Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Kaya, Mehmet"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Sanki-bir-boyutlu Kavitasyonlu Lüle Akışlarının Yeni Kabarcık Gaz Basıncı Yasasıyla Modellenmesi
    (Niğde Ömer Halisdemir Üniversitesi, 2019) Delale, Can Fuat; Morkoyun, Uğurcan; Kaya, Mehmet; Pasinlioğlu, Şenay; Ayder, Erkan
    The aim of this study is to develop a hydrodynamic cavitation model that is compatible with the results of the experiments and that can be adapted to commercial software. For this reason a hydrodynamic cavitation model that takes into account all of the damping mechanisms using the novel bubble gas pressure law is developed for quasi-one-dimensional bubbly cavitating nozzle flows. In this model the bubbly liquid is assumed to be a twophase homogeneous mixture, the Rayleigh-Plesset equation is employed for bubble dynamics, and bubble nucleation process is neglected. The first order system of equations thus obtained for quasi-one-dimensional cavitating nozzle flows is transformed into an initial value problem for the bubble radius and the pressure coefficient. A numerical code is then written to solve this initial value problem by the adaptive step size RungeKutta-Fehlberg method. Results obtained at the experimental conditions were compared and interpreted with the results of experiments.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback