Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Prezzi, Monica"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 1
    Citation - Scopus: 2
    Compaction and Shear Strength Behavior of Fresh and Aged Basic Oxygen Furnace (bof) Steel Slag
    (2016) Yıldırım, İrem Zeynep; Prezzi, Monica
    Use of industrial by-products in geotechnical engineering projects, such as in the construction of highway embankments, is advantageous because large volumes of these materials can be utilized. Basic oxygen furnace (BOF) steel slag is one of these industrial by-products. This paper provides a brief background on the characteristics of BOF steel slag and presents the results of a series of laboratory tests (grain-size analysis, maximum and minimum dry density, compaction, large-scale direct shear tests (LDS) and isotropically consolidated-drained triaxial compression (CID TX) performed on fresh and aged BOF steel slag generated from an Indiana steel plant. BOF steel slag samples from three different batches of production were tested, which allowed an evaluation of both aging processes and the effect of changes in gradation on the mechanical properties. The BOF steel slag tested in this study contained sand-size particles with varying percentages of gravel-and silt-size fractions. The moisture-density relationships for BOF steel slag were irregular with two peaks. Based on the LDS and CID TX test results, the BOF steel slag exhibited superior strength and stiffness characteristics than conventional geo-materials. The mechanical properties of fresh and aged BOF steel slag are discussed in the context of its use in geotechnical applications.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 2
    Citation - Scopus: 1
    Eaf Ladle Steel Slag as a Geo-Material: Compaction and Shear Strength Characteristics
    (2018) Yıldırım, İrem Zeynep; Prezzi, Monica
    The numerous issues associated with the excess steel slag that is disposed of in landfills every year can be reduced by using it as a geo-material. This paper provides the results of laboratory tests (i.e., sieve, hydrometer, specific gravity, compaction, compaction-particle degradation, and large-scale direct shear with a box size of 30.5 x 30.5 x 20 cm) performed on electric-arc-furnace ladle [EAF(L)] steel slag from a mini-mill in Indiana. Based on standard proctor test results, the maximum dry unit weight values of the EAF(L) steel slag were in the 16.8-to-20 kN/m(3) range at the optimum moisture contents of 11-13%. The results of the large-scale direct shear tests performed on EAF(L) steel slag, compacted at 95-100% relative compaction and sheared with normal stress ranging from 50 to 300 kPa, showed that it has excellent frictional characteristics, with friction angles between 40 and 45 degrees. Based on the results from this study, due to its shear strength characteristics, EAF(L) steel slag has the potential to be utilized as a geo-material to improve the shear strength of various marginal soils.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 53
    Citation - Scopus: 56
    Experimental Evaluation of Eaf Ladle Steel Slag as a Geo-Fill Material: Mineralogical, Physical & Mechanical Properties
    (2017) Yıldırım, İrem Zeynep; Prezzi, Monica
    Despite of significant efforts in the last decades towards utilization of steel slag in the construction industry, steel slag stockpiling and landfilling operations do not seem to be declining in steel-producing countries. Use of steel slag as a construction material requires understanding of its engineering properties and development of a methodology to address its swelling potential. This paper focuses on the results of a series of laboratory tests (grain-size analysis, X-ray diffraction, specific gravity, compaction, maximum and minimum dry unit weight, direct shear, and long-term swelling tests) performed on samples of electric-arc-furnace ladle (EAF(L)) steel slag to assess its potential to be used as a geo-material. Direct shear test results indicated that the EAF(L) steel slag exhibits comparable frictional properties to angular crushed sand. Based on the leachate concentration levels from TCLP analyses, the EAF(L) steel slag tested was classified as Type III Solid Waste. The long-term, one-dimensional (1D) swelling test results showed continued volumetric expansion even after more than 16 months of monitoring. Replacing 5-10% by weight of EAF (L) steel slag with Class C fly ash reduced the 1D swelling to negligible levels. (C) 2017 Elsevier Ltd. All rights reserved.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback