a span were first represented with an
embedding composed of context-independent pretrained word embeddings and character embeddings learned
by a convolutional neural network (CNN). These embeddings were then fed to a Bi-LSTM network in order
to obtain contextual word encodings. Finally, mention span representations were formed by concatenating
contextual embeddings of the first, last, and the head word of text spans (learned via an attention mechanism).
These mention representations were scored by using a feed-forward neural network. Later research has improved
upon this scoring approach in several directions [43].

Recently, three different architectures for standalone mention detection have been introduced [44]. The
first architecture utilized a modified version of the mention detection approach used in [19]. The only difference
was the use of sigmoid entropy as the loss function. The second architecture encoded sentences using a Bi-LSTM
network fed by ELMO embeddings. Two separate feed-forward networks were applied to Bi-LSTM output to
obtain distinct representations of the start and end of candidate mention spans and a biaffine classifier was
deployed to obtain candidate scores. The third architecture utilized pretrained BERT language model to
encode words in text spans up to a fixed length. The representations of the first and last words of a span
were concatenated to obtain mention span representations. Candidate mention scoring was performed via a
feed-forward network. The second architecture was later adapted to Arabic mention detection by using BERT
model embeddings rather than ELMO embeddings [20]. The use of BERT language model in mention span
encoding was also explored in the detection component of other end-to-end coreference resolution systems [45].
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Another mention span representation for English mention detection has been proposed in [46]. Each
mention span was represented as a combination of five embedddings that capture different features of the span.
The embeddings of the first, last, previous, next, and head word of a mention span were concatenated to form its
semantic representation. Context-independent pretrained GloVe embeddings were used during this encoding.
This semantic representation was augmented with POS tag embeddings, named-entity embeddings, Recasen’s
features embeddings, and embeddings of additional features (e.g., is_pleonastic and mention type). The mention
span representations were used as input in a feed-forward network finalized with a softmax classifier.

Table 1 presents some standalone mention and singleton [47, 48] detection systems designed for other
languages. The systems were often tested on multiple datases or languages and the highest reported F-1 score
varied between 0.670 and 0.909. Our work is inspired by the exhaustive search methodology [19, 44] and melds
the strengths of different models that utilize feed-forward network architecture for mention detection [44, 46, 49].
Our work differs from previous work in three ways. First, two new mention span representations that heavily
depend on transformer-based language models are utilized. Second, the effectiveness of different tokenization
strategies in detecting mentions is explored for a morphologically rich language. Third, the performance of
a classification model is compared with the performance of a transformer-based sequence labeling model for
Turkish mention detection task for the first time in the literature.

3. System architecture
Our mention detection approach consists of two steps. In the first step, text spans (a sequence of consecutive
words) are extracted from a given text as candidate mentions and these text spans are identified as mentions or
not in the second step. For the first task, we follow a straightforward approach used by previous research [19, 44]
and extract all possible spans up to a predetermined length (n) from input text. For instance, some candidate
spans (n=3) that might be extracted from the sentence “Hayatın başlangıcıdır ve daha büyük bir ev olan dünyaya
hazırlanma alanıdır .” are “Hayatın”, “Hayatın başlangıcıdır”, “Hayatın başlangıcıdır ve”, “başlangıcıdır”, and
“başlangıcıdır ve”. We define the second task as a binary classification problem. For this purpose, we train a
feed-forward neural network with two hidden layers whose architecture is shown in Figure 1. The Gaussian
error linear unit activation function (GeLU) is used for the hidden layer and the sigmoid function is applied as
the final activation function for binary classification. The network takes text span representations as input and
determines whether the span is a mention or not.

We obtain a candidate span representation by concatenating the representations of words contained in
the span. Each word is represented with three kinds of embeddings: word embedding (we ), part-of-speech
tag embedding (pose ), and named-entity embedding (nee ). The word embedding which is a contextualized
representation of the word is used to capture its sequence-level semantics in the sentence. The part-of-speech
tag embedding is a fixed-length vector that contains the POS tag information of the word. The vector represents
eight POS tags, namely ‘Noun’, ‘Verb’, ‘Adjective’, ‘Adverb’, ‘Pronoun’, ‘Proper Noun’, ‘Number’, and ‘Other’
(i.e., all other tags). The named-entity embedding is also a fixed-length vector used to represent whether the
word is a named entity or not. The vector features five different named entity types, namely ‘Person’, ‘Location’,
‘Organization’, ‘OtherType’, and ‘None’ (i.e., the word is not a named entity).

