Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Coşğun, Sema"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 1
    A Modified Newton Method Formulation for Microwave Imaging
    (IEEE, 2020) Coşğun, Sema; Çayören, Mehmet; Bilgin, Egemen; Doğu, Semih
    A new variant of Newton type methods has been developed for quantitative microwave imaging. To deal with the ill-posedness of the inverse problems, standard Newton type methods involve a linearization of the so called data equation using the Fréchet derivative with respect to the contrast function. Here, the formulation is expanded to include the object equation, therefore, the formulation seeks to reduce the errors in both the data and the object equations. While this modification does not remove the need to solve forward problem at each step, it nevertheless significantly improves convergence rate and the performance. To assess the efficiency of the proposed technique, numerical simulations with synthetic and experimental data have been carried out. The results demonstrate that the proposed variant outperforms the standard Newton method, and shows comparable performance to the contrast source inversion (CSI) algorithm with fewer iterations.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 17
    Citation - Scopus: 18
    Microwave Imaging of Breast Cancer With Factorization Method: Spions as Contrast Agent
    (Wiley, 2020) Çayӧren, Mehmet; Coşğun, Sema; Bilgin, Egemen
    Female breast at macroscopic scale is a non-magnetic medium, which eliminates the possibility of realizing microwave imaging of the breast cancer based on magnetic permeability variations. However, by administering functionalized, superparamagnetic iron-oxide nanoparticles (SPION) as a contrast material to modulate magnetic permeability of cancer cells, a small variation on the scattered electric field from the breast is achievable under an external, polarizing magnetic field. PURPOSE: We demonstrate an imaging technique that can locate cancerous tumors inside the breast due to electric field variations caused by SPION tracers under different magnetic field intensities. Furthermore, we assess the feasibility of SPION enhanced microwave imaging for breast cancer with simulations performed on a multi-static imaging configuration. METHODS: The imaging procedure is realized as the factorization method of qualitative inverse scattering theory, which is essentially a shape retrieval algorithm for inaccessible objects. The formulation is heuristically modified to accommodate the scattering parameters instead of the electric field to comply with the requirements of experimental microwave imaging systems. RESULTS:With full-wave electromagnetic simulations performed on an anthropomorphically realistic breast phantom, which is excited with a cylindrical imaging prototype of 18 dipole antenna arranged as a single row, the technique is able to locate cancerous tumors for a experimentally achievable doses. CONCLUSIONS: The technique generates non-anatomic microwave images, which maps the cancerous tumors depending on concentration of SPION tracers, to aid the diagnosis of the breast cancer.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Quasi-Newton Based Inversion Method for Determining Complex Dielectric Permittivity of 3d Inhomogeneous Objects
    (IEEE, 2022) Çayören, Mehmet; Coşğun, Sema; Bilgin, Egemen
    We present a new method for determining the complex dielectric permittivity profile of 3D inhomogeneous dielectric objects from measurements of the scattered electric field vectors in the frequency domain. The method is formulated as a minimization of a cost functional defined in terms of electric field integral equations known as the object and data equations. Instead of an unknown object function containing the electromagnetic parameters of the dielectrics, the contrast sources induced within the scatterers are designated as the unknowns of the inversion scheme to avoid solving the forward scattering problem at each step. Later, the minimization of the cost function is achieved via a limited-memory quasi-Newton scheme, based on the Broyden-Fletcher-Goldfarb-Shanno formula, which iteratively updates the Hessian matrix estimation. The numerical results with the simulated and experimental scattered electric fields demonstrate that the presented method is capable of reconstructing scatterers with complex shapes.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback