Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2341
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrias, Yassine-
dc.contributor.authorFiliz, Gözde-
dc.contributor.authorGirişken, Yener-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorTuna, Esin-
dc.date.accessioned2024-09-08T16:52:58Z-
dc.date.available2024-09-08T16:52:58Z-
dc.date.issued2024-
dc.identifier.isbn9798350388961-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2341-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601072-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description.abstractThis research examines the link between consumer brand perceptions and neural activity by employing Functional Near-Infrared Spectroscopy (fNIRS) and machine learning techniques. The study analyzes the neural projections of participants' reactions to brand-associated adjectives, processing data collected from 168 individuals through machine learning algorithms. The findings underscore the significance of the lateral regions of the prefrontal cortex in the decision-making process related to brand perceptions. The aim is to understand how brands are perceived when associated with various adjectives and to develop this understanding through neural patterns using machine learning models. This study demonstrates the potential of integrating neural data with machine learning methods in the field of applied neuroscience. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeuromarketingen_US
dc.subjectFunctional near-infrared spectroscopyen_US
dc.subjectMachine learningen_US
dc.subjectNeural decodingen_US
dc.subjectBrand perceptionen_US
dc.titleNeural Decoding of Brand Perception and Preferences: Understanding Consumer Behavior Through Fnirs and Machine Learning;en_US
dc.title.alternativeMarka Algısı ve Tercihlerinin Nöral Çözümlemesi: fNIRS ve Makine Öğrenimi Kullanılarak Tüketici Davranışlarının Anlaşılmasıen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601072-
dc.identifier.scopus2-s2.0-85200880347en_US
local.message.claim2024-10-23T16:42:46.385+0300*
local.message.claim|rp00139*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.authorscopusid56329345400-
dc.authorscopusid57190280446-
dc.authorscopusid57904169000-
dc.authorscopusid58634073400-
dc.authorscopusid56440023300-
dc.description.PublishedMonthTemmuzen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentİİSBF, Psikoloji Bölümü-
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorEsin, Tuna-
dc.institutionauthorDrias, Yassine-
item.grantfulltextembargo_restricted_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Full Text - Article.pdf
  Restricted Access
243.97 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

92
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.