Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1941
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu by Scopus Q "Q2"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels(Taylor and Francis Ltd., 2022) Kırbız, Serap; Hızlı, ÇağlarAlthough detecting communities in networks has attracted considerable recent attention, estimating the number of communities is still an open problem. In this paper, we propose a model, which replicates the generative process of the mixed-membership stochastic block model (MMSB) within the generic allocation framework of Bayesian allocation model (BAM) and BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB considers the observations as Poisson counts generated by a base Poisson process and marks according to the generative process of MMSB. Moreover, the optimal number of communities for BAM-MMSB is estimated by computing the variational approximations of the marginal likelihood for each model order. Experiments on synthetic and real data sets show that the proposed approach promises a generalized model selection solution that can choose not only the model size but also the most appropriate decomposition.Article Citation - WoS: 37Citation - Scopus: 44Adaptive Human Force Scaling Via Admittance Control for Physical Human-Robot Interaction(IEEE, 2021) Başdoğan, Çağatay; Aydın, Yusuf; Hamad, Yahya M.The goal of this article is to design an admittance controller for a robot to adaptively change its contribution to a collaborative manipulation task executed with a human partner to improve the task performance. This has been achieved by adaptive scaling of human force based on her/his movement intention while paying attention to the requirements of different task phases. In our approach, movement intentions of human are estimated from measured human force and velocity of manipulated object, and converted to a quantitative value using a fuzzy logic scheme. This value is then utilized as a variable gain in an admittance controller to adaptively adjust the contribution of robot to the task without changing the admittance time constant. We demonstrate the benefits of the proposed approach by a pHRI experiment utilizing Fitts’ reaching movement task. The results of the experiment show that there is a) an optimum admittance time constant maximizing the human force amplification and b) a desirable admittance gain profile which leads to a more effective co-manipulation in terms of overall task performance.Article Citation - WoS: 19Citation - Scopus: 21An Adaptive Admittance Controller for Collaborative Drilling With a Robot Based on Subtask Classification Via Deep Learning(Elsevier, 2022) Başdoğan, Çağatay; Niaz, P. Pouya; Aydın, Yusuf; Güler, Berk; Madani, AlirezaIn this paper, we propose a supervised learning approach based on an Artificial Neural Network (ANN) model for real-time classification of subtasks in a physical human–robot interaction (pHRI) task involving contact with a stiff environment. In this regard, we consider three subtasks for a given pHRI task: Idle, Driving, and Contact. Based on this classification, the parameters of an admittance controller that regulates the interaction between human and robot are adjusted adaptively in real time to make the robot more transparent to the operator (i.e. less resistant) during the Driving phase and more stable during the Contact phase. The Idle phase is primarily used to detect the initiation of task. Experimental results have shown that the ANN model can learn to detect the subtasks under different admittance controller conditions with an accuracy of 98% for 12 participants. Finally, we show that the admittance adaptation based on the proposed subtask classifier leads to 20% lower human effort (i.e. higher transparency) in the Driving phase and 25% lower oscillation amplitude (i.e. higher stability) during drilling in the Contact phase compared to an admittance controller with fixed parameters.Article Citation - WoS: 4Citation - Scopus: 5Monitoring of Intracerebral Hemorrhage With a Linear Microwave Imaging Algorithm(Springer, 2022) Dilman, Ismail; Dogu, Semih; Bilgin, Egemen; Akinci, Mehmet Nuri; Cosgun, Sema; Çayören, Mehmet; Akduman, IbrahimIntracerebral hemorrhage is a life-threatening condition where conventional imaging modalities such as CT and MRI are indispensable in diagnosing. Nevertheless, monitoring the evolution of intracerebral hemorrhage still poses a technological challenge. We consider continuous monitoring of intracerebral hemorrhage in this context and present a differential microwave imaging scheme based on a linearized inverse scattering. Our aim is to reconstruct non-anatomical maps that reveal the volumetric evolution of hemorrhage by using the differences between consecutive electric field measurements. This approach can potentially allow the monitoring of intracerebral hemorrhage in a real-time and cost-effective manner. Here, we devise an indicator function, which reveals the position, volumetric growth, and shrinkage of hemorrhage. Later, the method is numerically tested via a 3D anthropomorphic dielectric head model. Through several simulations performed for different locations of intracerebral hemorrhage, the indicator function-based technique is demonstrated to be capable of detecting the changes accurately. Finally, the robustness under noisy conditions is analyzed to assess the feasibility of the method. This analysis suggests that the method can be used to monitor the evolution of intracerebral hemorrhage in real-world scenarios. Graphical abstract: [Figure not available: see fulltext.]. © 2022, International Federation for Medical and Biological Engineering.Article Citation - WoS: 1Citation - Scopus: 3Turkish Data-To Generation Using Sequence-To Neural Networks(Assoc Computing Machinery, 2023) Demir, ŞenizEnd-to-end data-driven approaches lead to rapid development of language generation and dialogue systems. Despite the need for large amounts of well-organized data, these approaches jointly learn multiple components of the traditional generation pipeline without requiring costly human intervention. End-to-end approaches also enable the use of loosely aligned parallel datasets in system development by relaxing the degree of semantic correspondences between training data representations and text spans. However, their potential in Turkish language generation has not yet been fully exploited. In this work, we apply sequenceto-sequence (Seq2Seq) neural models to Turkish data-to-text generation where the input data given in the form of a meaning representation is verbalized. We explore encoder-decoder architectures with attention mechanism in unidirectional, bidirectional, and stacked recurrent neural network (RNN) models. Our models generate one-sentence biographies and dining venue descriptions using a crowdsourced dataset where all field value pairs that appear in meaning representations are fully captured in reference sentences. To support this work, we also explore the performances of our models on a more challenging dataset, where the content of a meaning representation is too large to fit into a single sentence, and hence content selection and surface realization need to be learned jointly. This dataset is retrieved by coupling introductory sentences of person-related Turkish Wikipedia articles with their contained infobox tables. Our empirical experiments on both datasets demonstrate that Seq2Seq models are capable of generating coherent and fluent biographies and venue descriptions from field value pairs. We argue that the wealth of knowledge residing in our datasets and the insights obtained fromthis study hold the potential to give rise to the development of new end-to-end generation approaches for Turkish and other morphologically rich languages.
