Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1941
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu by Department "Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 1A Microwave Imaging Scheme for Detection of Pulmonary Edema and Hemorrhage(IEEE, 2022) Ertek, Didem; Kucuk, Gokhan; Bilgin, EgemenThe microwave imaging systems have the potential to present a cost effective and less hazardous alternative to conventional medical imaging techniques. In this paper, a Contrast Source Inversion method based microwave imaging scheme is proposed and tested for the detection of pulmonary edema and hemorrhage. To this end, a realistic human torso phantom is used, and the electromagnetic parameters of the human tissues is determined via Cole-Cole model. The scattered field is simulated via Method of Moments at the operating frequency of 350 MHz, and a 50 dB white Gaussian noise is added to model a realistic measurement setup. The numerical tests performed with the proposed technique suggest that the method can be used to locate the pulmonary edema and hemorrhage, and it is capable of distinguishing these two medical conditions successfully.Research Project Çok Düşük Enerji Tüketen Taşınabilir Kullanıma Uygun Yapay Sinir Ağlarının Donanım Gerçeklemeleri(2023) Kumbasar, Tufan; Altun, Mustafa; Ayhan, TubaYapay sinir ağları (artificial neural networks, ANN) ile ilgili literatürde yer alan araştırmalar ve bunların endüstriyel uygulamaları son yıllarda hızlı bir şekilde artmaktadır. Buradaki temel motivasyon, geleneksel yöntemler ile yüksek doğruluklu olarak çözülmesi zor problemlerin ANN?ler ile çözülebilmesidir. Diğer taraftan, ANN?lerin kullanımı geleneksel yöntemlere göre, başta enerji olmak üzere, çok daha fazla donanımsal kaynak gerektirmektedir. Örnek vermek gerekirse, 16×16 boyutunda 256 adet piksel içeren oldukça küçük bir görüntünün her bir pikselinin ve ANN ağırlıklarının 8-bitlik girişler ile temsil edildiğini varsayalım. Bu durumda, tek bir yapay nöron, 256 adet 8-bitlik çarpma işlemi, bu çarpım sonuçlarının toplanması için minimum 16-bitlik 255 adet toplama işlemi ve bu toplam sonucunun normalize edilmesi için bir aktivasyon fonksiyonu gerektirir. Görece küçük büyüklükteki bir ANN?de bu nöronlardan yüzlerce olduğu düşünülürse, bu kadar ağırlığın bellekte tutulmasının ve yapılacak aritmetik işlemlerin, özellikle enerji tüketimi açısından, oldukça maliyetli olacağı açıktır. Bu durum ANN?lerin taşınabilir cihazlarda kullanılabilmelerini fazlasıyla kısıtlamaktadır ve bu çalışmanın temel motivasyonlarından biridir. Önerilen çalışmada, çok düşük enerji tüketen ANN?ler önerilen yeni sayı hibrit gösterimi kullanılarak tasarlanmıştır, donanım optimizasyonları yapılmıştır ve nesne takibi uygulamalarında kullanılmıştır. Yapılan çalışmalar aşağıdaki üç ana başlıkta değerlendirilebilir. Bu üç ana başlık çalışmanın desteklediği 119E507 Nolu TÜBİTAK projesinde üç iş paketi olarak yer almaktadır. ? ANN enerji tasarrufu için yeni sayı gösterimlerinin sunulması ve devre bloklarının tasarımının yapılması. ? Enerji odaklı ANN donanım tasarımları ve optimizasyonunun yapılması. ? Nesne takibi yapan ANN tasarımlarının özel tümleşik devreler (application specific integration circuits, ASIC) ve alanda programlanabilir kapı dizileri (field programmable gate arrays, FPGA) tasarım platformlarında gerçeklenmesi.
