İnşaat Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1943
Browse
Browsing İnşaat Mühendisliği Bölümü Koleksiyonu by browse.metadata.publisher "Springer"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Citation - WoS: 9Citation - Scopus: 10Damage Accumulation Modelling of Two Reinforced Concrete Buildings Under Seismic Sequences(Springer, 2023) Tönük, Gökçe; Oyguç, Reşat; Oyguç, Evrim; Uçak, DorukThe extent of earthquake damage depends solely on the seismicity, site conditions and vulnerability of the building stock in a region. Hence, studies to assess the seismic behavior of building stocks with similar vulnerabilities are important to mitigate seismic risk in earthquake-prone regions. This study aims to simulate the seismic behavior of selected reinforced concrete (RC) school buildings by modelling damage accumulation under multiple earthquakes sequence. The observed data of two RC school buildings heavily damaged after the 2011 Van earthquake sequence in Turkey, namely, the Gedikbulak and Alakoy schools is used. Among these two school buildings, the Gedikbulak school building collapsed immediately after the main excitation, while the Alakoy school building withstood several seismic sequences, suffering heavy damages. In this study, three-dimensional numerical models that can consider the deterioration effects are developed and the capacities of the buildings were evaluated by conducting a force-based adaptive pushover procedure. Additionally, non-linear dynamic analyses were conducted using the concrete plastic damage model. Both degrading and conventional material models were used to examine the structural response under multiple ground motion sequences. The hysteretic behaviors of the studied buildings are presented. Consequently, analytical results are well correlated with the reconnaissance studies and neither of the considered structures are found to satisfy the design performance level.Conference Object Citation - WoS: 10Citation - Scopus: 12Implications of Site Specific Response Analysis(Springer, 2018) Tönük, Gökçe; Kurtuluş, Aslı; Ansal, AtillaDefinition of design earthquake characteristics, more specifically uniform hazard acceleration response spectrum, on the ground surface is the primary component for performance based design of structures and assessment of seismic vulnerabilities in urban environments. The adopted approach for this purpose requires a probabilistic local seismic hazard assessment, definition of representative site profiles down to the engineering bedrock, and 1D or 2D quivalent or nonlinear, total or effective stress site response analyses depending on the complexity and importance of the structures to be built. Thus, a site-specific response analysis starts with the probabilistic estimation of regional seismicity and earthquake source characteristics, soil stratification, engineering properties of encountered soil layers in the soil profile. The local seismic hazard analysis would yield probabilistic uniform hazard acceleration response spectrum on the bedrock outcrop. Thus, site specific response analyses also need to produce a probabilistic uniform hazard acceleration response spectrum on the ground surface. A general review will be presented based on the previous studies conducted by the author and his co-workers in comparison to major observations and methodologies to demonstrate the implications of site-specific response analysis.Conference Object Citation - Scopus: 1Investigation Procedure for the Diagnosis of Historical Minarets: Inclined Minaret of Sivas Ulu Cami (mosque)(Springer, 2024) İnci, Pınar; Demir, Cem; Aldırmaz B.; Çoban S.; Halıcı, Ömer Faruk; Cömert M.; Kiraz F.The inclined minaret of Sivas Ulu Cami (Mosque) from the 13th century Danishmend Period is one of the most invaluable architectural heritages in Turkey. The extent of inclination of the minaret towards the North-West direction, the seismicity of the region, and structural damages that occurred in time have emphasized the need for comprehensive structural and geotechnical investigations. Accordingly, a rehabilitation project is currently going on under the coordination of the General Directorate of Foundations of Turkey. Within the scope of the project, first, a series of field surveys have been conducted to obtain the current features of the minaret including the characteristics of the structural system, damages, deviation from the vertical axis, ground conditions and foundation details. In addition to that, a monitoring system including inclinometers, linear potentiometers and accelerometers has been mounted for tracking the evolution of deformations and damages in time under environmental influences and extracting the dynamic properties of the minaret. Findings from the field survey and monitoring system were used for constructing an analytical model of the structural system of the minaret. Then nonlinear time history analyses were conducted under various strong ground motion records to estimate the seismic performance of the minaret when subjected to earthquakes of different characteristics. The results showed that the tensile stresses that occurred due to seismic actions exceeded the tensile strength of the brick masonry at the region of the transition segment and the cylindrical body (top level of the boot).Article Citation - WoS: 1Citation - Scopus: 1Probabilistic Seismic Microzonation for Ground Shaking Intensity, a Case Study in Türkiye(Springer, 2023) Tönük, Gökçe; Ansal, AtillaThe purpose of seismic microzonation is to estimate earthquake characteristics on the ground surface based on a probabilistic approach to mitigate earthquake damage in the foreseeable future for the new buildings, as well as for the existing building stock. The probabilistic analysis and related results are very important from an engineering perspective since the nature of the problem can only be dealt with in a probabilistic manner. The uncertainties associated with these analyses may be large due to the uncertainties in source characteristics, soil profile, soil properties, and building inventory. At this stage, the probability distribution of the related earthquake parameters on the ground surface may be determined based on hazard-compatible input acceleration-time histories, site profiles, and dynamic soil properties. One option, the variability in earthquake source and path effects may be considered using a large number of acceleration records compatible with the site-dependent earthquake hazard. Likewise, large numbers of soil profiles may be used to account for the site-condition variability. The seismic microzonation methodology is proposed based on the probabilistic assessment of these factors involved in site response analysis. The second important issue in seismic microzonation procedure is the selection of microzonation parameters. The purpose being mitigation of structural damage, it is possible to adopt earthquake parameters like cumulative average velocity (CAV) or Housner intensity (HI) that was observed to have better correlation with building damage after earthquakes. A seismic microzonation procedure will be developed with respect to ground shaking intensity considering probabilistic values of the cumulative average velocity (CAV) or Housner intensity (HI).Book Part Citation - Scopus: 19The Modified Post-Earthquake Damage Assessment Methodology for Tcip (tcip-Dam(Springer, 2021) Cömert, Mustafa; Ilki, Alper; Halıcı, Ömer Faruk; Demir, CemPost-Earthquake damage assessment has always been one of the major challenges that both engineers and authorities face after disastrous earthquakes all around the world. Considering the number of buildings in need of inspection and the insufficient number of qualified inspectors, the availability of a thorough, quantitative and rapidly applicable damage assessment methodology is vitally important after such events. At the beginning of the new millennia, an assessment system satisfying these needs was developed for the Turkish Catastrophe Insurance Pool (TCIP, known as DASK in Turkey) to evaluate the damages in reinforced concrete (RC) and masonry structures. Since its enforcement, this assessment method has been successfully used after several earthquakes that took place in Turkey, such as 2011 Van Earthquake, 2011 Kutahya Earthquake, 2019 Istanbul Earthquake and 2020 Elazig Earthquake to decide the future of damaged structures to be either ‘repaired’ or ‘demolished’.
