Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2341
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Drias, Yassine | - |
dc.contributor.author | Filiz, Gözde | - |
dc.contributor.author | Girişken, Yener | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Tuna, Esin | - |
dc.date.accessioned | 2024-09-08T16:52:58Z | - |
dc.date.available | 2024-09-08T16:52:58Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2341 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10601072 | - |
dc.description | Berdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus University | en_US |
dc.description.abstract | This research examines the link between consumer brand perceptions and neural activity by employing Functional Near-Infrared Spectroscopy (fNIRS) and machine learning techniques. The study analyzes the neural projections of participants' reactions to brand-associated adjectives, processing data collected from 168 individuals through machine learning algorithms. The findings underscore the significance of the lateral regions of the prefrontal cortex in the decision-making process related to brand perceptions. The aim is to understand how brands are perceived when associated with various adjectives and to develop this understanding through neural patterns using machine learning models. This study demonstrates the potential of integrating neural data with machine learning methods in the field of applied neuroscience. © 2024 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Neuromarketing | en_US |
dc.subject | Functional near-infrared spectroscopy | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Neural decoding | en_US |
dc.subject | Brand perception | en_US |
dc.title | Neural Decoding of Brand Perception and Preferences: Understanding Consumer Behavior Through Fnirs and Machine Learning; | en_US |
dc.title.alternative | Marka Algısı ve Tercihlerinin Nöral Çözümlemesi: fNIRS ve Makine Öğrenimi Kullanılarak Tüketici Davranışlarının Anlaşılması | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU61531.2024.10601072 | - |
dc.identifier.scopus | 2-s2.0-85200880347 | en_US |
local.message.claim | 2024-10-23T16:42:46.385+0300 | * |
local.message.claim | |rp00139 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.authorscopusid | 56329345400 | - |
dc.authorscopusid | 57190280446 | - |
dc.authorscopusid | 57904169000 | - |
dc.authorscopusid | 58634073400 | - |
dc.authorscopusid | 56440023300 | - |
dc.description.PublishedMonth | Temmuz | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | İİSBF, Psikoloji Bölümü | - |
dc.institutionauthor | Çakar, Tuna | - |
dc.institutionauthor | Esin, Tuna | - |
dc.institutionauthor | Drias, Yassine | - |
item.grantfulltext | embargo_restricted_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Full Text - Article.pdf Restricted Access | 243.97 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.