Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1499
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜnsalan, Cem-
dc.contributor.authorTurgay, Zeynep Zerrin-
dc.contributor.authorKüçükaydın, Hande-
dc.contributor.authorHöke, Berkan-
dc.date.accessioned2021-06-19T08:52:30Z
dc.date.available2021-06-19T08:52:30Z
dc.date.issued2021-
dc.identifier.citationHöke, B., Turgay, Z., Ünsalan, C., & Küçükaydın, H. (31/05/2021). Determining and evaluating new store locations using remote sensing and machine learning. Turkish Journal of Electrical Engineering & Computer Sciences, 29(3). p.1509-1523.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1499-
dc.identifier.urihttps://doi.org/10.3906/elk-2005-202-
dc.description.abstractDecision making for store locations is crucial for retail companies as the profit depends on the location. The key point for correct store location is profit approximation, which is highly dependent on population of the corresponding region, and hence, the volume of the residential area. Thus, estimating building volumes provides insight about the revenue if a new store is about to be opened there. Remote sensing through stereo/tri-stereo satellite images provides wide area coverage as well as adequate resolution for three dimensional reconstruction for volume estimation. We reconstruct 3D map of corresponding region with the help of semiglobal matching and mask R-CNN algorithms for this purpose. Using the existing store data, we construct models for estimating the revenue based on surrounding building volumes. In order to choose the right location, the suitable utility model, which calculates store revenues, should be rigorously determined. Moreover, model parameters should be assessed as correctly as possible. Instead of using randomly generated parameters, we employ remote sensing, computer vision, and machine learning techniques, which provide a novel way for evaluating new store locations.en_US
dc.language.isoenen_US
dc.publisherTübitaken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRevenue estimationen_US
dc.subjectCompetitive facility locationen_US
dc.subjectMachine learningen_US
dc.subjectUtility modelen_US
dc.subjectRemote sensingen_US
dc.titleDetermining and Evaluating New Store Locations Using Remote Sensing and Machine Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.3906/elk-2005-202-
dc.identifier.scopus2-s2.0-85108346790en_US
dc.authoridHande Küçükaydın / 0000-0003-2527-2064-
dc.description.woscitationindexScience Citation Index Expanded-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthAğustosen_US
dc.description.WoSIndexDate2021en_US
dc.description.WoSYOKperiodYÖK - 2020-21en_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US
dc.relation.tubitak3151002
dc.identifier.endpage1523en_US
dc.identifier.startpage1509en_US
dc.identifier.issue3en_US
dc.identifier.volume29en_US
dc.departmentMühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.relation.journalTurkish Journal of Electrical Engineering & Computer Sciencesen_US
dc.identifier.trdizinid523099en_US
dc.identifier.wosWOS:000679318000002en_US
dc.institutionauthorKüçükaydın, Hande-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.dept02.01. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR-Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
elk-29-3-12-2005-202.pdfFull Text - Article2.46 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

38
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.