Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemir, Şeniz-
dc.date.accessioned2023-10-18T12:23:22Z-
dc.date.available2023-10-18T12:23:22Z-
dc.date.issued2023-
dc.identifier.citationDemir, Ş. (2023). Neural Coreference Resolution for Turkish. Journal of Intelligent Systems: Theory and Applications, 6(1), 85-95.en_US
dc.identifier.issn2651-3927-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2025-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1196839-
dc.identifier.urihttps://doi.org/10.38016/jista.1225097-
dc.description.abstractCoreference resolution deals with resolving mentions of the same underlying entity in a given text. This challenging task is an indispensable aspect of text understanding and has important applications in various language processing systems such as question answering and machine translation. Although a significant amount of studies is devoted to coreference resolution, the research on Turkish is scarce and mostly limited to pronoun resolution. To our best knowledge, this article presents the first neural Turkish coreference resolution study where two learning-based models are explored. Both models follow the mention-ranking approach while forming clusters of mentions. The first model uses a set of hand-crafted features whereas the second coreference model relies on embeddings learned from large-scale pre-trained language models for capturing similarities between a mention and its candidate antecedents. Several language models trained specifically for Turkish are used to obtain mention representations and their effectiveness is compared in conducted experiments using automatic metrics. We argue that the results of this study shed light on the possible contributions of neural architectures to Turkish coreference resolution.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjecten_US
dc.titleNeural Coreference Resolution for Turkishen_US
dc.typeArticleen_US
dc.identifier.doi10.38016/jista.1225097-
dc.description.PublishedMonthMarten_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage95en_US
dc.identifier.startpage85en_US
dc.identifier.issue1en_US
dc.identifier.volume6en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journalZeki sistemler teori ve uygulamaları dergisi (Online)en_US
dc.identifier.trdizinid1196839en_US
dc.institutionauthorDemir, Şeniz-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
TR-Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
document (6).pdfFull Text- Article545.96 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

36
checked on Nov 18, 2024

Download(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.