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ABSTRACT. Two studies were conducted for the development and validation of a
multidimensional test to assess undergraduate students’ mathematical thinking about
derivative. The first study involved two phases: question generation and refinement of the
Thinking-about-Derivative Test (TDT). The second study included four phases as follows:
test administration, generalizability analysis, confirmatory factor analysis, and subgroup
validity analysis. Findings suggested that the 30-item multiple-choice TDT, which
comprises 6 mathematical thinking aspects, enactive, iconic, algorithmic, algebraic,
formal, and axiomatic thinking, demonstrates acceptable levels of reliability and validity.
Followed by additional cross-validation studies, the TDT may be a useful tool for
mathematics education researchers and mathematicians. Directions for future research and
implications for educational practice are discussed.
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INTRODUCTION

Although derivative is one of the most important concepts that reside at
the core of calculus, many students, even high achievers, encounter
difficulties in solving derivative tasks that stimulate different thinking
aspects (Artigue, 1991). Tasks used in previous studies on derivative such
as defining the derivative (Ubuz, 1996; Zandieh, 1997) or defining
prerequisite concepts (i.e. slope) for derivative (Nagle, Moore-Russo,
Viglietti & Martin, 2013), proving differentiation theorems (Tsamir &
Ovodenko, 2013), solving routine differentiation problems (Martin, 2000;
Ubuz, 2001), modeling real-life applications of derivative (Villegas,
Castro & Gutiérrez, 2009), interpreting or sketching derivative graphs
(Ubuz, 2007), and verifying whether a given function satisfies the
hypotheses of a differentiation theorem (Raman, 2002) were set up to
encourage a different set of opportunities for students’ thinking. The task
that requires defining the derivative, for example, focuses on property-
based conceptions or thinking. Although individuals may approach
mathematical tasks in different ways, with results depending on their
thinking styles (Moutsios-Rentzos & Simpson, 2011) or their preferred
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ways of using the abilities they have (Sternberg, 1999), the nature of tasks
can potentially influence and structure the way students think
(Henningsen & Stein, 1997). A task that energizes a particular
mathematical thinking aspect also puts together a range of different
aspects dependent on the context in which the concept occurs. In proof
tasks that require making logical deductions to prove theorems, for
example, property-based thinking also comes into play in terms of
making deductions.

The commonly pursued line of research on the assessment of students’
mathematical thinking about derivative addressed how secondary (e.g.
Pichat & Ricco, 2001) and/or undergraduate (e.g. García, Llinares &
Sánchez-Matamoros, 2011) students think about the differentiation
situation by documenting and/or representing their mathematical ideas,
particularly using open-ended tasks in the instruments. While producing
rich data, the aim of these studies was not to examine or interpret the
psychometric properties (i.e. reliability and validity) of the mathematical
thinking scores on these instruments. This approach presents limitations
for examining the range of mathematical thinking aspects in which a
specific derivative task activates a particular aspect. More adaptive and
content-specific instruments are needed for this purpose. Consequently,
we developed Thinking-about-Derivative Test to assess various aspects
relevant to mathematical thinking. Specifically, the purpose of the present
study was to (a) develop a multiple-choice test on mathematical thinking
about the derivative, (b) test the validity and reliability of the test, and (c)
provide further validity evidence.

MATHEMATICAL THINKING

Thinking is typically defined as the means used by individuals to improve
their understanding of, and exert some control over, their environment
(Burton, 1984, p. 36). To do this, mathematical thinking lies on particular
means such as different registers or representations that can be recognized as
arising from or pertaining to the study of mathematics. To address the
different aspects of mathematical thinking, we exploited three corresponding
theories in which different registers or representations can be interpreted as
(a) modes of representation (Bruner, 1966), (b) modes of operation (Hughes-
Hallett, 1991), and (c) worlds of mathematics (Tall, 2004). These three
theories are not meant to be exhaustive but represent a useful set of core
theories that cut across all mathematical domains. Here, it is necessary to
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mention that mathematical thinking aspects become more sophisticated
when the individual becomes more experienced (Tall, 2003).

Bruner’s (1966) framework provides an overview of human develop-
ment in general and mathematical thinking in particular. It presents a
long-term development from physical perception and action through the
development of symbolism and on to thinking. Bruner classified three
modes of human representation in which thinking is formulated in three
ways as follows: enactive, iconic, and symbolic. Enactive representation
involves perceptions of and reflections on real-world objects through
which individuals translate daily life situations into a mathematical
context (enactive thinking). Iconic representation includes mental images
by which individuals alter objects and properties of these objects for
making mathematical visualizations (iconic thinking). Symbolic represen-
tation covers symbol systems (e.g. numbers, algebraic expressions, logic,
and language) that allow individuals to define mathematical concepts
(formal thinking), implement procedural techniques (algorithmic think-
ing), and make generalizations (algebraic thinking). Clearly, the single
category of symbolic mode including a variety of symbol systems needs
subdivision.

Bruner’s modes of representation can be used to specify operations that
can be performed as a sequence of steps because, for instance, throughout
the development of symbolism, individuals learn to carry out an
operation, to practice it, and then use it as a tool for thinking. In this
accordance, Hughes-Hallett (1991) categorized the modes of representa-
tion into four ways of operation as follows: numeric, analytic, verbal, and
graphic. She suggested that translations among operations, as well as
transformations within each, are important processes that lead students to
develop robust mathematical thinking. In this regard, effective mathe-
matical thinking is defined as students’ being able to work within and
among (a) numbers and mathematical notations (numeric) to apply
procedures (algorithmic thinking), (b) symbols and algebraic expressions
(analytic) to display relationships and generalizations (algebraic thinking),
(c) definitions and principles (verbal) to elucidate static and factual
information (formal thinking), and (d) graphs, diagrams, and tables
(graphic) to make visualizations (iconic thinking). The important
contribution here is that the symbolic mode of representation forwarded
by Bruner (1966) is distinguished into numeric, analytic, and verbal
modes of operation that prompt algorithmic, algebraic, and formal
thinking, respectively. Interestingly, however, this categorization lacks
in two points. First, the enactive mode of operation that fosters enactive
thinking is completely omitted. Second, a theoretical mode of operation
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that provokes axiomatic thinking is absent. Enactive mode helps to give
fundamental mathematical meaning by using embodied ideas, whereas the
theoretical mode helps to formulate fundamental mathematical properties
as axioms.