We explore two different span representation models in this work. In our first model (FL_Model), we
only use the representations of the first (f_word) and last (l_word) words of a text span. However, in the
second model (PFLN_Model), we also use the representations of the previous word (p_word) that precedes
the span and the next word (n_word) that follows the span in the sentence. In cases where the text span starts
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Word Embedding (we) POS Embedding (pose) Named-Entity Embedding (nee)

Figure 1. System architecture.

with the first word in a sentence (x1 ), the representation of the previous word consists of only 0’s. Similarly,
for a span that ends with the last word of a sentence (xn ), the next word is represented with a vector of 0’s. In
order to obtain the final span representation, we first concatenate the word embeddings, pos embeddings, and
named-entity embeddings of all words in focus separately and then concatenate these representations as follows:

Sentence: x1 , x2 , x3 , x4 , x5 , .....xn

Text Span: x2 , x3 , x4

FL_Model Span Rep.: w2
e ⊕ w4

e ⊕ pos2e ⊕ pos4e ⊕ ne2e ⊕ ne4e

PFLN_Model Span Rep.: w1
e ⊕ w2

e ⊕ w4
e ⊕ w5

e ⊕ pos1e ⊕ pos2e ⊕ pos4e ⊕ pos5e ⊕ ne1e ⊕ ne2e ⊕ ne4e ⊕ ne5e

4. Experimental setup
4.1. Dataset
We used the Marmara Turkish Coreference Corpus [31] as our dataset which contains 33 documents from the
METU-Sabancı Turkish Treebank Corpus [50]. Each document consists of 26 to 424 sentences and the sentences
were manually annotated with mentions (between 17 and 359 mentions in each document). The largest text
spans that refer to real-word entities were identified as mentions and annotated mentions do not overlap. Only
coreferent mentions were tagged and singleton mentions were left unannotated. The dataset contains 5170
mentions with the majority consisting of a single word (4133 mentions). Multiword mentions are formed by at
least 2 words (652 mentions) and at most 24 words (2 mentions).

There is a high variety in part-of-speech tags of words that form the mentions. Figure 2 shows the POS
tags of single-word and multiword mentions (i.e., the tags of the first and last words) that appear at least 20
times in the dataset. The POS tags correspond to manually annotated tags of words in the treebank corpus.
As expected, single-word mentions often consist of a noun (Noun), pronoun (Pron), or proper noun (Prop). In
total, 14 different POS tags were used to annotate the mentions including verb (Verb), adverb (Adv), determiner
(Det), and number (Num).
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Figure 2. POS tag statistics of mentions.

In the dataset, coreferent mentions that refer to the same entity were grouped into 944 coreference chains.
The majority of these chains contain 2 (365 chains) or 3 (179 chains) mentions as shown in Figure 3. The number
of chains that contain more than 20 mentions is 45 with the longest chain having 66 mentions. The mentions
of the same chain are often not interleaved by the mentions of other chains in the documents. On the other
hand, at most 14 other mentions appear in between coreferent mentions of the same chain and in slightly more
than half of the cases, coreferent mentions are interleaved by at most 3 other mentions. The following is a
representative chain from the dataset that consists of three multiword coreferent mentions.

• Ve hiç kimse benim eşyamla ilgili düşüncelerimi de merak etmiyordur kuşkusuz
And of course, no one is wondering what I think about my stuff

• Ama bu düşünceleri neden buraya aktardığım, elbette merak edilecektir
But, why I transfer these thoughts here, of course, will be wondered

• Bu satırlar, o düşüncelerin kağıda dökülmüşüdür
These lines are those thoughts that are put on paper

4.2. Input embedding
The last decade has witnessed the increasing use of contextualized (context-dependent) word representations
generated by transformer-based language models and their contribution to system performances in several
language processing tasks [51]. In morphologically rich languages such as Turkish, the high number of possible
word forms and the limit on the vocabulary size of a language model increase the importance of the tokenization
method and the kind of embedding used in representing data. Moreover, our previous study showed that the
use of different embeddings to represent mention spans plays an important role in capturing the contextualized
similarity between Turkish coreferent mentions [52].
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Figure 3. Coreference chain statistics.

