Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2032
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇapkan, Yavuz-
dc.contributor.authorŞenol, Erdi-
dc.contributor.authorUlu, Cenk-
dc.date.accessioned2023-10-18T12:23:23Z
dc.date.available2023-10-18T12:23:23Z
dc.date.issued2021-
dc.identifier.citationÇapkan, Y., Şenol, E., & Cenk, U. L. U. (2021). Fuzzy Decision Mechanism for Stock Market Trading. Avrupa Bilim ve Teknoloji Dergisi, (26), ss.6-11.en_US
dc.identifier.issn2148-2683-
dc.identifier.urihttps://doi.org/10.31590/ejosat.951586-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2032-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1159885-
dc.description.abstractInvestors utilize various methods to make buy/sell decisions depending on time-dependent stock market prices. In this study, a fuzzy decision mechanism that makes buy/sell decisions for stock market data is proposed. The proposed mechanism generates instant buy/sell decisions by evaluating three popular indicators which are the Moving Average Convergence/Divergence (MACD) Strategy, Chaikin Money Flow (CMF), and Stochastic Oscillator (SO). The fuzzy decision mechanism has three inputs and one output which are defined by using Gaussian membership functions. In the design of the decision mechanism, Mamdani inference method is used and the rule table is defined by nine rules. Therefore, the structure of the proposed fuzzy decision mechanism is simple and straightforward. The performance of the proposed fuzzy decision mechanism is compared with two classical decision mechanisms using MACD and CMF indicators separately. In the comparisons, the stock market data of Borsa Istanbul 100 Index (XU100), Dow Jones Industrial Average (^DJI), and S&P 500 (^GSPC) are used. The comparison results show that the proposed fuzzy decision mechanism provides significantly higher profit than the mechanisms using either MACD or CMF indicators for all stock market data.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy logic, stock market,technical indicators,technical analysisen_US
dc.titleFuzzy Decision Mechanism for Stock Market Tradingen_US
dc.typeArticleen_US
dc.identifier.doi10.31590/ejosat.951586-
dc.description.PublishedMonthTemmuzen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage11en_US
dc.identifier.startpage6en_US
dc.identifier.issue26en_US
dc.identifier.volume0en_US
dc.departmentMühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.relation.journalAvrupa Bilim ve Teknoloji Dergisien_US
dc.identifier.trdizinid1159885en_US
dc.institutionauthorŞenol, Erdi-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Hukuk Fakültesi Koleksiyonu
TR-Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
document (10).pdfFull Text- Article1.11 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

46
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.