Following Bruner (1966) and Hughes-Hallett (1991) theoretical
frameworks that build from perception and action and develop through
reflection, Tall (2004) built the three-world framework on the tripartite
structure of perception, operation, and reason. All three of these aspects
arise throughout conceptual-embodied, proceptual-symbolic, and formal-
axiomatic world of mathematics. He formulates the transition in thinking
about perceptions, operations, and the methods of reasoning within a
more global framework that takes into account students’ (a) object-based
conceptions (conceptual-embodied) to synthesize the properties of the
physical environment (enactive thinking) or visualize mental imagery
concepts (iconic thinking), (b) action-based conceptions (proceptual-
symbolic) to make calculations (algorithmic thinking) and encode
correlational information (algebraic thinking), and (c) property-based
conceptions (formal-axiomatic) to recall the definitions of concepts
(formal thinking) and use these definitions as axioms with which to
make logical deductions to prove theorems (axiomatic thinking).

All these theoretical perspectives commonly point that mathematical
thinking evolves through six aspects as follows: enactive, iconic, algorith-
mic, algebraic, formal, and axiomatic thinking, each with its own way of
describing different processes. The term thinking in these theories were
mainly used to describe development. This focusing on thinking can result in
neglecting the types of mathematical tasks and ways of participating in these
tasks (Rasmussen, Zandieh, King & Teppo, 2005). Although students’ way
of participating in, for example defining tasks, may be different based on
their thinking style, they are required to express their formal thinking. We
therefore deal with the particular aspect of mathematical thinking that a task
mandates by its very nature. A detailed explanation for each of these
mathematical thinking aspects along with an example of derivative tasks (see
Table 1) that incorporates the activation of a particular mathematical thinking
aspect are provided below.

Enactive, Iconic, Algorithmic, Algebraic, Formal, and Axiomatic
Thinking

Enactive thinking (ENACTHK) can be viewed as roughly equivalent to
the process of model-building that students develop and use during their
efforts to solve a real-world problem (Lesh & Doerr, 2003). Broadly
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TABLE 1

Specimen items of the TDT

Enactive thinking
Item 30:

An open-top rectangular prism box is to be
made by cutting congruent squares of side
length x from the corners of a 6 cm square
plate as illustrated in the figure above.
What is the largest volume of the box?

A) 8 B) 12 C) 16 D) 18 E) 20

Iconic thinking
Item 17:

The figure shown gives the graph of the
second derivative of a function f. Find the
inflection points of f?

A) 2, 6, and 10 B) 2, 6, and 8
C) 2, 4, and 6 D) 4 and 6 E) 4 and 8

Algorithmic thinking
Item 25:
Let f (x) = 2x3 + ax2 + (b + 1)x – 3 be a

function that has a local extremum at
x = −1 and an inflection point at x = −1

12 .
Find a. b?

A) −3 B) −2 C) 4 D) 6 E) 12

Algebraic thinking
Item 12:
Let f: [6, 15] →R be a function with
f(6) = −2 and f ′. If f satisfies the hypotheses

of the mean value theorem on [6, 15], then
which one of the following is true?

I. The maximum value of f(15) is 88.
II. The average value of the function f on

[6, 15] is 45.
III. The function f takes on the value of 45 at

least once on [6, 15].
A) I only B) II only C) I and III
D) II and III E) I, II, and III

Formal thinking
Item 2:
Which one of the statements is true with

respect to the definition of the inflection
point?

I. It is the point where the first derivative of
function f :[a,b]→R equals to zero.

II. It is the point where the second derivative
of function f :[a,b]→R equals to zero.

III. It is the point where function f :[a,b]→R
changes from increasing to decreasing or
from decreasing to increasing.

IV. It is the point where function f :[a,b]→R
changes from convex to concave or from
concave to convex.

A) I and III B) II and IV
C) III and IV D) II only E) IV only

Axiomatic thinking
Item 7:
“Rolle’s theorem: Let f: [a, b]→R be a

continuous function on the closed interval
[a, b] and a differentiable function on the

open interval (a, b). If f(a) = f(b), then
there is a number c in (a, b) such that
f ′(c) = 0.”

Which inference is true with respect to the
theorem given above?

A) The function f has more than one root on
(a, b).

B) The function f has at least one critical
point on (a, b).

C) The tangent drawn to the function f at the
point (c, f(c)) is perpendicular to the
x-axis.

D) The first derivative of the function f is
always positive or always negative on
(a, b).

E) The slopes of the secant line and the
tangent line drawn to the function f on
(a, b) are different from each other.

DEVELOPMENT AND VALIDATION 1283



speaking, it includes movement among the real-world situations and the
mathematical solutions to make sense of the ways to manipulate the
physical environment (Zbiek & Conner, 2006). ENACTHK, in this sense
of the term, is activated when (a) examining various attributes of a
particular mathematical, physical, or social context (i.e. identify the real-
world phenomenon); (b) embodying key aspects of these attributes into a
mathematical model (i.e. simplify the phenomenon); (c) relating a subset
of those key aspects through operations, equations, or functions (i.e.
express the simplified phenomenon mathematically); and (d) using
resulting internal and external representations to solve problems (i.e.
verify, interpret, and solve the model) (Gainsburg, 2006). An example of
ENACTHK about derivative is constructing and interpreting a real model
(e.g. diagram and graph) to understand the given conditions about the
optimization situation, structuring a mathematical model (e.g. equation
and function) to explore the quantities that are to be maximized or
minimized, and investigating various models to find the maximum/
minimum value of a function (see item 30 in Table 1).

