Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1571
Title: Joint Source Separation and Classification Using Variational Autoencoders
Other Titles: Değişimli oto-kodlayıcılar kullanılarak birleşik kaynak ayrıştırma ve sınıflandırma
Authors: Karamatlı, Ertuğ
Kırbız, Serap
Hızlı, Çağlar
Keywords: Decoding
Noma
Nanoelectromechanical systems
Source separation
Graphics processing units
Task analysis
Probabilistic logic
Publisher: IEEE
Source: Ç. Hızlı, E. Karamatlı, A. T. Cemgil and S. Kırbız, (5-7 Oct. 2020). Joint Source Separation and Classification Using Variational Autoencoders," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302092. ‌
Abstract: In this paper, we propose a novel multi-task variational auto encoder (VAE) based approach for joint source separation and classification. The network uses a probabilistic encoder for each sources to map the input data to latent space. The latent representation is then used by a probabilistic decoder for the two tasks: source separation and source classification. Throughout a variety of experiments performed on various image and audio datasets, source separation performance of our method is as good as the method that performs source separation under source class supervision. In addition, the proposed method does not require the class labels and can predict the labels.
URI: https://hdl.handle.net/20.500.11779/1571
https://doi.org/10.1109/siu49456.2020.9302092
ISSN: 2165-0608
Appears in Collections:Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
Joint_Source_Separation_and_Classication_Using_Variational_Autoencoders.pdf
  Until 2040-01-01
Proceedings Paper452.64 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

Page view(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.