Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2330
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin, Türkay-
dc.contributor.authorFiliz, Gözde-
dc.contributor.authorTuran, Semen Son-
dc.contributor.authorErtuğrul, Seyit-
dc.contributor.authorAkyürek, Güçlü-
dc.contributor.authorSayar, Alperen-
dc.contributor.authorÇakar, Tuna-
dc.date.accessioned2024-09-08T16:52:57Z-
dc.date.available2024-09-08T16:52:57Z-
dc.date.issued2024-
dc.identifier.isbn9798350388961-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2330-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600798-
dc.description.abstractFunctional near-infrared spectroscopy (fNIRS) has seen increasingly widespread use in examining brain activity and cognitive processes. However, the existing literature provides insufficient information on distinguishing between different decision-making mechanisms. This study explores the application of fNIRS in differentiating between two distinct decision-making processes: third-party punishment decisions and credit decisions. The research includes analyzing fNIRS data collected during these processes and classifying the associated neural patterns using machine learning. The findings reveal that fNIRS, in conjunction with ML, holds substantial potential to enhance the depth of understanding of decision-making processes in neuroscience research. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThird-party punishment decisionsen_US
dc.subjectFunctional near-infrared spectroscopyen_US
dc.subjectDecision makingen_US
dc.subjectMachine learningen_US
dc.subjectCredit taking decisionsen_US
dc.titleDistinguishing Cognitive Processes: a Machine Learning Approach To Decode Fnirs Data for Third-Party Punishment and Credit Decision-Making;en_US
dc.title.alternativeBilişsel Süreçlerin Ayırt Edilmesi: Özgeci Cezalandırma ve Kredi Karar Alma Süreçleri için fNIRS Verilerinin Makine Öğrenimi ile Çözümlenmesien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10600798-
dc.identifier.scopus2-s2.0-85200849837en_US
dc.authorscopusid58634073400-
dc.authorscopusid57189076696-
dc.authorscopusid57904383300-
dc.authorscopusid57905176100-
dc.authorscopusid57963550900-
dc.authorscopusid58069183200-
dc.authorscopusid57190280446-
dc.description.PublishedMonthMayısen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentİİSBF, İşletme Bölümü-
dc.institutionauthorÇakar, Tuna-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.dept04.03. Department of Business Administration-
crisitem.author.dept05. Faculty of Law-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

108
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.