Iconic thinking (ICONTHK) refers to the act of visualizing through
which individuals reflect and interpret upon images, diagrams, or graphs
with the purpose of depicting and communicating information (Arcavi,
2003). It covers four main processes as follows: graph reading, graph
interpretation, graph construction, and graph evaluation. More specifical-
ly, graph reading involves extracting data from a graphical display and
generating information by operating on data shown in the graphical
display (Meletiou-Mavrotheris & Lee, 2010). Graph interpretation
involves gaining meaning and/or making inferences from a graph
(Sharma, 2006). Graph construction includes displaying and organizing
data sets using graphs or understanding graph conventions (Friel, Curcio
& Bright, 2001). Graph evaluation entails analyzing whether a graph is
correctly constructed or whether a graph is effective to represent the
interrelationships between the given context and data (Curcio, 1987). An
example of ICONTHK about derivative is reading and interpreting the
graph of a second derivative function to determine the inflection points of
the original function (see item 17 in Table 1).

Algorithmic thinking (ALGOTHK) is procedural in nature—it is
characterized by the automatized processes such as computation,
calculation, and execution (Martin, 2000). It centers on selecting and
applying the appropriate procedures to solve a problem (Martin, 2000).
Furthermore, ALGOTHK involves (a) verifying or justifying the
correctness of procedures and (b) explaining the successive steps involved
in various standard operations (Fischbein, 1983). An example of
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ALGOTHK about derivative is selecting and applying the appropriate
inflection point and local extrema algorithms to find the product of
unknown variables in a given function (see item 25 in Table 1).

Algebraic thinking (ALGETHK) can be defined as the use of various
representations that handle quantitative situations in a relational way
(Kieran, 1996, pp. 4 – 5). It is considered to be important in both seeing a
generality through the particular and seeing the particular in the general
(Mason, 1996, p. 65). Three central themes are at the core of ALGETHK
as follows: (a) viewing variables, symbols, expressions, and equations as
structures of general representation (Stacey & MacGregor, 2000); (b)
understanding of how and when algebraic expressions should be used to
display relationships and generalizations (Arcavi, 1994); and (c) applying
a given argument to a broader context by making empirical and/or
theoretical generalizations (Harel & Tall, 1991). An example of
ALGETHK about derivative is using a conditional argument given for a
function at a certain interval to display the relationships among the
hypotheses of the mean value theorem (see item 12 in Table 1).

Formal thinking (FORMTHK) focuses on the factual information that
undergirds basic mathematical terminology (Fischbein, 1983). Accordingly,
it is represented by the construction of meaning from definitions, principles,
facts, and symbols (Tall, 2004). In a more figurative sense, it involves (a)
using, connecting, and interpreting various conceptual representations; and
(b) recalling, distinguishing, and integrating definitions, principles, facts, and
symbols in a mathematical setting (Martin, 2000). An example of
FORMTHK about derivative is integrating the definitions of various
differentiation concepts (i.e. first derivative, second derivative, increasing/
decreasing functions, and convex/concave) to recall the definition of
inflection point (see item 2 in Table 1).

Axiomatic thinking (AXIOTHK) closely aligns with the notion of proof
and the process of proving, and thus follows a path between attempts to
generate valid arguments and criticisms of these attempts (Stylianides,
2007). In this context, it is crucial for (a) making a connected sequence of
assertions for or against a mathematical claim (Stylianides, 2007); (b)
understanding how and why a statement works (Tall, 2004); and (c)
demonstrating whether and why propositions are true or false (Ko &
Knuth, 2009). The act of AXIOTHK that culminates in proving involves
exploring mathematical relationships to identify significant facts and
arrange specified assumptions into meaningful patterns, using the patterns
to formulate conjectures, and testing and revising these conjectures
(Stylianides, 2009). An example of AXIOTHK about derivative is
identifying the logic behind the hypotheses that are used either explicitly
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or implicitly in the statement of Rolle’s theorem, analyzing the way in
which these different hypotheses are connected in the proof of Rolle’s
theorem, and formulating cases where Rolle’s theorem is plausible and
subsequently chaining all these conditions as a whole to deduce the truth
of statements (see item 7 in Table 1).

Viewed together, the six mathematical thinking aspects are distinct but
interrelated. Ideally, they should cooperate in any mathematical task and
their partial vitality depends upon students’ building appropriate links
among them. To this end, mathematical thinking is not characterized by
the replacement of one aspect of thinking by another that supposedly is
“higher” or “more abstract”; rather it is characterized by the development
and interlinking of different aspects of thinking that can develop
alongside and in combination with one another. Empirical findings also
provided a sizable body of evidence that there are unique and joint effects
of mathematical thinking aspects on one another (Hähkiöniemi, 2006;
Zandieh, 1997). Collectively, research results indicated that (a)
FORMTHK provides a ground on which ENACTHK, ICONTHK,
ALGOTHK, ALGETHK, and AXIOTHK depend; (b) AXIOTHK and
ALGETHK coevolve in a dialectic process of hypothesizing, verifying,
and generalizing; and (c) ICONTHK, by virtue of its concreteness, can
accompany ENACTHK in the very act of building, comparing, and
investigating models.

METHOD

Along with the Standards for Educational and Psychological Testing
(AERA, APA, & NCME, 1999), we used a multistep process to provide
evidence that scores on the Thinking-about-Derivative Test (TDT) are
reliable and valid. Two studies were conducted for the construction,
refinement, and validation of the TDT. The whole test is available from
the authors upon request.

