Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2119
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorErtuğrul, Seyit-
dc.contributor.authorArslan, Şuayip-
dc.contributor.authorSayar, Alperen-
dc.contributor.authorAkçay, Ahmet-
dc.date.accessioned2023-11-16T05:40:32Z-
dc.date.available2023-11-16T05:40:32Z-
dc.date.issued2023-
dc.identifier.citationSayar, A., Arslan, Ş., Çakar, T., Ertuğrul, S., & Akçay, A. (2023, October). High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis. In 2023 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-4). IEEE.en_US
dc.identifier.isbn9798350306590-
dc.identifier.issn2770-7946-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2119-
dc.identifier.urihttps://doi.org/10.1109/ASYU58738.2023.10296737-
dc.description.abstractThis research focuses on monitoring and transferring logs of operations performed on a relational database, specifically PostgreSQL, in real-time using an event-driven approach. The logs generated from database operations are transferred using Apache Kafka, an open-source message queuing system, and Debezium running on Kafka, to Redis, a non-relational (No-SQL) key-value database. Time-consuming query operations and read operations are performed on Redis, which operates on memory (in-memory), instead of on the primary database, PostgreSQL. This approach has significantly improved query execution performance, data processing time, and backend service performance. The study showcases the practical application of an event-driven approach using Debezium, Kafka, Redis, and relational databases for real-time data processing and querying.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReal-time systemsen_US
dc.subjectRedisen_US
dc.subjectMonitoringen_US
dc.subjectTechnological innovationen_US
dc.subjectRelational databasesen_US
dc.subjectIntelligent systemsen_US
dc.subjectData processingen_US
dc.subjectKafkaen_US
dc.subjectDebeziumen_US
dc.subjectEvent-drivenen_US
dc.titleHigh-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redisen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU58738.2023.10296737-
dc.identifier.scopus2-s2.0-85178276920en_US
dc.authoridTuna Çakar / 0000000185947399-
dc.description.PublishedMonthEkimen_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal2023 Innovations in intelligent systems and applications conference (ASYU)en_US
dc.institutionauthorÇakar, Tuna-
item.grantfulltextembargo_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
High-Performance_Real-Time_Data_.pdf
  Until 2040-01-01
Proceedings Paper1.04 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

56
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.