In order to obtain word embeddings (we ) that are input to our models, we explored the use of several
transformer-based language models trained using different tokenization methods for Turkish. We used publicly
available Turkish language models and their associated tokenizers. In particular, we used the character-based
model (CM) [53] with ByT5 tokenizer, the subword-based models [53] with Byte-Pair Encoding [54] (SM_BPE)
and WordPiece [55] (SM_WP) tokenizers, and the word-based model (WM)1 with WordPiece tokenizer. In all
cases, we used the average of token embeddings that belong to a word as its final embedding.

We represented POS embedding (pose ) and named-entity embedding (nee ) by using one-hot encoded
vectors. We utilized a Turkish morphological parser and disambiguator to obtain POS tags of words [56] and a
Turkish named-entity recognizer [57] to identify named-entities in input text. Both tools are publicly available.

4.3. Parameter settings
Single word and multiword mentions with two or three words constitute 5030 out of 5170 mentions in the
coreference corpus. To reduce the computational cost, we limit the length of extracted text spans to three
words in our experiments. Nonetheless, the final number of candidate spans was huge and there was an
imbalance between the number of mention spans (positive samples) and not-mention spans (negative samples).
Therefore, we followed two different methods to determine the not-mention spans to be used in the experiments.
In the first method, for each mention span, we randomly selected a fixed number of not-mention spans that
are extracted from the same sentence (Any_Corpus). However, using the second methodology, we randomly
selected a fixed number of not-mention spans from the same sentence that share at least one word in common
with the mention span (Common_Corpus). The second corpus makes the detection task more challenging since
not-mention spans share some commonality with mention spans but do not reflect their correct boundaries.
During the evaluation study, we experimented with different number of not-mention spans (i.e., 3, 5, and 10)
in both cases. The data was split into training, validation, and test portions using 80%-10%-10% scheme and
the performances of FL_Model and PFLN_Model were tested on both corpora. Each model architecture was
trained with different language models and tokenizers using 5 epochs. The word-based language model produced
word embeddings of length 768 whereas the character-based and subword-based models produced embeddings
of length 512. The number of hidden units in feed-forward networks was set to 50. During training, the Adam
optimizer with a learning rate of 0.00005 was used. The evaluation results were measured using f-measure and

1https://huggingface.co/dbmdz/bert-base-turkish-128k-cased
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accuracy metrics, and the average results of 10-fold cross validation were reported. The average training and
testing times of the FL_Model was computed as 30.97 (12.7-81.86) s and 0.15 (0.07-0.38) s and those of the
PFLN_Model was measured as 31.34 (12.63-76.75) s and 0.16 (0.08-0.41) s.

Table 2. Evaluation results of FL_Model on both corpora.

Any_Corpus Common_Corpus
Embedding combination Language model F-measure Accuracy F-measure Accuracy

Word ⊕ Pos ⊕ Ner

CM 0.913 0.938 0.839 0.873
SM_BPE 0.931 0.950 0.840 0.874
SM_WP 0.935 0.954 0.843 0.877
WM 0.971 0.978 0.863 0.893

Word ⊕ Ner

CM 0.903 0.931 0.825 0.870
SM_BPE 0.923 0.945 0.832 0.871
SM_WP 0.925 0.946 0.840 0.875
WM 0.972 0.979 0.868 0.897

Word ⊕ Pos

CM 0.903 0.931 0.814 0.863
SM_BPE 0.927 0.947 0.830 0.868
SM_WP 0.932 0.948 0.836 0.870
WM 0.971 0.978 0.867 0.896

Word

CM 0.902 0.930 0.810 0.860
SM_BPE 0.922 0.944 0.835 0.872
SM_WP 0.929 0.950 0.836 0.873
WM 0.970 0.977 0.865 0.896

5. Results and discussion
5.1. Model experiments
We conducted several experiments to evaluate the performances of FL_Model and PFLN_Model on Any_Corpus
and Common_Corpus. In the first set of experiments, we limit the number of not-mention spans selected for
each mention to three. We also explored the impact of using different span representations in both models.
In particular, we experimented with different contextual representations of words (language models) and com-
binations of embeddings that form final span representations. To the best of our knowledge, there is not any
standalone mention detection system for Turkish that we can use to compare our model performances.

As shown in Table 2, the FL_Model achieves the highest performance by using word and named-entity
embeddings to represent mention spans on both corpora where word embeddings are obtained from the word-
based language model WM. The model receives the lowest performance scores once only word embeddings
learned from the character-based language model CM are used. The scores also demonstrate that using
word-based and character-based language models results in the highest and lowest scores for each embedding
combination, respectively. The performance of using a subword-based language model shows the same pattern
on both corpora where the model trained with byte-pair encoding achieves lower scores than the model with
wordpiece encoding.