Study 1: Question Generation and the Refinement of Thinking-About-
Derivative Test
Phase 1: The Generation of Multiple-Choice Test Items. The purpose of
this phase was to construct a multiple-choice item pool on different
aspects of mathematical thinking related to derivative and its applications.
In assessing students’ mathematical thinking, researchers generally had a
tendency to use open-ended item format (e.g. Zandieh, 1997). Although
such open-ended items may convey useful information for researchers to
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identify the aspects of mathematical thinking that students activate within
a specific content (Moreno & Mayer, 1999), they lack the potential for
extensive domain coverage, thus yield lower reliability and ambiguous
individual-level scores (Parke, Lane & Stone, 2006). Multiple-choice
items, on the other hand, enable researchers to ask a large number of
questions on a wider range of topics and use plausible distracters that
reflect typical student errors (Bridgeman & Rock, 1993). Although using
multiple-choice items presents a risk of guessing, in view of providing
students enough test items and including sufficient number of distracters
for these items, we do, however, consider the chance of a student
guessing the right answer is decreased (Haladyna, 2004). Besides,
depending on the particular aspect of mathematical thinking that a task
mandates by its very nature, multiple-choice items can elicit complex
cognitions (Martinez, 1999), including making comparisons/contrasts,
building cause/effect relationships, or drawing generalizations (Haladyna,
2004). That is, students capitalize on information embedded in the
response options of a multiple-choice item that mandates a particular
aspect of mathematical thinking. They further use more complex
strategies such as response elimination (Martinez, 1999) to narrow down
the presented response options. While eliminating options that are
implausible, students would be likely to activate different mathematical
thinking aspects. They may further integrate their thinking more carefully
into the evaluation of the remaining set of responses to yield the best
selection given the effectiveness of a particular mathematical thinking
aspect they activate. It is appropriate to conclude that a set of well-
constructed multiple-choice items, in which the goal of testing for a
particular mathematical thinking aspect is made explicit, can provide very
reliable assessment of what processes students demonstrate rather than
how students make progress in activating these processes (Osterlind,
1998, p. 164).

From the investigation of calculus textbooks, course materials, journal
articles, dissertations, and matriculation exam questions, an initial item
pool containing 100 open-ended and 83 multiple-choice items based on
the definition of each mathematical thinking aspect was constructed.
Forty-nine of these 100 open-ended items had been used effectively in
previous studies (e.g. Aspinwall et al., 1997) to reveal unique insights
about the abilities and understandings of students, misconceptions they
held, or mathematical thinking they activated when learning or using the
derivative concept to solve problems. The remaining 51 open-ended items
were from calculus textbooks and course materials. On the other hand, 83
multiple-choice questions were from calculus textbooks (e.g. Stewart,
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2003), course materials (i.e. Calculus, General Mathematics), and national
matriculation exam questions. With regard to the derivative content
covered in undergraduate courses, we decided to delimit the content of (a)
ENACTHK items on real-life applications of derivative; (b) ICONTHK
items on graph interpretations/constructions of the derivative; (c)
ALGOTHK items on routine differentiation problems; (d) ALGETHK
items on the hypotheses and/or assumptions of differentiation theorems;
(e) FORMTHK items on the definitions, principles, facts, and symbols
relevant to the derivative; and (f) AXIOTHK items on differentiation
theorems and their proofs. At the end of this delimiting process, 60 open-
ended items measuring all 6 mathematical thinking aspects and 43
multiple-choice items measuring ENACTHK, ICONTHK, and
ALGOTHK were retained. There were no multiple-choice items in the
literature that assess FORMTHK, ALGETHK, and AXIOTHK.

The further investigation of the selected 60 open-ended items revealed
that 20 of them require self-explanatory responses (e.g. What does the
derivative mean in practice? For what the derivative can be used? How
can the derivative be determined?). So, they were eliminated. This
process led us to have 40 open-ended items to be adapted to researcher-
developed multiple-choice items. Converting an open-ended item to a
multiple-choice item involved (a) using the overall mathematical and
methodological essence provided in the open-ended items (i.e. “In your
own words, define the derivative of a function.”; “Prove that differentia-
bility implies continuity.”) for constructing the stems of multiple-choice
items; (b) analyzing possible responses given to these open-ended items
in order to phrase the distracters of multiple-choice items. As one
example, item 2 (see Table 1) was developed by the authors to assess
students’ FORMTHK about inflection point. The work on that item
involved (a) identifying the most common student responses, and (b)
developing statements for each response. In defining the inflection point,
the most common responses provided by students were “second
derivative positive, concave up” and “second derivative equal to zero,
inflection point” (Carlson, 1998), “change in concavity of a graph” (Berry
& Nyman, 2003), or “the rate changing from increasing to decreasing”
(Carlson et al., 2002). Following that, the explanations involved in these
responses were used to form statements for answer choices (see Table 1).

Phase 2: The Refinement of Multiple-Choice Test Items. The purpose of
this phase was twofold: to provide (a) evidence based on test content
via expert evaluations, and (b) evidence based on response processes
via student evaluations. The TDT including 83 multiple-choice items
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(40 researcher-developed and 43 from the resources) was submitted to the
experts with a table presenting the number, objective, and thinking aspect
that corresponds to the context of the item along with the solution and answer
keys. To rank how well the item context fit with the characteristics of
relevant mathematical thinking aspect, the definitions of each mathematical
thinking aspect were also submitted. The experts were requested to analyze
the items in terms of their (a) contribution to the relevant mathematical
thinking aspect, and (b) clarity, comprehensiveness, and accuracy. A
mathematics educator, who is Behiye Ubuz, and a mathematician were the
experts. The main research fields of Behiye Ubuz are the development of
mathematical thinking and the teaching and learning of calculus, whereas the
mathematician is specialized in real analysis and calculus. The nature of the
study and difficulty in finding an expert in mathematics education to evaluate
the test items allowed us to have Behiye Ubuz as an expert, since
mathematics educator as an expert needed to have knowledge on derivative,
mathematical thinking, measurement and evaluation, and so forth. Being
unfamiliar with a specific area (i.e. mathematical thinking about derivative)
can limit him/her to use the necessary knowledge to make accurate, reliable,
and unbiased judgements (Bolger & Wright, 1992).

