Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1926
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection by browse.metadata.publisher "Assoc Computing Machinery"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 2Citation - Scopus: 3Detecting Autism From Head Movements Using Kinesics(Assoc Computing Machinery, 2024) Gokmen, Muhittin; Sariyanidi, Evangelos; Yankowitz, Lisa; Zampella, Casey J.; Schultz, Robert T.; Tunc, BirkanHead movements play a crucial role in social interactions. The quantification of communicative movements such as nodding, shaking, orienting, and backchanneling is significant in behavioral and mental health research. However, automated localization of such head movements within videos remains challenging in computer vision due to their arbitrary start and end times, durations, and frequencies. In this work, we introduce a novel and efficient coding system for head movements, grounded in Birdwhistell's kinesics theory, to automatically identify basic head motion units such as nodding and shaking. Our approach first defines the smallest unit of head movement, termed kine, based on the anatomical constraints of the neck and head. We then quantify the location, magnitude, and duration of kines within each angular component of head movement. Through defining possible combinations of identified kines, we define a higher-level construct, kineme, which corresponds to basic head motion units such as nodding and shaking. We validate the proposed framework by predicting autism spectrum disorder (ASD) diagnosis from video recordings of interacting partners. We show that the multi-scale property of the proposed framework provides a significant advantage, as collapsing behavior across temporal scales reduces performance consistently. Finally, we incorporate another fundamental behavioral modality, namely speech, and show that distinguishing between speaking- and listening-time head movements significantly improves ASD classification performance.Article Citation - WoS: 1Citation - Scopus: 3Turkish Data-To Generation Using Sequence-To Neural Networks(Assoc Computing Machinery, 2023) Demir, ŞenizEnd-to-end data-driven approaches lead to rapid development of language generation and dialogue systems. Despite the need for large amounts of well-organized data, these approaches jointly learn multiple components of the traditional generation pipeline without requiring costly human intervention. End-to-end approaches also enable the use of loosely aligned parallel datasets in system development by relaxing the degree of semantic correspondences between training data representations and text spans. However, their potential in Turkish language generation has not yet been fully exploited. In this work, we apply sequenceto-sequence (Seq2Seq) neural models to Turkish data-to-text generation where the input data given in the form of a meaning representation is verbalized. We explore encoder-decoder architectures with attention mechanism in unidirectional, bidirectional, and stacked recurrent neural network (RNN) models. Our models generate one-sentence biographies and dining venue descriptions using a crowdsourced dataset where all field value pairs that appear in meaning representations are fully captured in reference sentences. To support this work, we also explore the performances of our models on a more challenging dataset, where the content of a meaning representation is too large to fit into a single sentence, and hence content selection and surface realization need to be learned jointly. This dataset is retrieved by coupling introductory sentences of person-related Turkish Wikipedia articles with their contained infobox tables. Our empirical experiments on both datasets demonstrate that Seq2Seq models are capable of generating coherent and fluent biographies and venue descriptions from field value pairs. We argue that the wealth of knowledge residing in our datasets and the insights obtained fromthis study hold the potential to give rise to the development of new end-to-end generation approaches for Turkish and other morphologically rich languages.