According to the results shown in Table 3, the highest performance of the PFLN_Model is achieved with
different embedding combinations along with the word-based language model on our corpora. The concatenation
of word and POS embeddings in span representations is found to be the best configuration of the PFLN_Model
on Any_Corpus, whereas the use of word, POS, and named-entity embeddings in span representations obtains
the highest evaluation scores on Common_Corpus. As also observed in the FL_Model, the use of word
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embeddings with character-based language model results in the lowest F-measure and accuracy scores. Moreover,
the results of subword-based language models demonstrate that using wordpiece encoding enables the model to
reach a higher performance compared to byte-pair encoding. Lastly, the PFLN_Model behaves similarly to the
FL_Model in that higher scores on Any_Corpus are obtained for all embedding combinations and language
models in comparison to Common_Corpus.

Table 3. Evaluation results of PFLN_Model on both corpora.

Any_Corpus Common_Corpus
Embedding combination Language model F-measure Accuracy F-measure Accuracy

Word ⊕ Pos ⊕ Ner

CM 0.935 0.953 0.820 0.865
SM_BPE 0.949 0.963 0.842 0.877
SM_WP 0.957 0.969 0.847 0.881
WM 0.980 0.985 0.881 0.906

Word ⊕ Ner

CM 0.930 0.950 0.821 0.867
SM_BPE 0.944 0.960 0.843 0.877
SM_WP 0.953 0.966 0.847 0.881
WM 0.980 0.985 0.880 0.905

Word ⊕ Pos

CM 0.930 0.950 0.814 0.862
SM_BPE 0.946 0.961 0.839 0.874
SM_WP 0.954 0.960 0.845 0.877
WM 0.981 0.986 0.880 0.905

Word

CM 0.929 0.949 0.810 0.860
SM_BPE 0.944 0.960 0.843 0.877
SM_WP 0.954 0.966 0.848 0.882
WM 0.980 0.985 0.878 0.904

Our evaluation results reveal that the PFLN_Model yields the highest performance on both corpora
with different configurations according to F-measure and accuracy metrics. The use of word embeddings
learned from word-based language model along with POS embeddings is observed to be the best configuration
on Any_Corpus, whereas the inclusion of all embeddings in mention span representations where word-based
language model is used is found to be the best configuration on Common_Corpus. Moreover, the PFLN_Model
performs better than the FL_Model on both corpora when word-based language model or subword-based
language model with wordpiece encoding scheme is used. On the contrary, the use of character-based language
model on Common_Corpus results in the FL_Model performing better than the PFLN_Model. As shown in
Figure 4, the highest improvement of the PFLN_Model over the FL_Model on Any_Corpus is achieved with
the configuration where word and named-entity embeddings learned from subword-based language model with
wordpiece encoding are used together for representing mention spans. However, the biggest performance gain
on Common_Corpus is observed when all embeddings learned from word-based language model are used as
shown in Figure 5. We applied Wilcoxon signed-rank test to the predictions made by our models and the results
were found to be statistically significant.

The experiments also enabled us to compare the impact of augmenting word embeddings with POS and
named-entity embeddings individually or together on performances. Here, we considered the model performance
where only word embeddings are used as baseline. Our observations with FL_Model and PFLN_Model reveal
that incorporating both embeddings in mention span representation most of the time improves the performance
more than the configurations where only one of them is used along with word embeddings. Additionally, in the
FL_Model, incorporating only named-entity embeddings results in a higher performance gain as compared to
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the use of POS embeddings along with word embeddings on Common_Corpus. Not a clear pattern is observed
on Any_Corpus for the FL_Model. Similarly on Common_Corpus, augmenting word embeddings with only
named-entity embeddings in the PFLN_Model yields a higher increase once compared to augmenting with
only POS embeddings. However, augmenting word embeddings with POS embedding performs better than
augmenting them with only named-entity embeddings most of the time on Any_Corpus.

Figure 4. The comparison of FL_Model and PFLN_Model on Any_Corpus.