Based on Behiye Ubuz suggestions, (1) the content of ENACTHK items
which initially covered rate of change, population growth, and optimization
was restricted to optimization; (2) the content of ALGETHK items involving
elementary applications of differentiation theorems was revised to reveal the
more complicated linkages between the theorem statement and its
hypotheses by focusing on the algebraic manipulations as well as
mathematical inferences that may derive from these linkages; (3) the
structure, syntax, and distracters of FORMTHK items were revised by taking
into consideration the static and factual information inherent in the basic
differentiation terminology and common student misconceptions as well as
errors; (4) the hints that has been included in the distracters of the AXIOTHK
items were removed; and (5) the familiar function graphs in the distracters of
ICONTHK items were replaced with more unfamiliar ones, and the number
of items on graph construction and graph interpretation were made equal.
Based on the suggestions of the mathematician, (1) the statements of
differentiation theorems were integrated into the stem of AXIOTHK items;
(2) some of the ALGETHK items including functions on which the
hypotheses of differentiation theorems would be applied were revised; and
(3) the overlaps in some of the ENACTHK, ALGOTHK, and FORMTHK
items were reconsidered, and items that covered the same content and/or
context were eliminated. In all, 53 items of these 83 items were deleted from
the TDT.
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Taken together the results of the adaptation and elimination processes,
the TDT involved 30 multiple-choice items, 17 of which were researcher-
developed (items 1 – 15, 18, 19) and 13 of which were taken from
calculus textbooks, course materials, or national matriculation exams
(items 16, 17, 20 – 30). More specifically, 30 TDT multiple-choice items
were grouped in 6 FORMTHK, 5 AXIOTHK, 4 ALGETHK, 5
ICONTHK, 5 ALGOTHK, and 5 ENACTHK items.

For providing evidence based on response processes, three first year
students majoring in Elementary Mathematics Education, two PhD
students majoring in Secondary Science and Mathematics Education,
and two second year students majoring in Mathematics were asked to
evaluate the remaining 30 items in terms of their clarity and intelligibility.
All the participants were enrolled in a calculus course in their first or
second years at the university. Six of the seven students were requested to
complete the TDT in a classroom environment within one block-class
period (90 min) in order to determine the duration, while one student was
requested to solve each item using a think-aloud procedure in the
presence of the first researcher. Based on students’ suggestions, minor
revisions were made as follows: (1) ordering of ENACTHK and
ICONTHK items were changed, and (2) spelling/editing errors in
FORMTHK and AXIOTHK items were corrected. The revised final
version of the TDT containing 30 items was reviewed in its entirety, and
no further changes were made. Each item was scored either 0 (incorrect)
or 1 (correct). The total testing time was decided to take one block-class
period long (90 min).

Study 2: Instrument Testing
Phase 1: Test Administration. During 2010/2011 academic year, the
TDT including 30 items was administered to 766 undergraduates from 9
public universities in Turkey. Cross-sectional data were collected from
year 1 (N = 293; freshmen), year 2 (N = 131; sophomores), year 3
(N = 254; juniors), and year 4 (N = 88; seniors) students who were
attending to the Faculty/School of Education (N = 253), Faculty/School of
Arts and Sciences (N = 284), and Faculty/School of Engineering
(N = 229).

In many countries such as Turkey, the derivative concept is introduced
to the students at the 12th grade in high school. The emphasis is placed on
the essential components of the derivative and its applications such as
defining derivative verbally, graphically, symbolically, and physically
(FORMTHK); explaining the relationship between continuity and
differentiability (ALGETHK); solving derivative problems by using
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differentiation rules (ALGOTHK); sketching and interpreting derivative
graphs (ICONTHK); building models to find the maximum/minimum of a
given function (ENACTHK); and proving differentiation theorems
(AXIOTHK). When entering university, students are expected to
understand the basics of derivative and to be able to employ different
aspects of mathematical thinking about it. All science, education, and
engineering students take introductory mathematics courses (i.e. Calculus
I & II, Fundamentals of Mathematics) as a must course in the first year of
the university. The derivative content taught in the introductory
mathematics courses at the university is similar to the content taught at
high school. Drawing on a broad base of fundamentals built in these
courses, students activate and extend different aspects of mathematical
thinking about derivative in subsequent mathematics courses as well as
other mathematics-related departmental courses during the 4 years of the
university studies. In common, all science, engineering, and education
students take Introduction to Differential Equations and Basic Linear
Algebra in year 2 and Differential Equations and Linear Algebra in year
3. The content of these courses covers basics of differentiation rules and
applications necessary for introducing further concepts of mathematics
(e.g. first-order differential equations). Along with the introductory
mathematics courses in year 1, the courses in years 2 and 3 serve as a
prerequisite or a corequisite for the mathematics-related scientific courses
that at least to some extent depending on the conceptualization and the
application of derivative. In the Faculty/School of Arts and Sciences,
some mathematics-related departmental courses are Mathematics for
Chemists, Mathematical Methods in Physics, whereas laboratory courses
are Experimental Physics and Analytical Chemistry Laboratory, and so
forth. Similarly, in the Faculty/School of Engineering, students continue
to build on their earlier experiences with the derivative concept and use
that understanding to explore new situations or systems in both theoretical
(i.e. Numerical Methods for Engineers) and technical (i.e. Mathematical
Modeling and Applications) courses as they proceed through the years. In
the Faculty/School of Education, students who have acquired a firm
grounding in the theories and applications of the derivative, further
strengthen their mathematical thinking base in various must courses (i.e.
Special Teaching Methods) as well as elective courses (i.e. Problem
Solving in Mathematics) as they move through the years. Viewed
together, all the participants were at least to some degree familiar with
the fundamentals and the applications of the derivative concept.

