Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1912
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çakar Tuna | - |
dc.contributor.author | Ertugrul Seyit | - |
dc.contributor.author | Sayar Alperen | - |
dc.contributor.author | Sahin Türkay | - |
dc.contributor.author | Bozkan Tunahan | - |
dc.date.accessioned | 2023-03-06T06:53:17Z | |
dc.date.available | 2023-03-06T06:53:17Z | |
dc.date.issued | 2022 | - |
dc.identifier.citation | Sahin, T., Cakar, T., Bozkan, T., Ertugrul, S., & Sayar, A. (2022). Modeling Consumer Creditworthiness via Psychometric Scale and Machine Learning. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919596 | en_US |
dc.identifier.isbn | 9781670000000 | - |
dc.identifier.uri | https://doi.org/10.1109/UBMK55850.2022.9919596 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1912 | - |
dc.description.abstract | Although the predictive power of economic metrics to detect the creditworthiness of the customers is high, there is a rising interest in the integration of cognitive, psychological, behavioral, alternative, and demographic data into credit risk systems and processing the data through modern methods. The primary motivation for the rising interest is increased customer classification accuracy. In this research, customer creditworthiness was modeled through data consisting of personality, money attitudes, impulsivity, self-esteem, self-control, and material values and processed through artificial intelligence. The obtained findings have been evaluated as a reference point for the following research. © 2022 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial learning | en_US |
dc.subject | Creditworthiness | en_US |
dc.subject | Factoring | en_US |
dc.subject | Alternative data sources | en_US |
dc.title | Modeling Consumer Creditworthiness Via Psychometric Scale and Machine Learning | en_US |
dc.title.alternative | Muteri Krediverilebilirligini Psikometrik Olfek ve Yapay Ogrenme ile Modellemek | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/UBMK55850.2022.9919596 | - |
dc.identifier.scopus | 2-s2.0-85141877441 | en_US |
dc.authorid | Sahin, Türkay / 0000-0002-7722-7233 - Çakar, Tuna / 0000-0001-8594-7399 | - |
dc.relation.publicationcategory | Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı | en_US |
dc.identifier.startpage | 456 - 461 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisligi Bölümü | en_US |
dc.department | IISBF, Psikoloji Bölümü | en_US |
dc.relation.journal | Proceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022 | en_US |
dc.institutionauthor | Sahin, Türkay, Çakar, Tuna, Bozkan, Tunahan, Ertugrul, Seyit, Sayar, Alperen | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Psikoloji Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Modeling_Consumer_Creditworthiness_via_Psychometric_Scale_and_Machine_Learning.pdf | Full Text - Article | 883.54 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 23, 2024
Page view(s)
58
checked on Nov 18, 2024
Download(s)
14
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.