In the second set of experiments, we analyzed the effect of the number of not-mention spans used
for training and testing the models. Here, we assessed model performances for the cases where 3, 5, or 10
not-mentions are randomly selected from Any_Corpus and Common_Corpus, respectively. In both models,
we observe that increasing the number of not-mentions and hence obtaining an even more imbalanced data
negatively affect F-measure scores on all corpora. On the other hand, relatively more imbalanced data yield
higher accuracy scores. Figure 6 shows how the FL_Model reacts to the changes in the number of not-
mention spans on Any_Corpus once all embeddings are used to represent mention spans. A similar behaviour
is observed for both models with all configurations on all corpora. We argue that our models are performing
well in classifying not-mention spans but is not able to classify mention spans at the same correctness rate.
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Figure 5. The comparison of FL_Model and PFLN_Model on Common_Corpus.

Figure 6. The performance of FL_Model on Any_Corpus according to different number of not-mentions.

5.2. Comparison with sequence labeling model

The sequence labeling problem is formalized as given a sequence X = (x1 , x2 ,..., xn) of length n where xi

is the i th word, generate an output sequence of the same length Y = (y1 , y2 ,..., yn) such that yi is the
predicted label of xi . Each output label yi corresponds to a label from a predefined list (e.g., named-entity or
part-of-speech tags). In the literature, mention detection task has also been addressed as a sequence labeling
problem [38]. By following this approach, we developed a transformer-based sequence labeling model and
compared its performance with our models. For this purpose, we first annotated all sentences in our dataset
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using the BIO tag format with the labels ‘B-MENT’ (beginning of a mention span), ‘I-MENT’ (inside a mention
span), and ‘O’ (outside of a mention span). For instance, the sentence with two mention spans (‘bu kente’ and
‘onu’) is annotated as “Bugün/O ,/O bu/B-MENT kente/I-MENT geleli/O beşinci/O gün/O ,/O hiçbir/O
yerde/O bulabilmiş/O değilim/O onu/B-MENT ./O” (Today is the fifth day since I came to this city , I can’t
find him anywhere .). The sequence labeling model received sentences and their labels as input-output pairs.

Our evaluation results with classification models demonstrated the superiority of word-based language
model (WM) on both corpora. Thus, we fine-tuned Bidirectional Encoder Representations from Transformers
(BERT) model with a sequence classification head using WM as our labeling model. In this experiment, the
dataset was splitted into 80% training, 10% validation, and 10% test data. The model was trained using
10 and 30 epochs, respectively. The average scores of 10-fold cross validation were computed as the model
performance. With 10 epochs, the model achieved an F-measure of 0.685 and an accuracy of 0.896. On the
other hand, the model received 0.701 F-measure and 0.90 accuracy with 30 epochs. We compared these results
with the scores measured for our classification models where only word embeddings are used on both corpora.
Our analysis showed that the prediction accuracy and F-measure of our classification models on Any_Corpus are
higher than the tagging accuracy and F-measure of the labeling model. On Common_Corpus, the classification
models outperformed the labeling model according to F-measure. However, the tagging accuracy of the labeling
model was found to be slightly higher than the classification accuracy of the FL_Model but lower than that of
the PFLN_Model. Although our classification models outperformed the sequence labeling model in most cases,
we argue that both models demonstrate acceptable performances on Turkish mention detection task.

6. Conclusion
This article describes our work on mention detection in Turkish where two neural models are introduced. Given
a text, our models first extract all text spans up to a length as candidate mention spans. These candidates are
then classified as mentions or not-mentions by using a feed-forward neural network with sigmoid function at
top. The first model represents each candidate span by focusing on its first and last words, whereas the second
model also takes into account the previous and next words of the span as it appears in a sentence. The words in
mention span representations are encoded using their contextual embeddings, part-of-speech embeddings, and
named-entity embeddings. Different context-dependent Turkish language models are used to obtain contextual
embeddings of words. Our evaluation studies reveal that the second model performs better than the first
model in general and the use of word-based language model for obtaining word embeddings improves model
performances more than what can be achieved with other language models. Moreover, our models surpass the
performance of a transformer-based sequence labeling model in detecting mentions.

Although our work fills a gap in the existing literature by providing a neural mention detector for Turkish,
we have several future research directions. We plan to integrate our best performing model into our end-to-end
coreference resolution system [29] and measure its extrinsic performance in the underlying system. Another
major area is to enhance our mention detection models so that nested coreferent mentions can be handled. An
interesting research direction is to identify and filter singleton mentions from candidate mention spans. Finally,
we plan to explore more features in mention span representations and assess the impact of the number of words
in candidate spans on model performances.
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