The 90-min TDT was administered to classes during regular course
sessions by Utkun Aydın.
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Phase 2: Generalizability Analysis. Reliability of test scores was
examined within the context of generalizability theory (Brennan, 2001).
This theory was used to characterize specific sources of error variance
(i.e. items and students) that contaminate the measurement of mathemat-
ical thinking such that future measurements can be made more accurately.
Thus, we initially carried out a generalizability study (G-study) to
investigate the primary sources of variation in the measurement of
mathematical thinking by means of the TDT. By further identifying the
simultaneous influence of multiple sources of measurement error
variance, the G-study allowed us to estimate the accuracy of generalizing
from a student’s observed score on the TDT to the average score that
student would have received under the possible conditions such as all
possible items or all possible mathematical thinking aspects. Estimates of
variance attributable to each source in the G-study were then used to
conduct a decision study (D-study) to determine the effects of the number
of items. More precisely, we used a mixed two-facet partially nested s x
(i:a), where s, i, and a represent students, items, and aspects (subscales),
respectively, while “:” denotes “nested within.” Since the six aspects
contain different number of items, the design is described as unbalanced
with five sources of variance: σs

2, σa
2, σi :a

2, σsa
2, and σsi :a,e

2. Students
were considered as the object of measurement, whereas items were treated
as a random facet, and aspects were treated as a fixed facet. The full data
tables for the generalizability analysis are available upon request from the
authors.

Averaging Over Aspects. We used a three-step procedure for averaging
over the aspects by using analysis of variance (ANOVA) procedures to
partition variance attributable to each source. All the main calculations
were done by using PASW Statistics 18 (SPSS Inc, 2010). In the first step
of the G-study, we treated all sources of variance as random (σs

2, σa
2, σi :

a
2, σsa

2, and σsi :a,e
2). For the fully random analysis with all six aspects, we

selected four items at random from each aspect to create a balanced
design (Brennan, 2001). When randomly deleting data, however, we
compared the results of several random deletions to make sure that any
particular selection of items is not unusual. For the TDT data set, we
estimated variance components for several randomly selected sets of four
items per aspect. We observed that the estimated variance components
were very similar for all sets of randomly selected items. Results revealed
that the main effect of aspects is nonnegligible (σa

2 = 0.28). This shows
that some aspects yielded somewhat higher average mathematical
thinking scores than others. The more substantial effect for the interaction
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between students and aspects (σsa
2 = 0.73) shows that the relative

standing of students differed from one aspect of mathematical thinking to
another. In the second step, we identified the random portion of the mixed
design (students crossed with items, s x i) and the associated variance
components to be calculated (σ2s� , σ2i� , and σ2si;e� ). In the third step, we
estimated the variance components for the random portion of the mixed
design. Findings demonstrated that the differences between items were
substantial (σ2i� = 0.16). This indicates that some items were more
difficult than others, averaging over all the students. Similarly, the
substantial variance component for the interaction between students and
items (σ2si;e� = 0.10) indicates that the relative standing of students
differed somewhat across items, unmeasured variation, or both. Indeed,
this suggests that there are important sources of variance not accounted
for by differences between students, differences in item difficulty, or both.

Analyzing Each Aspect Separately. We carried out a separate generaliz-
ability analysis with s x i design for each aspect. The six separate analyses
allowed us to use all of the items in the original aspects (6, 5, 4, 5, 5, 5),
not the four items randomly selected to create a balanced s x (i:a) design.
For comparison, however, the analyses using the four randomly selected
items were also carried out and similar results were obtained. Although
relative decisions (i.e. norm-referenced) will ordinarily be more important
with the use of the TDT, absolute decisions (i.e. criterion-referenced) may
sometimes be of interest in educational settings. Hence, generalizability
coefficients (i.e. ρ2, reliability estimates for relative decisions) as well as
indexes of dependability (i.e. ∅, reliability estimates for absolute
decisions) were calculated. The separate analyses of the six mathematical
thinking aspects yielded similar results relevant to the estimated variance
components. Findings showed that there were substantial differences
among students in their scores on each of the six mathematical thinking
aspects. More specifically, the estimated variance component for students
accounted for most of the variation in each scale. Results revealed that
differences in the relative standing of students are the largest for
AXIOTHK (1.28) and ICONTHK (1.28), whereas they are smaller for
ALGETHK (0.91) and ALGOTHK (0.99). This suggests that averaging
over all the aspects, students differed more in activating theoretical or
visual processes, and to a lesser extent, in mobilizing hypothetical or
technical processes. The variance components for items accounted for a
smaller variation. The ALGOTHK aspect showed the greatest variation
(0.47), while the FORMTHK aspect showed the least variation (0.15)
across items. Taken together, this implies that averaging over all the
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students, items including the implementation of procedures and tech-
niques were more difficult than the items involving the recognition of
definitions, symbols, and facts. The residual component also accounted
for substantial variation in each aspect. For instance, the residual
component of ICONTHK is 0.27, indicating that there are important
sources of variance not accounted for the relative standing of students in
solving visual/spatial items, differences in these items (i.e. graph
interpretation/construction), or both.

Using these estimated variance components from the G-study, we
compute the variance components for alternative D-studies to estimate
how the consistency of students’ mathematical thinking scores would
change if different conditions such as using different number of items per
aspect were taken into consideration. This allowed us to examine how the
generalizability coefficients changed under different circumstances, and
consequently determine the ideal conditions under which our measure-
ment of mathematical thinking would be the most reliable. If the users of
the TDT intend to use an average score across aspects, using 24 items (4
per aspect) yields acceptable levels of generalizability. If they intend to
use separate scores for each aspect, using 6, 5, 4, 5, 5, and 5 items for the
FORMTHK, AXIOTHK, ALGETHK, ICONTHK, ALGOTHK, and
ENACTHK, respectively, would yield coefficients for absolute decisions
of at least 0.86. In addition, generalizability values increase as the number
of items within the fixed 6 aspects increases to 12, 10, 8, 10, 10, and 10
for FORMTHK, AXIOTHK, ALGETHK, ICONTHK, ALGOTHK, and
ENACTHK, respectively. The generalizability coefficient values range
from 0.95 to 0.98, whereas the indexes of dependability range from 0.91
to 0.97, indicating sufficiently high reliability for all six mathematical
thinking aspects. Collectively, the relationship between the number of
items and the generalizability value has a similar pattern to that of the
dependability value. In sum, the coefficients show the diminishing returns
for increasing the number of items per aspect. Furthermore, we, as
researchers, must balance cost considerations and test length in choosing
the optimal number of items. Henceforth, we retained 6, 5, 4, 5, 5, and 5
items for the FORMTHK, AXIOTHK, ALGETHK, ICONTHK,
ALGOTHK, and ENACTHK, respectively.

