PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1928
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection by Department "Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 37Citation - Scopus: 44Adaptive Human Force Scaling Via Admittance Control for Physical Human-Robot Interaction(IEEE, 2021) Başdoğan, Çağatay; Aydın, Yusuf; Hamad, Yahya M.The goal of this article is to design an admittance controller for a robot to adaptively change its contribution to a collaborative manipulation task executed with a human partner to improve the task performance. This has been achieved by adaptive scaling of human force based on her/his movement intention while paying attention to the requirements of different task phases. In our approach, movement intentions of human are estimated from measured human force and velocity of manipulated object, and converted to a quantitative value using a fuzzy logic scheme. This value is then utilized as a variable gain in an admittance controller to adaptively adjust the contribution of robot to the task without changing the admittance time constant. We demonstrate the benefits of the proposed approach by a pHRI experiment utilizing Fitts’ reaching movement task. The results of the experiment show that there is a) an optimum admittance time constant maximizing the human force amplification and b) a desirable admittance gain profile which leads to a more effective co-manipulation in terms of overall task performance.Article Citation - WoS: 17Citation - Scopus: 17Microwave Imaging of Breast Cancer With Factorization Method: Spions as Contrast Agent(Wiley, 2020) Çayӧren, Mehmet; Coşğun, Sema; Bilgin, EgemenFemale breast at macroscopic scale is a non-magnetic medium, which eliminates the possibility of realizing microwave imaging of the breast cancer based on magnetic permeability variations. However, by administering functionalized, superparamagnetic iron-oxide nanoparticles (SPION) as a contrast material to modulate magnetic permeability of cancer cells, a small variation on the scattered electric field from the breast is achievable under an external, polarizing magnetic field. PURPOSE: We demonstrate an imaging technique that can locate cancerous tumors inside the breast due to electric field variations caused by SPION tracers under different magnetic field intensities. Furthermore, we assess the feasibility of SPION enhanced microwave imaging for breast cancer with simulations performed on a multi-static imaging configuration. METHODS: The imaging procedure is realized as the factorization method of qualitative inverse scattering theory, which is essentially a shape retrieval algorithm for inaccessible objects. The formulation is heuristically modified to accommodate the scattering parameters instead of the electric field to comply with the requirements of experimental microwave imaging systems. RESULTS:With full-wave electromagnetic simulations performed on an anthropomorphically realistic breast phantom, which is excited with a cylindrical imaging prototype of 18 dipole antenna arranged as a single row, the technique is able to locate cancerous tumors for a experimentally achievable doses. CONCLUSIONS: The technique generates non-anatomic microwave images, which maps the cancerous tumors depending on concentration of SPION tracers, to aid the diagnosis of the breast cancer.Article Citation - WoS: 4Citation - Scopus: 5Monitoring of Intracerebral Hemorrhage With a Linear Microwave Imaging Algorithm(Springer, 2022) Dilman, Ismail; Dogu, Semih; Bilgin, Egemen; Akinci, Mehmet Nuri; Cosgun, Sema; Çayören, Mehmet; Akduman, IbrahimIntracerebral hemorrhage is a life-threatening condition where conventional imaging modalities such as CT and MRI are indispensable in diagnosing. Nevertheless, monitoring the evolution of intracerebral hemorrhage still poses a technological challenge. We consider continuous monitoring of intracerebral hemorrhage in this context and present a differential microwave imaging scheme based on a linearized inverse scattering. Our aim is to reconstruct non-anatomical maps that reveal the volumetric evolution of hemorrhage by using the differences between consecutive electric field measurements. This approach can potentially allow the monitoring of intracerebral hemorrhage in a real-time and cost-effective manner. Here, we devise an indicator function, which reveals the position, volumetric growth, and shrinkage of hemorrhage. Later, the method is numerically tested via a 3D anthropomorphic dielectric head model. Through several simulations performed for different locations of intracerebral hemorrhage, the indicator function-based technique is demonstrated to be capable of detecting the changes accurately. Finally, the robustness under noisy conditions is analyzed to assess the feasibility of the method. This analysis suggests that the method can be used to monitor the evolution of intracerebral hemorrhage in real-world scenarios. Graphical abstract: [Figure not available: see fulltext.]. © 2022, International Federation for Medical and Biological Engineering.Article Citation - WoS: 3Citation - Scopus: 5Single-Slice Microwave Imaging of Breast Cancer by Reverse Time Migration(Wiley, 2022) Bilgin, Egemen; Cansız, Gökhan; Akduman, İbrahim; Cayoren, Mehmet; Joof, Sulayman; Yılmaz, TubaPurpose Microwave imaging of breast cancer is considered and a new microwave imaging prototype including the imaging algorithm, the antenna array, and the measurement configuration is presented. The prototype aims to project the geometrical features of the anomalies inside the breast to a single-slice image at the coronal plane depending on the complex dielectric permittivity variation among the tissues to aid the diagnosis . Methods The imaging prototype uses a solid cylindrical dielectric platform, where a total of 24 optimized Vivaldi antennas are embedded inside to form a uniform circular antenna array. The center of the platform is carved to create a hollow part for placement of the breast and the multistatic, microwave scattering parameters are collected with the antenna array around the hollow center. The dielectric platform further enhances the microwave impedance matching against the breast fat tissue and preserves the vertical polarization during the measurements. In the imaging phase, a computationally efficient inverse electromagnetic scattering method-reverse time migration (RTM)-is considered and adapted in terms of scattering parameters to comply with the actual measurements. Results The prototype system is experimentally tested against tissue-mimicking breast phantoms with realistic dielectric permittivity profiles. The reconstructed single-slice images accurately determined the locations and the geometrical extents of the tumor phantoms. These experiments not only verified the microwave imaging prototype but also provided the first experimental results of the imaging algorithm. Conclusions The presented prototype system implementing the RTM method is capable of reconstructing single-slice, nonanatomical images, where the hotspots correspond to the geometrical projections of the anomalies inside the breast.