01. Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed
Permanent URI for this communityhttps://hdl.handle.net/20.500.11779/255
Browse
Browsing 01. Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed by Type "Master's Degree Project"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
master's-degree-project.listelement.badge Consumer Loans' First Payment Default (fpd) Detection and Predictive Model(MEF Üniversitesi, Fen Bilimleri Enstitüsü, 2018) Sevgili, Türkan; Koç, Utku; 02.01. Department of Industrial Engineering; 02. Faculty of Engineering; 01. MEF UniversityThe project is based on the opinion that whether the loan applications which are profitable could be granted instead of prone the default (FPD) ones by using predictive models in machine learning by the credit decision authorities in banking sector. Default Loan (also called non-performing loan) occurs when there is a failure to meet bank conditions and cannot be repaid in accordance with the terms of the loan which has reached its maturity. This report is a research effort in the analysis of default loan applicants, especially FPD, from a real dataset obtained from a bank. Expectation from the study is that increase the efficiency of consumer loan allocation by providing predictive analysis of the consumer behavior concerning loan’s first payment default. FPD detection analysis is a crucial role for the determination of consumer loans at the application level. The study also provides an understanding on the reasons of non-performing loans and helps to manage credit risks more consciously. The methods proposed in this study can be extended to other individual consumer loans such as car credits and mortgage.