Phase 3: Confirmatory Factor Analysis. A confirmatory factor analysis
(CFA) was conducted to provide supportive evidence for the six-factor
structure of the TDT. The analyses employed the LISREL 8.7 (Jöreskog
& Sörbom, 1993) in calculating weighted least squares (WLS) estimates.
The results from the theory-driven CFA are shown in Table 2. The
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obtained fit indexes for the six-factor model were χ2 (789.77,
n = 766) = 2.12, RMSEA = 0.03, GFI = 0.96, AGFI = 0.95, and
CFI = 0.98. These indices suggest that the model fits the data according to
the multiple criteria including a chi-square ratio of three or less, a GFI
above 0.90, an AGFI above 0.90, a RMSEA from 0.06 to 0.08, and a CFI
above 0.95 (Kline, 2005). Taken together, the indices confirm that the
underlying structure of the TDT is formed by six factors that measure
FORMTHK (items 1, 2, 3, 4, 5, and 6), AXIOTHK (items 7, 8, 9, 10, and

TABLE 2

Standardized estimates and reliability coefficients of the items in the TDT

Items
Enactive
thinking

Iconic
thinking

Algorithmic
thinking

Algebraic
thinking

Formal
thinking

Axiomatic
thinking R2

24 1.00 0.70
29 0.69 0.83
28 0.76 0.79
30 0.60 0.89
27 0.65 0.85
20 1.00 0.74
19 0.87 0.87
16 0.85 0.74
18 0.94 0.81
17 0.67 0.77
23 1.00 0.77
25 0.92 0.78
22 0.79 0.70
21 0.81 0.73
26 0.65 0.83
15 1.00 0.90
14 0.88 0.88
12 0.77 0.80
13 0.87 0.86
4 1.00 0.86
5 0.85 0.84
3 0.73 0.84
2 0.74 0.83
6 0.93 0.88
1 0.90 0.88
9 1.00 0.80
10 0.77 0.87
8 0.67 0.77
11 0.90 0.84
7 0.89 0.80
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11), ALGETHK (items 12, 13, 14, and 15), ICONTHK (items 16, 17, 18,
19, and 20), ALGOTHK (items 21, 22, 23, 25, and 26), and ENACTHK
(items 24, 27, 28, 29, and 30).

Standardized estimations were higher than 0.45 and appeared between
0.60 and 0.93, showing that all items are relevant in defining the
corresponding mathematical thinking aspect (Jöreskog & Sörbom, 1993).
Squared multiple correlation (R2) of individual items were higher than 0.50
ranging from 0.70 to 0.90. This indicates that the reliability of the items was
substantial in size, and that these items can be explained by the
corresponding mathematical thinking aspects (Tabachnick & Fidell, 2007).

In an attempt to validate the theoretical model, we tested three
alternative models as follows: a common factor model, a three-factor
model, and a null model (see Table 3). The common factor model was
specified such that all items loaded on a general single factor as
mathematical thinking. This model proposed that ENACTHK,
ICONTHK, ALGOTHK, ALGETHK, FORMTHK, and AXIOTHK are
not conceptually or statistically distinct. The three-factor model was
specified such that items loaded on three factors. Based on Tall’s (2004)
theory, this model proposed that mathematical thinking can be distin-
guished in conceptual-embodied, proceptual-symbolic, and formal-axi-
omatic thinking. It is impossible to untie the merging of ENACTHK,
ICONTHK, ALGOTHK, ALGETHK, FORMTHK, and AXIOTHK in
that every mathematical task calls out some paths of embodiment,
symbolism, and formalism. Drawing on this perspective, in the three-
factor model, ENACTHK and ICONTHK items were combined to
constitute the conceptual-embodied thinking dimension, ALGOTHK
and ALGETHK items were gathered under proceptual-symbolic thinking
dimension, and FORMTHK and AXIOTHK items were put together to
compose the formal-axiomatic thinking dimension. The null model
implied that all the items are uncorrelated, and that each item of the
TDT constitutes a single factor.

TABLE 3

Comparison of models: goodness-of-fit indices

Model χ2 df χ2/df RMSEA GFI AGFI CFI Δχ2 Δdf ΔCFI

Target 789.77 372 2.1 0.03 0.98 0.95 0.98
Common factor 1284.83 350 3.6 0.05 0.92 0.91 0.95 495.06 1.5 0.03
Three-factor 989.79 341 2.8 0.05 0.94 0.93 0.96 199.02 0.7 0.02
Null 1,580.14 390 4.5 0.06 0.91 0.89 0.95 790.37 2.4 0.03
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In comparison across goodness of fit indices and the chi-square
difference test, the model fit was poorer for the common factor model
(Δχ2 = 495.06, Δdf = −22, p G 0.001); the three-factor model
(Δχ2 = 199.02, Δdf = −31, p G 0.001), and the null model
(Δχ2 = 790.37, Δdf = 18, p G 0.001). In sum, CFAs corroborated the
proposed six-factor structure of the TDT and indicated that undergraduate
students distinguish among ENACTHK, ICONTHK, ALGOTHK,
ALGETHK, FORMTHK, and AXIOTHK.

