Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1912
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇakar Tuna-
dc.contributor.authorErtugrul Seyit-
dc.contributor.authorSayar Alperen-
dc.contributor.authorSahin Türkay-
dc.contributor.authorBozkan Tunahan-
dc.date.accessioned2023-03-06T06:53:17Z
dc.date.available2023-03-06T06:53:17Z
dc.date.issued2022-
dc.identifier.citationSahin, T., Cakar, T., Bozkan, T., Ertugrul, S., & Sayar, A. (2022). Modeling Consumer Creditworthiness via Psychometric Scale and Machine Learning. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919596en_US
dc.identifier.isbn9781670000000-
dc.identifier.urihttps://doi.org/10.1109/UBMK55850.2022.9919596-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1912-
dc.description.abstractAlthough the predictive power of economic metrics to detect the creditworthiness of the customers is high, there is a rising interest in the integration of cognitive, psychological, behavioral, alternative, and demographic data into credit risk systems and processing the data through modern methods. The primary motivation for the rising interest is increased customer classification accuracy. In this research, customer creditworthiness was modeled through data consisting of personality, money attitudes, impulsivity, self-esteem, self-control, and material values and processed through artificial intelligence. The obtained findings have been evaluated as a reference point for the following research. © 2022 IEEE.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial learningen_US
dc.subjectCreditworthinessen_US
dc.subjectFactoringen_US
dc.subjectAlternative data sourcesen_US
dc.titleModeling Consumer Creditworthiness Via Psychometric Scale and Machine Learningen_US
dc.title.alternativeMuteri Krediverilebilirligini Psikometrik Olfek ve Yapay Ogrenme ile Modellemeken_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK55850.2022.9919596-
dc.identifier.scopus2-s2.0-85141877441en_US
dc.authoridSahin, Türkay / 0000-0002-7722-7233 - Çakar, Tuna / 0000-0001-8594-7399-
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.identifier.startpage456 - 461en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisligi Bölümüen_US
dc.departmentIISBF, Psikoloji Bölümüen_US
dc.relation.journalProceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022en_US
dc.institutionauthorSahin, Türkay, Çakar, Tuna, Bozkan, Tunahan, Ertugrul, Seyit, Sayar, Alperen-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Psikoloji Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Modeling_Consumer_Creditworthiness_via_Psychometric_Scale_and_Machine_Learning.pdfFull Text - Article883.54 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

Page view(s)

58
checked on Nov 18, 2024

Download(s)

14
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.