Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1321
Title: | Microwave Imaging of Breast Cancer With Factorization Method: Spions as Contrast Agent | Authors: | Çayӧren, Mehmet Coşğun, Sema Bilgin, Egemen |
Publisher: | Wiley | Source: | Coşğun, S., Bilgin, E., & Çayӧren, M. (March 23, 2020). Microwave Imaging of Breast Cancer with Factorization Method: SPIONs as Contrast Agent. Medical Physics. p. 1-14. | Abstract: | Female breast at macroscopic scale is a non-magnetic medium, which eliminates the possibility of realizing microwave imaging of the breast cancer based on magnetic permeability variations. However, by administering functionalized, superparamagnetic iron-oxide nanoparticles (SPION) as a contrast material to modulate magnetic permeability of cancer cells, a small variation on the scattered electric field from the breast is achievable under an external, polarizing magnetic field. PURPOSE: We demonstrate an imaging technique that can locate cancerous tumors inside the breast due to electric field variations caused by SPION tracers under different magnetic field intensities. Furthermore, we assess the feasibility of SPION enhanced microwave imaging for breast cancer with simulations performed on a multi-static imaging configuration. METHODS: The imaging procedure is realized as the factorization method of qualitative inverse scattering theory, which is essentially a shape retrieval algorithm for inaccessible objects. The formulation is heuristically modified to accommodate the scattering parameters instead of the electric field to comply with the requirements of experimental microwave imaging systems. RESULTS: With full-wave electromagnetic simulations performed on an anthropomorphically realistic breast phantom, which is excited with a cylindrical imaging prototype of 18 dipole antenna arranged as a single row, the technique is able to locate cancerous tumors for a experimentally achievable doses. CONCLUSIONS: The technique generates non-anatomic microwave images, which maps the cancerous tumors depending on concentration of SPION tracers, to aid the diagnosis of the breast cancer. | URI: | https://doi.org/10.1002/mp.14156 2473-4209 https://hdl.handle.net/20.500.11779/1321 |
ISSN: | 0094-2405 |
Appears in Collections: | Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
EgemenBilgin.pdf Until 2040-04-23 | Full Text - Article | 11.53 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
15
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
16
checked on Nov 16, 2024
Page view(s)
58
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.