Phase 4: Subgroup Validity To investigate the discriminant validity of
the TDT, we examined whether it functions differently for science,
engineering, and education students. To analyze the relevance of these
differences—particularly in light of the faculty/school affiliation referring
to a student’s department within a university/school/college concerned
with a major division of knowledge—we sought to replicate the faculty/
school affiliation-related differences in students’ mathematical thinking
that have consistently been found in previous studies (e.g. Bingolbali &
Monaghan, 2008; Ubuz & Kırkpınar, 2000; Ubuz, 2011). Bingolbali &
Monaghan (2008) remarked that engineering students were more
successful than science students in activating ENACTHK and
ALGOTHK, whereas science students were more competent than
engineering students in activating ICONTHK and AXIOTHK. Ubuz &
Kırkpınar (2000) reported that mathematics students were more success-
ful than mathematics education students in activating ALGOTHK.
Accordingly, we hypothesized that there would be significant differences
among science, engineering, and education faculty students in the
accumulation and exchange of various mathematical thinking aspects.
Our results of the multivariate analysis revealed a significant main effect
for faculty affiliation-related difference (Wilk’s lambda = 0.74, F (12,
1516) = 19.99, p G 0.001, η2 = 0.13) suggesting that science, education,
and engineering students differed on a linear combination of the six
dimensions of the TDT. The partial eta squared of 0.137 would be
interpreted as a large effect (Cohen, 1988). The follow-up univariate
analyses indicated that there were significant differences in ENACTHK
(F (2, 763) = 66.11, p = 0.001, η2 = 0.14), ICONTHK (F (2,
763) = 55.41, p = 0.001, η2 = 0.14), ALGOTHK (F (2, 763) = 83.59,
p = 0.001, η2 = 0.21), ALGETHK (F (2, 763) = 57.37, p = 0.001,
η2 = 0.15), FORMTHK (F (2, 763) = 53.78, p = 0.001, η2 = 0.12), and
AXIOTHK (F (2, 763) = 58.11, p = 0.001, η2 = 0.13) favoring science
faculty students. Science students were more competent than education
and engineering students in energizing mathematical thinking aspects.
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DISCUSSION AND CONCLUSION

The results of the present research provide support for the reliability and
validity of the TDT assessing undergraduate students’ mathematical
thinking about derivative. CFAs provided evidence for the underlying
structure of the TDT. Fit indices of the six-factor model were excellent
and standardized estimates for the items on the six aspects were high,
suggesting that the TDT with 30 multiple-choice items measures 6
dimensions of mathematical thinking about derivative: ENACTHK,
ICONTHK, ALGOTHK, ALGETHK, FORMTHK, and AXIOTHK. Fit
indices associated with the competing common factor, three-factor, and
null models indicated poor fit, thus providing additional support for the
six-factor model. Among the other alternative models, the fit indices for
the three-factor model were the closest ones to the six-factor model. This
finding supports previous research (Stewart & Thomas, 2009), empha-
sizing that whether researchers are speaking of—embodiment, symbol-
ism, and formalism, in general, and conceptual-embodied, proceptual-
symbolic, and formal-axiomatic thinking, in partial—they hold to the
same premise that mathematical thinking echoes the essence of
ENACTHK, ICONTHK, ALGOTHK, ALGETHK, FORMTHK, and
AXIOTHK.

Reliabilities obtained from the G-study were good or excellent for all
six mathematical thinking aspects. Moreover, results from the D-study
for the preferred nested two-facet design showed that similar reliability
coefficients can be obtained by doubling the number of items in each
aspect. Taken together, the generalizability analysis showed that the TDT
has high internal consistency for the six mathematical thinking aspects
and our choice of measurement design—including 6, 5, 4, 5, 5, and 5
items for FORMTHK, AXIOTHK, ALGETHK, ICONTHK,
ALGOTHK, and ENACTHK, respectively—is appropriate for the
intended use of the TDT.

For subgroup validity evidence, we found that science students,
compared to education and engineering students, were more effective in
activating ENACTHK, ICONTHK, ALGOTHK, ALGETHK,
FORMTHK, and AXIOTHK. This result is consistent with previous
research (Bingolbali & Monaghan, 2008), indicating that science students
were more competent than engineering students in activating ICONTHK
and ALGOTHK, and further had a tendency to energize AXIOTHK. Our
results also agree with that reported by Ubuz & Kırkpınar (2000), who
found that mathematics (science faculty) students outperformed mathe-
matics education (education faculty) students in activating ALGOTHK.
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This result is in accordance with the fact that faculty affiliation conveys
students’ mathematical needs and expectations, departments’ features and
demands, and the higher education curricula (Reid, Wood & Petocz,
2005). This result would indicate that instructors may approach the same
mathematical concept from different perspectives in regard to their
faculty’s vision or students’ indicators (e.g. calculus readiness, attitude,
and confidence) for success might be different (Pyzdrowski, Sun, Curtis,
Miller, Winn & Hensel, 2013). Indeed, the teaching practice in science
departments is theoretical-oriented while it is application- and practice-
oriented in the engineering and education departments, respectively. This
particular focus on the theory-driven aspects, in itself, may provide
science students with the opportunity to make transformations within a
broader amalgam of visual/spatial aspects (ENACTHK, ICONTHK) and
hypothetical/verbal/logical aspects (ALGETHK, FORMTHK, and
AXIOTHK).

It is important to consider the implications of the present research for
educational and methodological practice. The TDT is a valuable tool for
mathematics educators working in research settings to assess students’
mathematical thinking about derivative or the relationships among
different mathematical thinking aspects (e.g. Aydın & Ubuz, 2014).
Furthermore, it can be used to examine the determinants of mathematical
thinking aspects (i.e. gender) external to the TDT (e.g. Aydın & Ubuz,
2014). Not only by mathematics education researchers, but also by
mathematicians and mathematics teachers who are eager to improve
calculus instruction and enhance mathematical thinking aspects the TDT
can be used. The structure of students’ mathematical thinking at the
university level highlights the necessity of research on mathematical
thinking in high school levels. Students who are not performing well at
these lower educational levels may adopt detrimental mathematical
thinking patterns, which in turn may impair their activation of effective
mathematical thinking at the university. To gain knowledge about how to
prevent such a vicious cycle, it seems highly important to investigate
mathematical thinking with respect to precalculus and calculus courses
and implement interventions designed to improve students’ mathematical
thinking at high school/secondary and university/tertiary levels of
education. For this purpose, the TDT may serve important diagnostic
functions. On the part of implications for assessment, the present research
has started a stream of work to develop a multiple-choice test for
mathematical thinking about calculus, in general and derivative, in
particular. The TDT provides directions that can be specified to account
for other topics such as limits, integral, and so forth.
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